WO2014162661A1 - Cold-rolled steel sheet and manufacturing method therefor - Google Patents

Cold-rolled steel sheet and manufacturing method therefor Download PDF

Info

Publication number
WO2014162661A1
WO2014162661A1 PCT/JP2014/001265 JP2014001265W WO2014162661A1 WO 2014162661 A1 WO2014162661 A1 WO 2014162661A1 JP 2014001265 W JP2014001265 W JP 2014001265W WO 2014162661 A1 WO2014162661 A1 WO 2014162661A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cold
steel sheet
rolling
rolled steel
Prior art date
Application number
PCT/JP2014/001265
Other languages
French (fr)
Japanese (ja)
Inventor
勇人 齋藤
崇 小林
船川 義正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2015013941A priority Critical patent/MX2015013941A/en
Priority to CN201480019854.2A priority patent/CN105074039B/en
Priority to KR1020157024635A priority patent/KR101717002B1/en
Publication of WO2014162661A1 publication Critical patent/WO2014162661A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention is suitable for materials such as plates, disks, and rings that are automotive drive-train parts, and is suitable for materials such as punchability and heat distortion characteristics (heat).
  • the present invention relates to a cold-rolled steel sheet having excellent strain resistance and a method for producing the same.
  • Plates, disks, rings, etc. (such as AT plates, etc.) used as automotive drive system parts have conventionally been quenched for the purpose of hardening after steel plates are punched into a predetermined shape.
  • the heat treatment is performed to adjust the hardness to a predetermined level, and then a friction material is adhered.
  • a great amount of heat energy is consumed for the heat treatment, and a dedicated heat treatment facility is required, so an increase in production cost is inevitable.
  • Patent Document 1 in mass%, C: 0.05 to 0.6%, Si: 2.0% or less, Mn: 0.2 to 2.0%, P: 0.03% or less, S: 0.03% or less, Sol.Al: 0.1% or less , N: Steel containing less than 0.01%, balance Fe and inevitable impurities, hot-rolled at a finish temperature (Ar 3 transformation point –20 ° C) or higher, cooling rate over 120 ° C / second, cooling stop temperature Cooling is performed so that the difference in cooling stop temperature between the center part and the edge part in the width direction of the steel sheet is 650 ° C or lower, and the cooling temperature is 30 ° C or lower.
  • Patent Document 2 includes mass%, C: 0.05 to less than 0.10%, Si: 0.5% or less, Mn: 0.20 to 2.0%, P: 0.03% or less, S: 0.020% or less, Cr: 0.05 to 0.5%
  • the steel material with the balance consisting of Fe and inevitable impurities is hot-rolled with the finish rolling finish temperature of finish rolling set to the Ar 3 transformation point or higher, and cooled to 500-650 ° C within 8 s after finish rolling. , Having a base made of pro-eutectoid ferrite, pearlite, bainitic ferrite or bainite, after being wound at 500 to 650 ° C.
  • a technique for producing a cold-rolled steel sheet by performing cold rolling of up to 70% has been proposed. And according to the technique proposed by patent document 2, it is supposed that the cold-rolled steel plate excellent in the flatness after stamping and excellent in the end surface property will be obtained.
  • Patent Document 3 C: 0.15 to 0.25 mass%, Si: 0.25 mass% or less, Mn: 0.3 to 0.9 mass%, P: 0.03 mass% or less, S: 0.015 mass% or less, Al: 0.01 to 0.08 mass% , N: 0.008% by mass or less, Ti: 0.01-0.05% by mass, B: 0.002-0.005% by mass, with the balance being substantially Fe composition, hot rolling finish temperature: Ar 3 Hot rolling at a transformation point or higher, coiling temperature: 500-600 ° C, hot-rolled steel sheet pickled, then cold rolled at a reduction rate of 50% or higher without annealing, and diameter of 300mm or higher A technique for manufacturing a cold-rolled steel sheet has been proposed by performing light reduction rolling with a reduction ratio of 1% or less using this roll. According to the technique proposed in Patent Document 3, it is said that a cold rolled steel sheet for automatic transmission with reduced residual stress generated during cold rolling can be obtained.
  • the C content is as high as 0.15 to 0.25% by mass and the coiling temperature in the hot rolling process is as low as 500 to 600 ° C. Generate. Therefore, as in the technique proposed in Patent Document 2, the residual stress inside the steel sheet increases during cold rolling. As a result, even if a flat shape is obtained in the state of punching, heat is generated by heating after punching. There was a problem that distortion occurred.
  • the object of the present invention is to solve the above-mentioned problems and to provide a cold-rolled steel sheet having hardness necessary for drive system parts such as a plate and a disk, flatness after punching, punched end face properties, and heat-resistant strain characteristics, and its It is to provide a manufacturing method.
  • the heat-resistant strain property means that when the friction material is heated to a temperature range of about 100 to 400 ° C in the adhesion process of the friction material or in an actual use environment, the thin steel sheet is less deformed and sufficient flatness is obtained. Means a characteristic.
  • the present inventors conducted extensive research on various factors that affect the heat-resistant strain characteristics, flatness after punching, and punched end surface properties of cold-rolled steel sheets.
  • the rolling reduction in cold rolling is set to a predetermined value or less, and the C content of the steel material is reduced to a predetermined value or less and hot rolling is performed.
  • the hot-rolled sheet before cold rolling is the ferrite main phase, the volume fraction of the pearlite phase and bainite phase of the hot-rolled sheet is reduced, and after cold rolling It was found that it is important to control the average grain size and average aspect ratio of the pearlite and bainite phases of the steel sheet.
  • the hot-rolled sheet before cold rolling is a pearlite phase or a bainite phase that is a hard phase together with ferrite as a main phase (hereinafter, either one of the pearlite phase or the bainite phase may be referred to as a “hard phase”).
  • a pearlite phase or a bainite phase that is a hard phase together with ferrite as a main phase
  • either one of the pearlite phase or the bainite phase may be referred to as a “hard phase”.
  • the hot-rolled sheet before cold rolling is used as a ferrite main phase, and the volume fraction of the hard phase contained in the hot-rolled sheet is reduced, so that the vicinity of the ferrite / pearlite interface during cold rolling, or ferrite / Residual stress accompanying non-uniform deformation near the interface of bainite can be reduced, and the thermal strain characteristics of the cold-rolled steel sheet can be improved. If such a cold-rolled steel plate is used to manufacture drive system parts such as plates, it will be obvious that after punching into a predetermined shape, even if it is exposed to high temperatures in the bonding process with friction materials or in the actual usage environment, The problem of a decrease in flatness due to strain can be solved.
  • the present inventors use a hot rolled sheet before cold rolling as a ferrite main phase, lower the volume fraction of the hard phase of the hot rolled sheet, and control the average grain size and average aspect ratio of the hard phase. Has been found to be extremely effective in improving the flatness after punching of the cold-rolled steel sheet and the properties of the punched end face.
  • the hard phase In cold rolling, the hard phase is extended in the rolling direction, but the hardness difference between the main phase ferrite and the hard phase is large, so the hard phase extends in the rolling direction (that is, the aspect ratio of the hard phase).
  • the strain accumulated at the interface between the ferrite phase and the hard phase increases, residual stress accumulates, and the heat-resistant strain characteristics of the cold-rolled steel sheet deteriorate. Therefore, in order to improve these characteristics, it is necessary to make the average aspect ratio of the hard phase composed of at least one of the pearlite and bainite phases below a predetermined value.
  • the average particle size of the hard phase to a predetermined value or less, even if cracks occur from the boundary interface (boundary between different phases), it prevents the cracks from propagating greatly and punches without defects. An end face is obtained.
  • the C content of the steel material is reduced to a predetermined value or less.
  • the present invention has been completed based on the above findings, and the gist of the present invention is as follows.
  • the area ratio of the ferrite phase is 80% or more, and from one or more of pearlite phase and bainite phase
  • the hard phase has a total area ratio of 20% or less, an average particle size of the hard phase of 1 ⁇ m to 10 ⁇ m, and an average aspect ratio of the hard phase of 10.0 or less, and a Vickers hard A cold-rolled steel sheet having a Vickers hardness of Hv170 or more and excellent in punchability and thermal strain characteristics.
  • the punching property and heat resistance further include at least one of Cu: 0.01% to 0.20% and Ni: 0.01% to 0.50% in mass%. Cold rolled steel sheet with excellent strain characteristics.
  • any one or more of Sb: 0.001% to 0.030%, Sn: 0.001% to 0.030% or less A cold-rolled steel sheet excellent in punchability and heat distortion characteristics.
  • the composition further contains at least one of Cu: 0.01% or more and 0.20% or less, Ni: 0.01% or more and 0.50% or less.
  • any one or more of Ca: 0.0003% to 0.0050%, REM: 0.0003% to 0.0100% The manufacturing method of the cold-rolled steel plate excellent in the punchability and heat-strain-resistant characteristic containing this.
  • a cold-rolled steel sheet having excellent heat-resistant strain characteristics can be easily produced, and a remarkable industrial effect can be achieved.
  • the cold-rolled steel sheet according to the present invention is extremely suitable as a material for driving parts such as automobile parts, particularly plates and disks.
  • % which is a unit of each component element content, means mass%.
  • C 0.01% or more and 0.08% or less C is an element necessary for strengthening steel sheets.
  • the C content is 0.01% or more. There is a need to.
  • the upper limit of C content is 0.08%.
  • the C content is preferably less than 0.05%. More preferably, it is 0.04% or less.
  • Si 0.01% or more and 1.0% or less
  • Si is a deoxidizer for steel and has the effect of improving the cleanliness of the steel, so the content is made 0.01% or more.
  • Si is also an element that increases the hardness of the steel sheet by solid solution hardening, and can be added to obtain a desired hardness.
  • the Si content exceeds 1.0%, the surface quality of the steel sheet deteriorates, so the upper limit of the Si content is 1.0%.
  • a plate material used for a component that generates friction is required to have good surface properties, and therefore, it is preferably set to 0.6% or less.
  • Mn 0.05% or more and 1.0% or less
  • Mn is an element that increases the hardness of the steel sheet by solid solution strengthening, and the Mn content needs to be 0.05% or more in order to obtain a desired hardness. Preferably it is 0.1% or more. If the Mn content exceeds 1.0%, in addition to excessive generation of pearlite, bainite, etc., pearlite and the like are generated in layers due to segregation, and the punched end face properties deteriorate. Therefore, the Mn content is 1.0% or less. Preferably it is 0.5% or less.
  • P 0.03% or less
  • P is an element that is easily segregated in steel. When it is contained in a large amount, the formation of a layered structure is promoted by the segregation of P, and the punched end face properties deteriorate. Therefore, the P content needs to be 0.03% or less. Preferably it is 0.02% or less.
  • S 0.015% or less S forms sulfide inclusions such as MnS and degrades the punched end face properties. Therefore, the S content needs to be 0.015% or less. Preferably it is 0.010% or less.
  • Al 0.005% or more and 0.10% or less Since Al can improve the cleanliness of the steel sheet by adding it as a deoxidizing element, its content needs to be 0.005% or more. Preferably it is 0.03% or more. On the other hand, if the Al content exceeds 0.10%, oxides are excessively generated, the surface properties are deteriorated, and the adhesion to the friction material is deteriorated. Therefore, the Al content is 0.10% or less. Preferably it is 0.08% or less.
  • N 0.01% or less N is a harmful element in the present invention, and if its content is excessive, the ductility of the steel sheet is lowered and the punched end face properties are deteriorated. Therefore, the N content is 0.01% or less. Preferably it is 0.006% or less.
  • the cold-rolled steel sheet of the present invention can contain the following elements as necessary in addition to these basic components.
  • Cu 0.01% or more and 0.20% or less
  • Ni 0.01% or more and 0.50% or less
  • the Cu content is 0.01% or more and the Ni content is 0.01% or more. More preferably, the Cu content is 0.02% or more, and the Ni content is 0.02% or more.
  • the Cu content is preferably 0.20% or less and the Ni content is preferably 0.50% or less. More preferably, the Cu content is 0.10% or less, and the Ni content is 0.30% or less.
  • Ti 0.005% to 0.10%, Nb: 0.005% to 0.10%, V: 0.005% to 0.50%, Zr: 0.005% to 0.10%, Mo: 0.02% to 0.50%, Cr: 0.03% or more 0.50% or less, B: Any one or more of 0.0003% or more and 0.0050% or less Ti, Nb, V, Zr, Mo, Cr, and B are elements that contribute to an increase in the hardness of the steel sheet. It is preferably contained for imparting hardness. On the other hand, when the content of these elements becomes excessive, the residual stress increases, and flatness after punching or thermal strain occurs.
  • Ti content is 0.005% to 0.10%
  • Nb content is 0.005% to 0.10%
  • V content is 0.005% to 0.50%
  • Zr content is 0.005% to 0.10%
  • Mo content is It is preferable that the content is 0.02% to 0.50%
  • the Cr content is 0.03% to 0.50%
  • the B content is 0.0003% to 0.0050%.
  • the content is 0.20% or less
  • the Cr content is 0.05% or more and 0.20% or less
  • the B content is 0.0005% or more and 0.0030% or less.
  • Ca 0.0003% or more and 0.0050% or less
  • REM 0.0003% or more and 0.0100% or less
  • the Ca content is preferably 0.0003% or more and the REM content is preferably 0.0003% or more. More preferably, the Ca content is 0.0008% or more and the REM content is 0.0008% or more.
  • the Ca content is preferably 0.0050% or less and the REM content is preferably 0.0100% or less. . More preferably, the Ca content is 0.0030% or less and the REM content is 0.0050% or less.
  • any one or more Sb and Sn are elements that improve the surface properties of the steel sheet, and have the effect of improving the adhesion to the friction material. is there.
  • the Sb content is preferably 0.001% or more and the Sn content is preferably 0.001% or more.
  • the Sb content is preferably 0.030% or less. More preferably, the Sb content is 0.005% or more and 0.020% or less, and the Sn content is 0.005% or more and 0.015% or less.
  • the balance other than the above components is Fe and inevitable impurities.
  • unavoidable impurities include O, Mg, Co, Zn, Ta, W, Pb, Bi, and the like.
  • the content of these elements is acceptable if it is about 0.01% or less.
  • the area ratio of the ferrite phase is 80% or more
  • the area ratio of the hard phase composed of at least one of the pearlite phase and the bainite phase is 20% or less in total
  • the hard phase The average particle size of the hard phase is 1 ⁇ m or more and 10 ⁇ m or less, and the average aspect ratio of the hard phase is 10.0 or less.
  • the residual stress of the cold-rolled steel sheet is reduced by making the deformation in the steel sheet uniform during cold rolling.
  • the cold-rolled steel sheet of the present invention needs to make the main phase a soft ferrite phase and suppress hard pearlite phase and bainite phase.
  • a hard phase composed of one or more of pearlite phase and bainite phase is contained in a large amount exceeding 20% in total area ratio, the residual stress after cold rolling increases, and the steel plate shape after punching Deteriorates, or cracks occur at the interface between the ferrite phase and the hard phase during punching, and the punched end face properties of the steel sheet deteriorate.
  • thermal strain characteristics deteriorate as the residual stress increases, thermal strain occurs when such a cold-rolled steel sheet is punched and exposed to a high temperature environment.
  • the area ratio of the ferrite phase needs to be 80% or more, and the area ratio of the hard phase composed of at least one of the pearlite phase and the bainite phase needs to be 20% or less in total.
  • the area ratio of the ferrite phase is preferably 85% or more, and more preferably 90% or more.
  • the total area ratio of the hard phase is preferably 15% or less, and more preferably 10% or less.
  • the cold-rolled steel sheet structure of the present invention may contain cementite in addition to the ferrite phase, pearlite phase, and bainite phase.
  • the area ratio of cementite is preferably 1% or less.
  • the cold-rolled steel sheet of the present invention has a structure in which an average particle diameter of a hard phase composed of at least one of a pearlite phase and a bainite phase is 1 ⁇ m or more and 10 ⁇ m or less, and an average aspect ratio of the hard phase is 10.0 or less.
  • an average particle diameter of a hard phase composed of at least one of a pearlite phase and a bainite phase is 1 ⁇ m or more and 10 ⁇ m or less
  • an average aspect ratio of the hard phase is 10.0 or less.
  • the average particle diameter of the hard phase is 10 ⁇ m or less. Preferably, it is 7 ⁇ m or less.
  • the smaller the average particle size of the hard phase the more preferable from the viewpoint of the punchability of the steel sheet.
  • it is necessary to lower the finish rolling end temperature and the winding temperature of hot rolling during the production of the steel sheet.
  • the finish rolling end temperature and the coiling temperature of hot rolling it is necessary to set the finish rolling end temperature and the coiling temperature of hot rolling to a predetermined temperature or more as described later.
  • the average particle size of the hard phase is 1 ⁇ m or more.
  • the average aspect ratio of the hard phase exceeds 10.0, the strain at the interface between the hard phase and the ferrite phase, which is the main phase, increases and the residual stress increases, so the heat-resistant strain characteristics of the cold-rolled steel sheet deteriorate. Therefore, the average aspect ratio of the hard phase is 10.0 or less. Preferably it is 8.0 or less.
  • the hardness of the cold-rolled steel sheet of the present invention is 170 or more in terms of Hv (Vickers hardness).
  • Hv Vehicle hardness
  • the hardness of a cold-rolled steel sheet shall be Hv170 or more.
  • it is Hv 190 or more.
  • the hardness of the cold-rolled steel sheet of the present invention is mainly based on work hardening by cold rolling, if the hardness becomes too high (that is, if the rolling reduction of cold rolling becomes too high). The residual stress of the steel sheet also increases, and the thermal strain characteristics deteriorate. For this reason, it is preferable that the cold-rolled steel sheet has a hardness of Hv250 or less.
  • the cold-rolled steel sheet of the present invention is a hot-rolled sheet having a ferrite phase as a main phase by subjecting a steel material having the above chemical composition to hot rolling, and the scale is removed from the hot-rolled sheet by pickling. Thereafter, it is obtained by cold rolling at a predetermined rolling reduction.
  • the manufacturing method of the steel material need not be particularly limited.
  • molten steel having the above-described composition is melted in a converter or electric furnace, preferably subjected to secondary smelting in a vacuum degassing furnace (vacuum degassing furnace), and slab is obtained by a production method such as continuous casting.
  • a vacuum degassing furnace vacuum degassing furnace
  • Any conventional method using steel materials such as can be applied.
  • the steel material is then subjected to hot rolling consisting of rough rolling and finish rolling to form a hot rolled sheet.
  • hot rolling consisting of rough rolling and finish rolling to form a hot rolled sheet.
  • the steel material may be subjected to direct rolling (direct rolling) in which hot rolling is performed immediately after casting or after heating for heat supplement after casting.
  • the heating temperature is not particularly limited, but is preferably in the range of 1000 ° C. or higher and 1300 ° C. or lower. When the heating temperature is less than 1000 ° C., the deformation resistance becomes high and a good shape may not be obtained. On the other hand, when the temperature is higher than 1300 ° C., scale growth is promoted, and the surface properties of the steel sheet may be deteriorated.
  • the conditions for rough rolling are not particularly limited.
  • Finish rolling end temperature 800 ° C. or higher and 950 ° C. or lower
  • the finish rolling end temperature exceeds 950 ° C.
  • the structure of the hot rolled sheet becomes coarse.
  • the finish rolling finish temperature is less than 800 ° C.
  • the structure of the hot-rolled sheet becomes a structure composed of extremely stretched crystal grains, and the aspect ratio of the hard phase also increases. In this way, when the steel sheet including the hard phase that has been extended in the rolling direction at the stage of hot rolling is further cold-rolled, there is a large difference in hardness between the hard phase and the ferrite phase that is the main phase.
  • the finish rolling end temperature is set to 800 ° C. or more and 950 ° C. or less. Preferably they are 850 degreeC or more and 920 degrees C or less.
  • Winding temperature More than 600 ° C. and 750 ° C. or less
  • the winding temperature is 600 ° C. or less
  • a pearlite phase or a bainite phase is excessively formed, and the target steel structure of the ferrite phase cannot be obtained.
  • the coiling temperature exceeds 750 ° C.
  • the pearlite phase and cementite particles are coarsened to deteriorate the punched end surface properties of the steel plate or the surface properties of the steel plate. Therefore, the coiling temperature is set to more than 600 ° C. and 750 ° C. or less.
  • they are 620 degreeC or more and 700 degrees C or less.
  • the average cooling rate in the temperature range up to the coiling temperature is preferably 10 ° C./s or more and less than 120 ° C./s. More preferably, it is 15 ° C./s or more and 50 ° C./s or less.
  • Cold rolling reduction ratio 30% or more and 70% or less
  • the rolling reduction needs to be 30% or more.
  • the rolling reduction exceeds 70%, the residual stress increases, the average aspect ratio of the hard phase composed of pearlite and / or bainite phase exceeds a predetermined value, and thermal strain is likely to occur. Therefore, the rolling reduction of cold rolling is set to 30% or more and 70% or less. Preferably they are 40% or more and 60% or less.
  • temper rolling may be applied, or a leveler may be passed.
  • the elongation rate is preferably 0.3% or more. More preferably, it is 0.4% or more.
  • the flatness of the steel sheet after temper rolling it is preferably 1.0% or less.
  • test piece is collected, and the structure is observed by the following method.
  • the area ratio of the ferrite phase, the pearlite phase, the bainite phase, and the average grain of the hard phase (pearlite phase and / or bainite phase) were determined. Further, test pieces were collected from the obtained cold-rolled steel sheets, and the hardness, flatness after punching, punched end face properties, and heat distortion characteristics were evaluated by the following methods.
  • Microstructure observation A sample with a plate thickness cross section parallel to the rolling direction was taken, and the structure was revealed with a 3% nital solution (nital) for the plate thickness cross section, and a scanning electron microscope was used at the 1/4 thickness position. (SEM) was used to photograph 3 fields of view at 500 times, and the area ratio of each phase and the particle size and aspect ratio of the hard phase composed of at least one of pearlite and bainite phases were quantified by image processing.
  • the grain size is a square root ( ⁇ (a ⁇ b)) of a value obtained by multiplying the major axis length a and minor axis length b of the crystal grains.
  • the aspect ratio is a value (a / b) obtained by dividing the major axis length a of the crystal grains by the minor axis length b.
  • the average grain size and average aspect ratio of the hard phase are the arithmetic average of the grain sizes and aspect ratios of all crystal grains recognized as either a pearlite phase or a bainite phase in image processing.
  • Hardness Take a sample with a plate thickness cross section parallel to the rolling direction, embed it in a resin, polish the plate thickness cross section, and then use a Vickers hardness tester in accordance with the provisions of JIS Z 2244 at a thickness of 1/4. Used, 5 points were measured with a load of 500 gf, and the average value was determined to be hardness.
  • Punched end face properties From the obtained cold-rolled steel sheet, a ring-shaped plate with an outer diameter of 100 mm and an inner diameter of 80 mm is punched, the punched end surfaces are observed, and those without cracks or secondary shear surfaces are punched. : It was set as favorable ((circle)). On the other hand, a punched end surface property: defective (x) was observed where cracks or secondary shear surfaces were observed.
  • Heat-resistant strain characteristics A ring-shaped plate having an outer diameter of 100 mm and an inner diameter of 80 mm was punched out from the obtained cold-rolled steel sheet, and the plate was held at 300 ° C. for 1 hour, and then heat-treated by air cooling to room temperature. After the heat treatment, the shape of the plate was measured with a laser measuring instrument in the same manner as in the above “measurement of flatness after punching”, and the difference between the minimum value and the maximum value of the height of the annular portion of the plate was calculated. The case where the difference between the minimum value and the maximum value was 0.2 mm or less was regarded as the heat distortion resistance: good ( ⁇ ). On the other hand, the case where the difference between the minimum value and the maximum value was more than 0.2 mm was regarded as the thermal strain characteristic: defective (x). These results are shown in Table 3.
  • each of the cold-rolled steel sheets of the invention examples has a sufficient Vickers hardness of Hv170 or more, excellent flatness after punching, punched end face properties, and excellent thermal strain characteristics.
  • the cold-rolled steel sheet of the comparative example outside the scope of the present invention is inferior in any of the characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided are a cold-rolled steel sheet with excellent blanking quality and heat strain resistance, and a manufacturing method therefor. A cold-rolled steel sheet with a Vickers hardness of at least Hv 170 comprising: a composition containing, in mass%, C: 0.01% to 0.08%, Si: 0.01% to 1.0%, Mn: 0.05% to 1.0%, P: not more than 0.03%, S: not more than 0.015%, Al: 0.005% to 0.10%, and N: not more than 0.01%, the remainder being obtained from Fe and unavoidable impurities; and a structure wherein the area ratio of ferrite phases is at least 80%, the total area ratio of hard phases obtained from pearlite phases and/or bainite phases is not more than 20%, the mean particle diameter for the hard phases is 1 µm to 10 µm, and the mean aspect ratio for the hard phases is not more than 10.0.

Description

冷延鋼板およびその製造方法Cold rolled steel sheet and method for producing the same
 本発明は、自動車用駆動系部品(automotive drive-train parts)であるプレート(plate)やディスク(disk)、リング(ring)等の素材に好適な、打ち抜き性(punchability)および耐熱ひずみ特性(heat strain resistance)に優れた冷延鋼板およびその製造方法に関する。 The present invention is suitable for materials such as plates, disks, and rings that are automotive drive-train parts, and is suitable for materials such as punchability and heat distortion characteristics (heat The present invention relates to a cold-rolled steel sheet having excellent strain resistance and a method for producing the same.
 自動車の駆動系部品として使用されているプレート、ディスク、リング等(例えば、ATプレートなど)は、従来、鋼板を所定の形状に打ち抜いた後、硬化(hardening)を目的とした焼入れ(quenching)等の熱処理を施して所定の硬さに調整し、その後、摩擦材(friction material)を接着して製造されている。しかし、従来の製造方法では、熱処理に多大な熱エネルギーを消費し、しかも専用の熱処理設備を必要とすることから、製造コストの増大が避けられない。 Plates, disks, rings, etc. (such as AT plates, etc.) used as automotive drive system parts have conventionally been quenched for the purpose of hardening after steel plates are punched into a predetermined shape. The heat treatment is performed to adjust the hardness to a predetermined level, and then a friction material is adhered. However, in the conventional manufacturing method, a great amount of heat energy is consumed for the heat treatment, and a dedicated heat treatment facility is required, so an increase in production cost is inevitable.
 このような状況下、近年、打ち抜き成形(blanking)後の熱処理に代えて、冷間圧延を利用して所望の硬さに調整された冷延鋼板の適用が進んでいる。冷延鋼板を適用した場合、焼入れ等の熱処理が不要となるため、製造コストを大幅に削減することができる。しかし、冷延鋼板を適用した場合、打ち抜き加工後の部品に大きな反りが発生することがある。そのため、打ち抜き後に形状矯正(shape straitening)が必要となるという問題がある。更には矯正しても所定の形状が得られないという問題がある。打ち抜き後には良好な平坦形状(flatness)が得られていても、摩擦材との接着工程(bonding process)や実使用環境(actual use environment)で高温に晒された場合に、残留応力(residual stress)が開放されて変形してしまうという熱ひずみの問題もある。 Under such circumstances, in recent years, cold rolled steel sheets adjusted to have a desired hardness using cold rolling instead of heat treatment after blanking have been applied. When a cold-rolled steel sheet is applied, a heat treatment such as quenching is not necessary, so that the manufacturing cost can be greatly reduced. However, when a cold-rolled steel sheet is applied, a large warp may occur in a part after punching. For this reason, there is a problem that shape correction (shape straitening) is required after punching. Furthermore, there is a problem that a predetermined shape cannot be obtained even if correction is performed. Even if a good flatness is obtained after punching, the residual stress (residual stress) when exposed to high temperatures in the bonding process with the friction material or the actual use environment (actual use environment) There is also a problem of thermal strain in which) is released and deforms.
 プレートをはじめとした駆動系部品用の冷延鋼板に関しては、これまでに様々な技術が提案されている。
 例えば、特許文献1では、質量%で、C:0.05~0.6%、Si:2.0%以下、Mn:0.2~2.0%、P:0.03%以下、S:0.03%以下、Sol.Al:0.1%以下、N:0.01%以下を含有し、残部Fe及び不可避不純物からなる鋼を、仕上温度 (Ar3変態点-20℃)以上で熱間圧延した後、冷却速度120℃/秒超、冷却停止温度650℃以下、鋼板幅方向のセンター部とエッジ部との冷却停止温度の差が30℃以下となるように冷却を行い、巻取温度600℃以下で巻取り、酸洗後、圧下率40%以上で冷間圧延するか、もしくは、焼鈍温度600℃以上AC1変態点以下で焼鈍後に圧下率40%以上で冷間圧延することにより、鋼板の板面硬度(surface hardness of steel sheet) Hvが170~300であり、鋼板の長手方向及び幅方向の各位置における板面硬度差の最大値ΔHvが20以下である薄鋼板を製造する技術が提案されている。特許文献1で提案された技術によると、鋼板の長手方向及び幅方向の位置による残留応力の差異が抑制され、打ち抜き後の平坦度(flatness)に優れる冷間圧延ままの薄鋼板が得られるとされている。
Various technologies have been proposed so far for cold-rolled steel sheets for plates and other drive train components.
For example, in Patent Document 1, in mass%, C: 0.05 to 0.6%, Si: 2.0% or less, Mn: 0.2 to 2.0%, P: 0.03% or less, S: 0.03% or less, Sol.Al: 0.1% or less , N: Steel containing less than 0.01%, balance Fe and inevitable impurities, hot-rolled at a finish temperature (Ar 3 transformation point –20 ° C) or higher, cooling rate over 120 ° C / second, cooling stop temperature Cooling is performed so that the difference in cooling stop temperature between the center part and the edge part in the width direction of the steel sheet is 650 ° C or lower, and the cooling temperature is 30 ° C or lower. By cold rolling at the above, or by cold rolling at an annealing temperature of 600 ° C. or more and an AC1 transformation point or less and then rolling at a reduction rate of 40% or more, the surface hardness of the steel sheet Hv is reduced. A technique for manufacturing a thin steel sheet having a maximum hardness difference ΔHv of 20 or less at each position in the longitudinal direction and the width direction of the steel sheet between 170 and 300 has been proposed. According to the technique proposed in Patent Document 1, the difference in residual stress depending on the position in the longitudinal direction and width direction of the steel sheet is suppressed, and a cold-rolled thin steel sheet having excellent flatness after punching is obtained. Has been.
 特許文献2では、質量%で、C:0.05~0.10%未満、Si:0.5%以下、Mn:0.20~2.0%、P:0.03%以下、S:0.020%以下、Cr:0.05~0.5%を含み、残部がFe及び不可避的不純物からなる組成を有する鋼素材を、仕上圧延の仕上圧延終了温度をAr3変態点以上として熱間圧延し、仕上圧延終了後8s以内に500~650℃まで冷却し、500~650℃にて巻取処理を施して、初析フェライト(pro-eutectoid ferrite)とパーライト(pearlite)とベイニティックフェライト(bainitic ferrite)またはベイナイト(bainite)とからなる基地を有し、該基地中に存在するセメンタイト(cementite)が平均で1.0×104個/mm2以上分散した組織を有する引張強さ:440MPa以上の熱延鋼板としたのち、該熱延鋼板に圧下率:30~70%の冷間圧延を施すことにより冷延鋼板を製造する技術が提案されている。そして、特許文献2で提案された技術によると、打ち抜き加工後の平坦度に優れかつ端面性状に優れた冷延鋼板が得られるとされている。 Patent Document 2 includes mass%, C: 0.05 to less than 0.10%, Si: 0.5% or less, Mn: 0.20 to 2.0%, P: 0.03% or less, S: 0.020% or less, Cr: 0.05 to 0.5% The steel material with the balance consisting of Fe and inevitable impurities is hot-rolled with the finish rolling finish temperature of finish rolling set to the Ar 3 transformation point or higher, and cooled to 500-650 ° C within 8 s after finish rolling. , Having a base made of pro-eutectoid ferrite, pearlite, bainitic ferrite or bainite, after being wound at 500 to 650 ° C. Tensile strength having a structure in which cementite existing in the matrix is dispersed at an average of 1.0 × 10 4 pieces / mm 2 or more is made into a hot rolled steel sheet of 440 MPa or more. A technique for producing a cold-rolled steel sheet by performing cold rolling of up to 70% has been proposed. And according to the technique proposed by patent document 2, it is supposed that the cold-rolled steel plate excellent in the flatness after stamping and excellent in the end surface property will be obtained.
 特許文献3には、C:0.15~0.25質量%、Si:0.25質量%以下、Mn:0.3~0.9質量%、P:0.03質量%以下、S:0.015質量%以下、Al:0.01~0.08質量%、N:0.008質量%以下、Ti:0.01~0.05質量%、B:0.002~0.005質量%を含有し、残部が実質的にFeの組成をもつスラブ(slab)を、熱延仕上げ温度:Ar3変態点以上、巻取り温度:500~600℃で熱間圧延し、熱延鋼板を酸洗処理した後、焼鈍処理することなく圧下率50%以上で冷間圧延し、更に、径が300mm以上のロールを使用して圧下率1%以下の軽圧下圧延を施すことにより、冷延鋼板を製造する技術が提案されている。特許文献3で提案された技術によると、冷延時に生成された残留応力を低減したATプレート用冷延鋼板(cold rolled steel sheet for automatic transmission)が得られるとされている。 In Patent Document 3, C: 0.15 to 0.25 mass%, Si: 0.25 mass% or less, Mn: 0.3 to 0.9 mass%, P: 0.03 mass% or less, S: 0.015 mass% or less, Al: 0.01 to 0.08 mass% , N: 0.008% by mass or less, Ti: 0.01-0.05% by mass, B: 0.002-0.005% by mass, with the balance being substantially Fe composition, hot rolling finish temperature: Ar 3 Hot rolling at a transformation point or higher, coiling temperature: 500-600 ° C, hot-rolled steel sheet pickled, then cold rolled at a reduction rate of 50% or higher without annealing, and diameter of 300mm or higher A technique for manufacturing a cold-rolled steel sheet has been proposed by performing light reduction rolling with a reduction ratio of 1% or less using this roll. According to the technique proposed in Patent Document 3, it is said that a cold rolled steel sheet for automatic transmission with reduced residual stress generated during cold rolling can be obtained.
日本特開2006-307281号公報Japanese Unexamined Patent Publication No. 2006-307281 日本特開2008-138237号公報Japanese Unexamined Patent Publication No. 2008-138237 日本特開2005-200712号公報Japanese Patent Laid-Open No. 2005-200712
 しかしながら、特許文献1で提案された技術では、熱延終了後に急速冷却し、600℃以下と低い温度で巻取るため、熱延鋼板の段階で内部の残留応力が大きくなり、結果として冷間圧延後の薄鋼板も大きな残留応力が蓄積した状態となる。このように大きな残留応力が蓄積された冷間圧延ままの薄鋼板を打ち抜き成形すると、打ち抜き成形したままの状態では良好な平坦度が得られるものの、打ち抜き成形に続く摩擦材の接着工程での加熱で残留応力が開放されて、平坦度が劣化するという熱ひずみの問題があった。 However, in the technique proposed in Patent Document 1, rapid cooling is performed after hot rolling is completed, and winding is performed at a low temperature of 600 ° C. or lower, so that the internal residual stress is increased at the stage of the hot rolled steel sheet, resulting in cold rolling. Subsequent thin steel sheets are also in a state where a large residual stress is accumulated. Punching and forming a cold-rolled thin steel sheet with a large residual stress accumulated in this way gives good flatness in the state of punching, but heating in the friction material bonding process following punching There was a problem of thermal strain that the residual stress was released and the flatness deteriorated.
 特許文献2で提案された技術では、フェライトに比べ硬質なパーライトやベイナイトを多量に含む熱延鋼板に冷間圧延を施すため、冷間圧延時にフェライトとパーライトやベイナイトの相界面(phase boundary)近傍で不均一な変形が生じ、鋼板内部の残留応力が大きくなる。したがって、このようにして得られた冷延鋼板を打ち抜き成形すると、打ち抜き成形したままの状態では良好な平坦形状および打ち抜き端面性状(appearances of punched surface)が得られるが、特許文献1で提案された技術と同様、熱ひずみ(heat strain)が発生するという問題があった。 In the technique proposed in Patent Document 2, hot rolling steel sheet containing a larger amount of hard pearlite and bainite than ferrite is cold-rolled, so the vicinity of the phase boundary between ferrite and pearlite and bainite during cold rolling. Causes uneven deformation and increases the residual stress inside the steel sheet. Therefore, when the cold-rolled steel sheet obtained in this way is stamped and formed, a good flat shape and a punched end surface property (appearances of punched surface) can be obtained in the state of being punched and formed. As with the technology, there was a problem that heat strain occurred.
 特許文献3で提案された技術では、C含有量が0.15~0.25質量%と高く、熱間圧延工程の巻取り温度が500~600℃と低いために、熱延鋼板にパーライトやベイナイトが多量に生成する。したがって、特許文献2で提案された技術と同様、冷間圧延時に鋼板内部の残留応力が大きくなる結果、打ち抜き成形したままの状態では平坦な形状が得られても、打ち抜き成形後の加熱により熱ひずみが発生するという問題があった。 In the technique proposed in Patent Document 3, the C content is as high as 0.15 to 0.25% by mass and the coiling temperature in the hot rolling process is as low as 500 to 600 ° C. Generate. Therefore, as in the technique proposed in Patent Document 2, the residual stress inside the steel sheet increases during cold rolling. As a result, even if a flat shape is obtained in the state of punching, heat is generated by heating after punching. There was a problem that distortion occurred.
 本発明の目的は、上記の問題を解決し、プレートやディスクなどの駆動系部品用として必要な硬さ、打ち抜き後の平坦度および打ち抜き端面性状、並びに耐熱ひずみ特性を兼ね備えた冷延鋼板およびその製造方法を提供することにある。ここで、耐熱ひずみ特性とは、摩擦材の接着工程や実使用環境にて100~400℃程度の温度域に加熱された際に、薄鋼板の変形が少なく、十分な平坦度が得られるという特性を意味する。 The object of the present invention is to solve the above-mentioned problems and to provide a cold-rolled steel sheet having hardness necessary for drive system parts such as a plate and a disk, flatness after punching, punched end face properties, and heat-resistant strain characteristics, and its It is to provide a manufacturing method. Here, the heat-resistant strain property means that when the friction material is heated to a temperature range of about 100 to 400 ° C in the adhesion process of the friction material or in an actual use environment, the thin steel sheet is less deformed and sufficient flatness is obtained. Means a characteristic.
 上記課題を解決すべく、本発明者らは、冷延鋼板の耐熱ひずみ特性、打ち抜き後の平坦度および打ち抜き端面性状に影響を及ぼす各種要因について鋭意研究を重ねた。 In order to solve the above-mentioned problems, the present inventors conducted extensive research on various factors that affect the heat-resistant strain characteristics, flatness after punching, and punched end surface properties of cold-rolled steel sheets.
 その結果、耐熱ひずみ特性の向上には、冷間圧延後の残留応力の低減が有効であることを知見した。冷間圧延後の残留応力を低減するためには、冷間圧延での圧下率(rolling reduction)を所定値以下とすること、および鋼素材のC量を所定値以下に低減するとともに熱間圧延工程の巻取り温度を規定することで、冷間圧延前の熱延板をフェライト主相とし、該熱延板のパーライト相やベイナイト相の体積分率を低下させ、かつ、冷間圧延後の鋼板のパーライトやベイナイト相の平均粒径および平均アスペクト比(average aspect ratio)を制御することが重要であることを見出した。 As a result, it has been found that the reduction of residual stress after cold rolling is effective for improving the thermal strain characteristics. In order to reduce the residual stress after cold rolling, the rolling reduction in cold rolling is set to a predetermined value or less, and the C content of the steel material is reduced to a predetermined value or less and hot rolling is performed. By defining the coiling temperature of the process, the hot-rolled sheet before cold rolling is the ferrite main phase, the volume fraction of the pearlite phase and bainite phase of the hot-rolled sheet is reduced, and after cold rolling It was found that it is important to control the average grain size and average aspect ratio of the pearlite and bainite phases of the steel sheet.
 冷間圧延前の熱延板が、主相であるフェライトとともに、硬質相であるパーライト相やベイナイト相(以下、パーライト相、ベイナイト相のいずれか1種以上を「硬質相」ということもある)を含む場合、冷間圧延時にフェライト相-硬質相界面の近傍で不均一な変形が発生し、残留応力が蓄積し易くなる。したがって、冷間圧延前の熱延板をフェライト主相とし、且つ該熱延板に含まれる硬質相の体積分率を低下させることにより、冷間圧延時にフェライト/パーライトの界面近傍、またはフェライト/ベイナイトの界面近傍での不均一な変形に伴う残留応力が低減し、冷延鋼板の耐熱ひずみ特性を向上させることができる。このような冷延鋼板を用いてプレート等の駆動系部品を製造すれば、所定形状に打ち抜き成形後は無論のこと、摩擦材との接着工程や実使用環境で高温に晒されても、熱ひずみに起因する平坦度の低下の問題を解消することができる。 The hot-rolled sheet before cold rolling is a pearlite phase or a bainite phase that is a hard phase together with ferrite as a main phase (hereinafter, either one of the pearlite phase or the bainite phase may be referred to as a “hard phase”). When it contains, non-uniform deformation occurs near the ferrite phase-hard phase interface during cold rolling, and residual stress tends to accumulate. Accordingly, the hot-rolled sheet before cold rolling is used as a ferrite main phase, and the volume fraction of the hard phase contained in the hot-rolled sheet is reduced, so that the vicinity of the ferrite / pearlite interface during cold rolling, or ferrite / Residual stress accompanying non-uniform deformation near the interface of bainite can be reduced, and the thermal strain characteristics of the cold-rolled steel sheet can be improved. If such a cold-rolled steel plate is used to manufacture drive system parts such as plates, it will be obvious that after punching into a predetermined shape, even if it is exposed to high temperatures in the bonding process with friction materials or in the actual usage environment, The problem of a decrease in flatness due to strain can be solved.
 本発明者らは、冷間圧延前の熱延板をフェライト主相とし、該熱延板の硬質相の体積分率を低下させ、且つ、硬質相の平均粒径および平均アスペクト比を制御することが、冷延鋼板の打ち抜き後の平坦度および打ち抜き端面性状を改善するうえでも極めて有効であることを知見した。 The present inventors use a hot rolled sheet before cold rolling as a ferrite main phase, lower the volume fraction of the hard phase of the hot rolled sheet, and control the average grain size and average aspect ratio of the hard phase. Has been found to be extremely effective in improving the flatness after punching of the cold-rolled steel sheet and the properties of the punched end face.
 冷間圧延前の熱延板で硬質相の生成を極力回避することにより、冷間圧延後の鋼板内で均一な特性が得られるため、打ち抜き後に良好な平坦度が得られる。また、冷間圧延前の熱延板で硬質相の生成を極力回避することにより、打ち抜き成形時にクラックが発生し易い異相界面(フェライト相と硬質相との界面)が減少するため、打ち抜き端面性状が向上する。 By avoiding the generation of the hard phase as much as possible in the hot-rolled sheet before cold rolling, uniform characteristics can be obtained in the steel sheet after cold rolling, so that good flatness can be obtained after punching. In addition, by avoiding the generation of a hard phase as much as possible in the hot-rolled sheet before cold rolling, the number of out-of-phase interfaces (interfaces between ferrite and hard phases) that are prone to cracking during punching is reduced. Will improve.
 冷間圧延においては、硬質相が圧延方向に伸展させられるが、主相であるフェライトと硬質相との硬度差が大きいため、硬質相が圧延方向に伸展するほど(すなわち、硬質相のアスペクト比が大きくなるほど)、フェライト相と硬質相との界面に蓄えられる歪が大きくなり、残留応力が蓄積し、冷延鋼板の耐熱ひずみ特性が低下する。したがって、これらの特性を向上させるには、パーライト、ベイナイト相のいずれか1種以上からなる硬質相の平均アスペクト比を所定値以下とする必要がある。さらに、硬質相の平均粒径を所定値以下に制御することにより、異相界面(boundary between different phases)よりクラック(crack)が発生したとしても、クラックが大きく伝播することを防ぎ、欠陥のない打ち抜き端面が得られる。 In cold rolling, the hard phase is extended in the rolling direction, but the hardness difference between the main phase ferrite and the hard phase is large, so the hard phase extends in the rolling direction (that is, the aspect ratio of the hard phase). As the value increases, the strain accumulated at the interface between the ferrite phase and the hard phase increases, residual stress accumulates, and the heat-resistant strain characteristics of the cold-rolled steel sheet deteriorate. Therefore, in order to improve these characteristics, it is necessary to make the average aspect ratio of the hard phase composed of at least one of the pearlite and bainite phases below a predetermined value. In addition, by controlling the average particle size of the hard phase to a predetermined value or less, even if cracks occur from the boundary interface (boundary between different phases), it prevents the cracks from propagating greatly and punches without defects. An end face is obtained.
 上記のように、冷間圧延前の熱延板をフェライト主相とし、且つ該熱延板の硬質相の体積分率を低下させるためには、鋼素材のC量を所定値以下に低減することに加え、熱間圧延工程の巻取り温度を600℃超750℃以下と高温にすることが必要である。冷間圧延後の鋼板の硬質相の平均粒径および平均アスペクト比を制御するには、熱延板の圧延条件を最適化することに加え、冷間圧延の圧下率を制限する必要がある。 As described above, in order to use the hot rolled sheet before cold rolling as a ferrite main phase and reduce the volume fraction of the hard phase of the hot rolled sheet, the C content of the steel material is reduced to a predetermined value or less. In addition, it is necessary to increase the coiling temperature in the hot rolling process to a high temperature of more than 600 ° C. and 750 ° C. or less. In order to control the average grain size and average aspect ratio of the hard phase of the steel sheet after cold rolling, it is necessary to limit the rolling reduction of the cold rolling in addition to optimizing the rolling conditions of the hot rolled sheet.
 本発明は、以上の知見に基づき完成されたものであり、本発明の要旨は以下のとおりである。
[1] 質量%で、C :0.01%以上0.08%以下、Si:0.01%以上1.0%以下、Mn:0.05%以上1.0%以下、P :0.03%以下、S :0.015%以下、Al:0.005%以上0.10%以下、N :0.01%以下を含有し、残部がFeおよび不可避的不純物からなる組成と、フェライト相の面積率が80%以上であり、パーライト相、ベイナイト相のいずれか1種以上からなる硬質相の面積率が合計で20%以下であり、前記硬質相の平均粒径が1μm以上10μm以下、かつ、前記硬質相の平均アスペクト比が10.0以下である組織とを有し、ビッカース硬さ(Vickers hardness)がHv170以上である、打ち抜き性および耐熱ひずみ特性に優れた冷延鋼板。
The present invention has been completed based on the above findings, and the gist of the present invention is as follows.
[1] By mass%, C: 0.01% to 0.08%, Si: 0.01% to 1.0%, Mn: 0.05% to 1.0%, P: 0.03% or less, S: 0.015% or less, Al: 0.005% 0.10% or less, N: 0.01% or less, with the balance consisting of Fe and inevitable impurities, the area ratio of the ferrite phase is 80% or more, and from one or more of pearlite phase and bainite phase The hard phase has a total area ratio of 20% or less, an average particle size of the hard phase of 1 μm to 10 μm, and an average aspect ratio of the hard phase of 10.0 or less, and a Vickers hard A cold-rolled steel sheet having a Vickers hardness of Hv170 or more and excellent in punchability and thermal strain characteristics.
[2] 前記[1]において、前記組成に加えて更に、質量%で、Cu:0.01%以上0.20%以下、Ni:0.01%以上0.50%以下のいずれか1種以上を含有する打ち抜き性および耐熱ひずみ特性に優れた冷延鋼板。 [2] In the above [1], in addition to the composition, the punching property and heat resistance further include at least one of Cu: 0.01% to 0.20% and Ni: 0.01% to 0.50% in mass%. Cold rolled steel sheet with excellent strain characteristics.
[3] 前記[1]または[2]において、前記組成に加えて更に、質量%で、Ti:0.005%以上0.10%以下、Nb:0.005%以上0.10%以下、V :0.005%以上0.50%以下、Zr:0.005%以上0.10%以下、Mo:0.02%以上0.50%以下、Cr:0.03%以上0.50%以下、B :0.0003%以上0.0050%以下のいずれか1種以上を含有する打ち抜き性および耐熱ひずみ特性に優れた冷延鋼板。 [3] In the above [1] or [2], in addition to the above composition, by mass%, Ti: 0.005% to 0.10%, Nb: 0.005% to 0.10%, V: 0.005% to 0.50% , Zr: 0.005% or more and 0.10% or less, Mo: 0.02% or more and 0.50% or less, Cr: 0.03% or more and 0.50% or less, B: 0.0003% or more and 0.0050% or less Cold-rolled steel sheet with excellent characteristics.
[4] 前記[1]ないし[3]のいずれかにおいて、前記組成に加えて更に、質量%で、Ca:0.0003%以上0.0050%以下、REM:0.0003%以上0.0100%以下のいずれか1種以上を含有する打ち抜き性および耐熱ひずみ特性に優れた冷延鋼板。 [4] In any one of the above [1] to [3], in addition to the above composition, in addition to mass, Ca: 0.0003% to 0.0050%, REM: 0.0003% to 0.0100% or less A cold-rolled steel sheet excellent in punchability and heat distortion characteristics.
[5] 前記[1]ないし[4]のいずれかにおいて、前記組成に加えて更に、質量%で、Sb:0.001%以上0.030%以下、Sn:0.001%以上0.030%以下のいずれか1種以上を含有する打ち抜き性および耐熱ひずみ特性に優れた冷延鋼板。 [5] In any one of the above [1] to [4], in addition to the above composition, by mass%, any one or more of Sb: 0.001% to 0.030%, Sn: 0.001% to 0.030% or less A cold-rolled steel sheet excellent in punchability and heat distortion characteristics.
[6] 質量%で、C :0.01%以上0.08%以下、Si:0.01%以上1.0%以下、Mn:0.05%以上1.0%以下、P :0.03%以下、S :0.015%以下、Al:0.005%以上0.10%以下、N :0.01%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼素材に、仕上げ圧延終了温度を800℃以上950℃以下とする熱間圧延を施し、熱間圧延終了後、600℃超750℃以下の巻取り温度で巻き取り、酸洗(pickling)にてスケール(scale)を除去したのち、30%以上70%以下の圧下率で冷間圧延を施す打ち抜き性および耐熱ひずみ特性に優れた冷延鋼板の製造方法。 [6] By mass%, C: 0.01% to 0.08%, Si: 0.01% to 1.0%, Mn: 0.05% to 1.0%, P: 0.03% or less, S: 0.015% or less, Al: 0.005% More than 0.10%, N: 0.01% or less, and the steel material having the balance consisting of Fe and inevitable impurities is subjected to hot rolling at a finish rolling finish temperature of 800 ° C to 950 ° C, After hot rolling is completed, winding is performed at a winding temperature of more than 600 ° C and not more than 750 ° C, the scale is removed by pickling, and then cold rolling is performed at a reduction rate of 30% to 70%. A method for producing a cold-rolled steel sheet having excellent punchability and thermal strain characteristics.
[7] 前記[6]において、前記冷間圧延を施したのち、調質圧延を施す打ち抜き性および耐熱ひずみ特性に優れた冷延鋼板の製造方法。 [7] A method for producing a cold-rolled steel sheet having excellent punchability and heat-resistant strain characteristics after performing the cold rolling and then performing temper rolling in [6].
[8] 前記[6]または[7]において、前記組成に加えて更に、質量%で、Cu:0.01%以上0.20%以下、Ni:0.01%以上0.50%以下のいずれか1種以上を含有する打ち抜き性および耐熱ひずみ特性に優れた冷延鋼板の製造方法。 [8] In the above [6] or [7], in addition to the composition, the composition further contains at least one of Cu: 0.01% or more and 0.20% or less, Ni: 0.01% or more and 0.50% or less. A method for producing a cold-rolled steel sheet having excellent punchability and thermal strain characteristics.
[9] 前記[6]ないし[8]のいずれかにおいて、前記組成に加えて更に、質量%で、Ti:0.005%以上0.10%以下、Nb:0.005%以上0.10%以下、V:0.005%以上0.50%以下、Zr:0.005%以上0.10%以下、Mo:0.02%以上0.50%以下、Cr:0.03%以上0.50%以下、B:0.0003%以上0.0050%以下のいずれか1種以上を含有する打ち抜き性および耐熱ひずみ特性に優れた冷延鋼板の製造方法。 [9] In any one of the above [6] to [8], in addition to the composition, in addition to mass, Ti: 0.005% to 0.10%, Nb: 0.005% to 0.10%, V: 0.005% or more Punchability containing 0.5% or less, Zr: 0.005% or more and 0.10% or less, Mo: 0.02% or more and 0.50% or less, Cr: 0.03% or more and 0.50% or less, B: 0.0003% or more and 0.0050% or less And a method for producing a cold-rolled steel sheet having excellent heat distortion characteristics.
[10] 前記[6]ないし[9]のいずれかにおいて、前記組成に加えて更に、質量%で、Ca:0.0003%以上0.0050%以下、REM:0.0003%以上0.0100%以下のいずれか1種以上を含有する打ち抜き性および耐熱ひずみ特性に優れた冷延鋼板の製造方法。 [10] In any one of the above [6] to [9], in addition to the above composition, by mass%, any one or more of Ca: 0.0003% to 0.0050%, REM: 0.0003% to 0.0100% The manufacturing method of the cold-rolled steel plate excellent in the punchability and heat-strain-resistant characteristic containing this.
[11] 前記[6]ないし[10]のいずれかにおいて、前記組成に加えて更に、質量%で、Sb:0.001%以上0.030%以下、Sn:0.001%以上0.030%以下のいずれか1種以上を含有する打ち抜き性および耐熱ひずみ特性に優れた冷延鋼板の製造方法。 [11] In any one of the above [6] to [10], in addition to the composition, in addition to mass%, any one or more of Sb: 0.001% or more and 0.030% or less, Sn: 0.001% or more and 0.030% or less The manufacturing method of the cold-rolled steel plate excellent in the punchability and heat-strain-resistant characteristic containing this.
 本発明によれば、打ち抜き後の平坦度および打ち抜き端面性状が良好であることに加えて、耐熱ひずみ特性にも優れた冷延鋼板を容易に製造でき、産業上格段の効果を奏する。本発明による冷延鋼板は、自動車用部品、特にプレートやディスクなどの駆動系部品用素材として極めて好適である。 According to the present invention, in addition to excellent flatness after punching and punched end face properties, a cold-rolled steel sheet having excellent heat-resistant strain characteristics can be easily produced, and a remarkable industrial effect can be achieved. The cold-rolled steel sheet according to the present invention is extremely suitable as a material for driving parts such as automobile parts, particularly plates and disks.
 まず、本発明冷延鋼板の成分組成の限定理由について説明する。各成分元素含有量の単位である%は、特に断らない限り質量%を意味するものとする。 First, the reasons for limiting the component composition of the cold-rolled steel sheet of the present invention will be described. Unless otherwise specified,%, which is a unit of each component element content, means mass%.
 C :0.01%以上0.08%以下
 Cは、鋼板の強化に必要な元素であり、プレートやディスクなどの駆動系部品用素材として必要な硬さを得るためには、C含有量を0.01%以上とする必要がある。一方、C含有量が0.08%を超えると、硬さが過剰に高くなり、また、パーライト分率が上昇して、打ち抜き後の平坦度が劣化するとともに、打ち抜き端面性状が劣化する。したがって、C含有量の上限を0.08%とする。特に打ち抜き端面性状の観点からは、C含有量を0.05%未満とすることが好ましい。より好ましくは、0.04%以下である。
C: 0.01% or more and 0.08% or less C is an element necessary for strengthening steel sheets. To obtain the hardness required for drive system parts such as plates and disks, the C content is 0.01% or more. There is a need to. On the other hand, if the C content exceeds 0.08%, the hardness becomes excessively high, the pearlite fraction increases, the flatness after punching deteriorates, and the punched end face properties deteriorate. Therefore, the upper limit of C content is 0.08%. In particular, from the viewpoint of punched end face properties, the C content is preferably less than 0.05%. More preferably, it is 0.04% or less.
 Si:0.01%以上1.0%以下
 Siは、鋼の脱酸剤(deoxidizer)であり、鋼の清浄度(cleanliness)を向上させる効果があるため、含有量を0.01%以上とする。Siは、固溶強化(solid solution hardening)により鋼板の硬さを上昇させる元素でもあり、所望の硬さを得るために添加することができる。但し、Si含有量が1.0%を超えると、鋼板の表面性状(surface quality)が劣化するため、Si含有量の上限を1.0%とする。特に摩擦を発生させる部品に使用されるプレート材では良好な表面性状が要求されるため、0.6%以下とすることが好ましい。
Si: 0.01% or more and 1.0% or less Si is a deoxidizer for steel and has the effect of improving the cleanliness of the steel, so the content is made 0.01% or more. Si is also an element that increases the hardness of the steel sheet by solid solution hardening, and can be added to obtain a desired hardness. However, if the Si content exceeds 1.0%, the surface quality of the steel sheet deteriorates, so the upper limit of the Si content is 1.0%. In particular, a plate material used for a component that generates friction is required to have good surface properties, and therefore, it is preferably set to 0.6% or less.
 Mn:0.05%以上1.0%以下
 Mnは、固溶強化により、鋼板の硬さを上昇させる元素であり、所望の硬さを得るためにはMn含有量を0.05%以上とする必要がある。好ましくは0.1%以上である。Mn含有量が1.0%を超えると、パーライトやベイナイトなどが過剰に生成することに加え、偏析(segregation)によりパーライト等が層状に生成して、打ち抜き端面性状が劣化する。したがって、Mn含有量は1.0%以下とする。好ましくは0.5%以下である。
Mn: 0.05% or more and 1.0% or less Mn is an element that increases the hardness of the steel sheet by solid solution strengthening, and the Mn content needs to be 0.05% or more in order to obtain a desired hardness. Preferably it is 0.1% or more. If the Mn content exceeds 1.0%, in addition to excessive generation of pearlite, bainite, etc., pearlite and the like are generated in layers due to segregation, and the punched end face properties deteriorate. Therefore, the Mn content is 1.0% or less. Preferably it is 0.5% or less.
 P :0.03%以下
 Pは、鋼中で偏析し易い元素であり、多量に含有するとPの偏析により層状組織の形成が促進され、打ち抜き端面性状が劣化する。したがって、P含有量は0.03%以下とする必要がある。好ましくは0.02%以下である。
P: 0.03% or less P is an element that is easily segregated in steel. When it is contained in a large amount, the formation of a layered structure is promoted by the segregation of P, and the punched end face properties deteriorate. Therefore, the P content needs to be 0.03% or less. Preferably it is 0.02% or less.
 S :0.015%以下
 Sは、MnS等の硫化物系介在物を形成し、打ち抜き端面性状を劣化させる。したがって、S含有量は0.015%以下とする必要がある。好ましくは0.010%以下である。
S: 0.015% or less S forms sulfide inclusions such as MnS and degrades the punched end face properties. Therefore, the S content needs to be 0.015% or less. Preferably it is 0.010% or less.
 Al:0.005%以上0.10%以下
 Alは、脱酸元素として添加することにより、鋼板の清浄度を向上させることができるため、その含有量を0.005%以上とする必要がある。好ましくは0.03%以上である。一方、Al含有量が0.10%を超えると、酸化物が過剰に生成して表面性状が劣化し、摩擦材との接着性が劣化する。したがって、Al含有量は0.10%以下とする。好ましくは0.08%以下である。
Al: 0.005% or more and 0.10% or less Since Al can improve the cleanliness of the steel sheet by adding it as a deoxidizing element, its content needs to be 0.005% or more. Preferably it is 0.03% or more. On the other hand, if the Al content exceeds 0.10%, oxides are excessively generated, the surface properties are deteriorated, and the adhesion to the friction material is deteriorated. Therefore, the Al content is 0.10% or less. Preferably it is 0.08% or less.
 N :0.01%以下
 Nは、本発明において有害な元素であり、その含有量が過剰になると鋼板の延性が低下し、打ち抜き端面性状が劣化する。したがって、N含有量は0.01%以下とする。好ましくは0.006%以下である。
N: 0.01% or less N is a harmful element in the present invention, and if its content is excessive, the ductility of the steel sheet is lowered and the punched end face properties are deteriorated. Therefore, the N content is 0.01% or less. Preferably it is 0.006% or less.
 以上が本発明冷延鋼板の基本成分であるが、本発明冷延鋼板はこれらの基本成分に加え、必要に応じて以下の元素を含有することができる。 The above are the basic components of the cold-rolled steel sheet of the present invention, but the cold-rolled steel sheet of the present invention can contain the following elements as necessary in addition to these basic components.
 Cu:0.01%以上0.20%以下、Ni:0.01%以上0.50%以下のいずれか1種以上
 CuおよびNiは、固溶強化により鋼板の硬さの上昇に寄与する元素であり、鋼板に所望の硬さを付与するために含有することができる。このような効果を得るためには、Cu含有量を0.01%以上、Ni含有量を0.01%以上とすることが好ましい。Cu含有量は0.02%以上、Ni含有量は0.02%以上とすることがより好ましい。一方、これらの元素の含有量が過剰になると、表面性状が劣化し、摩擦材との接着性が劣化する。したがって、Cu含有量は0.20%以下、Ni含有量は0.50%以下とすることが好ましい。Cu含有量は0.10%以下、Ni含有量は0.30%以下とすることがより好ましい。
Cu: 0.01% or more and 0.20% or less, Ni: 0.01% or more and 0.50% or less Any one or more of Cu and Ni are elements that contribute to an increase in the hardness of the steel sheet by solid solution strengthening. It can be contained in order to impart a thickness. In order to obtain such an effect, it is preferable that the Cu content is 0.01% or more and the Ni content is 0.01% or more. More preferably, the Cu content is 0.02% or more, and the Ni content is 0.02% or more. On the other hand, when the content of these elements is excessive, the surface properties are deteriorated and the adhesion to the friction material is deteriorated. Therefore, the Cu content is preferably 0.20% or less and the Ni content is preferably 0.50% or less. More preferably, the Cu content is 0.10% or less, and the Ni content is 0.30% or less.
 Ti:0.005%以上0.10%以下、Nb:0.005%以上0.10%以下、V:0.005%以上0.50%以下、Zr:0.005%以上0.10%以下、Mo:0.02%以上0.50%以下、Cr:0.03%以上0.50%以下、B:0.0003%以上0.0050%以下のいずれか1種以上
 Ti、Nb、V、Zr、Mo、Cr、Bは、鋼板の硬さの上昇に寄与する元素であり、鋼板に所望の硬さを付与するために含有することが好ましい。一方、これらの元素の含有量が過剰になると、残留応力が大きくなり、打ち抜き後の平坦度や、熱ひずみが発生する。したがって、Ti含有量は0.005%以上0.10%以下、Nb含有量は0.005%以上0.10%以下、V 含有量は0.005%以上0.50%以下、Zr含有量は0.005%以上0.10%以下、Mo含有量は0.02%以上0.50%以下、Cr含有量は0.03%以上0.50%以下、B含有量は0.0003%以上0.0050%以下とすることが好ましい。Ti含有量は0.008%以上0.03%以下、Nb含有量は0.008%以上0.05%以下、V含有量は0.01%以上0.20%以下、Zr含有量は0.01%以上0.03%以下、Mo含有量は0.05%以上0.20%以下、Cr含有量は0.05%以上0.20%以下、B含有量は0.0005%以上0.0030%以下とすることがより好ましい。
Ti: 0.005% to 0.10%, Nb: 0.005% to 0.10%, V: 0.005% to 0.50%, Zr: 0.005% to 0.10%, Mo: 0.02% to 0.50%, Cr: 0.03% or more 0.50% or less, B: Any one or more of 0.0003% or more and 0.0050% or less Ti, Nb, V, Zr, Mo, Cr, and B are elements that contribute to an increase in the hardness of the steel sheet. It is preferably contained for imparting hardness. On the other hand, when the content of these elements becomes excessive, the residual stress increases, and flatness after punching or thermal strain occurs. Therefore, Ti content is 0.005% to 0.10%, Nb content is 0.005% to 0.10%, V content is 0.005% to 0.50%, Zr content is 0.005% to 0.10%, Mo content is It is preferable that the content is 0.02% to 0.50%, the Cr content is 0.03% to 0.50%, and the B content is 0.0003% to 0.0050%. Ti content 0.008% to 0.03%, Nb content 0.008% to 0.05%, V content 0.01% to 0.20%, Zr content 0.01% to 0.03%, Mo content 0.05% More preferably, the content is 0.20% or less, the Cr content is 0.05% or more and 0.20% or less, and the B content is 0.0005% or more and 0.0030% or less.
 Ca:0.0003%以上0.0050%以下、REM:0.0003%以上0.0100%以下のいずれか1種以上
 Ca、REMはいずれも、硫化物の形態を球状に制御し、鋼板の打ち抜き端面性状を向上させる作用を有する元素であり、必要に応じて含有できる。このような効果を得るためには、Ca含有量を0.0003%以上、REM含有量を0.0003%以上とすることが好ましい。Ca含有量を0.0008%以上、REM含有量を0.0008%以上とすることがより好ましい。一方、これらの元素の含有量が過剰になると、介在物が増大して、鋼板の打ち抜き端面性状を劣化させるため、Ca含有量を0.0050%以下、REM含有量を0.0100%以下とすることが好ましい。また、Ca含有量を0.0030%以下、REM含有量を0.0050%以下とすることがより好ましい。
Ca: 0.0003% or more and 0.0050% or less, REM: 0.0003% or more and 0.0100% or less One or more of Ca and REM both control the shape of the sulfide to be spherical and improve the punched end face properties of the steel sheet. It can be contained if necessary. In order to obtain such effects, the Ca content is preferably 0.0003% or more and the REM content is preferably 0.0003% or more. More preferably, the Ca content is 0.0008% or more and the REM content is 0.0008% or more. On the other hand, when the content of these elements becomes excessive, inclusions increase and the punched end face properties of the steel sheet are deteriorated. Therefore, the Ca content is preferably 0.0050% or less and the REM content is preferably 0.0100% or less. . More preferably, the Ca content is 0.0030% or less and the REM content is 0.0050% or less.
 Sb:0.001%以上0.030%以下、Sn:0.001%以上0.030%以下のいずれか1種以上
 SbおよびSnは、鋼板の表面性状を向上させる元素であり、摩擦材との接着性を向上させる効果がある。このような効果を得るためには、Sb含有量を0.001%以上、Sn含有量を0.001%以上とすることが好ましい。一方、これらの元素の含有量が過剰になると、表面偏析(surface segregation)が顕著になり、鋼板の表面性状が劣化して摩擦材との接着性が低下するため、Sb含有量を0.030%以下、Sn含有量を0.030%以下とすることが好ましい。Sb含有量を0.005%以上0.020%以下、Sn含有量を0.005%以上0.015%以下とすることがより好ましい。
Sb: 0.001% or more and 0.030% or less, Sn: 0.001% or more and 0.030% or less, any one or more Sb and Sn are elements that improve the surface properties of the steel sheet, and have the effect of improving the adhesion to the friction material. is there. In order to obtain such an effect, the Sb content is preferably 0.001% or more and the Sn content is preferably 0.001% or more. On the other hand, if the content of these elements is excessive, surface segregation becomes prominent, the surface properties of the steel sheet deteriorate and the adhesion to the friction material decreases, so the Sb content is 0.030% or less. The Sn content is preferably 0.030% or less. More preferably, the Sb content is 0.005% or more and 0.020% or less, and the Sn content is 0.005% or more and 0.015% or less.
 上記した成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物としてはO、Mg、Co、Zn、Ta、W、Pb、Bi等を例示することができ、これらの元素の含有量はそれぞれ約0.01%以下であれば許容できる。 The balance other than the above components is Fe and inevitable impurities. Examples of unavoidable impurities include O, Mg, Co, Zn, Ta, W, Pb, Bi, and the like. The content of these elements is acceptable if it is about 0.01% or less.
 次に、本発明冷延鋼板の組織について説明する。
 本発明の冷延鋼板は、フェライト相の面積率が80%以上であり、パーライト相、ベイナイト相のいずれか1種以上からなる硬質相の面積率が合計で20%以下であり、前記硬質相の平均粒径が1μm以上10μm以下、かつ、前記硬質相の平均アスペクト比が10.0以下である組織を有する。
Next, the structure of the cold-rolled steel sheet of the present invention will be described.
In the cold-rolled steel sheet of the present invention, the area ratio of the ferrite phase is 80% or more, the area ratio of the hard phase composed of at least one of the pearlite phase and the bainite phase is 20% or less in total, and the hard phase The average particle size of the hard phase is 1 μm or more and 10 μm or less, and the average aspect ratio of the hard phase is 10.0 or less.
 本発明では、冷間圧延時における鋼板内の変形を均一にすることにより、冷延鋼板の残留応力を低減させる。このような観点から、本発明の冷延鋼板は、主相を軟質なフェライト相とし、硬質なパーライト相およびベイナイト相を抑制する必要がある。パーライト相、ベイナイト相のいずれか1種以上からなる硬質相を合計面積率で20%を超えて多量に含有した場合には、冷間圧延後の残留応力が増大して、打ち抜き後の鋼板形状が劣化したり、打ち抜き時にフェライト相と硬質相の界面でクラックが発生して鋼板の打ち抜き端面性状が劣化する。更に、残留応力の増大に伴い耐熱ひずみ特性が劣化するため、このような冷延鋼板を打ち抜き成形後、高温環境下に晒すと熱ひずみが発生する。 In the present invention, the residual stress of the cold-rolled steel sheet is reduced by making the deformation in the steel sheet uniform during cold rolling. From such a viewpoint, the cold-rolled steel sheet of the present invention needs to make the main phase a soft ferrite phase and suppress hard pearlite phase and bainite phase. When a hard phase composed of one or more of pearlite phase and bainite phase is contained in a large amount exceeding 20% in total area ratio, the residual stress after cold rolling increases, and the steel plate shape after punching Deteriorates, or cracks occur at the interface between the ferrite phase and the hard phase during punching, and the punched end face properties of the steel sheet deteriorate. Furthermore, since the thermal strain characteristics deteriorate as the residual stress increases, thermal strain occurs when such a cold-rolled steel sheet is punched and exposed to a high temperature environment.
 以上の理由により、本発明では、フェライト相の面積率を80%以上とし、パーライト相、ベイナイト相のいずれか1種以上からなる硬質相の面積率を合計で20%以下とする必要がある。フェライト相の面積率は85%以上とすることが好ましく、90%以上とすることがより好ましい。一方、上記硬質相の面積率は、合計で15%以下とすることが好ましく、10%以下とすることがより好ましい。 For these reasons, in the present invention, the area ratio of the ferrite phase needs to be 80% or more, and the area ratio of the hard phase composed of at least one of the pearlite phase and the bainite phase needs to be 20% or less in total. The area ratio of the ferrite phase is preferably 85% or more, and more preferably 90% or more. On the other hand, the total area ratio of the hard phase is preferably 15% or less, and more preferably 10% or less.
 但し、上記硬質相の面積率が極端に低くなると、所望の鋼板硬さが得られなくなるため、上記硬質相の面積率は合計で2%以上とすることが好ましい。なお、本発明の冷延鋼板組織としては、フェライト相、パーライト相、ベイナイト相のほか、セメンタイトを含んでも良い。セメンタイトの面積率は、1%以下とすることが好ましい。 However, when the area ratio of the hard phase becomes extremely low, the desired steel sheet hardness cannot be obtained. Therefore, the area ratio of the hard phase is preferably 2% or more in total. The cold-rolled steel sheet structure of the present invention may contain cementite in addition to the ferrite phase, pearlite phase, and bainite phase. The area ratio of cementite is preferably 1% or less.
 また、本発明の冷延鋼板はパーライト相、ベイナイト相のいずれか1種以上からなる硬質相の平均粒径が1μm以上10μm以下、かつ、前記硬質相の平均アスペクト比が10.0以下である組織を有する。なお、硬質相の平均粒径と平均アスペクト比の求め方は、後述する実施例に記載した。 Further, the cold-rolled steel sheet of the present invention has a structure in which an average particle diameter of a hard phase composed of at least one of a pearlite phase and a bainite phase is 1 μm or more and 10 μm or less, and an average aspect ratio of the hard phase is 10.0 or less. Have. In addition, how to obtain | require the average particle diameter and average aspect-ratio of a hard phase was described in the Example mentioned later.
 硬質相の平均粒径が10μmを超えると、硬質相とフェライト相との界面で発生したクラックが大きく伝播して、鋼板の打ち抜き端面にワレを生じ、端面性状が低下する。このため、硬質相の平均粒径は10μm以下とする。好ましくは7μm以下である。硬質相の平均粒径は小さいほど、鋼板の打ち抜き性の観点からは好ましい。しかし、硬質相の平均粒径を小さくするためには、鋼板製造時に熱間圧延の仕上げ圧延終了温度および巻取り温度を低くしなければならない。その一方で、本発明のフェライト相を主相とする組織を得るためには、後述するように熱間圧延の仕上圧延終了温度と巻取り温度を所定の温度以上とする必要があり、この熱間圧延条件範囲では硬質相の結晶粒微細化に限界がある。したがって、硬質相の平均粒径は1μm以上とする。 When the average particle size of the hard phase exceeds 10 μm, cracks generated at the interface between the hard phase and the ferrite phase are greatly propagated, causing cracks on the punched end surface of the steel sheet, and the end surface properties are deteriorated. For this reason, the average particle diameter of the hard phase is 10 μm or less. Preferably, it is 7 μm or less. The smaller the average particle size of the hard phase, the more preferable from the viewpoint of the punchability of the steel sheet. However, in order to reduce the average particle size of the hard phase, it is necessary to lower the finish rolling end temperature and the winding temperature of hot rolling during the production of the steel sheet. On the other hand, in order to obtain a structure having the ferrite phase of the present invention as a main phase, it is necessary to set the finish rolling end temperature and the coiling temperature of hot rolling to a predetermined temperature or more as described later. There is a limit to the refinement of hard phase grains within the range of hot rolling conditions. Therefore, the average particle size of the hard phase is 1 μm or more.
 また、硬質相の平均アスペクト比が10.0を超えると、硬質相と主相であるフェライト相との界面の歪が増大し、残留応力が大きくなるため、冷延鋼板の耐熱ひずみ特性が低下する。したがって、硬質相の平均アスペクト比は10.0以下とする。好ましくは8.0以下である。 Also, if the average aspect ratio of the hard phase exceeds 10.0, the strain at the interface between the hard phase and the ferrite phase, which is the main phase, increases and the residual stress increases, so the heat-resistant strain characteristics of the cold-rolled steel sheet deteriorate. Therefore, the average aspect ratio of the hard phase is 10.0 or less. Preferably it is 8.0 or less.
 本発明の冷延鋼板の硬さは、Hv(ビッカース硬さ)で170以上とする。鋼板の硬さがHv170未満では、強度が十分ではなく、自動車用駆動系部品であるプレートやディスク、リングとしての使用に耐えない。このため、冷延鋼板の硬さはHv170以上とする。好ましくはHv 190以上である。一方、本発明の冷延鋼板の硬さは、主に冷間圧延による加工硬化に基づくものであるため、硬さが高くなりすぎると(すなわち、冷間圧延の圧下率が高くなりすぎると)鋼板の残留応力も増大し、耐熱ひずみ特性が劣化する。このため、冷延鋼板の硬さはHv250以下とすることが好ましい。 The hardness of the cold-rolled steel sheet of the present invention is 170 or more in terms of Hv (Vickers hardness). When the hardness of the steel sheet is less than Hv170, the strength is not sufficient, and the steel plate cannot withstand use as a plate, a disk, or a ring that is a driving system part for an automobile. For this reason, the hardness of a cold-rolled steel sheet shall be Hv170 or more. Preferably, it is Hv 190 or more. On the other hand, since the hardness of the cold-rolled steel sheet of the present invention is mainly based on work hardening by cold rolling, if the hardness becomes too high (that is, if the rolling reduction of cold rolling becomes too high). The residual stress of the steel sheet also increases, and the thermal strain characteristics deteriorate. For this reason, it is preferable that the cold-rolled steel sheet has a hardness of Hv250 or less.
 次に、本発明の冷延鋼板の製造方法について説明する。
 本発明の冷延鋼板は、前記の化学組成を有する鋼素材に熱間圧延を施して、フェライト相を主相とする熱延板とし、この熱延板を、酸洗にてスケールを除去した後、所定の圧下率で冷間圧延することによって得られる。
Next, the manufacturing method of the cold rolled steel sheet of this invention is demonstrated.
The cold-rolled steel sheet of the present invention is a hot-rolled sheet having a ferrite phase as a main phase by subjecting a steel material having the above chemical composition to hot rolling, and the scale is removed from the hot-rolled sheet by pickling. Thereafter, it is obtained by cold rolling at a predetermined rolling reduction.
 鋼素材の製造方法は特に限定する必要はない。例えば、上記した組成を有する溶鋼を転炉や電気炉で溶製し、好ましくは真空脱ガス炉(vacuum degassing furnace)にて二次精錬(secondary smelting)を行い、連続鋳造等の製造方法でスラブ等の鋼素材とする常用の方法など、いずれも適用可能である。 The manufacturing method of the steel material need not be particularly limited. For example, molten steel having the above-described composition is melted in a converter or electric furnace, preferably subjected to secondary smelting in a vacuum degassing furnace (vacuum degassing furnace), and slab is obtained by a production method such as continuous casting. Any conventional method using steel materials such as can be applied.
 鋼素材は、次いで、粗圧延(rough rolling)と仕上げ圧延(finish rolling)からなる熱間圧延が施され、熱延板とされる。熱間圧延を施すに際しては、鋼素材を、鋳造後直ちに、或いは鋳造後に補熱を目的とした加熱を施した後に、熱間圧延を行う直送圧延(direct rolling)を行ってもよい。熱間圧延前に鋼素材を加熱する場合、その加熱温度は特に限定する必要はないが、1000℃以上1300℃以下の範囲の温度とすることが好ましい。上記加熱温度が1000℃未満では、変形抵抗が高くなり、良好な形状が得られない場合がある。一方、1300℃を超えて高温となると、スケールの成長が促進され、鋼板の表面性状が低下するおそれがある。なお、粗圧延の条件は特に限定されない。 The steel material is then subjected to hot rolling consisting of rough rolling and finish rolling to form a hot rolled sheet. When performing hot rolling, the steel material may be subjected to direct rolling (direct rolling) in which hot rolling is performed immediately after casting or after heating for heat supplement after casting. When the steel material is heated before hot rolling, the heating temperature is not particularly limited, but is preferably in the range of 1000 ° C. or higher and 1300 ° C. or lower. When the heating temperature is less than 1000 ° C., the deformation resistance becomes high and a good shape may not be obtained. On the other hand, when the temperature is higher than 1300 ° C., scale growth is promoted, and the surface properties of the steel sheet may be deteriorated. The conditions for rough rolling are not particularly limited.
 仕上げ圧延終了温度:800℃以上950℃以下
 仕上げ圧延終了温度が950℃を超えると、熱延板の組織が粗大化する。その結果、冷間圧延後の鋼板の硬質相の平均粒径が大きくなるため、打ち抜き端面性状が劣化する。一方、仕上げ圧延終了温度が800℃未満では、熱延板の組織が極端に伸展した結晶粒からなる組織となり、硬質相のアスペクト比も大きくなる。このように熱延板の段階で圧延方向に伸展した硬質相を含む鋼板を更に冷間圧延すると、硬質相と主相であるフェライト相との硬度差が大きいため、圧延方向に組織が伸長する際に硬質相と主相であるフェライト相との界面に大きな残留応力が発生する。このため、冷間圧延後の鋼板に蓄積される残留応力が大きくなり、熱ひずみが発生し易くなる。したがって、仕上げ圧延終了温度は800℃以上950℃以下とする。好ましくは850℃以上920℃以下である。
Finish rolling end temperature: 800 ° C. or higher and 950 ° C. or lower When the finish rolling end temperature exceeds 950 ° C., the structure of the hot rolled sheet becomes coarse. As a result, since the average grain size of the hard phase of the steel sheet after cold rolling becomes large, the punched end face properties deteriorate. On the other hand, when the finish rolling finish temperature is less than 800 ° C., the structure of the hot-rolled sheet becomes a structure composed of extremely stretched crystal grains, and the aspect ratio of the hard phase also increases. In this way, when the steel sheet including the hard phase that has been extended in the rolling direction at the stage of hot rolling is further cold-rolled, there is a large difference in hardness between the hard phase and the ferrite phase that is the main phase. At the same time, a large residual stress is generated at the interface between the hard phase and the ferrite phase as the main phase. For this reason, the residual stress accumulate | stored in the steel plate after cold rolling becomes large, and it becomes easy to generate | occur | produce a thermal strain. Therefore, the finish rolling end temperature is set to 800 ° C. or more and 950 ° C. or less. Preferably they are 850 degreeC or more and 920 degrees C or less.
 巻取り温度:600℃超750℃以下
 巻取り温度が600℃以下では、パーライト相やベイナイト相が過剰に生成して、目的とするフェライト相主体の鋼板組織が得られない。一方、巻取り温度が750℃を超えると、パーライト相やセメンタイト粒子が粗大化して鋼板の打ち抜き端面性状が劣化したり、鋼板の表面性状が劣化する。したがって、巻取り温度を600℃超750℃以下とする。好ましくは620℃以上700℃以下である。
Winding temperature: More than 600 ° C. and 750 ° C. or less When the winding temperature is 600 ° C. or less, a pearlite phase or a bainite phase is excessively formed, and the target steel structure of the ferrite phase cannot be obtained. On the other hand, when the coiling temperature exceeds 750 ° C., the pearlite phase and cementite particles are coarsened to deteriorate the punched end surface properties of the steel plate or the surface properties of the steel plate. Therefore, the coiling temperature is set to more than 600 ° C. and 750 ° C. or less. Preferably they are 620 degreeC or more and 700 degrees C or less.
 仕上げ圧延終了後、巻取り温度まで冷却する際の冷却速度については特に限定されないが、熱延板、ならびに最終的に得られる冷延鋼板を所望の組織とするためには、仕上げ圧延終了温度から巻取り温度までの温度域における平均冷却速度を10℃/s以上120℃/s未満とすることが好ましい。より好ましくは15℃/s以上50℃/s以下である。
 以上のようにして得られた熱延板は、酸洗にてスケールを除去したのち、冷間圧延を施して冷延鋼板とされる。
Although there is no particular limitation on the cooling rate when cooling to the coiling temperature after the finish rolling is finished, in order to obtain the desired structure of the hot-rolled sheet and the finally obtained cold-rolled sheet, from the finish rolling end temperature. The average cooling rate in the temperature range up to the coiling temperature is preferably 10 ° C./s or more and less than 120 ° C./s. More preferably, it is 15 ° C./s or more and 50 ° C./s or less.
The hot-rolled sheet obtained as described above is removed from the scale by pickling and then cold-rolled to obtain a cold-rolled steel sheet.
 冷間圧延の圧下率:30%以上70%以下
 冷間圧延によりプレートなどの駆動系部品用素材として必要な鋼板硬さとするためには、圧下率を30%以上とする必要がある。一方、圧下率が70%を超えると、残留応力が大きくなり、パーライトおよび/またはベイナイト相からなる硬質相の平均アスペクト比が所定の値を超え、熱ひずみが発生し易くなる。したがって、冷間圧延の圧下率を30%以上70%以下とする。好ましくは40%以上60%以下である。
Cold rolling reduction ratio: 30% or more and 70% or less In order to obtain a steel sheet hardness necessary for a material for a drive system component such as a plate by cold rolling, the rolling reduction needs to be 30% or more. On the other hand, when the rolling reduction exceeds 70%, the residual stress increases, the average aspect ratio of the hard phase composed of pearlite and / or bainite phase exceeds a predetermined value, and thermal strain is likely to occur. Therefore, the rolling reduction of cold rolling is set to 30% or more and 70% or less. Preferably they are 40% or more and 60% or less.
 本発明では、鋼板形状の矯正と残留応力の調整の観点から、冷間圧延後、調質圧延(temper rolling)を施したり、レベラー(leveler)を通板してもよい。残留応力を調整する観点からは、調質圧延を施す場合、伸長率を0.3%以上とすることが好ましい。より好ましくは0.4%以上である。但し、調質圧延後の鋼板平坦度の観点からは、1.0%以下とすることが好ましい。 In the present invention, from the viewpoint of correcting the shape of the steel sheet and adjusting the residual stress, after cold rolling, temper rolling may be applied, or a leveler may be passed. From the viewpoint of adjusting the residual stress, when temper rolling is performed, the elongation rate is preferably 0.3% or more. More preferably, it is 0.4% or more. However, from the viewpoint of the flatness of the steel sheet after temper rolling, it is preferably 1.0% or less.
 表1に示す化学成分の鋼を転炉で溶製し、連続鋳造法によりスラブ(鋼素材)とした。次いで、これらの鋼素材に対して、表2に示す条件で熱間圧延、冷却、巻取りを施し熱延板とした。次いで、酸洗にてスケールを除去したのち、表2に示す圧下率で冷間圧延を施し、冷延鋼板とした。一部の冷延鋼板については、レベラーまたは調質圧延により形状矯正を行った。 Steels with chemical components shown in Table 1 were melted in a converter and made into slabs (steel materials) by a continuous casting method. Next, hot rolling, cooling and winding were performed on these steel materials under the conditions shown in Table 2 to obtain hot rolled sheets. Next, after removing the scale by pickling, cold rolling was performed at the rolling reduction shown in Table 2 to obtain a cold-rolled steel sheet. About some cold-rolled steel plates, shape correction was performed by a leveler or temper rolling.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた冷延鋼板より、試験片を採取し、以下に示す方法で組織観察を行い、フェライト相、パーライト相、ベイナイト相の面積率、硬質相(パーライト相および/またはベイナイト相)の平均粒径および平均アスペクト比を求めた。また、得られた冷延鋼板より、試験片を採取し、以下に示す方法で硬さ、打ち抜き後の平坦度、打ち抜き端面性状、耐熱ひずみ特性を評価した。 From the obtained cold-rolled steel sheet, a test piece is collected, and the structure is observed by the following method. The area ratio of the ferrite phase, the pearlite phase, the bainite phase, and the average grain of the hard phase (pearlite phase and / or bainite phase) Diameter and average aspect ratio were determined. Further, test pieces were collected from the obtained cold-rolled steel sheets, and the hardness, flatness after punching, punched end face properties, and heat distortion characteristics were evaluated by the following methods.
 組織観察
 圧延方向に平行な板厚断面の試料を採取し、板厚断面について3%ナイタール溶液(nital)で組織を現出して、板厚1/4位置にて走査電子顕微鏡(scanning electron microscope)(SEM)を用い500倍で3視野撮影し、画像処理により各相の面積率、および、パーライト、ベイナイト相のいずれか1種以上からなる硬質相の粒径とアスペクト比を定量化した。粒径は、結晶粒の長軸長さaと短軸長さbを乗じた値の平方根(√(a×b))とする。アスペクト比は、結晶粒の長軸長さaを短軸長さbで除した値(a/b)とする。硬質相の平均粒径および平均アスペクト比は、画像処理において、パーライト相或いはベイナイト相のいずれかと認識された全ての結晶粒の粒径、アスペクト比の算術平均である。
Microstructure observation A sample with a plate thickness cross section parallel to the rolling direction was taken, and the structure was revealed with a 3% nital solution (nital) for the plate thickness cross section, and a scanning electron microscope was used at the 1/4 thickness position. (SEM) was used to photograph 3 fields of view at 500 times, and the area ratio of each phase and the particle size and aspect ratio of the hard phase composed of at least one of pearlite and bainite phases were quantified by image processing. The grain size is a square root (√ (a × b)) of a value obtained by multiplying the major axis length a and minor axis length b of the crystal grains. The aspect ratio is a value (a / b) obtained by dividing the major axis length a of the crystal grains by the minor axis length b. The average grain size and average aspect ratio of the hard phase are the arithmetic average of the grain sizes and aspect ratios of all crystal grains recognized as either a pearlite phase or a bainite phase in image processing.
 硬さ
 圧延方向に平行な板厚断面の試料を採取し、樹脂に埋め込み、板厚断面を研磨後、板厚1/4の位置にて、JIS Z 2244の規定に準拠してビッカース硬度計を用い、荷重500gfで5点測定し、その平均値を硬さとした。
Hardness Take a sample with a plate thickness cross section parallel to the rolling direction, embed it in a resin, polish the plate thickness cross section, and then use a Vickers hardness tester in accordance with the provisions of JIS Z 2244 at a thickness of 1/4. Used, 5 points were measured with a load of 500 gf, and the average value was determined to be hardness.
 打ち抜き後の平坦度
 得られた冷延鋼板から、外径100mm、内径80 mmのリング状のプレートを打ち抜き、
レーザー測定器(laser displacement meter)の測定テーブル上にプレートを置き、レーザー測定器によりテーブルからプレートの円環部上面までの高さを円環部全体について測定し、その最小値と最大値の差を算出した。最小値と最大値の差が0.2 mm以下である場合を平坦度:良好(○)とした。一方、最小値と最大値の差が0.2mm超である場合を平坦度:不良(×)とした。
Flatness after punching From the obtained cold-rolled steel sheet, a ring-shaped plate with an outer diameter of 100 mm and an inner diameter of 80 mm is punched,
Place the plate on the measurement table of the laser displacement meter, measure the height from the table to the top surface of the annular portion of the plate with the laser measurement device, and check the difference between the minimum and maximum values. Was calculated. When the difference between the minimum value and the maximum value is 0.2 mm or less, the flatness: good (◯). On the other hand, the case where the difference between the minimum value and the maximum value was more than 0.2 mm was defined as flatness: defective (x).
 打ち抜き端面性状
 得られた冷延鋼板から、外径100mm、内径80 mmのリング状のプレートを打ち抜き、打ち抜き端面を観察し、ワレや2次せん断面(secondary shear surface)のないものを打ち抜き端面性状:良好(○)とした。一方、ワレや2次せん断面が観察されたものを打ち抜き端面性状:不良(×)とした。
Punched end face properties From the obtained cold-rolled steel sheet, a ring-shaped plate with an outer diameter of 100 mm and an inner diameter of 80 mm is punched, the punched end surfaces are observed, and those without cracks or secondary shear surfaces are punched. : It was set as favorable ((circle)). On the other hand, a punched end surface property: defective (x) was observed where cracks or secondary shear surfaces were observed.
 耐熱ひずみ特性
 得られた冷延鋼板から、外径100mm、内径80 mmのリング状のプレートを打ち抜き、プレートを300℃で1hr保持後、室温まで空冷する熱処理を行った。熱処理後、前記「打ち抜き後の平坦度測定」と同様に、レーザー測定器によりプレートの形状を測定し、プレートの円環部の高さの最小値と最大値の差を算出した。
 最小値と最大値の差が0.2mm以下である場合を耐熱ひずみ特性:良好(○)とした。一方、最小値と最大値の差が0.2mm超である場合を耐熱ひずみ特性:不良(×)とした。
 これらの結果を、表3に示す。
Heat-resistant strain characteristics A ring-shaped plate having an outer diameter of 100 mm and an inner diameter of 80 mm was punched out from the obtained cold-rolled steel sheet, and the plate was held at 300 ° C. for 1 hour, and then heat-treated by air cooling to room temperature. After the heat treatment, the shape of the plate was measured with a laser measuring instrument in the same manner as in the above “measurement of flatness after punching”, and the difference between the minimum value and the maximum value of the height of the annular portion of the plate was calculated.
The case where the difference between the minimum value and the maximum value was 0.2 mm or less was regarded as the heat distortion resistance: good (◯). On the other hand, the case where the difference between the minimum value and the maximum value was more than 0.2 mm was regarded as the thermal strain characteristic: defective (x).
These results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 発明例の冷延鋼板はいずれも、ビッカース硬さがHv170以上の充分な硬さを有するとともに、打ち抜き加工後の平坦度、打ち抜き端面性状に優れ、更に耐熱ひずみ特性に優れている。一方、本発明の範囲を外れる比較例の冷延鋼板は、いずれかの特性が劣っている。
 本出願は、2013年4月2日に日本に出願された特願2013-076860号に基づき優先権を主張するものであって、その内容の全てここに取り込む。
Each of the cold-rolled steel sheets of the invention examples has a sufficient Vickers hardness of Hv170 or more, excellent flatness after punching, punched end face properties, and excellent thermal strain characteristics. On the other hand, the cold-rolled steel sheet of the comparative example outside the scope of the present invention is inferior in any of the characteristics.
This application claims priority based on Japanese Patent Application No. 2013-076860 filed in Japan on April 2, 2013, the entire contents of which are incorporated herein.

Claims (11)

  1.  質量%で、
    C :0.01%以上0.08%以下、   Si:0.01%以上1.0%以下、
    Mn:0.05%以上1.0%以下、    P :0.03%以下、
    S :0.015%以下、        Al:0.005%以上0.10%以下、
    N :0.01%以下
    を含有し、残部がFeおよび不可避的不純物からなる組成と、フェライト相の面積率が80%以上であり、パーライト相、ベイナイト相のいずれか1種以上からなる硬質相の面積率が合計で20%以下であり、前記硬質相の平均粒径が1μm以上10μm以下、かつ、前記硬質相の平均アスペクト比が10.0以下である組織とを有し、ビッカース硬さがHv170以上である冷延鋼板。
    % By mass
    C: 0.01% to 0.08%, Si: 0.01% to 1.0%,
    Mn: 0.05% or more and 1.0% or less, P: 0.03% or less,
    S: 0.015% or less, Al: 0.005% or more and 0.10% or less,
    N: A composition containing 0.01% or less, the balance being Fe and inevitable impurities, and the area ratio of the ferrite phase being 80% or more, and the area of the hard phase consisting of at least one of the pearlite phase and the bainite phase The ratio is 20% or less in total, the hard phase has an average particle diameter of 1 μm or more and 10 μm or less, and the hard phase has an average aspect ratio of 10.0 or less, and the Vickers hardness is Hv 170 or more. A cold-rolled steel sheet.
  2.  前記組成に加えて更に、質量%で、Cu:0.01%以上0.20%以下、Ni:0.01%以上0.50%以下のいずれか1種以上を含有する請求項1に記載の冷延鋼板。 The cold-rolled steel sheet according to claim 1, further comprising at least one of Cu: 0.01% to 0.20% and Ni: 0.01% to 0.50% in addition to the composition.
  3.  前記組成に加えて更に、質量%で、Ti:0.005%以上0.10%以下、Nb:0.005%以上0.10%以下、V:0.005%以上0.50%以下、Zr:0.005%以上0.10%以下、Mo:0.02%以上0.50%以下、Cr:0.03%以上0.50%以下、B:0.0003%以上0.0050%以下のいずれか1種以上を含有する請求項1または2に記載の冷延鋼板。 In addition to the above composition, Ti: 0.005% to 0.10%, Nb: 0.005% to 0.10%, V: 0.005% to 0.50%, Zr: 0.005% to 0.10%, Mo: 0.02 The cold-rolled steel sheet according to claim 1 or 2, comprising at least one of Cr: 0.03% to 0.50%, B: 0.0003% to 0.0050%.
  4.  前記組成に加えて更に、質量%で、Ca:0.0003%以上0.0050%以下、REM:0.0003%以上0.0100%以下のいずれか1種以上を含有する請求項1ないし3のいずれかに記載の冷延鋼板。 The cold rolling according to any one of claims 1 to 3, further comprising at least one of Ca: 0.0003% to 0.0050% and REM: 0.0003% to 0.0100% in addition to the composition. steel sheet.
  5.  前記組成に加えて更に、質量%で、Sb:0.001%以上0.030%以下、Sn:0.001%以上0.030%以下のいずれか1種以上を含有する請求項1ないし4のいずれかに記載の冷延鋼板。 The cold rolling according to any one of claims 1 to 4, further comprising at least one of Sb: 0.001% to 0.030% and Sn: 0.001% to 0.030% in addition to the composition. steel sheet.
  6.  質量%で、
    C :0.01%以上0.08%以下、   Si:0.01%以上1.0%以下、
    Mn:0.05%以上1.0%以下、    P :0.03%以下、
    S :0.015%以下、        Al:0.005%以上0.10%以下、
    N :0.01%以下
    を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼素材に、仕上げ圧延終了温度を800℃以上950℃以下とする熱間圧延を施し、熱間圧延終了後、600℃超750℃以下の巻取り温度で巻き取り、酸洗にてスケールを除去したのち、30%以上70%以下の圧下率で冷間圧延を施す冷延鋼板の製造方法。
    % By mass
    C: 0.01% to 0.08%, Si: 0.01% to 1.0%,
    Mn: 0.05% or more and 1.0% or less, P: 0.03% or less,
    S: 0.015% or less, Al: 0.005% or more and 0.10% or less,
    N: A steel material containing 0.01% or less and the balance of Fe and inevitable impurities is subjected to hot rolling with a finish rolling finish temperature of 800 ° C. or more and 950 ° C. or less, and after hot rolling is finished, A method for producing a cold-rolled steel sheet, which is wound at a coiling temperature of 600 ° C. or higher and 750 ° C. or lower, removed the scale by pickling, and then cold-rolled at a rolling reduction of 30% to 70%.
  7.  前記冷間圧延を施したのち、調質圧延を施す請求項6に記載の冷延鋼板の製造方法。 The method for producing a cold-rolled steel sheet according to claim 6, wherein after the cold rolling, temper rolling is performed.
  8.  前記組成に加えて更に、質量%で、Cu:0.01%以上0.20%以下、Ni:0.01%以上0.50%以下のいずれか1種以上を含有する請求項6または7に記載の冷延鋼板の製造方法。 The manufacturing of the cold-rolled steel sheet according to claim 6 or 7, further comprising at least one of Cu: 0.01% to 0.20% and Ni: 0.01% to 0.50% in addition to the composition. Method.
  9.  前記組成に加えて更に、質量%で、Ti:0.005%以上0.10%以下、Nb:0.005%以上0.10%以下、V:0.005%以上0.50%以下、Zr:0.005%以上0.10%以下、Mo:0.02%以上0.50%以下、Cr:0.03%以上0.50%以下、B:0.0003%以上0.0050%以下のいずれか1種以上を含有する請求項6ないし8のいずれかに記載の冷延鋼板の製造方法。 In addition to the above composition, Ti: 0.005% to 0.10%, Nb: 0.005% to 0.10%, V: 0.005% to 0.50%, Zr: 0.005% to 0.10%, Mo: 0.02 % Or more and 0.50% or less, Cr: 0.03% or more and 0.50% or less, B: 0.0003% or more and 0.0050% or less, The manufacturing method of the cold-rolled steel plate in any one of Claim 6 thru | or 8.
  10.  前記組成に加えて更に、質量%で、Ca:0.0003%以上0.0050%以下、REM:0.0003%以上0.0100%以下のいずれか1種以上を含有する請求項6ないし9のいずれかに記載の冷延鋼板の製造方法。 The cold rolling according to any one of claims 6 to 9, further comprising at least one of Ca: 0.0003% to 0.0050% and REM: 0.0003% to 0.0100% in addition to the composition. A method of manufacturing a steel sheet.
  11.  前記組成に加えて更に、質量%で、Sb:0.001%以上0.030%以下、Sn:0.001%以上0.030%以下のいずれか1種以上を含有する請求項6ないし10のいずれかに記載の冷延鋼板の製造方法。 The cold rolling according to any one of claims 6 to 10, further comprising at least one of Sb: 0.001% to 0.030% and Sn: 0.001% to 0.030% in addition to the composition. A method of manufacturing a steel sheet.
PCT/JP2014/001265 2013-04-02 2014-03-07 Cold-rolled steel sheet and manufacturing method therefor WO2014162661A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2015013941A MX2015013941A (en) 2013-04-02 2014-03-07 Cold-rolled steel sheet and manufacturing method therefor.
CN201480019854.2A CN105074039B (en) 2013-04-02 2014-03-07 Cold-rolled steel sheet and its manufacture method
KR1020157024635A KR101717002B1 (en) 2013-04-02 2014-03-07 Cold-rolled steel sheet and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013076860A JP5633594B2 (en) 2013-04-02 2013-04-02 Cold-rolled steel sheet excellent in punchability and heat-strain resistance and method for producing the same
JP2013-076860 2013-04-02

Publications (1)

Publication Number Publication Date
WO2014162661A1 true WO2014162661A1 (en) 2014-10-09

Family

ID=51657976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001265 WO2014162661A1 (en) 2013-04-02 2014-03-07 Cold-rolled steel sheet and manufacturing method therefor

Country Status (6)

Country Link
JP (1) JP5633594B2 (en)
KR (1) KR101717002B1 (en)
CN (1) CN105074039B (en)
MX (1) MX2015013941A (en)
TW (2) TWI551696B (en)
WO (1) WO2014162661A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3257959A4 (en) * 2015-03-27 2017-12-20 JFE Steel Corporation High-strength steel sheet and production method therefor
EP3584340A4 (en) * 2017-02-20 2020-11-04 Nippon Steel Corporation Steel sheet and manufacturing method therefor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101778385B1 (en) * 2015-11-20 2017-09-14 주식회사 포스코 High strength cold rolled steel sheet having excellent shear workability and method for manufacturing the same
EP3412787B1 (en) * 2016-03-11 2021-01-06 JFE Steel Corporation High-strength thin steel sheet and method for manufacturing same
CN105779864B (en) * 2016-04-28 2017-11-21 武汉钢铁有限公司 Dispersion-strengtherning microalloy high strength steel and its production method
US11130161B2 (en) 2016-11-23 2021-09-28 Baoshan Iron & Steel Co., Ltd. High-strength corrosion-resistant composite chequered iron and manufacturing method therefor
CN108085585B (en) * 2016-11-23 2020-05-22 宝山钢铁股份有限公司 High-strength corrosion-resistant composite patterned steel and manufacturing method thereof
CN106987772B (en) * 2017-04-28 2018-11-30 武汉钢铁有限公司 High-strength fireproof weathering steel and its production method
CN112154221A (en) 2018-05-21 2020-12-29 杰富意钢铁株式会社 Non-oriented electromagnetic steel sheet and method for producing same
KR102353730B1 (en) * 2019-12-20 2022-01-19 주식회사 포스코 Cold-rolled steel sheet for flux cored wire and manufacturing the same
CN114990436A (en) * 2022-05-25 2022-09-02 鞍钢冷轧钢板(莆田)有限公司 High-hardness cold-rolled sheet for microwave oven and production method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335889A (en) * 2000-05-29 2001-12-04 Kawasaki Steel Corp High tensile cold rolled sheet excellent in strain aging hardenability, impact resistance and workability, and its production method
JP2011132575A (en) * 2009-12-25 2011-07-07 Jfe Steel Corp Hot rolled steel sheet and cold rolled steel sheet free from ear cracking, and their production method
JP2011168878A (en) * 2010-01-22 2011-09-01 Jfe Steel Corp High-strength hot-dip galvanized steel sheet with excellent fatigue property and hole expansibility and method for producing the same
JP2012031458A (en) * 2010-07-29 2012-02-16 Jfe Steel Corp High-strength cold-rolled thin steel sheet superior in formability and method of manufacturing the same
WO2012133563A1 (en) * 2011-03-28 2012-10-04 新日本製鐵株式会社 Cold rolled steel sheet and production method therefor
JP2013177673A (en) * 2012-01-31 2013-09-09 Jfe Steel Corp Hot-dip galvanized steel sheet and prodcing method therefor
JP2013209727A (en) * 2012-03-30 2013-10-10 Jfe Steel Corp Cold rolled steel sheet excellent in workability and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2379698C (en) * 2000-05-26 2009-02-17 Kawasaki Steel Corporation Cold rolled steel sheet and galvanized steel sheet having strain age hardenability
ES2297047T5 (en) * 2001-10-04 2013-02-20 Nippon Steel Corporation Thin steel sheet, high strength, which can be embedded and is excellent in the property of fixing the shapes, and method for its production
JP2005200712A (en) 2004-01-16 2005-07-28 Nisshin Steel Co Ltd Cold-rolled steel sheet for at plate with reduced residual stress
JP4765388B2 (en) 2005-04-28 2011-09-07 Jfeスチール株式会社 Manufacturing method for cold rolled steel sheet with excellent flatness after punching
KR100973627B1 (en) * 2005-07-07 2010-08-02 수미도모 메탈 인더스트리즈, 리미티드 Non-oriented electromagnetic steel sheet and process for producing the same
JP5070824B2 (en) 2006-11-30 2012-11-14 Jfeスチール株式会社 Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same
JP5272547B2 (en) * 2007-07-11 2013-08-28 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with low yield strength and small material fluctuation and method for producing the same
JP4883216B2 (en) * 2010-01-22 2012-02-22 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and spot weldability and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335889A (en) * 2000-05-29 2001-12-04 Kawasaki Steel Corp High tensile cold rolled sheet excellent in strain aging hardenability, impact resistance and workability, and its production method
JP2011132575A (en) * 2009-12-25 2011-07-07 Jfe Steel Corp Hot rolled steel sheet and cold rolled steel sheet free from ear cracking, and their production method
JP2011168878A (en) * 2010-01-22 2011-09-01 Jfe Steel Corp High-strength hot-dip galvanized steel sheet with excellent fatigue property and hole expansibility and method for producing the same
JP2012031458A (en) * 2010-07-29 2012-02-16 Jfe Steel Corp High-strength cold-rolled thin steel sheet superior in formability and method of manufacturing the same
WO2012133563A1 (en) * 2011-03-28 2012-10-04 新日本製鐵株式会社 Cold rolled steel sheet and production method therefor
JP2013177673A (en) * 2012-01-31 2013-09-09 Jfe Steel Corp Hot-dip galvanized steel sheet and prodcing method therefor
JP2013209727A (en) * 2012-03-30 2013-10-10 Jfe Steel Corp Cold rolled steel sheet excellent in workability and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3257959A4 (en) * 2015-03-27 2017-12-20 JFE Steel Corporation High-strength steel sheet and production method therefor
US10570476B2 (en) 2015-03-27 2020-02-25 Jfe Steel Corporation High-strength steel sheet and production method therefor
EP3584340A4 (en) * 2017-02-20 2020-11-04 Nippon Steel Corporation Steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
TWI551696B (en) 2016-10-01
MX2015013941A (en) 2015-12-08
TW201441383A (en) 2014-11-01
TW201621061A (en) 2016-06-16
KR20150119097A (en) 2015-10-23
KR101717002B1 (en) 2017-03-15
TWI534273B (en) 2016-05-21
JP5633594B2 (en) 2014-12-03
CN105074039A (en) 2015-11-18
JP2014201766A (en) 2014-10-27
CN105074039B (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP5633594B2 (en) Cold-rolled steel sheet excellent in punchability and heat-strain resistance and method for producing the same
US10196727B2 (en) High strength galvanized steel sheet having excellent bendability and weldability, and method of manufacturing the same
KR101657822B1 (en) Hot dip galvanized and galvannealed steel sheet having excellent elongation property, and method for the same
CN109072371B (en) High-strength steel sheet for warm working and method for producing same
US10597748B2 (en) Steel wire rod for wire drawing
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
WO2011115279A1 (en) Hot-rolled steel sheet having excellent cold working properties and hardening properties, and method for producing same
JP4858286B2 (en) Full hard cold rolled steel sheet
KR101751242B1 (en) Full hard cold-rolled steel sheet and method for manufacturing the same
JP2007284783A (en) High strength cold rolled steel sheet and its production method
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP5348071B2 (en) High strength hot rolled steel sheet and method for producing the same
WO2015146173A1 (en) High-carbon hot-rolled steel sheet and method for producing same
JP5070824B2 (en) Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same
JP4502272B2 (en) Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof
JP5245777B2 (en) Full hard cold rolled steel sheet
JP2009001909A (en) Manufacturing method of high-strength cold-rolled steel sheet
JP2007247001A (en) High-strength steel sheet for die quenching
JP2020509173A (en) High carbon hot rolled steel sheet with excellent surface quality and method for producing the same
JP6098537B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2005206943A (en) High-tension hot-rolled sheet steel excellent in bake hardenability and resistance to room-temperature aging and its production method
JP2014118592A (en) Hot rolled steel sheet excellent in surface quality, having small anisotropic property and good in shape after cutting and its manufacturing method
JP2013249501A (en) High-strength cold-rolled steel plate with minimized dispersion of mechanical characteristics, and method for manufacturing the same
KR102020387B1 (en) High-carbon hot-rolled steel sheet having excellent surface quality and method for manufacturing same
JP5874376B2 (en) High-strength steel sheet with excellent workability and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019854.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157024635

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/013941

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201507090

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14779982

Country of ref document: EP

Kind code of ref document: A1