JP2013249501A - High-strength cold-rolled steel plate with minimized dispersion of mechanical characteristics, and method for manufacturing the same - Google Patents

High-strength cold-rolled steel plate with minimized dispersion of mechanical characteristics, and method for manufacturing the same Download PDF

Info

Publication number
JP2013249501A
JP2013249501A JP2012124207A JP2012124207A JP2013249501A JP 2013249501 A JP2013249501 A JP 2013249501A JP 2012124207 A JP2012124207 A JP 2012124207A JP 2012124207 A JP2012124207 A JP 2012124207A JP 2013249501 A JP2013249501 A JP 2013249501A
Authority
JP
Japan
Prior art keywords
less
steel sheet
temperature
ferrite
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012124207A
Other languages
Japanese (ja)
Other versions
JP5860345B2 (en
Inventor
Tomokazu Masuda
智一 増田
Katsura Kajiwara
桂 梶原
Toshio Murakami
俊夫 村上
Masaaki Miura
正明 三浦
Muneaki Ikeda
宗朗 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012124207A priority Critical patent/JP5860345B2/en
Priority to EP13797030.7A priority patent/EP2857539A4/en
Priority to PCT/JP2013/064920 priority patent/WO2013180180A1/en
Priority to US14/400,453 priority patent/US9708697B2/en
Priority to EP17000056.6A priority patent/EP3187614A1/en
Priority to CN201380027742.7A priority patent/CN104364403A/en
Publication of JP2013249501A publication Critical patent/JP2013249501A/en
Application granted granted Critical
Publication of JP5860345B2 publication Critical patent/JP5860345B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength cold-rolled steel plate with minimized dispersion of characteristics, and to provide a method for manufacturing the same.SOLUTION: A high-strength cold-rolled steel plate has a composition including, by mass, C: 0.05-0.30%, Si: 3.0% or less, Mn: 0.1-5.0%, P: 0.1% or less, S: 0.02% or less, Al: 0.01-1.0%, N: 0.01% or less, and the balance iron and unavoidable impurities; and has a structure composed of tempered martensite and/or tempered bainite, which includes 20-50% of ferrite that is a soft first phase by area ratio with the remainder being a hard second phase. In the steel plate, a difference ΔVα=Vαs-Vαc between the area ratio Vαs of ferrite in a steel plate surface layer portion from the steel plate surface to a depth of 100 μm and the area ratio Vαc of a central portion of t/4-3t/4 (t is the plate thickness) is less than 10%, and a ratio RHv=Hvs/Hvc of the hardness Hvs of the steel surface layer portion to the hardness Hvc of the central portion is 0.75-1.0.

Description

本願発明は、自動車部品等に用いられる機械的特性ばらつきの小さい高強度鋼板およびその製造方法に関する。   The present invention relates to a high-strength steel sheet having a small variation in mechanical properties used for automobile parts and the like, and a method for producing the same.

近年、自動車の燃費改善、衝突安全性を両立させるため、構造部品の材料として引張強度590MPa以上の高強度鋼板のニーズが高まってきており、その適用範囲が広がっている。しかし、高強度鋼板は軟鋼にくらべて降伏強度や引張強度、加工硬化指数などの機械的特性のばらつきが大きいため、プレス成形の際にスプリングバックの量が変化することでプレス成形品の寸法精度を確保することが困難となることや、強度がばらついてもプレス成形品の必要強度を確保すべく、鋼板の平均強度を高めに設定する必要があることからプレス金型の寿命が短くなるといった課題がある。   In recent years, there has been an increasing need for high-strength steel sheets having a tensile strength of 590 MPa or more as a material for structural parts in order to achieve both fuel efficiency improvement and collision safety of automobiles, and the application range has been expanded. However, high-strength steel sheets have larger variations in mechanical properties such as yield strength, tensile strength, work hardening index, etc. compared to mild steel, so the amount of springback during press forming changes the dimensional accuracy of the press-formed product. It is difficult to secure the press mold, and even if the strength varies, it is necessary to set the average strength of the steel sheet higher in order to ensure the required strength of the press-formed product. There are challenges.

このような課題を解決すべく、高強度鋼板における機械的特性のばらつき抑制に関するさまざまな取り組みがなされてきている。高強度鋼板において上記のような機械的特性のばらつきが発生する原因は、化学成分の変動と製造条件の変動に求めることができ、機械的特性のばらつき低減方法として以下のような提案がなされている。   In order to solve such problems, various efforts have been made for suppressing variation in mechanical properties of high-strength steel sheets. The cause of the variation in mechanical properties as described above in high-strength steel sheets can be found in the variation in chemical composition and the variation in manufacturing conditions. The following proposal has been made as a method for reducing the variation in mechanical properties. Yes.

[従来技術1]
例えば、特許文献1には、A=Si+9×Alで定義するAが6.0≦A≦20.0を満たした、フェライトとマルテンサイトの二相組織鋼とし、この鋼板を製造するに際しては、再結晶焼鈍・焼戻処理を、Ac1以上Ac3以下の温度で10s以上保持し、500〜750℃までを20℃/s以下の冷却速度で緩冷却し、その後、100℃以下までを100℃/s以上の冷却速度で急冷し、300〜500℃で焼戻しを行うことで、鋼材のA3点を上昇させることにより、緩冷却終了時点の温度である急冷開始温度が変動したときの上記二相組織の安定性を高めて、機械的特性のばらつきを低減する方法が開示されている。
[Prior art 1]
For example, in Patent Document 1, when A is defined as A = Si + 9 × Al, a ferrite and martensite dual phase steel satisfying 6.0 ≦ A ≦ 20.0, and this steel plate is manufactured. The recrystallization annealing / tempering treatment is held at a temperature of Ac1 or higher and Ac3 or lower for 10 s or more, slowly cooled to 500 to 750 ° C. at a cooling rate of 20 ° C. or lower, and then 100 ° C. or lower to 100 ° C. / The above two-phase structure when the rapid cooling start temperature, which is the temperature at the end of the slow cooling, fluctuates by raising the A3 point of the steel by quenching at a cooling rate of s or more and tempering at 300 to 500 ° C. A method for improving the stability of the material and reducing the variation in mechanical properties is disclosed.

[従来技術2]
また、特許文献2には、予め鋼板の板厚、炭素含有量、リン含有量、焼入れ開始温度、焼入れ停止温度および焼入れ後の焼戻し温度と引張強度の関係を求めておき、対象鋼板の板厚、炭素含有量、リン含有量、焼入れ停止温度および焼入れ後の焼戻し温度を考慮して、目標引張強度に応じて焼入れ開始温度を算出し、求めた焼入れ開始温度で焼入れすることで、強度のばらつきを低減する方法が開示されている。
[Prior Art 2]
In Patent Document 2, the thickness of the steel sheet, the carbon content, the phosphorus content, the quenching start temperature, the quenching stop temperature, the tempering temperature after quenching and the relationship between the tensile strength and the tensile strength are obtained in advance. Considering the carbon content, phosphorus content, quenching stop temperature, and tempering temperature after quenching, calculate the quenching start temperature according to the target tensile strength, and quenching at the obtained quenching start temperature, the variation in strength A method for reducing the above is disclosed.

[従来技術3]
また、特許文献3には、3%以上の残留オーステナイトを含む組織を有する鋼板を製造するにあたり、熱延鋼板を冷間圧延した後の焼鈍処理において、800℃超Ac3点未満で30秒〜5分間均熱した後、450〜550℃の温度範囲まで一次冷却を行い、次いで450〜400℃までの一次冷却速度に比べて小さい冷却速度で二次冷却を行った後、さらに450〜400℃で1分間以上保持することで、板幅方向における伸び特性のばらつきを改善する方法が開示されている。
[Prior Art 3]
Moreover, in patent document 3, in manufacturing the steel plate which has a structure | tissue containing 3% or more of retained austenite, in the annealing process after cold-rolling a hot-rolled steel plate, more than 800 degreeC and less than Ac3 point, 30 seconds-5 After soaking for 1 minute, primary cooling is performed to a temperature range of 450 to 550 ° C., then secondary cooling is performed at a cooling rate smaller than the primary cooling rate to 450 to 400 ° C., and further at 450 to 400 ° C. A method for improving variation in elongation characteristics in the plate width direction by holding for 1 minute or more is disclosed.

[従来技術4]
また、特許文献4には、平均結晶粒径10μm以下のフェライト相と体積分率30〜90%のマルテンサイト相を含み、板厚表層硬度の板厚中心硬度に対する比が0.6〜1であり、めっき層と鋼板の界面から鋼板側内部へ進展している亀裂および凹部の最大深さが0〜20μmであり、亀裂と凹部以外の平滑部面積率が60%〜100%である組織とすることで、高強度溶融亜鉛めっき鋼板の絞り成形性を改善する方法が開示されている。
[Prior Art 4]
Patent Document 4 includes a ferrite phase having an average crystal grain size of 10 μm or less and a martensite phase having a volume fraction of 30 to 90%, and the ratio of sheet thickness surface layer hardness to sheet thickness center hardness is 0.6 to 1. There is a structure in which the maximum depth of cracks and recesses extending from the interface between the plating layer and the steel plate to the steel plate side is 0 to 20 μm, and the area ratio of the smooth part other than the cracks and recesses is 60% to 100%. Thus, a method for improving the drawability of a high-strength hot-dip galvanized steel sheet is disclosed.

上記従来技術1は、Alの添加量を増やしてAc3点を高めることによりAc1〜Ac3の2相温度域を拡大し、該2相温度域中における温度依存性を低減させたことで、焼鈍温度の変動による組織分率の変化を抑制することを特徴とするものである。これに対して、本願発明は、鋼板表層部と内部の硬軟質相の分率および硬さを揃えることで、熱処理条件の変化による機械的特性の変動を抑制することを特徴とするものである。したがって、上記従来技術1は、本願発明の技術的思想を示唆するものではない。さらに、上記従来技術1は、Alの添加量を増やす必要があることから、鋼板の製造コストが上昇する問題もある。   The above prior art 1 increases the Ac3 point by increasing the amount of Al added, thereby expanding the two-phase temperature range of Ac1 to Ac3, and reducing the temperature dependence in the two-phase temperature range, thereby reducing the annealing temperature. It is characterized by suppressing changes in the tissue fraction due to fluctuations in the size. On the other hand, the present invention is characterized by suppressing fluctuations in mechanical properties due to changes in heat treatment conditions by aligning the fraction and hardness of the steel sheet surface layer portion and the internal hard-soft phase. . Therefore, the prior art 1 does not suggest the technical idea of the present invention. Furthermore, since the prior art 1 needs to increase the amount of Al added, there is also a problem that the manufacturing cost of the steel sheet increases.

また、上記従来技術2は、化学成分の変化に応じて焼入れ温度を変更するので、強度のばらつきは低減できるとしても、組織分率がコイル間で変動するため、伸びや伸びフランジ性のばらつきは低減できない。   In addition, since the prior art 2 changes the quenching temperature in accordance with the change in the chemical composition, even if the variation in strength can be reduced, the tissue fraction varies between the coils. It cannot be reduced.

また、上記従来技術3は、伸びのばらつきの低減については言及されているものの、伸びフランジ性のばらつきの低減については示唆されていない。   Moreover, although the said prior art 3 is mentioned about the reduction | decrease of the dispersion | variation in elongation, it is not suggested about the reduction | decrease of the dispersion | variation in stretch flangeability.

また、上記従来技術4は、プレス成形性を改善することを目的として、フェライト相の平均結晶粒径を10μm以下とし、鋼板表層と中心の硬さ比を0.6〜1に規定している。しかしながら、フェライト相の結晶粒径として平均値のみで規定しているため、個々のフェライト粒のサイズの大小に大きなばらつきがある場合には、プレス成形性の改善は見込めない。また、鋼板表層と中心の硬さ比を規定しているが、硬さと硬軟質相の変形能は一致しているとはいえない。例えば、変形能に劣る焼戻した硬質相の分率が高い場合と、変形能に優れる軟質相の分率が高い場合では、硬さが同じでもプレス成形性が異なるため、プレス成形性の改善には有効であるものの、その改善の度合いにばらつきが生じることが想定される。これに対して、本願発明は、プレス成形性の改善自体を目的とするものではなく、鋼板表層部と内部(中心部)の組織分率と硬さの差異を小さくすることで、機械的特性のばらつきを抑制することを特徴とするものである。したがって、上記従来技術4は、本願発明の技術的思想を示唆するものではない。   Moreover, the said prior art 4 prescribes | regulates the average crystal grain diameter of a ferrite phase as 10 micrometers or less, and the steel sheet surface layer and center hardness ratio to 0.6-1 for the purpose of improving press moldability. . However, since the crystal grain size of the ferrite phase is defined only by the average value, if there is a large variation in the size of individual ferrite grains, improvement in press formability cannot be expected. Moreover, although the steel sheet surface layer and the center hardness ratio are prescribed | regulated, it cannot be said that hardness and the deformability of a hard soft phase correspond. For example, when the fraction of the tempered hard phase, which is inferior in deformability, is high, and when the fraction of the soft phase, which is excellent in deformability, is high, the press formability is different even if the hardness is the same. Is effective, but it is assumed that the degree of improvement will vary. On the other hand, the present invention is not intended to improve the press formability itself, but by reducing the difference between the structural fraction and hardness of the steel sheet surface layer part and the inside (center part), mechanical properties are reduced. It is characterized by suppressing variations in the above. Therefore, the prior art 4 does not suggest the technical idea of the present invention.

特開2007−138262号公報JP 2007-138262 A 特開2003−277832号公報JP 2003-277832 A 特開2000−212684号公報JP 2000-212684 A 特開2008−156734号公報JP 2008-156734 A

本願発明は、上記問題点を解決するためになされたもので、機械的特性ばらつきの小さい高強度冷延鋼板およびその製造方法を提供することにある。   The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a high-strength cold-rolled steel sheet having a small variation in mechanical properties and a method for producing the same.

請求項1に記載の発明は、
質量%で(以下、化学成分について同じ。)、
C:0.05〜0.30%、
Si:3.0%以下(0%を含まない)、
Mn:0.1〜5.0%、
P:0.1%以下(0%を含まない)、
S:0.02%以下(0%を含まない)、
Al:0.01〜1.0%、
N:0.01%以下(0%を含まない)
を各々含み、残部が鉄および不可避的不純物からなる成分組成を有し、
軟質第1相であるフェライトを面積率で20〜50%含み、
残部が硬質第2相である、焼戻しマルテンサイトおよび/または焼戻しベイナイトからなる組織を有し、
鋼板表面から100μm深さまでの鋼板表層部のフェライトの面積率Vαsと、t/4〜3t/4(tは板厚)の中心部のフェライトの面積率Vαcとの差ΔVα=Vαs−Vαcが10%未満であるとともに、前記鋼板表層部の硬さHvsと前記中心部の硬さHvcとの比RHv=Hvs/Hvcが0.75〜1.0である
ことを特徴とする機械的特性ばらつきの小さい高強度冷延鋼板である。
The invention described in claim 1
% By mass (hereinafter the same for chemical components)
C: 0.05 to 0.30%
Si: 3.0% or less (excluding 0%),
Mn: 0.1 to 5.0%,
P: 0.1% or less (excluding 0%),
S: 0.02% or less (excluding 0%),
Al: 0.01 to 1.0%,
N: 0.01% or less (excluding 0%)
Each having a component composition consisting of iron and inevitable impurities,
Including ferrite, which is a soft first phase, in an area ratio of 20 to 50%,
The balance is a hard second phase, and has a structure composed of tempered martensite and / or tempered bainite,
The difference ΔVα = Vαs−Vαc between the ferrite area ratio Vαs in the surface layer portion of the steel sheet from the steel sheet surface to the depth of 100 μm and the ferrite area ratio Vαc in the central portion of t / 4 to 3t / 4 (t is the plate thickness) is 10 The ratio RHv = Hvs / Hvc between the hardness Hvs of the steel sheet surface layer part and the hardness Hvc of the central part is 0.75 to 1.0. A small high-strength cold-rolled steel sheet.

請求項2に記載の発明は、
成分組成が、更に、
Cr:0.01〜1.0%
を含むものである請求項1に記載の機械的特性ばらつきの小さい高強度冷延鋼板である。
The invention described in claim 2
Ingredient composition further
Cr: 0.01 to 1.0%
The high-strength cold-rolled steel sheet having a small variation in mechanical properties according to claim 1.

請求項3に記載の発明は、
成分組成が、更に、
Mo:0.01〜1.0%、
Cu:0.05〜1.0%、
Ni:0.05〜1.0%の1種または2種以上
を含むものである請求項1または2に記載の機械的特性ばらつきの小さい高強度冷延鋼板である。
The invention according to claim 3
Ingredient composition further
Mo: 0.01 to 1.0%,
Cu: 0.05 to 1.0%,
The high-strength cold-rolled steel sheet having small variations in mechanical properties according to claim 1 or 2, comprising Ni: 0.05 to 1.0%, or one or more.

請求項4に記載の発明は、
成分組成が、更に、
Ca:0.0001〜0.01%、
Mg:0.0001〜0.01%、
Li:0.0001〜0.01%、
REM:0.0001〜0.01%の1種または2種以上
を含むものである請求項1〜3のいずれか1項に記載の機械的特性ばらつきの小さい高強度冷延鋼板である。
The invention according to claim 4
Ingredient composition further
Ca: 0.0001 to 0.01%,
Mg: 0.0001 to 0.01%
Li: 0.0001 to 0.01%
The high-strength cold-rolled steel sheet according to any one of claims 1 to 3, which includes one or more of REM: 0.0001 to 0.01%.

請求項5に記載の発明は、
請求項1〜4のいずれか1項に示す成分組成を有する鋼材を、下記(1)〜(4)に示す各条件で、熱間圧延した後、冷間圧延し、その後、焼鈍し、さらに焼戻しすることを特徴とする機械的特性ばらつきの小さい高強度冷延鋼板の製造方法である。
(1) 熱間圧延条件
仕上げ圧延終了温度:Ar点以上
巻取温度:600℃超750℃以下
(2) 冷間圧延条件
冷間圧延率:50%超80%以下
(3) 焼鈍条件
Ac1以上(Ac1+Ac3)/2未満の焼鈍温度にて、3600s以下の焼鈍保持時間だけ保持した後、焼鈍温度から、730℃以下500℃以上の第1冷却終了温度までを1℃/s以上50℃/s未満の第1冷却速度で徐冷した後、Ms点以下の第2冷却終了温度までを50℃/s以上の第2冷却速度で急冷する。
(4) 焼戻し条件
焼戻し温度:300〜500℃
焼戻し保持時間:300℃〜焼戻し温度の温度範囲内に60〜1200s
The invention described in claim 5
A steel material having the composition shown in any one of claims 1 to 4 is hot-rolled under the conditions shown in the following (1) to (4), then cold-rolled, and then annealed. A method for producing a high-strength cold-rolled steel sheet with small variations in mechanical properties, characterized by tempering.
(1) Hot rolling conditions Finish rolling finish temperature: Ar 3 points or more Winding temperature: Over 600 ° C and 750 ° C or less
(2) Cold rolling conditions Cold rolling rate: Over 50% and below 80%
(3) Annealing conditions After holding at an annealing temperature of Ac1 or more and less than (Ac1 + Ac3) / 2 for an annealing holding time of 3600 s or less, the temperature from the annealing temperature to the first cooling end temperature of 730 ° C. or less to 500 ° C. or more is 1 ° C. After slow cooling at a first cooling rate of not less than / s and less than 50 ° C./s, rapid cooling is performed at a second cooling rate of not less than 50 ° C./s to a second cooling end temperature below the Ms point.
(4) Tempering conditions Tempering temperature: 300-500 ° C
Tempering holding time: 60 to 1200 s in the temperature range of 300 ° C. to tempering temperature

本願発明によれば、軟質第1相であるフェライトと、硬質第2相である、焼戻しマルテンサイトおよび/または焼戻しベイナイトからなる複相組織鋼において、鋼板表層部と中心部の、フェライト面積率の差と硬さ比を、ともに所定範囲内に制御することで、機械的特性ばらつきの小さい高強度鋼板およびその製造方法を提供できるようになった。   According to the present invention, in a multiphase steel composed of ferrite, which is a soft first phase, and tempered martensite and / or tempered bainite, which is a hard second phase, the ferrite area ratio of the steel sheet surface layer portion and the central portion is By controlling both the difference and the hardness ratio within a predetermined range, it has become possible to provide a high-strength steel sheet having a small variation in mechanical characteristics and a method for producing the same.

発明鋼板と比較鋼板の断面組織写真である。It is a cross-sectional structure photograph of an invention steel plate and a comparative steel plate.

本願発明者らは、上記課題を解決するために、軟質第1相であるフェライトと、硬質第2相である、焼戻しマルテンサイトおよび/または焼戻しベイナイト(以下「焼戻しマルテンサイト等」と総称することもある。)からなる複相組織を有する高強度鋼板に着目し、その機械的特性のばらつきを小さくする方策を検討した。以下、「機械的特性」を「特性」と、「機械的特性のばらつき」を「特性ばらつき」と、各々称することがある。   In order to solve the above problems, the inventors of the present application collectively refer to ferrite as a soft first phase and tempered martensite and / or tempered bainite (hereinafter referred to as “tempered martensite etc.”) as a hard second phase. Focusing on a high-strength steel sheet having a multi-phase structure composed of Hereinafter, “mechanical characteristics” may be referred to as “characteristics” and “variations in mechanical characteristics” may be referred to as “characteristic variations”.

特性ばらつきを抑制するためには、ミクロ的に見ると、軟質第1相(単に「軟質相」ともいう。)と硬質第2相(単に「硬質相」ともいう。)の硬さの差異を小さくすることが有効である。一方、マクロ的に見ると、鋼板の厚さ方向の特性の差異、つまり材質の差異を小さくすることが有効である。   In order to suppress variation in characteristics, from a microscopic viewpoint, the difference in hardness between the soft first phase (also simply referred to as “soft phase”) and the hard second phase (also simply referred to as “hard phase”) is obtained. It is effective to make it smaller. On the other hand, from a macro perspective, it is effective to reduce the difference in characteristics in the thickness direction of the steel sheet, that is, the difference in material.

しかしながら、ミクロ的な観点、すなわち、硬軟質相の硬さの差異を小さくするだけでは、上記従来技術4で説明したように、両相の変形能の相違により、両相の分率が変化した場合には、特性ばらつきが生じてしまう。   However, only by reducing the difference in hardness between the hard and soft phases from a microscopic viewpoint, the fraction of both phases changed due to the difference in deformability between the two phases as described in the prior art 4 above. In this case, characteristic variation occurs.

そこで、本願発明者らは、マクロ的な観点、すなわち、鋼板厚さ方向の材質の差異を小さくする方が特性ばらつきの抑制にはより有効であると考え、鋼板厚さ方向の材質の差異を小さくする手段について検討を進めた。   Therefore, the inventors of the present application consider that it is more effective to suppress variation in characteristics by reducing the difference in material in the thickness direction of the steel sheet, that is, the difference in material in the thickness direction of the steel sheet. We proceeded with investigations on how to make it smaller.

具体的手段として、表層部と内部(中心部)を構成する硬軟質相の分率、および、表層部と内部(中心部)の硬さをできるだけ揃えることが有効である。   As specific means, it is effective to make the hardness of the hard and soft phases constituting the surface layer part and the inside (center part) and the hardness of the surface layer part and the inside (center part) as much as possible.

このような組織とすることで、特性の評価方法や実際の加工方法が同一の場合には、常に同じ特性を発揮することができるようになる。   By adopting such a structure, the same characteristics can always be exhibited when the characteristic evaluation method and the actual processing method are the same.

しかしながら、上記のような組織を得ることは、従来の一般的な製造方法では実現が困難である。   However, it is difficult to obtain the above-described structure by a conventional general manufacturing method.

上記のような組織形態を作り込むためには、一例として以下のような方法が考えられる。すなわち、熱延での高温巻取り、高い冷延率、2相域低温側での焼鈍の組合せが有効である。まず、熱延後の巻取り温度を高めることで、組織のサイズを全体的に大きく均一にすることができるとともに、フェライト+パーライト(α+P)の2相のみの組織とすることにも有効である。次いで、冷延時において冷延率を高めて強い加工を施すことで、表層部と内部に導入されるひずみ量をほぼ同等にすることができる。冷延率が低いと、内部に比べて表層部のひずみが多くなりやすく、鋼板厚さ方向にひずみ量の傾斜が付きやすい。冷延率を高くしても鋼板厚さ方向にひずみ量の傾斜が付くものの、その影響を極小に抑制できる。また、次工程の焼鈍で高ひずみ量が有効に作用する。つまり、焼鈍に際して、冷延で鋼板厚み方向全体に高ひずみを付与しておくことで、加熱時においてオーステナイトの核生成が活性化され、微細オーステナイト組織が得られる。そして、均熱時において、その微細オーステナイトの粒界三重点からフェライトが析出する。ここで、均熱温度を2相域の低温側とすることで、サイズの揃った比較的大きめのフェライトと微細オーステナイトからなる組織が形成される。そこから、肩落し冷却することで、フェライトが成長して大きめになるとともに、微細オーステナイトの粒界三重点から新しいフェライトが析出するようになる。このように焼鈍前の組織を細かくしておくことで、表層部、内部ともに、温度履歴は異なるものの、フェライト、オーステナイトともに核生成が活性化しているため、同様の核生成、成長挙動を示すようになる。その結果、表層部と内部の硬軟質相の分率がほぼ同等になり、また、組織の形成過程によって表層部、内部ともに同様の組織サイズになるため、硬さもほぼ同等になる。   For example, the following method can be considered to create the above-described organization form. That is, a combination of hot rolling in hot rolling, a high cold rolling rate, and annealing on the low temperature side of the two-phase region is effective. First, by increasing the coiling temperature after hot rolling, the size of the structure can be made large and uniform as a whole, and it is also effective for making a structure of only two phases of ferrite + pearlite (α + P). . Next, the amount of strain introduced into the surface layer portion and the inside can be made substantially equal by increasing the cold rolling rate during cold rolling and applying strong processing. If the cold rolling rate is low, the strain of the surface layer portion tends to increase compared to the inside, and the strain amount tends to be inclined in the thickness direction of the steel sheet. Even if the cold rolling rate is increased, the strain amount is inclined in the thickness direction of the steel sheet, but the influence can be minimized. In addition, high strain acts effectively in the subsequent annealing. That is, by applying high strain to the entire thickness direction of the steel sheet by cold rolling during annealing, nucleation of austenite is activated during heating, and a fine austenite structure is obtained. During soaking, ferrite precipitates from the grain boundary triple point of the fine austenite. Here, by setting the soaking temperature to the low temperature side of the two-phase region, a structure composed of relatively large ferrites and fine austenite having uniform sizes is formed. From there, by dropping the shoulder and cooling, the ferrite grows and becomes large, and new ferrite precipitates from the grain boundary triple point of the fine austenite. By making the structure before annealing fine in this way, both the surface layer and inside have different temperature histories, but nucleation is activated in both ferrite and austenite, so the same nucleation and growth behavior are shown. become. As a result, the fractions of the surface layer portion and the internal hard-soft phase are substantially equal, and the surface layer portion and the interior have the same structure size depending on the formation process of the structure, so the hardness is also approximately the same.

このような組織を有する鋼板の成形性は、表層部と内部とで同じひずみ条件下では、ほぼ同等であり、優れた特性安定性を示すこととなる。   The formability of the steel sheet having such a structure is almost the same under the same strain condition in the surface layer portion and inside, and exhibits excellent characteristic stability.

そして、上記思考実験に基づき、後記[実施例]にて説明する実証試験を実施した結果、確証が得られたので、さらに検討を加え、本願発明を完成するに至った。   And, as a result of conducting a verification test described in the following [Example] based on the above thought experiment, confirmation was obtained, so further investigation was made and the present invention was completed.

以下、まず発明鋼板を特徴づける組織について説明する。   Hereinafter, the structure characterizing the invention steel sheet will be described first.

〔発明鋼板の組織〕
上述したとおり、発明鋼板は、軟質第1相であるフェライトと、硬質第2相である焼戻しマルテンサイト等からなる複相組織をベースとするものであるが、特に、鋼板表面部と中心部の、フェライト分率の差と硬さ比が制御されている点を特徴とする。
[Invention steel sheet structure]
As described above, the invention steel plate is based on a multiphase structure composed of ferrite, which is a soft first phase, and tempered martensite, which is a hard second phase. The difference in ferrite fraction and the hardness ratio are controlled.

<軟質第1相であるフェライト:面積率で20〜50%>
フェライト−焼戻しマルテンサイト等の複相組織鋼では、変形は主として変形能の高いフェライトが受け持つ。そのため、フェライト−焼戻しマルテンサイト等の複相組織鋼の伸びは主としてフェライトの面積率で決定される。
<Ferrite as soft first phase: 20 to 50% in area ratio>
In a multiphase steel such as ferrite-tempered martensite, deformation is mainly handled by ferrite having high deformability. Therefore, the elongation of the duplex steel such as ferrite-tempered martensite is mainly determined by the area ratio of ferrite.

目標とする伸びを確保するためには、フェライトの面積率は20%以上(好ましくは25%以上、さらに好ましくは30%以上)が必要である。ただし、フェライトが過剰になると強度が確保できなくなるので、フェライトの面積率は50%以下(好ましくは45%以下、さらに好ましくは40%以下)とする。   In order to ensure the target elongation, the area ratio of ferrite needs to be 20% or more (preferably 25% or more, more preferably 30% or more). However, since the strength cannot be secured when the ferrite is excessive, the area ratio of the ferrite is 50% or less (preferably 45% or less, more preferably 40% or less).

<鋼板表面から100μm深さまでの鋼板表層部のフェライトの面積率Vαsと、t/4〜3t/4(tは板厚)の中心部のフェライトの面積率Vαcとの差ΔVα=Vαs−Vαc:10%未満>
鋼板表層部と内部のフェライト分率をできるだけ揃えることで、下記鋼板表層部と内部の硬さを揃えることと相俟って、マクロ的に鋼板板厚方向の材質を均質にし、特性ばらつきを抑制するためである。上記効果を得るためには、鋼板表層部と中心部のフェライトの面積率の差ΔVαは10%未満(好ましくは8%以下、さらに好ましくは6%以下)とする必要がある。
ここで、鋼板表層部を鋼板表面から100μm深さまでの部分に限定したのは、一般的な製造方法で組織形態が特に変化しやすい領域であるからである。
<Difference between the ferrite area ratio Vαs in the surface layer portion of the steel sheet from the steel sheet surface to a depth of 100 μm and the ferrite area ratio Vαc in the central portion of t / 4 to 3t / 4 (t is the plate thickness) ΔVα = Vαs−Vαc: <10%>
By aligning the ferrite fraction of the steel sheet surface layer and the internal as much as possible, in combination with the following steel sheet surface layer and the internal hardness, the material in the thickness direction of the steel sheet is made macroscopic and the characteristic variation is suppressed. It is to do. In order to obtain the above effect, the difference ΔVα in the area ratio between the steel sheet surface layer portion and the central portion of the ferrite needs to be less than 10% (preferably 8% or less, more preferably 6% or less).
Here, the reason why the steel plate surface layer portion is limited to a portion from the steel plate surface to a depth of 100 μm is that the structure is particularly easily changed by a general manufacturing method.

<、前記鋼板表層部の硬さHvsと前記中心部の硬さHvcとの比RHv=Hvs/Hvc:0.75〜1.0>
鋼板表層部と中心部の硬さをできるだけ揃えることで、上記鋼板表層部と内部のフェライト分率を揃えることと相俟って、マクロ的に鋼板板厚方向の材質を均質にし、特性ばらつきを抑制するためである。上記効果を得るためには、硬さ比RHvは0.75以上(好ましくは0.77以上、さらに好ましくは0.79以上)とする必要がある。ただし、硬さ比RHvが1.0を超えると、例えば浸炭処理を施した場合のように表層部の方が内部より硬くなると、却って特性ばらつきが大きくなる。
<Ratio of hardness Hvs of the steel sheet surface layer part and hardness Hvc of the central part RHv = Hvs / Hvc: 0.75 to 1.0>
By aligning the hardness of the steel sheet surface layer and the central part as much as possible, in combination with the above-mentioned steel sheet surface layer and the internal ferrite fraction, the material in the thickness direction of the steel sheet is made macroscopically uniform, resulting in characteristic variations. It is for suppressing. In order to acquire the said effect, hardness ratio RHv needs to be 0.75 or more (preferably 0.77 or more, more preferably 0.79 or more). However, when the hardness ratio RHv exceeds 1.0, for example, when the surface layer portion becomes harder than the inside as in the case of carburizing treatment, the characteristic variation increases.

以下、鋼板厚み全体における各相の面積率、鋼板表層部および中心部におけるフェライトの面積率、ならびに、鋼板表層部および中心部における硬さの各測定方法について説明する。   Hereinafter, the area ratio of each phase in the entire thickness of the steel sheet, the area ratio of ferrite in the steel sheet surface layer part and the center part, and each measuring method of the hardness in the steel sheet surface layer part and the center part will be described.

〔鋼板厚み全体における各相の面積率の測定方法〕
まず、鋼板厚み全体における各相の面積率については、各供試鋼板を鏡面研磨し、3%ナイタール液で腐食して金属組織を顕出させた後、概略40μm×30μm領域5視野について倍率2000倍の走査型電子顕微鏡(SEM)像を観察し、点算法で1視野につき100点の測定を行って各フェライト粒の面積を求め、それらを合計してフェライトの面積を求めた。また、画像解析によってセメンタイトを含む領域を硬質第2相とし、残りの領域を、残留オーステナイト、マルテンサイト、および、残留オーステナイトとマルテンサイトの混合組織とした。そして、各領域の面積比率より各相の面積率を算出した。
[Measurement method of area ratio of each phase in the whole steel sheet thickness]
First, regarding the area ratio of each phase in the entire thickness of the steel sheet, each test steel sheet was mirror-polished and corroded with 3% nital solution to reveal a metal structure, and then a magnification of 2000 for a field of view of approximately 40 μm × 30 μm. A double scanning electron microscope (SEM) image was observed, 100 points per field of view were measured by a point calculation method to determine the area of each ferrite grain, and these were summed to determine the area of ferrite. In addition, a region containing cementite was determined as a hard second phase by image analysis, and the remaining region was retained austenite, martensite, and a mixed structure of retained austenite and martensite. And the area ratio of each phase was computed from the area ratio of each area | region.

〔鋼板表層部および中心部におけるフェライトの面積率〕
また、中心部におけるフェライトの面積率については、t/4〜3t/4(tは板厚)の範囲において、上記〔鋼板厚み全体における各相の面積率の測定方法〕と同様にして、フェライトの面積率を求めた。
一方、鋼板表層部におけるフェライトの面積率については、鋼板表面から深さ30μmまでの範囲において、概略30μm×40μm領域5視野について上記〔鋼板厚み全体における各相の面積率の測定方法〕と同様にして、フェライトの面積率を求めた。
[Area ratio of ferrite in steel sheet surface layer and center]
The ferrite area ratio in the central portion is in the range of t / 4 to 3t / 4 (t is the plate thickness), in the same manner as in the above [Method for measuring the area ratio of each phase in the entire steel plate thickness]. The area ratio was determined.
On the other hand, about the area ratio of the ferrite in the steel sheet surface layer portion, in the range from the steel sheet surface to a depth of 30 μm, the same as in the above [Measurement method of area ratio of each phase in the entire thickness of the steel sheet] for 5 fields of about 30 μm × 40 μm region. Thus, the area ratio of ferrite was obtained.

〔鋼板表層部および中心部における硬さの測定方法〕
また、鋼板表層部および中心部における硬さについては、ビッカース硬さ試験機を用い荷重100gの条件にて、圧延方向に平行な板厚断面において、鋼板表層部は鋼板表面から0.05mm深さの位置で、中心部はt/4(t:板厚)の位置で、それぞれ、板厚方向に垂直な方向に5点の硬さを測定し、それら5点の測定値を算術平均して求めた。
[Method for measuring hardness in steel sheet surface layer and center]
Further, regarding the hardness in the steel plate surface layer portion and the center portion, the steel plate surface layer portion has a depth of 0.05 mm from the steel plate surface in a plate thickness section parallel to the rolling direction under the condition of a load of 100 g using a Vickers hardness tester. The center part is at a position of t / 4 (t: plate thickness), and the hardness of 5 points is measured in the direction perpendicular to the plate thickness direction, and the measured values of these 5 points are arithmetically averaged. Asked.

次に、本願の発明鋼板を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。   Next, the component composition which comprises the invention steel plate of this application is demonstrated. Hereinafter, all the units of chemical components are mass%.

〔発明鋼板の成分組成〕
C:0.05〜0.30%
Cは、硬質第2相の面積率、延いてはフェライトの面積率に影響し、強度、伸びおよび伸びフランジ性に影響する重要な元素である。0.05%未満では強度が確保できなくなる。一方、0.30%超では溶接性が劣化する。C含有量の範囲は、好ましくは0.10〜0.25%、さらに好ましくは0.14〜0.20%である。
[Ingredient composition of invention steel plate]
C: 0.05-0.30%
C is an important element that affects the area ratio of the hard second phase, and consequently the area ratio of ferrite, and affects the strength, elongation, and stretch flangeability. If it is less than 0.05%, the strength cannot be secured. On the other hand, if it exceeds 0.30%, the weldability deteriorates. The range of C content is preferably 0.10 to 0.25%, more preferably 0.14 to 0.20%.

Si:3.0%以下(0%を含まない)、
Siは、焼戻し時におけるセメンタイト粒子の粗大化を抑制する効果を有し、伸びと伸びフランジ性の両立に寄与する有用な元素である。3.0%超では加熱時におけるオーステナイトの形成を阻害するため、硬質第2相の面積率を確保できず、伸びフランジ性を確保できない。Si含有量の範囲は、好ましくは0.50〜2.5%、さらに好ましくは1.0〜2.2%である。
Si: 3.0% or less (excluding 0%),
Si has an effect of suppressing the coarsening of cementite particles during tempering, and is a useful element that contributes to both elongation and stretch flangeability. If it exceeds 3.0%, the formation of austenite at the time of heating is inhibited, so that the area ratio of the hard second phase cannot be ensured and stretch flangeability cannot be ensured. The range of Si content becomes like this. Preferably it is 0.50 to 2.5%, More preferably, it is 1.0 to 2.2%.

Mn:0.1〜5.0%
Mnは、上記Siと同様、焼戻し時におけるセメンタイトの粗大化を抑制する効果を有することに加え、硬質第2相の変形能を高めることで、伸びと伸びフランジ性の両立に寄与する。また、焼入れ性を高めることで、硬質第2相が得られる製造条件の範囲を広げる効果もある。0.1%未満では上記効果が十分に発揮されないため、伸びと伸びフランジ性を両立できず、一方、5.0%超とすると逆変態温度が低くなりすぎ、再結晶ができなくなるため、強度と伸びのバランスが確保できなくなる。Mn含有量の範囲は、好ましくは0.5〜2.5%、さらに好ましくは1.2〜2.2%である。
Mn: 0.1 to 5.0%
Mn contributes to both elongation and stretch flangeability by increasing the deformability of the hard second phase, in addition to having the effect of suppressing coarsening of cementite during tempering, similar to Si. Moreover, there exists an effect which expands the range of the manufacturing conditions from which a hard 2nd phase is obtained by improving hardenability. If the content is less than 0.1%, the above effects cannot be sufficiently exhibited, so that it is impossible to achieve both elongation and stretch flangeability. On the other hand, if it exceeds 5.0%, the reverse transformation temperature becomes too low and recrystallization becomes impossible. And the balance of growth cannot be secured. The range of Mn content is preferably 0.5 to 2.5%, more preferably 1.2 to 2.2%.

P:0.1%以下(0%を含まない)
Pは不純物元素として不可避的に存在し、固溶強化により強度の上昇に寄与するが、旧オーステナイト粒界に偏析し、粒界を脆化させることで伸びフランジ性を劣化させるので、0.1%以下とする。好ましくは0.05%以下、さらに好ましくは0.03%以下である。
P: 0.1% or less (excluding 0%)
P is unavoidably present as an impurity element, and contributes to an increase in strength by solid solution strengthening, but segregates at the prior austenite grain boundaries and causes the brittleness of the grain boundaries to deteriorate the stretch flangeability. % Or less. Preferably it is 0.05% or less, More preferably, it is 0.03% or less.

S:0.02%以下(0%を含まない)
Sも不純物元素として不可避的に存在し、MnS介在物を形成し、穴拡げ時に亀裂の起点となることで伸びフランジ性を低下させるので、0.02%以下とする。好ましくは0.018%以下、さらに好ましくは0.016%以下である。
S: 0.02% or less (excluding 0%)
S is also unavoidably present as an impurity element, forms MnS inclusions, and becomes a starting point of a crack at the time of hole expansion, thereby reducing stretch flangeability. Therefore, the content is made 0.02% or less. Preferably it is 0.018% or less, More preferably, it is 0.016% or less.

Al:0.01〜1.0%
Alは脱酸元素として添加され、介在物を微細化する効果を有する。また、Nと結合してAlNを形成し、歪時効の発生に寄与する固溶Nを低減させることで伸びや伸びフランジ性の劣化を防止する。0.01%未満では鋼中に固溶Nが残存するため、歪時効が起こり、伸びと伸びフランジ性を確保できず、一方、1.0%超では加熱時におけるオーステナイトの形成を阻害するため、硬質第2相の面積率を確保できず、伸びフランジ性を確保できなくなる。
Al: 0.01 to 1.0%
Al is added as a deoxidizing element and has the effect of making inclusions finer. Moreover, it combines with N to form AlN and reduces the solid solution N that contributes to the occurrence of strain aging, thereby preventing elongation and stretch flangeability from being deteriorated. If it is less than 0.01%, solute N remains in the steel, so strain aging occurs, and elongation and stretch flangeability cannot be ensured. On the other hand, if it exceeds 1.0%, austenite formation during heating is inhibited. The area ratio of the hard second phase cannot be secured, and the stretch flangeability cannot be secured.

N:0.01%以下(0%を含まない)
Nも不純物元素として不可避的に存在し、歪時効により伸びと伸びフランジ性を低下させるので、低い方が好ましく、0.01%以下とする。
N: 0.01% or less (excluding 0%)
N is also unavoidably present as an impurity element and lowers the elongation and stretch flangeability by strain aging, so the lower one is preferable, and the content is made 0.01% or less.

本願発明の鋼は上記成分を基本的に含有し、残部が実質的に鉄及び不純物であるが、その他、本願発明の作用を損なわない範囲で、以下の許容成分を添加することができる。   The steel of the present invention basically contains the above components and the balance is substantially iron and impurities, but the following allowable components can be added as long as the effects of the present invention are not impaired.

Cr:0.01〜1.0%
Crは、セメンタイトの成長を抑制することで、伸びフランジ性を改善できる有用な元素である。0.01%未満の添加では上記のような作用を有効に発揮しえず、一方、1.0%を超える添加では粗大なCrが形成されるようになり、伸びフランジ性が劣化してしまう。
Cr: 0.01 to 1.0%
Cr is a useful element that can improve stretch flangeability by suppressing the growth of cementite. If the addition is less than 0.01%, the above-described effects cannot be exhibited effectively. On the other hand, if the addition exceeds 1.0%, coarse Cr 7 C 3 is formed, and the stretch flangeability deteriorates. Resulting in.

Mo:0.01〜1.0%、
Cu:0.05〜1.0%、
Ni:0.05〜1.0%の1種または2種以上
これらの元素は、固溶強化により成形性を劣化させずに強度を改善するのに有用な元素である。各元素とも上記各下限値未満の添加では上記のような作用を有効に発揮しえず、一方、各元素とも1.0%を超える添加ではコストが高くなりすぎる。
Mo: 0.01 to 1.0%,
Cu: 0.05 to 1.0%,
Ni: One or more of 0.05 to 1.0% These elements are useful elements for improving strength without degrading formability by solid solution strengthening. If each element is added below the lower limit, the above-described effects cannot be exhibited effectively. On the other hand, if each element exceeds 1.0%, the cost becomes too high.

Ca:0.0001〜0.01%、
Mg:0.0001〜0.01%、
Li:0.0001〜0.01%、
REM:0.0001〜0.01%の1種または2種以上
これらの元素は、介在物を微細化し、破壊の起点を減少させることで、伸びフランジ性を向上させるのに有用な元素である。各元素とも0.0001%未満の添加では上記のような作用を有効に発揮しえず、一方、各元素とも0.01%を超える添加では逆に介在物が粗大化し、伸びフランジ性が低下する。
Ca: 0.0001 to 0.01%,
Mg: 0.0001 to 0.01%
Li: 0.0001 to 0.01%
REM: One or more of 0.0001 to 0.01% These elements are useful elements for improving stretch flangeability by making inclusions finer and reducing the starting point of fracture. . If less than 0.0001% of each element is added, the above effect cannot be exhibited effectively. On the other hand, if more than 0.01% of each element is added, inclusions are coarsened and stretch flangeability is deteriorated. To do.

なお、REMは、希土類元素、すなわち、周期律表の3A属元素を指す。   Note that REM refers to a rare earth element, that is, a group 3A element in the periodic table.

次に、上記発明鋼板を得るための好ましい製造方法を以下に説明する。   Next, the preferable manufacturing method for obtaining the said invention steel plate is demonstrated below.

〔発明鋼板の好ましい製造方法〕
上記のような冷延鋼板を製造するには、まず、上記成分組成を有する鋼を溶製し、造塊または連続鋳造によりスラブとしてから熱間圧延を行い、酸洗してから冷間圧延を行う。
[Preferred production method of invention steel plate]
In order to manufacture the cold-rolled steel sheet as described above, first, the steel having the above composition is melted, slab is formed by ingot casting or continuous casting, hot-rolled, and pickled and then cold-rolled. Do.

[熱間圧延条件]
熱間圧延条件としては、仕上げ圧延の終了温度をAr点以上に設定し、適宜冷却を行った後、600超750℃以下の範囲で巻き取るのがよい。
[Hot rolling conditions]
As the hot rolling conditions, it is preferable to set the finish rolling finishing temperature to Ar 3 or higher, appropriately cool, and then wind up in the range of more than 600 and 750 ° C. or less.

<巻取り温度:600超750℃以下>
巻取り温度を高めの600℃超(より好ましくは620℃以上、特に好ましくは640℃以上)にすることで、組織のサイズを全体的に大きく均一にすることができるとともに、フェライト+パーライト(α+P)の2相のみの組織とすることができる。ただし、巻取り温度を高くしすぎると、熱延板の組織サイズが大きくなりすぎるので、750℃以下(より好ましくは730℃以下、特に好ましくは710℃以下)とする。
<Winding temperature: more than 600 and 750 ° C. or less>
By making the coiling temperature higher than 600 ° C. (more preferably 620 ° C. or more, particularly preferably 640 ° C. or more), the size of the structure can be made large and uniform as a whole, and ferrite + pearlite (α + P ) Of two phases only. However, if the coiling temperature is too high, the structure size of the hot-rolled sheet becomes too large, so the temperature is set to 750 ° C. or lower (more preferably 730 ° C. or lower, particularly preferably 710 ° C. or lower).

[冷間圧延条件]
冷間圧延条件としては、冷間圧延率(以下、「冷延率」ともいう。)を50%超80%以下の範囲とするのがよい。
[Cold rolling conditions]
As the cold rolling conditions, it is preferable that the cold rolling rate (hereinafter also referred to as “cold rolling rate”) be in the range of more than 50% and 80% or less.

<冷延率:50%超80%以下>
冷延率を50%超(より好ましくは55%以上)とすることで、冷延時に強い加工を施すことで、表層部と内部に導入されるひずみ量をほぼ同等にすることができる。ただし、冷延率を高くしすぎると、冷延時の変形抵抗が高くなりすぎ、圧延速度が低下することによって生産性が極端に悪化するので、80%以下(より好ましくは75%以下)とする。
<Cold rolling ratio: Over 50% and below 80%>
By setting the cold rolling rate to be more than 50% (more preferably 55% or more), the strain amount introduced into the surface layer portion and the inside can be made substantially equal by performing strong processing during cold rolling. However, if the cold rolling rate is too high, the deformation resistance at the time of cold rolling becomes too high, and the productivity is extremely deteriorated due to the reduction in rolling speed, so 80% or less (more preferably 75% or less). .

そして、上記冷間圧延後、引き続き、焼鈍、さらには焼戻しを行う。   Then, after the cold rolling, annealing and further tempering are performed.

[焼鈍条件]
焼鈍条件としては、Ac1以上(Ac1+Ac3)/2未満の焼鈍温度にて、3600s以下の焼鈍保持時間だけ保持した後、焼鈍温度から、730℃以下500℃以上の第1冷却終了温度(徐冷終了温度)までを1℃/s以上50℃/s未満の第1冷却速度(徐冷速度)で徐冷した後、Ms点以下の第2冷却終了温度(急冷終了温度)までを50℃/s以上の第2冷却速度(急冷速度)で急冷するのがよい。
[Annealing conditions]
As annealing conditions, after holding for an annealing holding time of 3600 s or less at an annealing temperature of Ac1 or more and less than (Ac1 + Ac3) / 2, the first cooling end temperature (slow cooling end) is 730 ° C. or less and 500 ° C. or more from the annealing temperature. Temperature) at a first cooling rate (slow cooling rate) of 1 ° C./s or more and less than 50 ° C./s and then to a second cooling end temperature (quenching end temperature) below the Ms point at 50 ° C./s. It is preferable to perform rapid cooling at the second cooling rate (rapid cooling rate).

<Ac1以上(Ac1+Ac3)/2未満の焼鈍温度にて、3600s以下の焼鈍保持時間だけ保持>
2相域の低温側で均熱することで、サイズの揃った比較的大きめのフェライトと微細オーステナイトからなる組織を形成させるためである。
<Holding for an annealing holding time of 3600 s or less at an annealing temperature of Ac1 or more and less than (Ac1 + Ac3) / 2>
This is because soaking is performed on the low temperature side of the two-phase region to form a structure composed of relatively large ferrites and fine austenite having a uniform size.

焼鈍温度がAc1未満では、オーステナイトに変態せず、所定の2相組織が得られなくなり、一方、焼鈍温度が(Ac1+Ac3)/2以上になると、表層部のフェライトが成長しすぎて、表層部と内部のフェライト分率および硬さの差異が過大になり、特性のばらつきが増加する。 If the annealing temperature is less than Ac1, it will not be transformed into austenite and a predetermined two-phase structure will not be obtained. On the other hand, if the annealing temperature is (Ac1 + Ac3) / 2 or more , the ferrite in the surface layer will grow too much, The difference in internal ferrite fraction and hardness becomes excessive, and the variation in characteristics increases.

また、焼鈍保持時間が3600sを超えると、生産性が極端に悪化するので好ましくない。焼鈍保持時間のより好ましい下限は60sである。加熱時間を長時間化することでさらにフェライト中の歪を除去することができる。   Further, if the annealing holding time exceeds 3600 s, productivity is extremely deteriorated, which is not preferable. A more preferable lower limit of the annealing holding time is 60 s. By increasing the heating time, strain in the ferrite can be further removed.

<730℃以下500℃以上の第1冷却終了温度までを1℃/s以上50℃/s未満の第1冷却速度で徐冷>
肩落し冷却時に核生成するフェライトのサイズを上記2相域で生成したフェライトとほぼ同じサイズにするとともに、それらを合わせて面積率で20〜50%のフェライト組織を形成させることにより、伸びフランジ性を確保したまま伸びの改善が図れるためである。
<Slow cooling to a first cooling end temperature of 730 ° C. or lower and 500 ° C. or higher at a first cooling rate of 1 ° C./s or higher and lower than 50 ° C./s>
Stretch flangeability by reducing the size of ferrite that nucleates when cooling from the shoulder and making it approximately the same size as the ferrite formed in the above two-phase region, and forming a ferrite structure with an area ratio of 20 to 50% by combining them. This is because the elongation can be improved while securing the above.

500℃未満の温度または1℃/s未満の冷却速度ではフェライトが過剰に形成され、強度と伸びフランジ性が確保できなくなる。   If the temperature is less than 500 ° C. or the cooling rate is less than 1 ° C./s, ferrite is excessively formed, and the strength and stretch flangeability cannot be ensured.

<Ms点以下の第2冷却終了温度までを50℃/s以上の第2冷却速度で急冷>
冷却中にオーステナイトからフェライトが形成されることを抑制し、硬質第2相を得るためである。
<Rapid cooling to the second cooling end temperature below the Ms point at the second cooling rate of 50 ° C./s or higher>
This is to suppress the formation of ferrite from austenite during cooling and obtain a hard second phase.

Ms点より高い温度で急冷を終了させたり、冷却速度が50℃/s未満になると、ベイナイトが過剰に形成されるようになり、鋼板の強度が確保できなくなる。   When quenching is terminated at a temperature higher than the Ms point or when the cooling rate is less than 50 ° C./s, bainite is excessively formed, and the strength of the steel sheet cannot be secured.

[焼戻し条件]
焼戻し条件としては、上記焼鈍冷却後の温度から焼戻し温度:300〜500℃まで加熱し、300℃〜焼戻し温度の温度範囲内に焼戻し保持時間:60〜1200s滞在させた後、冷却すればよい。
[Tempering conditions]
As the tempering conditions, the temperature after the annealing cooling is heated from the tempering temperature: 300 to 500 ° C., the tempering holding time is kept in the temperature range of 300 ° C. to the tempering temperature: 60 to 1200 s, and then cooled.

上記焼鈍時にフェライト中に濃化させた固溶Cを焼戻しを経てもフェライト中にそのまま残存させてフェライトの硬さを上昇させる一方、上記焼鈍時にフェライト中への固溶Cの濃化の反作用としてC含有量が低下した硬質第2相から、さらに焼戻しでCをセメンタイトとして析出させたり、微細なセメンタイト粒子を粗大化させたりして硬質第2相の硬さを低下させるためである。   While the solid solution C concentrated in the ferrite at the time of annealing is left in the ferrite as it is after tempering, the hardness of the ferrite is increased, while the reaction of the concentration of the solid solution C in the ferrite at the time of annealing is as follows. This is because the hardness of the hard second phase is lowered by further precipitating C as cementite by tempering or coarsening fine cementite particles from the hard second phase having a reduced C content.

焼戻し温度が300℃未満、あるいは、焼戻し時間が60s未満では、表面と内部の加熱状態が不均一になり、表面と内部の硬さ差が大きくなることで特性ばらつきが大きくなる。一方、焼戻し温度が500℃超えると、硬質第2相が軟質化し過ぎて強度が確保できなくなる、もしくはセメンタイトが粗大化し過ぎて伸びフランジ性が劣化する。また、焼戻し時間が1200sを超えると、生産性が低下するため好ましくない。   When the tempering temperature is less than 300 ° C. or the tempering time is less than 60 s, the heating state between the surface and the inside becomes non-uniform, and the difference in hardness between the surface and the inside becomes large, resulting in a large variation in characteristics. On the other hand, if the tempering temperature exceeds 500 ° C., the hard second phase becomes too soft and the strength cannot be secured, or the cementite becomes too coarse and the stretch flangeability deteriorates. Moreover, since tempering time exceeds 1200 s, productivity will fall and it is unpreferable.

焼戻し温度のより好ましい範囲は320〜480℃であり、焼戻し保持時間のより好ましい範囲は120〜600sである。   A more preferable range of the tempering temperature is 320 to 480 ° C., and a more preferable range of the tempering holding time is 120 to 600 s.

下記表1および表2に示すように種々の成分の鋼を溶製し、厚さ120mmのインゴットを作成した。これを熱間圧延で厚さ25mmにした後、下記表3〜5に示す種々の製造条件で、再度の熱間圧延で厚さ3.2mmとし、これを酸洗した後、さらに厚さ1.6mmに冷間圧延し、その後熱処理を施した。   As shown in Table 1 and Table 2 below, steels of various components were melted to form an ingot having a thickness of 120 mm. After this was hot-rolled to a thickness of 25 mm, it was hot-rolled again to 3.2 mm under various production conditions shown in Tables 3 to 5 below. Cold rolled to 6 mm and then heat treated.

なお、表1中のAc1およびAc3は下記式1および式2を用いて求めた(幸田成康監訳,「レスリー鉄鋼材料学」,丸善株式会社,1985年,p.273参照)。   In addition, Ac1 and Ac3 in Table 1 were calculated | required using the following formula 1 and formula 2 (translated by Shigeyasu Koda, "Leslie Steel Materials Science", Maruzen Co., 1985, p. 273).

式1:Ac1(℃)=723+29.1[Si]−10.7[Mn]+16.9[Cr]−16.9[Ni]
式2:Ac3(℃)=910−203√[C]+44.7[Si]+31.5[Mo]−15.2[Ni]
ただし、[ ]は、各元素の含有量(質量%)を示す。
Formula 1: Ac1 (degreeC) = 723 + 29.1 [Si] -10.7 [Mn] +16.9 [Cr] -16.9 [Ni]
Formula 2: Ac3 (° C.) = 910−203√ [C] +44.7 [Si] +31.5 [Mo] −15.2 [Ni]
However, [] shows content (mass%) of each element.

熱処理後の各鋼板について、上記[発明を実施するための形態]の項で説明した測定方法により、鋼板厚み全体における各相の面積率、鋼板表層部および中心部におけるフェライトの面積率、ならびに、鋼板表層部および中心部における硬さを測定した。   For each steel plate after heat treatment, by the measurement method described in the above section [Mode for Carrying Out the Invention], the area ratio of each phase in the entire thickness of the steel sheet, the area ratio of ferrite in the steel sheet surface layer portion and the center portion, and The hardness in the steel plate surface layer part and the center part was measured.

また、上記熱処理後の各鋼板について、引張強度TS、伸びEL、および、伸びフランジ性λを測定することにより、各鋼板の特性を評価した。   Moreover, about each steel plate after the said heat processing, the tensile strength TS, elongation EL, and stretch flangeability (lambda) were measured, and the characteristic of each steel plate was evaluated.

具体的には、熱処理後の鋼板の特性は、TS≧980MPa、EL≧13%、λ≧40%の全てを満たすものを合格(○)とし、それ以外のものを不合格(×)とした。   Specifically, the properties of the steel plate after the heat treatment are those that satisfy all of TS ≧ 980 MPa, EL ≧ 13%, and λ ≧ 40%, which are acceptable (◯), and the others that are not acceptable (×). .

また、熱処理後の鋼板の特性の安定性は、同一鋼種の供試材に対して、製造条件を実機の製造条件の最大変動範囲内で変化させて熱処理を行い、TSの変化幅ΔTS≦200MPa、ELの変化幅ΔEL≦2%、λの変化幅Δλ≦20%の全てを満たすものを合格(○)とし、それ以外のものを不合格(×)とした。   In addition, the stability of the characteristics of the steel sheet after the heat treatment is such that the test condition of the same steel type is heat-treated by changing the production conditions within the maximum fluctuation range of the production conditions of the actual machine, and the TS change width ΔTS ≦ 200 MPa. Those satisfying all of the change width ΔEL ≦ 2% of EL and the change width Δλ ≦ 20% of λ were determined to be acceptable (◯), and the others were determined to be unacceptable (×).

なお、引張強度TSと伸びELは、圧延方向と直角方向に長軸をとってJIS Z 2201に記載の5号試験片を作成し、JIS Z 2241に従って測定を行った。   The tensile strength TS and elongation EL were measured in accordance with JIS Z 2241 by preparing No. 5 test piece described in JIS Z 2201 with the long axis in the direction perpendicular to the rolling direction.

また、伸びフランジ性λは、鉄連規格JFST1001に則り、穴拡げ試験を実施して穴拡げ率の測定を行い、これを伸びフランジ性とした。   Moreover, stretch flangeability (lambda) performed the hole expansion test according to the iron continuous standard JFST1001, and measured the hole expansion rate, and made this the stretch flangeability.

測定結果を表6〜9に示す。   The measurement results are shown in Tables 6-9.

これらの表より、鋼No.1〜2、6〜9、32〜35、37〜50、54〜60は、本願発明の要件を全て満たす発明鋼である。いずれの発明例も、機械的特性の絶対値に優れるのみならず、機械的特性のばらつきが抑制された均質な冷延鋼板が得られていることがわかる。   From these tables, steel no. 1-2, 6-9, 32-35, 37-50, 54-60 are invention steels that satisfy all the requirements of the present invention. It can be seen that any of the invention examples is not only excellent in the absolute value of the mechanical properties but also obtained a homogeneous cold-rolled steel sheet in which variations in the mechanical properties are suppressed.

また、鋼No.14、15、17、18、20、23、25、27、29、30、61〜80も、本願発明の要件を全て満たしている。これらの鋼板は、機械的特性の絶対値に優れることは確認済みであるが、機械的特性のばらつきの評価については未実施である。しかしながら、機械的特性のばらつきも上記発明鋼と同じく合格レベルにあることが類推される。   Steel No. 14, 15, 17, 18, 20, 23, 25, 27, 29, 30, 61-80 also satisfy all the requirements of the present invention. These steel sheets have been confirmed to be excellent in the absolute value of mechanical properties, but have not yet been evaluated for variations in mechanical properties. However, it can be inferred that the variation in mechanical properties is also at an acceptable level as in the case of the above invention steel.

これに対して、本願発明の要件のいずれかを満たさない比較鋼は、それぞれ以下のような不具合を有している。   In contrast, comparative steels that do not satisfy any of the requirements of the present invention have the following problems.

鋼No.3〜5は、巻取り温度が低すぎるため、巻取り後の熱延板組織にベイナイトが生成しやすい。また、冷延率も通常より高いため、焼鈍加熱時に表層部のベイナイトは分解しやすく、フェライト分率が変化しやすい。その結果、内部(中心部)とのフェライト分率と硬さの差異が大きくなり、特性は満足するものの、引張強度TSのばらつきが大きくなり合格基準に達していない。   Steel No. In Nos. 3 to 5, since the winding temperature is too low, bainite is easily generated in the hot-rolled sheet structure after winding. In addition, since the cold rolling rate is higher than usual, the bainite in the surface layer portion is easily decomposed during annealing and the ferrite fraction is likely to change. As a result, the difference in ferrite fraction and hardness from the inside (center portion) becomes large and the characteristics are satisfied, but the variation in tensile strength TS becomes large and the acceptance standard is not reached.

鋼No.10、11は、焼鈍温度が高すぎるため、脱炭に伴う表層部のフェライト分率が増加し、表層部と内部のフェライト分率の差異が大きくなり、特性は満足するものの、伸びELのばらつきが大きくなり合格基準に達していない。   Steel No. 10 and 11, since the annealing temperature is too high, the ferrite fraction of the surface layer portion accompanying decarburization increases, and the difference between the ferrite fraction of the surface layer portion and the inside becomes large and the characteristics are satisfied, but the variation in elongation EL Does not reach the acceptance criteria.

鋼No.12は、鋼No.3〜5とは逆に、巻取り温度が高すぎるため、表層部のフェライトが成長しすぎる。その結果、内部(中心部)とのフェライト分率と硬さの差異が大きくなり、特性は満足するものの、伸びELのばらつきが大きくなり合格基準に達していない。   Steel No. No. 12 is steel no. Contrary to 3-5, since the coiling temperature is too high, the ferrite of the surface layer part grows too much. As a result, the difference in ferrite fraction and hardness between the inside (center portion) and the hardness become large and the characteristics are satisfied, but the variation in the elongation EL becomes large and does not reach the acceptance standard.

鋼No.13は、冷延率が低すぎるため、表層部と内部のフェライト分率と硬さの差異が大きくなり、特性は満足するものの、伸びELのばらつきが大きくなり合格基準に達していない。   Steel No. Since the cold rolling rate of No. 13 is too low, the difference between the surface layer portion and the internal ferrite fraction and the hardness is large, and the characteristics are satisfied, but the variation in the elongation EL becomes large and does not reach the acceptance standard.

鋼No.16は、徐冷速度が低すぎるため、表層部、内部ともにフェライトが成長しすぎて、鋼板全体組織のフェライト分率が過大になり、引張強度TSが確保できない。   Steel No. In No. 16, since the slow cooling rate is too low, ferrite grows too much in the surface layer portion and inside, the ferrite fraction of the entire structure of the steel sheet becomes excessive, and the tensile strength TS cannot be secured.

鋼No.19は、徐冷終了温度が低すぎるため、フェライトが生成しすぎてフェライト分率が過剰になり、引張強度TSが確保できない。   Steel No. In No. 19, since the annealing end temperature is too low, ferrite is generated too much, the ferrite fraction becomes excessive, and the tensile strength TS cannot be secured.

一方、鋼No.21は、徐冷終了温度が高すぎるため、フェライトが十分に生成せず鋼板全体組織のフェライト分率が不足し、伸びELが確保できない。   On the other hand, Steel No. In No. 21, since the annealing end temperature is too high, ferrite is not sufficiently generated, the ferrite fraction of the entire steel sheet structure is insufficient, and the elongation EL cannot be secured.

鋼No.22は、急冷速度が低すぎるため、他の組織(主に残留オーステナイト)が生成してしまい、伸びフランジ性λが確保できない。   Steel No. In No. 22, since the rapid cooling rate is too low, other structures (mainly retained austenite) are generated, and the stretch flangeability λ cannot be secured.

鋼No.24は、急冷終了温度が高すぎるため、他の組織(主に残留オーステナイト)が生成してしまい、伸びフランジ性λが確保できない。   Steel No. In No. 24, since the quenching end temperature is too high, other structures (mainly retained austenite) are generated, and the stretch flangeability λ cannot be secured.

鋼No.26は、焼戻し温度が低すぎるため、硬質第2相の硬さが高くなり、鋼板全体組織が硬くなりすぎて、組織中の強度の不均一さが増加してしまい、伸びEL、伸びフランジ性λが確保できない。   Steel No. In No. 26, since the tempering temperature is too low, the hardness of the hard second phase becomes high, the entire structure of the steel sheet becomes too hard, the non-uniformity of strength in the structure increases, and the elongation EL and stretch flangeability λ cannot be secured.

一方、鋼No.28は、焼戻し温度が高すぎるため、特に表層部の硬質第2相が軟質化されすぎ、引張強度TSが確保できない。   On the other hand, Steel No. In No. 28, since the tempering temperature is too high, the hard second phase of the surface layer portion is particularly softened, and the tensile strength TS cannot be secured.

鋼No.31は、Si量が多すぎるため、フェライトが固溶強化されすぎて延性が損なわれ、伸びEL、伸びフランジ性λが確保できない。   Steel No. In No. 31, since the amount of Si is too large, the ferrite is strengthened by solid solution and ductility is impaired, and the elongation EL and the stretch flangeability λ cannot be ensured.

鋼No.36は、C量が多すぎるため、フェライト変態の抑制、焼入れ性の上昇などにより、フェライト分率が不足し、伸びEL、伸びフランジ性λが確保できない。   Steel No. Since the amount of C is too large, the ferrite fraction is insufficient due to suppression of ferrite transformation and increase in hardenability, and the elongation EL and stretch flangeability λ cannot be ensured.

鋼No.51は、Mn量が少なすぎるため、フェライトの固溶強化が不足し、引張強度TSが確保できない。   Steel No. No. 51 has too little Mn, so that the solid solution strengthening of ferrite is insufficient, and the tensile strength TS cannot be secured.

一方、鋼No.52は、Mn量が多すぎるため、フェライト変態の抑制、焼入れ性の上昇などにより、フェライト分率が不足し、伸びEL、伸びフランジ性λが確保できない。   On the other hand, Steel No. In No. 52, since the amount of Mn is too large, the ferrite fraction is insufficient due to suppression of ferrite transformation and increase in hardenability, and the elongation EL and stretch flangeability λ cannot be ensured.

鋼No.53は、鋼No.36とは逆に、C量が少なすぎるため、フェライト分率が過剰になり、引張強度TSが確保できない。   Steel No. 53 is a steel no. Contrary to 36, since the amount of C is too small, the ferrite fraction becomes excessive and the tensile strength TS cannot be secured.

ちなみに、発明鋼(鋼No.6)と比較鋼(鋼No.10)の、表層部と中心部における組織の異同を図1に例示する。同図は光学顕微鏡観察の結果であり、無地の白っぽい領域がフェライトあり、黒っぽい領域が硬質第2相である。同図から明らかなように、比較鋼では、表層部のフェライト分率は中心部のそれよりかなり高くなっているのに対し、発明鋼では、表層部のフェライト分率は中心部のそれとほぼ同程度であるのが認められる。   Incidentally, the difference in structure between the surface layer portion and the central portion of the inventive steel (steel No. 6) and the comparative steel (steel No. 10) is illustrated in FIG. The figure shows the result of observation with an optical microscope. The plain whitish area is ferrite and the dark area is the hard second phase. As is clear from the figure, in the comparative steel, the ferrite fraction in the surface layer is much higher than that in the center, whereas in the invention steel, the ferrite fraction in the surface layer is almost the same as that in the center. Is accepted.

Claims (5)

質量%で(以下、化学成分について同じ。)、
C:0.05〜0.30%、
Si:3.0%以下(0%を含まない)、
Mn:0.1〜5.0%、
P:0.1%以下(0%を含まない)、
S:0.02%以下(0%を含まない)、
Al:0.01〜1.0%、
N:0.01%以下(0%を含まない)
を各々含み、残部が鉄および不可避的不純物からなる成分組成を有し、
軟質第1相であるフェライトを面積率で20〜50%含み、
残部が硬質第2相である、焼戻しマルテンサイトおよび/または焼戻しベイナイトからなる組織を有し、
鋼板表面から100μm深さまでの鋼板表層部のフェライトの面積率Vαsと、t/4〜3t/4(tは板厚)の中心部のフェライトの面積率Vαcとの差ΔVα=Vαs−Vαcが10%未満であるとともに、前記鋼板表層部の硬さHvsと前記中心部の硬さHvcとの比RHv=Hvs/Hvcが0.75〜1.0である
ことを特徴とする機械的特性ばらつきの小さい高強度冷延鋼板。
% By mass (hereinafter the same for chemical components)
C: 0.05 to 0.30%
Si: 3.0% or less (excluding 0%),
Mn: 0.1 to 5.0%,
P: 0.1% or less (excluding 0%),
S: 0.02% or less (excluding 0%),
Al: 0.01 to 1.0%,
N: 0.01% or less (excluding 0%)
Each having a component composition consisting of iron and inevitable impurities,
Including ferrite, which is a soft first phase, in an area ratio of 20 to 50%,
The balance is a hard second phase, and has a structure composed of tempered martensite and / or tempered bainite,
The difference ΔVα = Vαs−Vαc between the ferrite area ratio Vαs in the surface layer portion of the steel sheet from the steel sheet surface to the depth of 100 μm and the ferrite area ratio Vαc in the central portion of t / 4 to 3t / 4 (t is the plate thickness) is 10 The ratio RHv = Hvs / Hvc between the hardness Hvs of the steel sheet surface layer part and the hardness Hvc of the central part is 0.75 to 1.0. Small high-strength cold-rolled steel sheet.
成分組成が、更に、
Cr:0.01〜1.0%
を含むものである請求項1に記載の機械的特性ばらつきの小さい高強度冷延鋼板。
Ingredient composition further
Cr: 0.01 to 1.0%
The high-strength cold-rolled steel sheet having a small variation in mechanical properties according to claim 1.
成分組成が、更に、
Mo:0.01〜1.0%、
Cu:0.05〜1.0%、
Ni:0.05〜1.0%の1種または2種以上
を含むものである請求項1または2に記載の機械的特性ばらつきの小さい高強度冷延鋼板。
Ingredient composition further
Mo: 0.01 to 1.0%,
Cu: 0.05 to 1.0%,
The high-strength cold-rolled steel sheet with a small variation in mechanical properties according to claim 1 or 2, wherein Ni: 0.05 to 1.0%, or one or more of them is included.
成分組成が、更に、
Ca:0.0001〜0.01%、
Mg:0.0001〜0.01%、
Li:0.0001〜0.01%、
REM:0.0001〜0.01%の1種または2種以上
を含むものである請求項1〜3のいずれか1項に記載の機械的特性ばらつきの小さい高強度冷延鋼板。
Ingredient composition further
Ca: 0.0001 to 0.01%,
Mg: 0.0001 to 0.01%
Li: 0.0001 to 0.01%
The high-strength cold-rolled steel sheet according to any one of claims 1 to 3, which contains one or more of REM: 0.0001 to 0.01%.
請求項1〜4のいずれか1項に示す成分組成を有する鋼材を、下記(1)〜(4)に示す各条件で、熱間圧延した後、冷間圧延し、その後、焼鈍し、さらに焼戻しすることを特徴とする機械的特性ばらつきの小さい高強度冷延鋼板の製造方法。
(1) 熱間圧延条件
仕上げ圧延終了温度:Ar点以上
巻取温度:600℃超750℃以下
(2) 冷間圧延条件
冷間圧延率:50%超80%以下
(3) 焼鈍条件
Ac1以上(Ac1+Ac3)/2未満の焼鈍温度にて、3600s以下の焼鈍保持時間だけ保持した後、焼鈍温度から、730℃以下500℃以上の第1冷却終了温度までを1℃/s以上50℃/s未満の第1冷却速度で徐冷した後、Ms点以下の第2冷却終了温度までを50℃/s以上の第2冷却速度で急冷する。
(4) 焼戻し条件
焼戻し温度:300〜500℃
焼戻し保持時間:300℃〜焼戻し温度の温度範囲内に60〜1200s
A steel material having the composition shown in any one of claims 1 to 4 is hot-rolled under the conditions shown in the following (1) to (4), then cold-rolled, and then annealed. A method for producing a high-strength cold-rolled steel sheet with small variations in mechanical properties, characterized by tempering.
(1) Hot rolling conditions Finish rolling finish temperature: Ar 3 points or more Winding temperature: Over 600 ° C and 750 ° C or less
(2) Cold rolling conditions Cold rolling rate: Over 50% and below 80%
(3) Annealing conditions After holding at an annealing temperature of Ac1 or more and less than (Ac1 + Ac3) / 2 for an annealing holding time of 3600 s or less, the temperature from the annealing temperature to the first cooling end temperature of 730 ° C. or less to 500 ° C. or more is 1 ° C. After slow cooling at a first cooling rate of not less than / s and less than 50 ° C./s, rapid cooling is performed at a second cooling rate of not less than 50 ° C./s to a second cooling end temperature below the Ms point.
(4) Tempering conditions Tempering temperature: 300-500 ° C
Tempering holding time: 60 to 1200 s in the temperature range of 300 ° C. to tempering temperature
JP2012124207A 2012-05-31 2012-05-31 High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same Expired - Fee Related JP5860345B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012124207A JP5860345B2 (en) 2012-05-31 2012-05-31 High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
EP13797030.7A EP2857539A4 (en) 2012-05-31 2013-05-29 High strength cold-rolled steel plate and manufacturing method therefor
PCT/JP2013/064920 WO2013180180A1 (en) 2012-05-31 2013-05-29 High strength cold-rolled steel plate and manufacturing method therefor
US14/400,453 US9708697B2 (en) 2012-05-31 2013-05-29 High strength cold-rolled steel sheet and manufacturing method therefor
EP17000056.6A EP3187614A1 (en) 2012-05-31 2013-05-29 High strength cold-rolled steel sheet and manufacturing method therefor
CN201380027742.7A CN104364403A (en) 2012-05-31 2013-05-29 High strength cold-rolled steel plate and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012124207A JP5860345B2 (en) 2012-05-31 2012-05-31 High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013249501A true JP2013249501A (en) 2013-12-12
JP5860345B2 JP5860345B2 (en) 2016-02-16

Family

ID=49848490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012124207A Expired - Fee Related JP5860345B2 (en) 2012-05-31 2012-05-31 High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same

Country Status (1)

Country Link
JP (1) JP5860345B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161023A (en) * 2014-02-28 2015-09-07 新日鐵住金株式会社 Cold rolled steel sheet
KR101828699B1 (en) * 2016-09-12 2018-02-12 현대제철 주식회사 Cold-rolled steel sheet for car component and manufacturing method for the same
CN116920180A (en) * 2023-09-14 2023-10-24 乐普(北京)医疗器械股份有限公司 Degradable metal material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321727A (en) * 2002-05-01 2003-11-14 Kobe Steel Ltd Low yield ratio high-tensile steel plate of excellent bendability and method for manufacturing the same
JP2005273002A (en) * 2004-02-27 2005-10-06 Jfe Steel Kk Superhigh strength cold-rolled steel sheet having superior bendability and formability for extension flange and manufacturing method therefor
JP2011042879A (en) * 2010-10-26 2011-03-03 Jfe Steel Corp ULTRAHIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING HIGH DUCTILITY, EXCELLENT CHEMICAL CONVERSION TREATABILITY AND TENSILE STRENGTH OF 780 MPa OR MORE
JP2011140695A (en) * 2010-01-07 2011-07-21 Kobe Steel Ltd High-strength cold rolled steel sheet having excellent elongation and stretch-flanging property

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321727A (en) * 2002-05-01 2003-11-14 Kobe Steel Ltd Low yield ratio high-tensile steel plate of excellent bendability and method for manufacturing the same
JP2005273002A (en) * 2004-02-27 2005-10-06 Jfe Steel Kk Superhigh strength cold-rolled steel sheet having superior bendability and formability for extension flange and manufacturing method therefor
JP2011140695A (en) * 2010-01-07 2011-07-21 Kobe Steel Ltd High-strength cold rolled steel sheet having excellent elongation and stretch-flanging property
JP2011042879A (en) * 2010-10-26 2011-03-03 Jfe Steel Corp ULTRAHIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING HIGH DUCTILITY, EXCELLENT CHEMICAL CONVERSION TREATABILITY AND TENSILE STRENGTH OF 780 MPa OR MORE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161023A (en) * 2014-02-28 2015-09-07 新日鐵住金株式会社 Cold rolled steel sheet
KR101828699B1 (en) * 2016-09-12 2018-02-12 현대제철 주식회사 Cold-rolled steel sheet for car component and manufacturing method for the same
CN116920180A (en) * 2023-09-14 2023-10-24 乐普(北京)医疗器械股份有限公司 Degradable metal material and preparation method and application thereof
CN116920180B (en) * 2023-09-14 2023-12-15 乐普(北京)医疗器械股份有限公司 Degradable metal material and preparation method and application thereof

Also Published As

Publication number Publication date
JP5860345B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP6252713B1 (en) High strength steel plate and manufacturing method thereof
US10435762B2 (en) High-yield-ratio high-strength cold-rolled steel sheet and method of producing the same
US10077486B2 (en) High-strength cold-rolled steel sheet and method of manufacturing the same
KR101912512B1 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
JP5896085B1 (en) High-strength cold-rolled steel sheet with excellent material uniformity and manufacturing method thereof
US10144996B2 (en) High strength cold rolled steel sheet with low yield ratio and method of manufacturing the same
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
WO2013180180A1 (en) High strength cold-rolled steel plate and manufacturing method therefor
JP2015224359A (en) Method of producing high strength steel sheet
JP5860343B2 (en) High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same
KR20130121940A (en) High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same
WO2013089095A1 (en) High-strength cold-rolled steel sheet having small variations in strength and ductility, and method for producing same
WO2013160928A1 (en) High-strength steel sheet and method for manufacturing same
JP5878829B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
KR20100076073A (en) Steel sheets and process for manufacturing the same
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JP5860345B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
JP5639573B2 (en) High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same
JP5678695B2 (en) High strength steel plate and manufacturing method thereof
JP3945373B2 (en) Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics
JP5246283B2 (en) Low yield ratio high strength cold-rolled steel sheet excellent in elongation and stretch flangeability and manufacturing method thereof
JP5639572B2 (en) High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same
JP2004307992A (en) Dual-phase cold-rolled steel sheet superior in surface distortion resistance and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151218

R150 Certificate of patent or registration of utility model

Ref document number: 5860345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees