JP2004307992A - Dual-phase cold-rolled steel sheet superior in surface distortion resistance and its manufacturing method - Google Patents

Dual-phase cold-rolled steel sheet superior in surface distortion resistance and its manufacturing method Download PDF

Info

Publication number
JP2004307992A
JP2004307992A JP2003375692A JP2003375692A JP2004307992A JP 2004307992 A JP2004307992 A JP 2004307992A JP 2003375692 A JP2003375692 A JP 2003375692A JP 2003375692 A JP2003375692 A JP 2003375692A JP 2004307992 A JP2004307992 A JP 2004307992A
Authority
JP
Japan
Prior art keywords
less
steel sheet
phase
cold
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003375692A
Other languages
Japanese (ja)
Other versions
JP4517629B2 (en
Inventor
Takayuki Futatsuka
貴之 二塚
Katsumi Nakajima
勝己 中島
Toru Inazumi
透 稲積
Saiji Matsuoka
才二 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003375692A priority Critical patent/JP4517629B2/en
Publication of JP2004307992A publication Critical patent/JP2004307992A/en
Application granted granted Critical
Publication of JP4517629B2 publication Critical patent/JP4517629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dual-phase cold-rolled steel sheet which is superior in surface distortion resistance, has a tensile strength of 340-590 MPa and a high formability, and is applicable to automotive inner and outer plates and to provide its manufacturing method. <P>SOLUTION: The microstructure of the dual-phase cold-rolled steel sheet is a dual-phase structure consisting of a ferrite phase and a second phase containing at least 60% martensite phase. The average size (d) of the martensite phase particles is 1.5 μm or smaller. The ratio (a/b) of the number (a) of the martensite phase particles to the number (b) of the ferrite phase particles in a unit volume is 0.7 to 2.4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車、家電等の分野に適したプレス成形後の外観が良好な優れた耐面歪性を有する複合組織冷延鋼板およびその製造方法に関する。   TECHNICAL FIELD The present invention relates to a cold rolled steel sheet having a composite structure, which has a good appearance after press forming and has excellent surface distortion resistance, which is suitable for fields such as automobiles and home appliances.

近年、自動車用鋼板に対しては、車体軽量化による燃費向上を目的とした鋼板の薄肉化および安全性向上のための高強度化が進められている。一般に鋼板の高強度化は成形性の劣化を招くため、優れた成形性が必要とされる。特に、外板部品などはプレス後の良好な外観も求められるようになってきている。成形品の外観で問題となるのは、うねりなどの面形状、すなわち面歪や、鋼板表面のストレッチャーストレイン、そしてめっき密着性や化成処理性などである。面歪の観点からは、従来より低歪み域での歪み伝播を促進する、つまり降伏強度を低く抑えることが有効であることが広く知られているが、高強度化に伴い降伏強度も上昇するという大きな問題点がある。   2. Description of the Related Art In recent years, steel sheets for automobiles have been made thinner for the purpose of improving fuel efficiency by reducing the weight of the vehicle body and have been strengthened for the purpose of improving safety. In general, since high strength of a steel sheet causes deterioration of formability, excellent formability is required. In particular, external parts have been required to have a good appearance after pressing. What matters in the appearance of the molded article is the surface shape such as undulation, that is, the surface distortion, the stretcher strain on the steel sheet surface, the plating adhesion and the chemical conversion treatment. From the viewpoint of surface strain, it is widely known that it is effective to promote strain propagation in a low strain region, that is, to suppress the yield strength to a low level, but the yield strength increases with the increase in strength. There is a big problem.

このような課題に対し、極低炭素鋼を対象に、降伏強度を低減させて耐面歪性を改善し、プレス成形性をr値や伸びを高めて改善する技術が、特許文献1、特許文献2等で提案されている。   In order to solve such problems, for ultra-low carbon steel, techniques for improving the surface strain resistance by reducing the yield strength and improving the press formability by increasing the r-value and elongation are disclosed in Patent Documents 1 and 2. It is proposed in Document 2 and the like.

また、特許文献3、特許文献4には、低炭素化し、さらにMn、CrあるいはMoやBの含有量を適正に制御し焼入れ性を確保することで、従来の複合組織鋼板より低強度を有す鋼板を得る技術が提案されている。これら技術で得られる鋼板はマルテンサイトを含む複合組織鋼板のため、高強度でありながら降伏比が低く、耐面歪性に優れる。また変態強化を活用するため、固溶強化能に依存せずに高強度化が達成できるため、めっき密着性や化成処理性に悪影響を及ぼすSi、P含有量を低くすることが可能である。   Patent Literature 3 and Patent Literature 4 have low strength compared to the conventional multi-structure steel sheet by reducing the carbon and properly controlling the content of Mn, Cr or Mo or B to secure the hardenability. Techniques for obtaining steel sheets have been proposed. Since the steel sheet obtained by these techniques is a composite structure steel sheet containing martensite, it has a high yield strength, a low yield ratio, and excellent surface distortion resistance, even though it has high strength. Further, since the transformation strengthening is utilized, high strength can be achieved without depending on the solid solution strengthening ability, so that the contents of Si and P, which adversely affect plating adhesion and chemical conversion treatment, can be reduced.

しかしながら、従来技術では極低炭素鋼をベースとするため、強化機構としては固溶強化に依存するため、表面性状の観点から、自ずとP、Siといった固溶強化元素の量が制限されてしまい、実質的な強度レベルとして、390MPa以上の鋼板を安定製造することは困難である。また、極低炭素鋼板をベースにTiを添加し、焼付硬化性を付与させているため、耐時効性に課題が残る。   However, since the conventional technology is based on ultra-low carbon steel, since the strengthening mechanism depends on solid solution strengthening, from the viewpoint of surface properties, the amount of solid solution strengthening elements such as P and Si is naturally limited, It is difficult to stably produce a steel plate having a substantial strength level of 390 MPa or more. In addition, since Ti is added to the base of an ultra-low carbon steel sheet to impart bake hardenability, there remains a problem in aging resistance.

特許文献3に記載の技術は、高い焼付硬化性を得るために窒素を多量に含有させるため、固溶N量の増大により延性が劣化するとともに、時効が起こりやすく、降伏点上昇に起因した座屈現象が大きな問題となる。   In the technique described in Patent Document 3, since a large amount of nitrogen is contained in order to obtain high bake hardenability, ductility is degraded due to an increase in the amount of solute N, and aging is apt to occur. Cracking is a major problem.

特許文献4に記載の技術は、マルテンサイト相粒子の単位体積中の個数を増加させることで、張出し成形性を向上させる技術であるが、多量のマルテンサイト相粒子は変形時に発生するボイドの起点を増加させ、成形性を低下させてしまう。また熱間圧延後の巻取り温度を550℃以下にし、微細な炭化物を形成させることで、焼鈍後の組織を微細にし、マルテンサイト粒子間距離を短くさせているが、フェライトの細粒化は降伏強度の上昇を招くため、耐面歪性が劣化するという問題がある。   The technology described in Patent Document 4 is a technology for improving overhang formability by increasing the number of martensite phase particles in a unit volume, but a large amount of martensite phase particles is a starting point of voids generated during deformation. And the moldability is reduced. In addition, the winding temperature after hot rolling is set to 550 ° C. or less to form fine carbides, thereby making the structure after annealing fine and shortening the distance between martensite grains. Since the yield strength is increased, there is a problem that surface distortion resistance is deteriorated.

特開平7−62209号公報JP-A-7-62209 特開平5−78784号公報JP-A-5-78784 特開2001−323337号公報JP 2001-323337 A 特開2002−322537号公報JP-A-2002-322537

本発明は上記問題に鑑みてなされたものであって、340MPa以上590MPa以下の引張強度で、自動車内外板用途へ適用可能な高成形性を有した耐面歪性に優れた複合組織冷延鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and has a tensile strength of 340 MPa or more and 590 MPa or less, a composite structure cold-rolled steel sheet having excellent formability and excellent surface distortion resistance applicable to automotive inner and outer panels. And a method for producing the same.

上記課題を解決するため、本発明は、ミクロ組織がフェライト相およびマルテンサイト相の割合が60%以上の第2相からなる複合組織であり、かつマルテンサイト相粒子の平均粒径dが1.5μm以下で、さらに単位体積中のマルテンサイト相粒子の個数aとフェライト粒の個数bとの比a/bが0.7〜2.4であることを特徴とする耐面歪性に優れた複合組織冷延鋼板を提供する。   In order to solve the above problems, the present invention provides a composite structure in which the microstructure is composed of a ferrite phase and a second phase having a martensite phase ratio of 60% or more, and the average particle size d of the martensite phase particles is 1. 5 μm or less, and the ratio a / b of the number a of the martensite phase particles to the number b of the ferrite particles per unit volume is 0.7 to 2.4, and is excellent in surface distortion resistance. Provide a composite structure cold rolled steel sheet.

本発明は、上記複合組織冷延鋼板において、化学成分としてmass%で、C:0.005〜0.05%、Si:1.5%以下、Mn:3.0%以下、P:0.10%以下、S:0.03%以下、Al:0.01〜0.1%、N:0.008%未満で、残部が実質的にFeからなるものとすることができる。   The present invention provides the above-mentioned cold rolled composite structure steel sheet, in which, by mass%, C: 0.005 to 0.05%, Si: 1.5% or less, Mn: 3.0% or less, P: 0. 10% or less, S: 0.03% or less, Al: 0.01 to 0.1%, N: less than 0.008%, and the balance can be substantially composed of Fe.

本発明は、上記複合組織冷延鋼板において、化学成分としてさらに、mass%で、Cr:1.0%以下、Mo:1.0%以下、V:1.0%以下、B:0.01%以下、Ti:0.1%以下、Nb:0.1%以下のうち1種以上を含有することもできる。   The present invention provides the above-mentioned cold rolled steel sheet with a composite structure, in which, as a chemical component, Cr: 1.0% or less; Mo: 1.0% or less; V: 1.0% or less; % Or less, Ti: 0.1% or less, and Nb: 0.1% or less.

また、本発明は、上記いずれかの化学成分を有する鋼を溶製し、次いで熱間圧延後、冷間圧延を行い、得られた鋼板をAc点以上Ac点以下の温度範囲にて焼鈍し、1次冷却として3℃/秒超10℃/秒未満の冷却速度でかつ1次冷却停止温度を450〜700℃の温度範囲に冷却した後、連続して10℃/秒以上の冷却速度でかつ冷却停止温度を450℃未満に2次冷却した後、100〜400℃の温度範囲にて過時効処理を開始し、当該過時効処理の処理時間が150秒以上であり、かつ過時効処理終了温度が350℃未満であることを特徴とする耐面歪性に優れた複合組織冷延鋼板の製造方法を提供する。 In addition, the present invention melts steel having any one of the above chemical components, then performs hot rolling, and then performs cold rolling, and obtains the obtained steel sheet in a temperature range of 1 point or more and 3 points or less of Ac. After annealing and cooling as primary cooling at a cooling rate of more than 3 ° C./sec and less than 10 ° C./sec and a primary cooling stop temperature in a temperature range of 450 to 700 ° C., continuously cooling at 10 ° C./sec or more After the secondary cooling at a speed and a cooling stop temperature of less than 450 ° C., the overaging process is started in a temperature range of 100 to 400 ° C., and the processing time of the overaging process is 150 seconds or more, and the overaging process is performed. Provided is a method for producing a cold rolled steel sheet having a composite structure excellent in surface distortion resistance, characterized in that the treatment end temperature is less than 350 ° C.

このような構成を有する本発明は、従来技術では極めて困難であった高加工性かつ耐面歪性に優れた340〜590MPaの強度を有する鋼板を得るために、フェライト+マルテンサイト相という複合組織に着目して鋭意検討した結果なされたものである。すなわち、強化機構として、変態強化を活用し、マルテンサイト相分率をできるだけ低減させることで、IF鋼ベースでは困難であった340〜590MPaの強度範囲を有しながら優れた耐面歪性と耐時効性とを両立させ、さらに微細なマルテンサイト相粒子を一定個数フェライト地に均一分散させることで、低YR化および成形性向上が達成され、プレス成形後の面形状に優れた複合組織冷延鋼板が得られることを見出し、本発明を完成するに至った。   In order to obtain a steel sheet having a strength of 340 to 590 MPa having high workability and excellent surface distortion resistance, the present invention having such a configuration is extremely difficult in the prior art. It was made as a result of an intensive study focusing on. In other words, by utilizing transformation strengthening as a strengthening mechanism and reducing the martensite phase fraction as much as possible, it is possible to obtain excellent surface distortion resistance and resistance while having a strength range of 340 to 590 MPa, which was difficult with IF steel base. Along with the aging property, by further uniformly dispersing fine martensite phase particles in a certain number of ferrite grounds, a low YR and an improvement in formability are achieved, and a cold rolled composite structure having excellent surface shape after press forming. They found that a steel sheet could be obtained, and completed the present invention.

本発明によれば、マルテンサイト相の組織形態を適正に制御することにより、自動車内外板等における複合成形において優れた耐面歪性と成形性が得られ、産業上、極めて有意義である。   According to the present invention, by appropriately controlling the structure of the martensite phase, excellent surface distortion resistance and moldability can be obtained in composite molding of automobile inner and outer panels and the like, which is industrially extremely significant.

以下、本発明について詳細に説明する。
本発明に係る複合組織冷延鋼板は、ミクロ組織がフェライト相およびマルテンサイト相の割合が60%以上の第2相からなる複合組織であり、かつマルテンサイト相粒子の平均粒径dが1.5μm以下で、さらに単位体積中のマルテンサイト相粒子の個数aとフェライト粒の個数bとの比a/bが0.7〜2.4である。
Hereinafter, the present invention will be described in detail.
The microstructure cold-rolled steel sheet according to the present invention has a microstructure in which the ratio of a ferrite phase and a martensite phase is 60% or more of a second phase, and the average particle size d of the martensite phase particles is 1. The ratio a / b of the number a of the martensitic phase particles per unit volume to the number b of the ferrite particles in a unit volume of 5 μm or less is 0.7 to 2.4.

(a)第2相中に占めるマルテンサイト相の割合:60%以上
マルテンサイト相は、変態時に多数の可動転位が導入されるため、歪分散能が高くなる。よって本発明においては、一定量のマルテンサイト相が必須であり、第2相中のマルテンサイト相の割合を60%以上とする。好ましくは80%以上である。マルテンサイト相以外としては、残留γ相、ベイナイト相、炭化物が含まれてもよい。なお、一定量のマルテンサイト相が必須ということは、第2相分率が0%は本発明に含まれないことは言うまでもなく、高い歪分散能を安定して得るためには第2相分率は1%以上が望ましい。第2相分率は10%以下が望ましく、8%以下がさらに望ましい。
(A) Proportion of martensite phase in second phase: 60% or more In the martensite phase, a large number of mobile dislocations are introduced at the time of transformation, so that the strain dispersing ability becomes high. Therefore, in the present invention, a certain amount of the martensite phase is essential, and the ratio of the martensite phase in the second phase is set to 60% or more. Preferably it is 80% or more. Other than the martensite phase, a residual γ phase, a bainite phase, and a carbide may be contained. The fact that a certain amount of martensite phase is essential means that the second phase fraction of 0% is not included in the present invention, and in order to stably obtain a high strain dispersibility, the second phase fraction is required. The rate is preferably 1% or more. The second phase fraction is preferably at most 10%, more preferably at most 8%.

(b)マルテンサイト相粒子の平均粒径d:1.5μm以下
成形性の観点からは、マルテンサイト相粒子を微細にすることが有効である。従って、マルテンサイト相粒子の平均粒径dを1.5μm以下に規定する。好ましくは1.2μm以下である。
(B) Average particle size d of martensite phase particles: 1.5 μm or less From the viewpoint of moldability, it is effective to make the martensite phase particles fine. Therefore, the average particle size d of the martensite phase particles is specified to be 1.5 μm or less. Preferably it is 1.2 μm or less.

(c)単位体積中のマルテンサイト相粒子の個数aとフェライト粒の個数bの比a/b:0.7〜2.4
a/bを大きくすることは、変形に対する核が増加するため、低降伏比となる。よって降伏強度を低くするにはマルテンサイト相粒子が一定個数必要であり、a/bは少なくとも0.7以上とする。図1(a)および(b)に、本発明鋼およびa/bが本発明の範囲外である比較鋼の組織写真を示す。a/bが2.4を超える場合は、マルテンサイト相が連なりかつ密集するため、マルテンサイト相が微細分散したとは言い難く、本発明が目標とする高成形性が得られない。従って、a/bを2.4以下に、成形性の観点から好ましくは2.0以下、さらに好ましくは1.8以下とする。なお、マルテンサイト相が変形に対する核として十分に作用するためには、マルテンサイト相が粒界に存在するほうが好ましい。
(C) Ratio a / b of the number a of the martensite phase particles to the number b of the ferrite particles in a unit volume a / b: 0.7 to 2.4.
Increasing a / b results in a low yield ratio because the nucleus for deformation increases. Therefore, a certain number of martensite phase particles is required to lower the yield strength, and a / b is at least 0.7 or more. 1 (a) and 1 (b) show microstructure photographs of the steel of the present invention and a comparative steel in which a / b is out of the range of the present invention. When a / b exceeds 2.4, the martensite phase is continuous and dense, so it is difficult to say that the martensite phase is finely dispersed, and the high moldability targeted by the present invention cannot be obtained. Therefore, a / b is set to 2.4 or less, preferably 2.0 or less, more preferably 1.8 or less from the viewpoint of moldability. In order for the martensite phase to sufficiently act as a nucleus for deformation, it is preferable that the martensite phase exists at the grain boundary.

なお、本発明鋼の組織形態は、微細なマルテンサイト相粒子が粒界に一定個数存在することが重要であるが、マルテンサイト相が密集している場合は、成形性に悪影響を及ぼすため、マルテンサイト相粒子間距離が一定間隔以上あるほうが好ましく、マルテンサイト相の平均粒子間距離が2.7μm超が望ましい。   Incidentally, the structure of the steel of the present invention, it is important that a certain number of fine martensitic phase particles are present at the grain boundaries, but when the martensitic phase is dense, it adversely affects the formability, It is preferable that the distance between the martensitic phase particles is equal to or greater than a certain distance, and the average distance between the martensitic phase particles is more than 2.7 μm.

本発明においては、以上の組織さえ形成されれば、所期の特性が得られるが、このような組織を得るためには、化学成分が、mass%で、C:0.005〜0.05%、Si:1.5%以下、Mn:3.0%以下、P:0.10%以下、S:0.03%以下、Al:0.01〜0.1%、N:0.008%未満で、残部が実質的にFeからなるものであることが好ましい。また、さらに他の所望の特性を得るために、上記成分に加え、mass%で、Cr:1.0%以下、Mo:1.0%以下、V:1.0%以下、B:0.01%以下、Ti:0.1%以下、Nb:0.1%以下のうち1種以上を含有してもよい。
以下、これらの限定理由について説明する。
In the present invention, the desired characteristics can be obtained as long as the above-mentioned structure is formed. However, in order to obtain such a structure, the chemical components are expressed as mass% and C: 0.005 to 0.05. %, Si: 1.5% or less, Mn: 3.0% or less, P: 0.10% or less, S: 0.03% or less, Al: 0.01 to 0.1%, N: 0.008 %, The balance being substantially composed of Fe. Further, in order to obtain still other desired characteristics, in addition to the above components, in mass%, Cr: 1.0% or less, Mo: 1.0% or less, V: 1.0% or less, B: 0. It may contain one or more of 01% or less, Ti: 0.1% or less, and Nb: 0.1% or less.
Hereinafter, the reasons for these limitations will be described.

C:0.005〜0.05%
Cは本発明において極めて重要な元素の1つであり、マルテンサイト相を生成させ、高強度化を図る上で非常に有効である。しかし、C量が0.05%を超えると、加工性の著しい低下を招き、さらに溶接性も劣化させる。従って、C量を0.05%以下とする。好ましくは、0.04%以下である。一方、一定体積率のマルテンサイト相を形成させるためには、Cを一定量含有させる必要があるため、少なくとも0.005%以上、好ましくは、0.010%超とする。
C: 0.005 to 0.05%
C is one of the extremely important elements in the present invention, and is very effective in forming a martensite phase and increasing the strength. However, when the C content exceeds 0.05%, the workability is significantly reduced, and the weldability is further deteriorated. Therefore, the C content is set to 0.05% or less. Preferably, it is at most 0.04%. On the other hand, in order to form a martensite phase having a constant volume ratio, it is necessary to contain a constant amount of C, so that the content is at least 0.005% or more, preferably more than 0.010%.

Si:1.5%以下
Siは複合組織を安定して得るために有効な元素である。しかし、Si量が1.5%を超えると表面性状および化成処理性が著しく低下する。従って、Si量を1.5%以下とする。好ましくは1.0%以下である。
Si: 1.5% or less Si is an effective element for stably obtaining a composite structure. However, if the Si content exceeds 1.5%, the surface properties and the chemical conversion treatment properties are significantly reduced. Therefore, the amount of Si is set to 1.5% or less. Preferably it is 1.0% or less.

Mn:3.0%以下
Mnはマルテンサイト相の生成に非常に重要な元素であり、焼入性を向上させることや、鋼中のSをMnSとしてとして固定することにより、Sの粒界脆化作用に起因して発生する熱間圧延時のスラブ割れを防止する作用を有しているため、一定量、好ましくは1.0%以上、添加する必要がある。しかし、3.0%を超えてMnを添加すると、スラブコストの著しい上昇とともに、加工性の劣化を招く。従って、Mn量を3.0%以下とする。好ましくは2.5%以下である。
Mn: 3.0% or less Mn is a very important element for the formation of a martensitic phase, and by improving hardenability and fixing S in steel as MnS, the grain boundary of S is reduced. Since it has an effect of preventing slab cracking during hot rolling caused by oxidizing action, it is necessary to add a certain amount, preferably 1.0% or more. However, when Mn is added in excess of 3.0%, the slab cost is significantly increased and workability is deteriorated. Therefore, the Mn content is set to 3.0% or less. Preferably it is 2.5% or less.

P:0.10%以下
Pは高強度化およびマルテンサイト相を安定させるために有効な元素である。しかし、P量が0.10%を超えると、亜鉛めっき層の合金化速度を低下させ、めっき不良や不めっきの原因となるとともに、鋼板の粒界に偏析して耐二次加工脆性を劣化させる。従って、P量を0.10%以下とする。
P: 0.10% or less P is an element effective for increasing the strength and stabilizing the martensite phase. However, if the P content exceeds 0.10%, the alloying speed of the galvanized layer is reduced, which causes poor plating and non-plating, and segregates at the grain boundaries of the steel sheet to deteriorate the secondary work brittleness resistance. Let it. Therefore, the P content is set to 0.10% or less.

S:0.03%以下
Sは、熱間圧延時に粒界に偏析し、スラブ割れを発生させるため、表面疵の発生割合が高くなる。そのため、Mnを添加することで、SをMnSとして固定するが、過剰のMnSは加工時におけるボイドの起点となるために、加工性の低下を招く。従って、Sの含有量は、少ない方が望ましく、S量が0.03%を超えると、加工性が著しく劣化するため、S量を0.03%以下とする。
S: 0.03% or less S segregates at the grain boundaries during hot rolling and generates slab cracks, so that the rate of occurrence of surface flaws increases. Therefore, by adding Mn, S is fixed as MnS. However, excess MnS becomes a starting point of a void at the time of working, which causes a decrease in workability. Therefore, the content of S is desirably small, and if the S content exceeds 0.03%, the workability is significantly deteriorated. Therefore, the S content is set to 0.03% or less.

Al:0.01〜0.1%
Alは脱酸元素として鋼中の介在物を減少させる作用を有している。しかし、Al量が0.01%未満では上述した作用が安定して得られない。一方、Al量が0.1%を超えると、クラスター状のアルミナ系介在物が増加し、加工性を劣化させる。従って、Al量は0.01〜0.1%の範囲内とする。
Al: 0.01 to 0.1%
Al has a function of reducing inclusions in steel as a deoxidizing element. However, if the Al content is less than 0.01%, the above-mentioned effects cannot be obtained stably. On the other hand, when the amount of Al exceeds 0.1%, the amount of cluster-like alumina-based inclusions increases, thereby deteriorating the workability. Therefore, the Al content is in the range of 0.01 to 0.1%.

N:0.008%未満
Nは、加工性および時効性の観点から、少ない方がよい。N量が0.008%以上になると、過剰な窒化物の生成により、延性および靭性が劣化する。従って、N量を0.008%未満とする。
N: less than 0.008% N is preferably small from the viewpoint of workability and aging. When the N content is 0.008% or more, ductility and toughness are deteriorated due to excessive nitride formation. Therefore, the N content is set to less than 0.008%.

Cr,Mo,V:添加する場合、それぞれ1.0%以下
Cr,Mo,Vは焼入性向上元素であり、マルテンサイト相を安定して生成させるために添加する。但し、1.0%を超えて過剰に添加しても、その効果は飽和するばかりか、コスト面でも不利となる。従って、Cr,Mo,Vを添加する場合は、それぞれ1.0%以下とする。
Cr, Mo, V: 1.0% or less when added Cr, Mo, V are elements for improving hardenability, and are added to stably generate a martensite phase. However, even if it is added in excess of 1.0%, the effect is not only saturated, but also disadvantageous in cost. Therefore, when Cr, Mo, and V are added, the content of each is set to 1.0% or less.

B:添加する場合、0.01%以下
Bは、焼入性向上に有効な元素であり、マルテンサイト相を安定して得るために添加する。但し、0.01%を超えて過剰に添加しても、コストに見合う効果が得られない。従って、Bを添加する場合は0.01%以下とする。
B: When added, 0.01% or less B is an element effective for improving hardenability, and is added to stably obtain a martensite phase. However, even if it is added in excess of 0.01%, an effect commensurate with cost cannot be obtained. Therefore, when B is added, the content is 0.01% or less.

Ti,Nb:添加する場合、それぞれ0.1%以下
Ti,Nbは、炭窒化物を形成して固溶C,N量を低下させ、深絞り性を向上させるために有効な元素である。但し、いずれも0.1%を超えて過剰に添加しても、その効果は飽和し、焼鈍時の再結晶温度が高くなるため、製造性が低下する。従って、Ti,Nbを添加する場合は、それぞれ0.1%以下とする。
Ti, Nb: When added, 0.1% or less, respectively. Ti and Nb are effective elements for forming carbonitrides, reducing the amount of dissolved C and N, and improving deep drawability. However, even if any of them is added in excess of 0.1%, the effect is saturated, and the recrystallization temperature at the time of annealing is increased, so that the productivity is reduced. Therefore, when adding Ti and Nb, each is set to 0.1% or less.

なお、「残部が実質的にFeからなる」とは、発明の作用・効果を損なわない限り、不可避的不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれることを意味する。   In addition, "the balance substantially consists of Fe" means that those containing other trace elements including unavoidable impurities are included in the scope of the present invention, as long as the function and effect of the present invention are not impaired. I do.

次に製造条件について説明する。
本発明の冷延鋼板を製造するためには、上記化学成分を有する鋼を溶製し、次いで熱間圧延後、冷間圧延を行い、得られた鋼板をAc点以上Ac点以下の温度範囲にて焼鈍し、1次冷却として3℃/秒超10℃/秒未満の冷却速度でかつ1次冷却停止温度を450〜700℃の温度範囲に冷却した後、連続して10℃/秒以上の冷却速度でかつ冷却停止温度を450℃未満に2次冷却した後、100〜400℃の温度範囲にて過時効処理を開始し、当該過時効処理の処理時間が150秒以上であり、かつ過時効処理終了温度が350℃未満にして行う。
Next, the manufacturing conditions will be described.
In order to produce the cold-rolled steel sheet of the present invention, a steel having the above chemical composition is melted, then hot-rolled, and then cold-rolled, and the obtained steel sheet is obtained from one point of Ac to three points of Ac or less. After annealing in a temperature range and cooling at a cooling rate of more than 3 ° C./sec and less than 10 ° C./sec as a primary cooling and a primary cooling stop temperature in a temperature range of 450 to 700 ° C., continuously 10 ° C./sec. After secondary cooling at a cooling rate of at least 2 seconds and a cooling stop temperature of less than 450 ° C., an overaging process is started in a temperature range of 100 to 400 ° C., and the processing time of the overaging process is 150 seconds or more. And the overaging treatment end temperature is set at less than 350 ° C.

(a)焼鈍温度:Ac点以上Ac点以下
焼鈍温度は、フェライト相+第2相のミクロ組織を得るため、適切な温度に加熱する必要がある。焼鈍温度がAc点未満では、二相分離されないため、マルテンサイト相を得ることができない。一方、焼鈍温度がAc点を超えると、フェライト相が全量オーステナイト化するため、再結晶組織が初期化され、かつ二相分離も十分に進まないため、成形性等の特性が劣化する。従って、焼鈍温度をAc点以上Ac点以下とする。Ac点以上Ac点+50℃以下とすることが好ましい。
(A) Annealing temperature: not less than Ac 1 point and not more than Ac 3 points The annealing temperature needs to be heated to an appropriate temperature in order to obtain a microstructure of ferrite phase + second phase. If the annealing temperature is less than one point of Ac, two phases are not separated, so that a martensite phase cannot be obtained. On the other hand, when the annealing temperature exceeds the Ac 3 point, the entire amount of the ferrite phase is austenite, so that the recrystallization structure is initialized and the two-phase separation does not sufficiently proceed, so that properties such as moldability deteriorate. Therefore, the annealing temperature is set to one or more Ac and three or less Ac. It is preferable that the Ac 1 point or more Ac 1 point + 50 ℃ or less.

(b)1次冷却速度:3℃/秒超10℃/秒未満、1次冷却停止温度:450〜700℃
1次冷却の冷却速度は、パーライト析出を抑制し、かつオーステナイトの体積率を確保するために、適切に制御する必要がある。1次冷却速度が3℃/秒以下になると、パーライトが析出するため、成形性が劣化する。従って、1次冷却速度を3℃/秒超とする。冷却速度が10℃/秒超になると、フェライト相とオーステナイト相の2相分離が十分に進まず、マルテンサイト相が不足する場合がある。その場合、所望の特性が得られなくなるので、1次冷却の冷却速度を10℃/秒未満とする。
(B) Primary cooling rate: more than 3 ° C./sec and less than 10 ° C./sec, primary cooling stop temperature: 450 to 700 ° C.
The cooling rate of the primary cooling needs to be appropriately controlled in order to suppress pearlite precipitation and secure the volume ratio of austenite. If the primary cooling rate is 3 ° C./second or less, pearlite precipitates, and the formability deteriorates. Therefore, the primary cooling rate is set to more than 3 ° C./sec. When the cooling rate exceeds 10 ° C./sec, the two-phase separation of the ferrite phase and the austenite phase does not sufficiently proceed, and the martensite phase may be insufficient. In that case, desired characteristics cannot be obtained, so the cooling rate of the primary cooling is set to less than 10 ° C./sec.

また、冷却停止温度が700℃より高い場合は、マルテンサイト相粒子が大きくなり、成形性の劣化を招く。加えて2次冷却停止温度までの冷却幅が大きくなるため、鋼板の形状不良を招き、生産性や品質に悪影響を及ぼす。一方、冷却停止温度が450℃より低くなるとMs点を超えてしまい、マルテンサイト相が得られなくなる場合がある。従って、1次冷却の冷却停止温度は450〜700℃の範囲内とする。好ましくは500〜600℃の範囲である。   On the other hand, when the cooling stop temperature is higher than 700 ° C., the size of the martensitic phase particles increases, leading to deterioration in moldability. In addition, since the cooling width up to the secondary cooling stop temperature is increased, the shape of the steel sheet is inferior, which adversely affects productivity and quality. On the other hand, when the cooling stop temperature is lower than 450 ° C., the temperature exceeds the Ms point, and a martensite phase may not be obtained. Therefore, the cooling stop temperature of the primary cooling is set in the range of 450 to 700 ° C. Preferably it is in the range of 500 to 600 ° C.

(c)2次冷却速度:10℃/秒以上、2次冷却停止温度:450℃未満
マルテンサイト相を得るためには、変態時に適切な冷却速度で冷却することが必要である。従って、2次冷却は10℃/秒以上の冷却速度で、かつ冷却停止温度を450℃未満とする。より好ましくは400℃未満である。
(C) Secondary cooling rate: 10 ° C./sec or more, secondary cooling stop temperature: less than 450 ° C. In order to obtain a martensite phase, it is necessary to cool at an appropriate cooling rate during transformation. Therefore, the secondary cooling is performed at a cooling rate of 10 ° C./sec or more, and the cooling stop temperature is set to less than 450 ° C. More preferably, it is lower than 400 ° C.

(d)過時効処理開始温度:100〜400℃
本発明の目的とする鋼板に求められる諸特性として、耐面歪性以外に延性や時効特性が挙げられる。これらの特性は、過時効処理によりマルテンサイト相の硬度およびフェライト中の固溶C量を最適化することで、良好な耐面歪性を有したまま延性および時効特性を向上させることが可能となる。但し、450℃を超えて熱処理した場合は、マルテンサイト変態時に導入された可動転位が固着され、かつ炭化物が多数析出するため、YPが増加し耐面歪性を低下させる。
また、100℃未満の場合は、上述した効果が十分に得られない。従って、過時効処理開始は100〜400℃の温度範囲内とする。
(D) Overaging treatment start temperature: 100 to 400 ° C
Various properties required for the steel sheet aimed at by the present invention include ductility and aging characteristics in addition to the surface distortion resistance. By optimizing the hardness of the martensite phase and the amount of solute C in ferrite by overaging treatment, these characteristics can improve ductility and aging characteristics while maintaining good surface distortion resistance. Become. However, when heat treatment is performed at a temperature exceeding 450 ° C., mobile dislocations introduced during the martensitic transformation are fixed, and a large number of carbides are precipitated, so that the YP increases and the surface strain resistance decreases.
If the temperature is lower than 100 ° C., the above-mentioned effects cannot be sufficiently obtained. Therefore, the start of the overaging treatment is performed within a temperature range of 100 to 400 ° C.

(e)過時効処理の保持時間:150秒以上
保持時間が150秒未満の場合、処理時間が短く上述した効果が十分に得られないため、保持時間は150秒以上とする。好ましくは200秒以上である。但し、10分を超えて保持をしても、効果が飽和するばかりか、コスト、生産性の観点からも好ましくない。従って保持時間は10分以下が望ましい。
(E) Holding time of overage treatment: 150 seconds or more If the holding time is less than 150 seconds, the processing time is short and the above-mentioned effects cannot be sufficiently obtained, so the holding time is 150 seconds or more. Preferably it is 200 seconds or more. However, holding for more than 10 minutes not only saturates the effect, but is also undesirable from the viewpoint of cost and productivity. Therefore, the holding time is desirably 10 minutes or less.

(f)過時効処理終了温度:350℃未満
終了温度を制御することは、開始温度を制御するのと同様に非常に重要となる。過時効処理終了温度が350℃を超える場合は、YPが増加し、耐面歪性が低下するため、過時効処理終了温度は350℃未満とする。好ましくは320℃以下、より好ましくは300℃以下である。但し、終了温度が100℃未満になると、十分な効果が得られないため、終了温度は100℃以上が好ましい。
(F) Overaging treatment end temperature: less than 350 ° C. Controlling the end temperature is very important as controlling the start temperature. If the overaging treatment end temperature exceeds 350 ° C., the YP increases and the surface distortion resistance decreases, so the overaging treatment end temperature is set to less than 350 ° C. Preferably it is 320 ° C. or lower, more preferably 300 ° C. or lower. However, if the end temperature is lower than 100 ° C., a sufficient effect cannot be obtained. Therefore, the end temperature is preferably 100 ° C. or higher.

例えば、耐面歪性の低下を防ぐために、本発明範囲内において過時効処理開始温度上限である400℃で熱処理を開始した後、過時効帯にて徐冷し、350℃未満で過時効処理を終了させることで、高温域に長時間滞在することを避けることは耐面歪性の低下を防ぐ有効な手段となる。もちろん低温域から熱処理を開始し、そのまま温度を保持することも有効である。   For example, in order to prevent a decrease in the surface strain resistance, heat treatment is started at 400 ° C., which is the upper limit of the overaging treatment start temperature within the range of the present invention, then gradually cooled in the overaging zone, and overaged at less than 350 ° C. Thus, avoiding staying in the high-temperature region for a long time is an effective means for preventing the reduction of the surface distortion resistance. Of course, it is also effective to start the heat treatment from a low temperature range and keep the temperature as it is.

以上の説明により得られる冷延鋼板に、電気亜鉛系めっきあるいは溶融亜鉛系めっきを施しても、目的の効果が得られることはいうまでもない。溶融亜鉛系めっき鋼板の場合、合金化処理を施してもよい。また、これらのめっき鋼板には、めっき後にさらに有機皮膜処理を施してもよい。   It goes without saying that the intended effect can be obtained even if the electro-galvanizing or hot-dip galvanizing is applied to the cold-rolled steel sheet obtained as described above. In the case of a hot-dip galvanized steel sheet, an alloying treatment may be performed. Further, these plated steel sheets may be further subjected to an organic film treatment after plating.

なお、本発明においては、スラブを熱間圧延するにあたって、加熱炉で再加熱後に圧延してもよいし、または加熱することなく直送圧延することもできる。また、熱延仕上圧延温度は、Ar変態点以上、巻取温度は550℃超で実施するのがよい。冷圧率については、通常の操業範囲内の50〜85%とすればよい。 In the present invention, in hot rolling the slab, the slab may be rolled after reheating in a heating furnace, or may be directly rolled without heating. Further, the hot rolling finish rolling temperature is preferably not lower than the Ar 3 transformation point, and the winding temperature is preferably higher than 550 ° C. The cooling rate may be set to 50 to 85% within the normal operation range.

表1に示す鋼番No.1〜No.12の鋼を溶製後、連続鋳造によりスラブとし、1200℃に加熱後、Ar点以上の温度で仕上圧延を行い、巻取り温度550℃超650℃以下で熱延鋼板を製造した。この熱延板を酸洗し、冷間圧延を行った。続いて表2に示す条件にて連続焼鈍を行い、表2のNo.1〜No.24の焼鈍板を得た。得られた焼鈍板について、以下の要領でミクロ組織を観察し、その性能を評価した。 Table 1 shows the steel numbers No. 1 to No. After smelting the steel No. 12, the slab was made into a slab by continuous casting, heated to 1200 ° C., and then subjected to finish rolling at a temperature of three or more points of Ar to produce a hot-rolled steel sheet at a winding temperature of more than 550 ° C. and 650 ° C. or less. The hot rolled sheet was pickled and cold rolled. Subsequently, continuous annealing was performed under the conditions shown in Table 2, and 1 to No. 24 annealed plates were obtained. The microstructure of the obtained annealed plate was observed in the following manner, and its performance was evaluated.

組織観察は、試験片をナイタール腐食し、2000倍で板厚中央部を連続的に縦100μm×横200μmの視野をSEM観察し、マルテンサイト相粒子のサイズおよび個数とフェライト粒の個数を測定した。視野の端にあり、粒全体が観察できない場合は、1/2個とし、マルテンサイト相粒子が連結しているものについては、分離して各々1個として測定した。機械的特性はJIS5号引張試験片を採取し評価した。   In the microstructure observation, the test piece was corroded with nital, and the central part of the plate thickness was continuously observed at a magnification of 2000 times with a SEM observation of a visual field of 100 μm × 200 μm to measure the size and number of martensite phase particles and the number of ferrite particles. . When the whole grain cannot be observed at the end of the visual field, the number was determined to be 個, and when the martensitic phase particles were connected, the number was measured as one for each. Mechanical properties were evaluated by sampling JIS No. 5 tensile test pieces.

プレス成形後の肌荒れ状況、面歪はブランク角160mmのサンプルを採取後、800mmR円筒面のポンチでプレス成形を行い、得られたカマボコパネルを砥石掛けし、目視観察にて優良なサンプル、軽微な面歪が認められ、成形条件の適正化により改善可能なサンプル、面形状不良や割れが明瞭に認められるサンプルをそれぞれ○、△、×の3段階で評価した。以上の調査結果を併せて表2に示す。   The surface roughness after press molding, surface distortion, after collecting a sample with a blank angle of 160 mm, press-molding with a punch of 800 mmR cylindrical surface, grind the resulting Kamaboko panel, grind it with a visual observation, excellent sample by visual observation, slight Samples in which surface distortion was observed and which could be improved by optimizing the molding conditions, and samples in which surface shape defects and cracks were clearly observed were evaluated in three stages of ○, Δ, and ×, respectively. Table 2 shows the results of the above surveys.

図2はプレス成形後の肌荒れ状況、面歪の評価結果をマルテンサイト相粒子の平均粒径とa/bで整理した図である。図2から明らかなように鋼板の組織形態を本発明範囲内にすることで、面形状に優れた複合組織冷延鋼板が得られることが分かる。一方、比較例は明瞭な面形状不良や割れが認められ、成形性と耐面歪性が劣っていることが分かる。   FIG. 2 is a diagram in which the evaluation results of the rough surface condition and the surface strain after press molding are arranged by the average particle size of the martensite phase particles and a / b. As is clear from FIG. 2, it can be seen that by setting the microstructure of the steel sheet within the range of the present invention, a composite structure cold-rolled steel sheet having an excellent surface shape can be obtained. On the other hand, in the comparative example, clear surface shape defects and cracks were observed, and it was found that the moldability and the surface distortion resistance were inferior.

Figure 2004307992
Figure 2004307992

Figure 2004307992
Figure 2004307992

本発明は、家電や自動車内外板用途のみならず、高成形性や優れた耐面歪性を必要とする一般の鋼板の製造技術にも広く適用することができる。   INDUSTRIAL APPLICABILITY The present invention can be widely applied not only to home and exterior panels for home appliances and automobiles, but also to general steel sheet manufacturing techniques requiring high formability and excellent surface distortion resistance.

(a)および(b)は、代表的な本発明鋼板と比較鋼板の金属組織を対照して例示した写真。(A) and (b) are photographs illustrating the metal structures of a typical steel sheet of the present invention and a comparative steel sheet. プレス後の表面形状に及ぼすマルテンサイト相粒子の平均粒径と単位体積中のマルテンサイト相粒子個数とフェライト粒個数との比の影響を示す図。The figure which shows the influence on the surface shape after a press of the average particle diameter of the martensitic-phase particle | grain, and the ratio of the number of the martensitic-phase particle | grains in a unit volume, and the number of ferrite particles.

Claims (4)

ミクロ組織がフェライト相およびマルテンサイト相の割合が60%以上の第2相からなる複合組織であり、かつマルテンサイト相粒子の平均粒径dが1.5μm以下で、さらに単位体積中のマルテンサイト相粒子の個数aとフェライト粒の個数bとの比a/bが0.7〜2.4であることを特徴とする耐面歪性に優れた複合組織冷延鋼板。   The microstructure is a composite structure composed of a second phase in which the ratio of the ferrite phase and the martensite phase is 60% or more, and the average particle size d of the martensite phase particles is 1.5 μm or less, and further the martensite in a unit volume is A composite structure cold-rolled steel sheet having excellent surface strain resistance, wherein the ratio a / b of the number a of phase particles to the number b of ferrite particles is 0.7 to 2.4. 化学成分が、mass%で、C:0.005〜0.05%、Si:1.5%以下、Mn:3.0%以下、P:0.10%以下、S:0.03%以下、Al:0.01〜0.1%、N:0.008%未満で、残部が実質的にFeからなることを特徴とする請求項1に記載の組織を有する耐面歪性に優れた複合組織冷延鋼板。   Chemical component is mass%, C: 0.005 to 0.05%, Si: 1.5% or less, Mn: 3.0% or less, P: 0.10% or less, S: 0.03% or less , Al: 0.01 to 0.1%, N: less than 0.008%, and the balance is substantially made of Fe, and the structure has excellent surface distortion resistance according to claim 1. Composite structure cold rolled steel sheet. 化学成分としてさらに、mass%で、Cr:1.0%以下、Mo:1.0%以下、V:1.0%以下、B:0.01%以下、Ti:0.1%以下、Nb:0.1%以下のうち1種以上を含有することを特徴とする請求項1に記載の組織を有する耐面歪性に優れた複合組織冷延鋼板。   Further, as a chemical component, in mass%, Cr: 1.0% or less, Mo: 1.0% or less, V: 1.0% or less, B: 0.01% or less, Ti: 0.1% or less, Nb The cold-rolled steel sheet with a composite structure according to claim 1, wherein the steel sheet has at least one of 0.1% or less and has excellent surface distortion resistance. 請求項2または請求項3に記載の化学成分を有する鋼を溶製し、次いで熱間圧延後、冷間圧延を行い、得られた鋼板をAc点以上Ac点以下の温度範囲にて焼鈍し、1次冷却として3℃/秒超10℃/秒未満の冷却速度でかつ1次冷却停止温度を450〜700℃の温度範囲に冷却した後、連続して10℃/秒以上の冷却速度でかつ冷却停止温度を450℃未満に2次冷却した後、100〜400℃の温度範囲にて過時効処理を開始し、当該過時効処理の処理時間が150秒以上であり、かつ過時効処理終了温度が350℃未満であることを特徴とする耐面歪性に優れた複合組織冷延鋼板の製造方法。 The steel having the chemical composition according to claim 2 or 3 is melted, then hot-rolled, and then cold-rolled, and the obtained steel sheet is subjected to a temperature range of 1 point Ac to 3 points Ac. After annealing and cooling as primary cooling at a cooling rate of more than 3 ° C./sec and less than 10 ° C./sec and a primary cooling stop temperature in a temperature range of 450 to 700 ° C., continuously cooling at 10 ° C./sec or more After the secondary cooling at a speed and a cooling stop temperature of less than 450 ° C., the overaging process is started in a temperature range of 100 to 400 ° C., and the processing time of the overaging process is 150 seconds or more, and the overaging process is performed. A method for producing a cold rolled steel sheet having a composite structure excellent in surface distortion resistance, wherein the treatment end temperature is lower than 350 ° C.
JP2003375692A 2003-03-27 2003-11-05 Composite structure cold-rolled steel sheet, plated steel sheet having excellent surface strain resistance, and production method thereof Expired - Lifetime JP4517629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375692A JP4517629B2 (en) 2003-03-27 2003-11-05 Composite structure cold-rolled steel sheet, plated steel sheet having excellent surface strain resistance, and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003086993 2003-03-27
JP2003375692A JP4517629B2 (en) 2003-03-27 2003-11-05 Composite structure cold-rolled steel sheet, plated steel sheet having excellent surface strain resistance, and production method thereof

Publications (2)

Publication Number Publication Date
JP2004307992A true JP2004307992A (en) 2004-11-04
JP4517629B2 JP4517629B2 (en) 2010-08-04

Family

ID=33478361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375692A Expired - Lifetime JP4517629B2 (en) 2003-03-27 2003-11-05 Composite structure cold-rolled steel sheet, plated steel sheet having excellent surface strain resistance, and production method thereof

Country Status (1)

Country Link
JP (1) JP4517629B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233294A (en) * 2005-02-25 2006-09-07 Jfe Steel Kk Low yield-ratio high-strength steel sheet having excellent baking hardening property and its production method
WO2009008551A1 (en) 2007-07-11 2009-01-15 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet with low yield strength and with less material quality fluctuation and process for producing the same
JP2009174019A (en) * 2008-01-25 2009-08-06 Nippon Steel Corp Low-yield-ratio-type high-strength cold rolled steel sheet with excellent bake hardening characteristic and delayed natural aging characteristic, and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163719A (en) * 1978-06-16 1979-12-26 Nippon Steel Corp Production of high tensile strength * low yield ratio and high extensibility composite textured steel panel with excellent workability
JPH1161327A (en) * 1997-08-06 1999-03-05 Nippon Steel Corp High strength automobile steel plate superior in collision safety and formability, and its manufacture
JP2000017385A (en) * 1998-06-29 2000-01-18 Nippon Steel Corp Dual-phase-type high strength cold rolled steel sheet excellent in dynamic deformability, and its production
JP2002363650A (en) * 2001-06-07 2002-12-18 Kobe Steel Ltd Method for producing ultrahigh strength cold rolled steel sheet having excellent seam weldability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163719A (en) * 1978-06-16 1979-12-26 Nippon Steel Corp Production of high tensile strength * low yield ratio and high extensibility composite textured steel panel with excellent workability
JPH1161327A (en) * 1997-08-06 1999-03-05 Nippon Steel Corp High strength automobile steel plate superior in collision safety and formability, and its manufacture
JP2000017385A (en) * 1998-06-29 2000-01-18 Nippon Steel Corp Dual-phase-type high strength cold rolled steel sheet excellent in dynamic deformability, and its production
JP2002363650A (en) * 2001-06-07 2002-12-18 Kobe Steel Ltd Method for producing ultrahigh strength cold rolled steel sheet having excellent seam weldability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233294A (en) * 2005-02-25 2006-09-07 Jfe Steel Kk Low yield-ratio high-strength steel sheet having excellent baking hardening property and its production method
JP4525383B2 (en) * 2005-02-25 2010-08-18 Jfeスチール株式会社 Low yield ratio high strength steel sheet with excellent bake hardening characteristics and method for producing the same
WO2009008551A1 (en) 2007-07-11 2009-01-15 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet with low yield strength and with less material quality fluctuation and process for producing the same
JP2009174019A (en) * 2008-01-25 2009-08-06 Nippon Steel Corp Low-yield-ratio-type high-strength cold rolled steel sheet with excellent bake hardening characteristic and delayed natural aging characteristic, and its manufacturing method

Also Published As

Publication number Publication date
JP4517629B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
CN107709598B (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet
KR101001420B1 (en) Galvanized steel sheet and method for producing the same
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP4445365B2 (en) Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
JP5493986B2 (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them
JP5233142B2 (en) High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same
JP5157215B2 (en) High rigidity and high strength steel plate with excellent workability
KR101561358B1 (en) High-strength cold rolled steel sheet having excellent deep drawability and bake hardenability and method for manufacturing the same
WO2013150669A1 (en) Galvannealed hot-rolled steel sheet and method for manufacturing same
WO2016031165A1 (en) High-strength hot-dip galvanized steel sheet having superb stretch-flangeability, in-plane stability of stretch-flangeability, and bendability, and method for producing same
JP5825082B2 (en) High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method
JP2009035818A (en) High-strength hot dip galvanized steel sheet having excellent press formability, and production method therefor
JP5979326B1 (en) High strength plated steel sheet and method for producing the same
JP2015071824A (en) Method for producing high strength steel sheet
JPWO2019151017A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
JP2001303186A (en) Dual-phase steel sheet excellent in burring property, and its manufacturing method
JP2010013700A (en) High strength hot dip galvanized steel sheet having excellent workability, and method for producing the same
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP2007077510A (en) High-strength high-ductility galvanized steel sheet excellent in aging resistance and its production method
JP2006233294A (en) Low yield-ratio high-strength steel sheet having excellent baking hardening property and its production method
JP2011241429A (en) Hot-dip galvanized steel sheet and method for producing the same
JP2013227635A (en) High strength cold rolled steel sheet, high strength galvanized steel sheet, method for manufacturing high strength cold rolled steel sheet, and method for manufacturing high strength galvanized steel sheet
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP2013249501A (en) High-strength cold-rolled steel plate with minimized dispersion of mechanical characteristics, and method for manufacturing the same
JP4517629B2 (en) Composite structure cold-rolled steel sheet, plated steel sheet having excellent surface strain resistance, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4517629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term