JP2006233294A - Low yield-ratio high-strength steel sheet having excellent baking hardening property and its production method - Google Patents

Low yield-ratio high-strength steel sheet having excellent baking hardening property and its production method Download PDF

Info

Publication number
JP2006233294A
JP2006233294A JP2005050979A JP2005050979A JP2006233294A JP 2006233294 A JP2006233294 A JP 2006233294A JP 2005050979 A JP2005050979 A JP 2005050979A JP 2005050979 A JP2005050979 A JP 2005050979A JP 2006233294 A JP2006233294 A JP 2006233294A
Authority
JP
Japan
Prior art keywords
less
steel sheet
phase
low yield
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005050979A
Other languages
Japanese (ja)
Other versions
JP4525383B2 (en
Inventor
Takayuki Futatsuka
貴之 二塚
Kohei Hasegawa
浩平 長谷川
Saiji Matsuoka
才二 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005050979A priority Critical patent/JP4525383B2/en
Publication of JP2006233294A publication Critical patent/JP2006233294A/en
Application granted granted Critical
Publication of JP4525383B2 publication Critical patent/JP4525383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low yield-ratio high-strength steel sheet having a high tensile strength of 440 to 640 MPa and also a low yield ratio satisfying ≤55% YR, and, further, while maintaining excellent baking hardenability, having formability and surface quality applicable to automobile inside and outside plates, and to provide its production method. <P>SOLUTION: The low yield-ratio high-strength steel sheet comprises, by mass, 0.01 to <0.040% C, ≤1.0% Si, 0.3 to 1.6% Mn, <0.07% P, ≤0.03% S, 0.01 to 0.10% Al and ≤0.01% N, satisfying 1.3%≤Mn+1.29Cr+3.29Mo≤2.1% (wherein, Cr:≤0.5% and Mo:≤0.5%), and the balance Fe with inevitable impurities, and has a steel sheet structure comprising a ferritic phase of ≥70% and a martensitic phase of 1 to 15% by a volume fraction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、ドア、フード、ルーフなどの張出成形を主体とする自動車外板部品に適用可能な、優れた焼付硬化性を有する低降伏比高強度鋼板およびその製造方法に関する。   TECHNICAL FIELD The present invention relates to a low yield ratio high strength steel sheet having excellent bake hardenability and a method for producing the same, which can be applied to, for example, automotive outer plate parts mainly formed by overhanging such as doors, hoods, and roofs.

近年、自動車用鋼板に対しては、車体軽量化による燃費向上を目的とした鋼板の薄肉化および安全性向上のための高強度化が進められている。一般に鋼板の高強度化は成形性の劣化を招くという問題があるが、この課題を克服するために、プレス成形時には軟質で成形し易く、プレス成形後の焼付け塗装工程において、強度上昇を得る、いわゆる焼付硬化(BH)性を有する鋼板が開発されてきた。特に、自動車用外板部品では、この特性を活かして最終製品の局所的な残留へこみに対する抵抗力を高める効果が得られるため、BH性が重要視される。このBH鋼板は固溶C、Nを活用した歪時効現象により硬化させる技術であるが、一方でこの回溶CおよびNは常温においても時効が進行し、降伏強度の上昇、降伏点伸びが発生するため、長期間保持された場合は成形時にストレッチャーストレインが発生し、表面外観を損なうことがある。このような相反する特性である耐時効性とBH特性を両立させるために、例えば特許文献1には低炭素鋼においてSi、Mn、Pの少なくとも2種以上の添加量を最適化することでCの転位への偏析を抑制し、耐時効特性を向上させる方法が開示されている。   2. Description of the Related Art In recent years, steel sheets for automobiles have been made thinner and thinner for the purpose of improving fuel efficiency by reducing the weight of the vehicle body and increasing the strength for improving safety. Generally, increasing the strength of a steel sheet has the problem of causing deterioration of formability, but in order to overcome this problem, it is soft and easy to form at the time of press forming, and an increase in strength is obtained in the baking coating process after press forming. Steel plates having so-called bake hardening (BH) properties have been developed. In particular, in the case of an automotive outer plate part, the BH property is regarded as important because an effect of increasing the resistance against local residual dent of the final product can be obtained by utilizing this characteristic. This BH steel sheet is a technology that hardens due to the strain aging phenomenon using solid solution C and N. On the other hand, the aging of the remelted C and N progresses even at room temperature, resulting in an increase in yield strength and yield point elongation. Therefore, when it is held for a long time, stretcher strain is generated during molding, which may impair the surface appearance. In order to achieve both aging resistance and BH characteristics which are such contradictory characteristics, for example, Patent Document 1 discloses that C is obtained by optimizing the addition amount of at least two kinds of Si, Mn, and P in low carbon steel. A method for suppressing segregation to dislocation and improving aging resistance is disclosed.

また、特許文献2には極低炭素鋼で変態時に多量の可動転位を導入することが可能な低温変態相を活用することで、常温非時効性で高いBH性を付与させる方法が開示されている。さらに、特許文献3にはマルテンサイト相の体積率を高めることにより、超高強度で、かつ優れたBH性を有する鋼板を得る方法が開示されている。   Patent Document 2 discloses a method of imparting a high BH property with non-aging at room temperature by utilizing a low-temperature transformation phase capable of introducing a large amount of mobile dislocations during transformation in ultra-low carbon steel. Yes. Furthermore, Patent Document 3 discloses a method for obtaining a steel sheet having an ultra-high strength and excellent BH property by increasing the volume ratio of the martensite phase.

しかしながら上記の個々の従来技術には、以下のような問題点がある。
特許文献1の方法はSi、Mn、P等の固溶強化元素の上限を規定し、かつ合金元素を添加しない低炭素鋼板を用いるため、自動車外板パネル部材等の高強度化の目標である440MPa以上の強度を確保することは困難である。また降伏比が高いため、例えばプレス加工時の負荷が大きく、プレス加工そのものが困難になるばかりでなく、成形後の面ひずみやスプリングバック量の増大など、いわゆる形状不良が発生するため、本発明の対象とする自動車外板部品に適用可能なプレス成形性を有しているとは言い難い。
However, each of the above conventional techniques has the following problems.
The method of Patent Document 1 defines the upper limit of solid solution strengthening elements such as Si, Mn, and P, and uses a low-carbon steel plate to which no alloying element is added. It is difficult to ensure a strength of 440 MPa or more. In addition, since the yield ratio is high, for example, the load during pressing is large and not only the pressing itself is difficult, but also so-called shape defects such as surface distortion after molding and an increase in the amount of springback occur. It is difficult to say that it has press formability that can be applied to automotive outer plate parts that are subject to the above.

また、特許文献2の方法は、極低炭素鋼をベースにするため、必要とされる440MPa以上の高強度化を達成するためには、Si、P等の固溶強化元素を多量に添加するか、または低温変態相の硬度を上昇させるためにMn、Cr等を多量に添加する必要がある。また、オーステナイト相を安定化させ、低温変態相の単相組織を得るという点からも、Mn、Cr等の多量添加が必要となる。   In addition, since the method of Patent Document 2 is based on extremely low carbon steel, in order to achieve the required high strength of 440 MPa or more, a large amount of a solid solution strengthening element such as Si or P is added. In order to increase the hardness of the low temperature transformation phase, it is necessary to add a large amount of Mn, Cr or the like. Further, from the viewpoint of stabilizing the austenite phase and obtaining a single phase structure of a low temperature transformation phase, it is necessary to add a large amount of Mn, Cr and the like.

しかしながら、Si、Pを多量に添加すると、赤スケールの発生や不めっき、化成処理不良などを発生させ、得られた鋼板は良好な表面性状を有しているとは言い難い状態となる。さらには、本発明が対象とする外板パネル用鋼板は、極めて優れた表面品質が求められるため、多量のMn、Cr添加も表面性状の観点から不利になるとともに製造コストの著しい増加を引き起こす。   However, when Si and P are added in a large amount, red scale is generated, non-plating, chemical conversion treatment failure, and the like occur, and the obtained steel sheet is hardly in a state of having good surface properties. Furthermore, since the steel sheet for an outer panel intended by the present invention is required to have extremely excellent surface quality, addition of a large amount of Mn and Cr is disadvantageous from the viewpoint of surface properties and causes a significant increase in manufacturing cost.

また、特許文献3の方法は、体積率で30〜95%のマルテンサイト相を生じさせることで高いBH性を付与することが可能とされるが、マルテンサイト相分率の増加は同時に高強度化をもたらし、成形性が劣化する。
特開平5−105985号公報 特開平6−116650号公報 特開平3−87320号公報
Moreover, although the method of patent document 3 makes it possible to give high BH property by producing the martensite phase of 30 to 95% by volume ratio, the increase in a martensite phase fraction is simultaneously high intensity | strength. And formability deteriorates.
Japanese Patent Laid-Open No. 5-105985 JP-A-6-116650 JP-A-3-87320

本発明はかかる事情に鑑みてなされたものであって、引張強度が440MPa以上640MPa以下と高く、かつYRが55%以下の低降伏比であり、さらに優れた焼付硬化性を有しつつ、自動車内外板用途へ適用可能な成形性および表面品質を有する低降伏比高強度鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and has a tensile strength as high as 440 MPa or higher and 640 MPa or lower, a low yield ratio of YR of 55% or lower, and further excellent bake hardenability, while being an automobile. An object of the present invention is to provide a low-yield-ratio high-strength steel sheet having formability and surface quality applicable to inner and outer plate applications and a method for producing the same.

上記課題を解決するため、本発明は、質量%で、C:0.01%以上0.040%未満、Si:1.0%以下、Mn:0.3〜1.6%、P:0.07%未満、S:0.03%以下、Al:0.01〜0.10%、N:0.01%以下を含有し、さらに、以下の式(1)を満足し、残部がFeおよび不可避的不純物からなり、鋼板組織として、体積分率で、フェライト相を70%以上、マルテンサイト相を1〜15%含むことを特徴とする焼付硬化特性に優れる低降伏比高強度鋼板を提供する。
1.3%≦Mn+1.29Cr+3.29Mo≦2.1% ・・・(1)
ただし、(1)式中Mn、Cr、Moは各元素の含有量を表し、Cr:0.5%以下、Mo:0.5%以下である。
In order to solve the above-described problems, the present invention provides, in mass%, C: 0.01% or more and less than 0.040%, Si: 1.0% or less, Mn: 0.3 to 1.6%, P: 0 0.07% or less, S: 0.03% or less, Al: 0.01 to 0.10%, N: 0.01% or less, further satisfying the following formula (1), the balance being Fe A low yield ratio high-strength steel sheet with excellent bake-hardening characteristics, characterized by comprising a ferrous phase and a martensite phase content of 70% or more and a martensite phase as a steel sheet structure. To do.
1.3% ≦ Mn + 1.29Cr + 3.29Mo ≦ 2.1% (1)
However, in the formula (1), Mn, Cr, and Mo represent the content of each element, Cr: 0.5% or less, Mo: 0.5% or less.

また、本発明は、上記鋼板において、質量%で、さらに、V:0.001〜0.1%、B:0.0001〜0.01%、Ti:0.001〜0.1%、Nb:0.001〜0.1%のうち1種または2種以上を含有することを特徴とする焼付硬化特性に優れる低降伏比高強度鋼板を提供する。   Moreover, this invention is the said steel plate in the mass%, and also V: 0.001-0.1%, B: 0.0001-0.01%, Ti: 0.001-0.1%, Nb : Provided is a low yield ratio high-strength steel sheet excellent in bake hardening characteristics, characterized by containing one or more of 0.001 to 0.1%.

さらに、本発明は、上記いずれかの化学成分組成を有する鋼の熱延板を、冷間圧延し、Ac点以上Ac点以下の温度範囲で焼鈍した後、3〜20℃/secの冷却速度で550〜750℃の温度範囲まで1次冷却し、さらに100℃/sec以上の冷却速度で200℃以下まで2次冷却することを特徴とする焼付硬化特性に優れる低降伏比高強度鋼板の製造方法を提供する。 Furthermore, the present invention is a method of cold rolling a steel hot-rolled sheet having any one of the above-mentioned chemical composition and annealing in a temperature range of Ac 1 point or more and Ac 3 point or less, and thereafter 3-20 ° C / sec. Low yield ratio high strength steel plate with excellent bake hardening characteristics characterized by primary cooling to a temperature range of 550 to 750 ° C. at a cooling rate, and secondary cooling to 200 ° C. or less at a cooling rate of 100 ° C./sec or more. A manufacturing method is provided.

本発明者らは、良好な焼付硬化特性を有し、引張強度が440〜640MPaで、かつYRが55%以下となる低降伏比高強度鋼板を得るための成分設計を鋭意検討した。   The present inventors have intensively studied the component design for obtaining a low-yield ratio high-strength steel sheet having good bake-hardening characteristics, a tensile strength of 440 to 640 MPa, and a YR of 55% or less.

その結果、C添加量が多くなると、固溶C量を増やすことが容易になるが、同時にマルテンサイト相や炭化物など第2相の増加をも招き易く、加工性が劣化するため、第2相による加工時の局部的な歪集中を避ける観点から、C量を所定の強度に対して必要最低限量とし、マルテンサイト相分率を体積比で1〜15%とすることが有効であることを見出した。   As a result, when the amount of added C increases, it becomes easy to increase the amount of dissolved C, but at the same time, the second phase such as martensite phase and carbide tends to increase, and the workability deteriorates. From the viewpoint of avoiding local strain concentration at the time of machining by C, it is effective that the C amount is the minimum necessary amount for a predetermined strength, and the martensite phase fraction is 1 to 15% by volume ratio. I found it.

また、必要最低限のC量でマルテンサイト相を得るためには、焼入れ性向上元素であるMn、Cr、Moを制御することが極めて重要となる。Mn、Cr、Moはγ相を安定化させることで、焼入れ性を高める効果が得られるが、その効果の度合いはそれぞれ異なる。したがって、この度合いを反映させた重み付き合計量に着目し、検討を重ねた結果、マルテンサイト組織を得、かつ所望の焼付硬化性、成形性を満足させるためには、Mn、Cr、Moの重み付き合計量Mn+1.29Cr+3.29Moに最適な範囲が存在することを新たに知見した。   Moreover, in order to obtain a martensite phase with the minimum necessary amount of C, it is extremely important to control the hardenability improving elements Mn, Cr, and Mo. Mn, Cr, and Mo can stabilize the γ phase to obtain an effect of improving hardenability, but the degree of the effect is different. Therefore, paying attention to the weighted total amount reflecting this degree, as a result of repeated studies, in order to obtain a martensite structure and satisfy the desired bake hardenability and formability, Mn, Cr, Mo It was newly found out that there is an optimum range for the weighted total amount Mn + 1.29Cr + 3.29Mo.

さらに、焼付硬化特性を最大限に高めるための製造条件として、連続焼鈍工程における2次冷却速度を大きくとることが有効であり、このとき同時に、焼入れ性向上元素の添加量を低減することができるため、優れたBH特性を有しつつ、同時に良好な加工性、表面性状を具備することが可能となる。   Furthermore, as a manufacturing condition for maximizing the bake hardening characteristics, it is effective to increase the secondary cooling rate in the continuous annealing process, and at the same time, the amount of addition of the hardenability improving element can be reduced. Therefore, it is possible to have excellent processability and surface properties while having excellent BH characteristics.

上記の検討結果より、良好な焼付硬化特性を有し、引張強度が440〜640MPaで、かつYRが55%以下となる低降伏比高強度鋼板を得るための条件が明確となった。   From the above examination results, the conditions for obtaining a low yield ratio high strength steel sheet having good bake-hardening characteristics, tensile strength of 440 to 640 MPa, and YR of 55% or less became clear.

さらに本発明に係る鋼板においては、必要強度をマルテンサイト相による組織強化を主として目標強度を得るため、固溶強化元素であるSi、Pの多量添加を必要とせず、表面性状の面からも優位である。   Further, in the steel sheet according to the present invention, the required strength is mainly obtained by strengthening the structure by the martensite phase, so that a large amount of Si and P, which are solid solution strengthening elements, is not required, and superior in terms of surface properties. It is.

上記構成を有する本発明は、以上のような知見に基づいて完成されたものであり、セミ極低炭素鋼板において、焼付硬化特性を向上させるために、焼入れ性向上元素を最適にし、かつ成形性の観点より、マルテンサイト相分率を特定の範囲に制御するものであるが、このような思想は、先行技術には存在しない。   The present invention having the above-described configuration has been completed based on the above knowledge, and in a semi-very low carbon steel sheet, in order to improve bake hardening characteristics, a hardenability improving element is optimized and formability is improved. From this point of view, the martensite phase fraction is controlled within a specific range, but such a concept does not exist in the prior art.

本発明によれば、ドア、フード、ルーフなどの張出成形を主体とする自動車外板部品に適した成形性を有し、かつ軽量化を進める際に同等の耐デント特性を確保することが可能な優れた焼付硬化性を有し、現存の設備で工業的に製造することが可能な、引張強度が440〜640MPaで、かつYRが55%以下となる低降伏比高強度鋼板を提供することができる。   According to the present invention, it has formability suitable for automobile outer plate parts mainly composed of overhang molding such as doors, hoods, roofs, and the like, and can ensure equivalent dent resistance when promoting weight reduction. Provided is a low-yield ratio high-strength steel sheet having excellent bake hardenability and capable of being industrially manufactured with existing equipment and having a tensile strength of 440 to 640 MPa and a YR of 55% or less. be able to.

以下、本発明について詳細に説明する。
まず、鋼板の化学成分組成について説明する。以下の説明において%は質量%を示す。
Hereinafter, the present invention will be described in detail.
First, the chemical component composition of the steel sheet will be described. In the following description,% indicates mass%.

C:0.01%以上0.040%未満
Cは本発明において極めて重要な元素の1つであり、低温変態相を生成させ、高強度化を図る上で非常に有効である。しかし、C含有量が0.040%以上になると、加工性の著しい低下を招き、さらに溶接性も劣化させる。したがって、C含有量を0.040%未満とする。好ましくは0.03%以下である。一方、一定体積率の低温変態相を形成させ、十分な可動転位を導入する、または一定量の固溶Cを確保するためには、ある程度のCを含有させることが必要であるため、0.01%以上とする。
C: 0.01% or more and less than 0.040% C is one of the extremely important elements in the present invention, and is very effective in generating a low-temperature transformation phase and increasing the strength. However, when the C content is 0.040% or more, the workability is significantly lowered, and the weldability is further deteriorated. Therefore, the C content is less than 0.040%. Preferably it is 0.03% or less. On the other hand, in order to form a low temperature transformation phase having a constant volume ratio and introduce sufficient mobile dislocations or to secure a certain amount of solid solution C, it is necessary to contain a certain amount of C. 01% or more.

Si:1.0%以下
Siは複合組織を安定して得るために有効な元素である。しかし、Si含有量が1.0%を超えると表面性状および化成処理性が著しく低下する。したがって、Si含有量を1.0%以下とする。好ましくは0.8%以下、さらに好ましくは0.5%以下である。
Si: 1.0% or less Si is an effective element for stably obtaining a composite structure. However, when the Si content exceeds 1.0%, the surface properties and the chemical conversion treatment properties are remarkably lowered. Therefore, the Si content is 1.0% or less. Preferably it is 0.8% or less, More preferably, it is 0.5% or less.

Mn:0.3〜1.6%
Mnは低温変態相の生成に極めて重要な元素であり、焼入性を向上させる作用や、鋼中のSをMnSとして固定することにより、Sの粒界脆化作用に起因して発生する熟間圧延時のスラブ割れを防止する作用を有する必須元素であり、上記作用を有効に発揮させるため0.3%以上含有する必要がある。好ましくは0.6%以上、さらに好ましくは、硬質な低温変態相を得ることで低降伏比とする観点から1.0%以上である。しかし、Mn含有量が1.6%を超えると、スラブコストの著しい上昇とともに、外観不良や高強度化にともなって上昇する降伏強度により、プレス成形性の劣化や形状不良が発生する。したがって、Mn含有量を1.6%以下とする。
Mn: 0.3 to 1.6%
Mn is an extremely important element for the formation of a low-temperature transformation phase. The effect of improving hardenability and the fixing of S in the steel as MnS cause maturation that occurs due to the grain boundary embrittlement of S. It is an essential element having the action of preventing slab cracking during hot rolling, and it is necessary to contain 0.3% or more in order to effectively exhibit the above action. It is preferably 0.6% or more, and more preferably 1.0% or more from the viewpoint of obtaining a low yield ratio by obtaining a hard low-temperature transformation phase. However, if the Mn content exceeds 1.6%, the slab cost increases significantly, and the yield strength that increases with the appearance defect and the increase in strength causes the press formability to deteriorate and the shape defect to occur. Therefore, the Mn content is set to 1.6% or less.

P:0.07%未満
Pは高強度化および低温変態相を安定させるために有効な元素である。しかし、P含有量が0.07%以上になると、亜鉛めっき層の合金化速度を低下させ、めっき不良や不めっきの原因となるとともに、鋼板の粒界に偏析して耐二次加工脆性を劣化させる。したがって、P量を0.07%未満とする。
P: Less than 0.07% P is an effective element for increasing the strength and stabilizing the low-temperature transformation phase. However, when the P content is 0.07% or more, the alloying rate of the galvanized layer is reduced, which causes plating defects and non-plating, and segregates at the grain boundaries of the steel sheet, resulting in resistance to secondary work brittleness. Deteriorate. Therefore, the P content is less than 0.07%.

S:0.03%以下
Sは、熱間圧延時に粒界に偏析し、スラブ割れを発生させるため、表面疵の発生割合を高くする。そのため、Mnを添加することで、SをMnSとして固定するが、過剰のMnSは加工時におけるボイドの起点となるために、加工性の低下を招く。したがって、Sの含有量は少ない方が望ましく、S量が0.03%を超えると加工性が著しく劣化することから、S含有量を0.03%以下とする。
S: 0.03% or less S is segregated at the grain boundary during hot rolling and causes slab cracking, so the surface flaw generation rate is increased. Therefore, by adding Mn, S is fixed as MnS. However, excessive MnS serves as a starting point of voids during processing, which causes a decrease in workability. Accordingly, it is desirable that the S content is small. If the S content exceeds 0.03%, the workability is remarkably deteriorated, so the S content is set to 0.03% or less.

Al:0.01〜0.1%
Alは脱酸元素として鋼中の介在物を減少させる作用を有している。しかし、Al含有量が0.01%未満では上述した作用が安定して得られない。一方、Al量が0.1%を超えると、クラスター状のアルミナ系介在物が増加し、加工性を劣化させる。したがって、Al含有量を0.01〜0.1%の範囲内とする。
Al: 0.01 to 0.1%
Al has a function of reducing inclusions in the steel as a deoxidizing element. However, when the Al content is less than 0.01%, the above-described action cannot be stably obtained. On the other hand, if the amount of Al exceeds 0.1%, cluster-like alumina inclusions increase and workability deteriorates. Therefore, the Al content is set within a range of 0.01 to 0.1%.

N:0.01%以下
Nは加工性および時効性の観点から少ない方がよく、N含有量が0.01%を超えると、過剰な窒化物の生成により、延性および靭性が劣化する。したがって、N含有量を0.01%以下とする。
N: 0.01% or less N is better from the viewpoint of workability and aging properties. When the N content exceeds 0.01%, ductility and toughness deteriorate due to the formation of excessive nitride. Therefore, the N content is 0.01% or less.

Mn+1.29Cr+3.29Mo:1.3〜2.1%
(ただし、Cr:0.5%以下、Mo:0.5%以下)
Mn、Cr、Moは焼き入れ性を向上させる元素であり、低温変態相を生成させるために最適に制御することが極めて重要となる。Mn+1.29Cr+3.29Moは、これら各元素の焼入れ性の寄与に重みをつけた重み付き合計量であり、この重み付き合計量が1.3%未満になると、本発明が意図するDP(Dual Phase)組織を得ることが困難となり、マルテンサイト変態時に導入される可動転位の不足により耐時効性およびBH特性を損なう。さらには高降伏比となり、プレス加工そのものが困難になるばかりでなく、形状不良が発生しやすくなる。安定して優れたBH特性を得る観点からは、1.6%以上が好ましい。上記重み付き合計量を増加させるに従い、変態時に導入される可動転位が増加し、焼付塗装時に良好なBH特性が得られるようになるが、その重み付き合計量が2.1%を超える場合には、その効果が飽和するばかりか、合金元素多量添加による製造コストの増大を引き起こすとともに、高強度化に従って増加する降伏強度により、やはりプレス成形性が著しく低下する。本発明ではMnを必須添加とし、Cr、Moは必要に応じて添加するが、Cr、Moの含有量が0.5%を超える場合は、その効果が飽和するばかりか、製造コストの増加を招くため、これらを添加する場合には、それぞれ上限を0.5%とする。
Mn + 1.29Cr + 3.29Mo: 1.3-2.1%
(However, Cr: 0.5% or less, Mo: 0.5% or less)
Mn, Cr, and Mo are elements that improve the hardenability, and it is extremely important to optimally control in order to generate a low-temperature transformation phase. Mn + 1.29Cr + 3.29Mo is a weighted total amount weighting the hardenability contribution of each of these elements, and when this weighted total amount is less than 1.3%, DP ( Dual Phase) It becomes difficult to obtain a structure, and the aging resistance and BH characteristics are impaired due to the lack of movable dislocations introduced during martensitic transformation. Furthermore, the yield ratio is high, and not only the press working itself becomes difficult, but also shape defects are likely to occur. From the viewpoint of stably obtaining excellent BH characteristics, 1.6% or more is preferable. As the weighted total amount is increased, the number of movable dislocations introduced at the time of transformation increases, and a good BH characteristic can be obtained at the time of baking coating, but the weighted total amount exceeds 2.1%. Not only saturates the effect, but also causes an increase in production cost due to the addition of a large amount of alloying elements, and the yield strength increases as the strength increases, and the press formability is significantly lowered. In the present invention, Mn is an essential addition, and Cr and Mo are added as necessary. However, when the content of Cr and Mo exceeds 0.5%, not only the effect is saturated but also the production cost is increased. Therefore, when these are added, the upper limit is 0.5%.

本発明では、以上の他、選択成分として、V、B、Ti、Nbのうち1種以上を以下の範囲で含有してもよい。   In the present invention, in addition to the above, one or more of V, B, Ti, and Nb may be contained in the following range as a selection component.

V:0.001〜0.1%
Vは焼入性向上元素であり、低温変態相を安定して生成させるために必要に応じて添加することができ、その効果は0.001%以上で有効に発揮される。しかし、その含有量が0.1%を超えても、その効果は飽和するばかりか、コスト面でも不利となる。したがって、Vを添加する場合には、その含有量を0.001〜0.1%とする。
V: 0.001 to 0.1%
V is an element for improving hardenability, and can be added as necessary to stably generate a low-temperature transformation phase, and the effect is effectively exhibited at 0.001% or more. However, even if the content exceeds 0.1%, the effect is not only saturated but also disadvantageous in terms of cost. Therefore, when adding V, the content is made 0.001 to 0.1%.

B:0.0001〜0.01%
Bは焼入性向上に有効な元素であり、低温変態相を安定して得るために必要に応じて添加することができ、その効果は0.0001%以上で有効に発揮される。しかし、その含有量が0.1%を超えても、コストに見合う効果が得られない。したがって、Bを添加する場合には、その含有量を0.0001〜0.01%とする。
B: 0.0001 to 0.01%
B is an element effective for improving hardenability, and can be added as necessary to stably obtain a low-temperature transformation phase, and the effect is effectively exhibited at 0.0001% or more. However, even if the content exceeds 0.1%, an effect commensurate with the cost cannot be obtained. Therefore, when adding B, the content is made 0.0001 to 0.01%.

Ti、Nb:それぞれ0.001〜0.1%
Ti、Nbは、炭窒化物を形成して、深絞り性を向上させるために有効な元素であり、その効果は0.001%以上で有効に発揮される。しかし、いずれもその含有量が0.1%を超えても、その効果は飽和し、焼鈍時の再結晶温度が高くなって製造性が低下する。したがって、Ti、Nbを添加する場合には、その含有量をそれぞれ0.001〜0.1%とする。
Ti, Nb: 0.001 to 0.1% respectively
Ti and Nb are effective elements for forming carbonitrides and improving deep drawability, and the effect is effectively exhibited at 0.001% or more. However, even if the content exceeds 0.1%, the effect is saturated, the recrystallization temperature during annealing is increased, and the productivity is lowered. Therefore, when adding Ti and Nb, the content is made 0.001 to 0.1%, respectively.

なお、以上の元素および残部のFeの他、製造過程で各種不純物元素および製造過程で必須な微量添加元素等が不可避的に混入するが、このような不可避的な不純物は本発明の効果に特に影響を及ぼすものではなく、許容される。   In addition to the above elements and the remaining Fe, various impurity elements and trace addition elements essential in the manufacturing process are inevitably mixed in the manufacturing process. Such inevitable impurities are particularly effective for the effects of the present invention. It does not affect and is allowed.

次に、鋼板の組織について説明する。
本発明では、上記化学成分組成を満たす他、鋼板組織が、体積分率で、フェライト相70%以上、マルテンサイト相1〜15%であることが必要である。
Next, the structure of the steel plate will be described.
In the present invention, in addition to satisfying the above chemical component composition, the steel sheet structure needs to have a volume fraction of 70% or more of ferrite phase and 1 to 15% of martensite phase.

本発明では、高い成形性を具備するために、軟質なフェライト相を主体とし、さらに、従来のDP鋼と比較してマルテンサイト相分率を抑えた組織を得ることが重要となる。ただし、マルテンサイト相は、変態時に導入される可動転位が固溶C、Nにより固着されることで高いBH性を得ることができるため、一定量のマルテンサイト相が必要であり、最適な分率に制御する必要がある。このような観点から、フェライト相の体積分率を70%以上とし、マルテンサイト相の体積分率を1〜15%とする。フェライト相の体積分率は好ましくは80%以上である。また、マルテンサイト相の体積分率は、成形性の観点から10%以下とすることが好ましく、さらに好ましくは8%以下である。なお、その他の組織として、残留γ相、ベイナイト相、炭化物が含まれてもよい。   In the present invention, in order to have high formability, it is important to obtain a structure mainly composed of a soft ferrite phase and having a martensite phase fraction suppressed as compared with conventional DP steel. However, the martensite phase requires a certain amount of martensite phase because the mobile dislocations introduced at the time of transformation are fixed by solid solution C and N, so that a high BH property can be obtained. Need to control rate. From such a viewpoint, the volume fraction of the ferrite phase is set to 70% or more, and the volume fraction of the martensite phase is set to 1 to 15%. The volume fraction of the ferrite phase is preferably 80% or more. Further, the volume fraction of the martensite phase is preferably 10% or less, more preferably 8% or less from the viewpoint of moldability. Other structures may include residual γ phase, bainite phase, and carbide.

次に、製造条件について説明する。
本発明の鋼板は、上記化学成分組成を有する鋼の熱延板を、冷間圧延し、Ac点以上Ac点以下の温度範囲で焼鈍した後、3〜20℃/secの冷却速度で550〜750℃の温度範囲まで1次冷却を行い、さらに100℃/sec以上の冷却速度で200℃以下まで2次冷却することにより得ることができる。
Next, manufacturing conditions will be described.
The steel sheet of the present invention is obtained by cold rolling a steel hot-rolled sheet having the above-mentioned chemical composition and annealing in a temperature range of Ac 1 point or more and Ac 3 point or less, and then at a cooling rate of 3 to 20 ° C./sec. It can be obtained by performing primary cooling to a temperature range of 550 to 750 ° C., and further performing secondary cooling to 200 ° C. or less at a cooling rate of 100 ° C./sec or more.

焼鈍温度:Ac点以上Ac点以下
焼鈍温度は、フェライト相十低温変態相のミクロ組織を得るため、適切な温度に加熟する必要がある。焼鈍温度がAc点未満では、オーステナイト相が生成せず、低温変態相を得ることができない。一方、焼鈍温度がAc点を超えると、フェライト相が全量オーステナイト化するため、再結晶により得られた成形性等の特性が劣化する。したがって、焼鈍温度をAc点以上Ac点以下とする。好ましくはAc点以上Ac点+100℃以下とすることが好ましく、さらにAc点+80℃以下とすることがより好ましい。
Annealing temperature: Ac 1 point or more Ac 3 point or less In order to obtain the microstructure of the ferrite phase and the low temperature transformation phase, the annealing temperature needs to be ripened to an appropriate temperature. When the annealing temperature is less than Ac 1 point, an austenite phase is not generated and a low temperature transformation phase cannot be obtained. On the other hand, when the annealing temperature exceeds the Ac 3 point, the ferrite phase is entirely austenitized, so that the properties such as formability obtained by recrystallization deteriorate. Therefore, annealing temperature shall be Ac 1 point or more and Ac 3 point or less. Preferably, the temperature is Ac 1 point or more and Ac 1 point + 100 ° C. or less, and more preferably Ac 1 point + 80 ° C. or less.

1次冷却:冷却速度3〜20℃/sec、冷却停止温度550〜750℃
1次冷却の冷却速度および冷却停止温度は、パーライト析出を抑制し、オ―ステナイトの体積率を確保するために、適切に制御する必要がある。冷却速度が20℃/secを超えると、フェライト相とオーステナイト相の2相分離が十分に進まない場合もある。その場合、硬質な低温変態相が得られなくなり、所望の特性が得られなくなる。また、1次冷却速度が3℃/sec未満の場合、パーライト変態が起こり、成形性が劣化する。したがって、1次冷却の冷却速度を3〜20℃/secとする。また、冷却停止温度が750℃より高い場合は、オーステナイトの体積率が高い状態で2次冷却されるため、低温変態相の体積率が大きくなり、加工性の劣化を招く。一方、冷却停止温度が550℃より低くなると冷却中にベイナイト変態が起こりやすく、所望のマルテンサイト体積率を得ることが困難になる。したがって、1次冷却の冷却停止温度は550〜750℃の範囲内とする。
Primary cooling: cooling rate 3-20 ° C / sec, cooling stop temperature 550-750 ° C
The cooling rate and the cooling stop temperature of the primary cooling must be appropriately controlled in order to suppress pearlite precipitation and to secure the volume ratio of austenite. When the cooling rate exceeds 20 ° C./sec, the two-phase separation of the ferrite phase and the austenite phase may not sufficiently proceed. In that case, a hard low temperature transformation phase cannot be obtained, and desired characteristics cannot be obtained. On the other hand, when the primary cooling rate is less than 3 ° C./sec, pearlite transformation occurs and formability deteriorates. Therefore, the cooling rate of the primary cooling is 3 to 20 ° C./sec. On the other hand, when the cooling stop temperature is higher than 750 ° C., secondary cooling is performed in a state where the volume ratio of austenite is high, so that the volume ratio of the low-temperature transformation phase becomes large and the workability is deteriorated. On the other hand, when the cooling stop temperature is lower than 550 ° C., bainite transformation is likely to occur during cooling, and it becomes difficult to obtain a desired martensite volume ratio. Therefore, the cooling stop temperature of the primary cooling is set in the range of 550 to 750 ° C.

2次冷却:冷却速度100℃/sec以上、冷却停止温度200℃以下
2次冷却の冷却速度が100℃/sec未満であるか、または、冷却停止温度が200℃を超える場合には、マルテンサイト変態に対する駆動力が不十分となり、所望のマルテンサイト相分率が得られなくなる。また、冷却速度が不十分の場合、フェライト相中の固溶C量が少なくなり、所望のBH特性が得られなくなる。本発明の求めるBH特性を得るためには、上述の冷却速度を必要とするが、この2次冷却条件はマルテンサイト変態の駆動力を得るために必要十分な過冷却条件でもあるため、一般のDP鋼に対して合金元素添加量を低減することができ、優れたBH特性を有しつつ、同時に良好な加工性を得ることが可能となる。したがって、2次冷却速度を100℃/sec以上とし、かつ冷却停止温度を200℃以下とする。好ましくは冷却速度200℃/sec以上、かつ冷却停止温度100℃以下である。この際、冷却方法は限定しないが、例えば噴流水中に焼入れる方法により、このような2次冷却条件を満足することが可能である。なお、1次冷却停止温度で保持した場合は、パーライト変態が開始し、所望のマルテンサイト分率が得られなくなる場合があるため、2次冷却は1次冷却に引き続いて行うことが好ましく、1次冷却終了から10sec以内に行うことが望ましい。
Secondary cooling: Cooling rate of 100 ° C./sec or more and cooling stop temperature of 200 ° C. or less Martensite when the cooling rate of secondary cooling is less than 100 ° C./sec or the cooling stop temperature exceeds 200 ° C. The driving force for the transformation becomes insufficient, and the desired martensite phase fraction cannot be obtained. In addition, when the cooling rate is insufficient, the amount of solid solution C in the ferrite phase decreases, and desired BH characteristics cannot be obtained. In order to obtain the BH characteristics required by the present invention, the above-described cooling rate is required. However, this secondary cooling condition is also a subcooling condition necessary and sufficient for obtaining the driving force for martensitic transformation. It is possible to reduce the amount of alloying elements added to DP steel, and at the same time, good workability can be obtained while having excellent BH characteristics. Therefore, the secondary cooling rate is set to 100 ° C./sec or more, and the cooling stop temperature is set to 200 ° C. or less. Preferably, the cooling rate is 200 ° C./sec or more and the cooling stop temperature is 100 ° C. or less. At this time, the cooling method is not limited, but it is possible to satisfy such secondary cooling conditions by, for example, quenching in jet water. In addition, when it hold | maintains at primary cooling stop temperature, a pearlite transformation will start and a desired martensite fraction may not be obtained, Therefore It is preferable to perform secondary cooling following primary cooling. It is desirable to carry out within 10 seconds from the end of the next cooling.

また、2次冷却後、靭性を回復させるために400℃以下で焼き戻し処理を行うことが好ましい。焼き戻し処理温度が400℃を超える場合、著しく強度が低下し、さらに、固溶Cが析出することでBH特性が低下するため、好ましくない。望ましくは300℃以下である。   Moreover, it is preferable to perform a tempering process at 400 ° C. or lower in order to recover toughness after the secondary cooling. When the tempering treatment temperature exceeds 400 ° C., the strength is remarkably lowered, and further, the solid solution C is precipitated, so that the BH characteristics are lowered. Desirably, it is 300 degrees C or less.

以上のようにして得られた冷延鋼板に、さらに調質圧延を行ってもよい。ただし、大きな調圧の付加は延性の低下および降伏応力の上昇を引き起こすため調圧率1.5%以下が望ましい。   The cold-rolled steel sheet obtained as described above may be further subjected to temper rolling. However, the addition of large pressure control causes a decrease in ductility and an increase in yield stress, so a pressure control rate of 1.5% or less is desirable.

なお、本発明においては、スラブを熱間圧延するにあたって、加熱炉で再加熱後に圧延してもよいし、または加熱することなく直送圧延することもできる。また、熱延仕上圧延温度は、Ar点以上で実施するのがよい。冷圧率については、通常の操業範囲内の50〜85%とすればよい。 In the present invention, when the slab is hot-rolled, it may be rolled after being reheated in a heating furnace, or may be directly fed without being heated. Moreover, it is good to implement hot rolling finish rolling temperature at 3 or more points of Ar. The cold pressure rate may be 50 to 85% within the normal operating range.

また、本発明では、以上のような冷延鋼板に電気亜鉛系めっきあるいは溶融亜鉛系めっきを施してもよく、溶融亜鉛系めっき鋼板の場合、合金化処理を施してもよい。また、このようなめっき鋼板には、めっき後さらに有機皮膜処理を施してもよい。   In the present invention, the cold-rolled steel sheet as described above may be subjected to electrogalvanizing or hot-dip galvanizing, and in the case of hot-dip galvanized steel, an alloying treatment may be performed. In addition, such a plated steel sheet may be further subjected to an organic film treatment after plating.

以下、本発明の実施例について説明する。
(実施例1)
表1に示すNo.1〜15の鋼を溶製後、連続鋳造によりスラブを製造した。これらのうちNo.1〜9は本発明の範囲内であり、No.10〜15は、C量、Mn量、Cr量、Mn+1.29Cr+3.29Moのいずれかが本発明の範囲外のものである。
Examples of the present invention will be described below.
Example 1
No. shown in Table 1. After melting 1 to 15 steels, slabs were produced by continuous casting. Of these, No. 1 to 9 are within the scope of the present invention. As for 10-15, any of C amount, Mn amount, Cr amount, and Mn + 1.29Cr + 3.29Mo is outside the scope of the present invention.

これらスラブを1200℃に加熱後、Ar点以上の温度で仕上圧廷を行い、巻取り温度550℃で厚さ3.2mmの熱延板とし、酸洗後、厚さ0.75mmに冷間圧延した。次いで、連続焼鈍工程において770℃で焼鈍し、冷却速度8℃/sec、冷却停止温度600℃で1次冷却を行った後、冷却速度1000℃/secの水冷により室温まで2次冷却を行った。その後、150℃で10min保持する焼戻し処理を行い、表2のNo.1〜15の焼鈍板を得た。 After heating these slabs to 1200 ° C, a finishing press is performed at a temperature of 3 points or more at Ar, a hot-rolled sheet having a thickness of 3.2 mm at a winding temperature of 550 ° C, pickled, and then cooled to a thickness of 0.75 mm. Rolled for a while. Subsequently, in the continuous annealing step, annealing was performed at 770 ° C., primary cooling was performed at a cooling rate of 8 ° C./sec and a cooling stop temperature of 600 ° C., and then secondary cooling was performed to room temperature by water cooling at a cooling rate of 1000 ° C./sec. . Thereafter, a tempering treatment was performed for 10 minutes at 150 ° C. 1-15 annealed plates were obtained.

得られた焼鈍板について、機械特性の評価、BH性の評価、組織観察、および成形性の評価を行った。機械的特性は、焼鈍板からJIS5号引張試験片を採取して評価した。BH性は、JIS5号引張試験片を採取し、2%の予歪を付加後、170℃×20minの熱処理を施し、その後再度引張試験を行った時のYP増加量で評価した。また、組織観察は、試験片をナイタール腐食し、2000倍で板厚中央部を連続的に縦100μm×横200μmの視野をSEM観察し、フェライト相分率およびマルテンサイト相分率を測定した。   About the obtained annealing board, evaluation of mechanical characteristics, evaluation of BH property, structure observation, and evaluation of formability were performed. Mechanical properties were evaluated by collecting JIS No. 5 tensile test pieces from the annealed plates. The BH property was evaluated based on the amount of increase in YP when a JIS No. 5 tensile test piece was sampled and subjected to heat treatment at 170 ° C. for 20 minutes after adding 2% pre-strain and then subjected to a tensile test again. In addition, the specimen was subjected to Nital corrosion, and the central portion of the plate thickness was continuously observed at a magnification of 2000 times by SEM observation of a 100 μm × 200 μm field of view, and the ferrite phase fraction and martensite phase fraction were measured.

また、成形性は、ブランク角160mmのサンプルを採取後、800mmR円筒面のポンチでプレス成形を行い、割れ、しわが発生しない場合は○、発生した場合は×で評価した。   Further, the formability was evaluated by using a punch with an 800 mmR cylindrical surface after collecting a sample having a blank angle of 160 mm, and ◯ when no cracks or wrinkles occurred, and x when occurring.

以上により評価した機械特性、BH特性、フェライト相分率、マルテンサイト相分率、そして成形性を表2に示す。比較例であるNo.10はC含有量が本発明の範囲より低いため、マルテンサイト相組織が得られず、BH特性が劣っていた。また比較例であるNo.11はC含有量が本発明の範囲を超えており、マルテンサイト相分率が高く、成形性が劣っていた。   Table 2 shows the mechanical properties, BH properties, ferrite phase fraction, martensite phase fraction, and moldability evaluated as described above. No. which is a comparative example. No. 10 had a C content lower than the range of the present invention, so a martensitic phase structure was not obtained and the BH characteristics were inferior. Moreover, No. which is a comparative example. No. 11 had a C content exceeding the range of the present invention, had a high martensite phase fraction, and was inferior in moldability.

C量が規定範囲外となるNo.10、11を除き、Mn、Cr、Moの重み付き合計量Mn+1.29Cr+3.29MoがBH量に及ぼす影響を調査した。その結果を図1に示す。図1に示すように、Mn+1.29Cr+3.29Moが1.3%以上でBH量が60MPa以上を有していた。60MPa以上のBH量は、現状、自動車の外板パネルに適用されている鋼板に対し、高張力鋼適用による軽量化を行う場合に、同等の耐デント特性を確保するために必要なBH量である。また、Mn+1.29Cr+3.29Moが1.6%以上になると、BH量が80MPa以上となり、より好ましいことがわかる。一方、Mn+1.29Cr+3.29Moが1.3%未満のNo.14は、マルテンサイト相組織が得られず、BH量が低下しており、かつ高YRによりプレス成形性が劣っていた。また、Mn+1.29Cr+3.29Moが2.1%を超えるNo.13は、BH特性向上効果は飽和しており、合金元素の多量添加により成形性が劣っていることがわかる。   No. C amount is outside the specified range. Except for 10 and 11, the influence of the total weight Mn + 1.29Cr + 3.29Mo of Mn, Cr and Mo on the BH amount was investigated. The result is shown in FIG. As shown in FIG. 1, Mn + 1.29Cr + 3.29Mo was 1.3% or more and the BH amount was 60 MPa or more. The amount of BH of 60 MPa or more is the amount of BH necessary for securing equivalent dent resistance properties when reducing the weight by applying high-tensile steel to steel plates currently applied to the outer panel of automobiles. is there. Moreover, when Mn + 1.29Cr + 3.29Mo is 1.6% or more, the amount of BH is 80 MPa or more, which is more preferable. On the other hand, No. 1 with Mn + 1.29Cr + 3.29Mo of less than 1.3%. In No. 14, a martensite phase structure was not obtained, the amount of BH was reduced, and press formability was inferior due to high YR. In addition, No. in which Mn + 1.29Cr + 3.29Mo exceeds 2.1%. No. 13 shows that the effect of improving the BH characteristics is saturated, and the formability is inferior due to the addition of a large amount of alloy elements.

また、それぞれ、Mn、Crの含有量が多いNo.12、No.15は、BH特性は良好であったが成形性が劣っていた。   In addition, each of No. 1 containing a large amount of Mn and Cr. 12, no. No. 15 had good BH characteristics but poor moldability.

これに対し、Mn+1.29Cr+3.29Moのほか、他の要件も本発明を満足する本発明例のNo.1〜9は、上述のようにBH量が60MPa以上と優れたBH特性を有している他、引張強度が440〜640MPaの範囲内であり、さらにYRが55%以下と低降伏比であり、かつ良好な成形性を有していることが確認された。   On the other hand, in addition to Mn + 1.29Cr + 3.29Mo, the other requirements are No. 1 to 9 have excellent BH characteristics with a BH amount of 60 MPa or more as described above, a tensile strength within the range of 440 to 640 MPa, and a YR of 55% or less and a low yield ratio. And it was confirmed that it has good moldability.

Figure 2006233294
Figure 2006233294

Figure 2006233294
Figure 2006233294

(実施例2)
表1に示すNo.1〜3の鋼を溶製後、連続鋳造によりスラブとし、このスラブに対して、実施例1と同じ条件で、熱間圧延および冷間圧延を行った後、表3に示す条件で連続焼鈍工程を行い、さらに150℃で10min保持する焼戻し処理を行い、No.16〜31の焼鈍板を得た。得られた焼鈍板のそれぞれについて、実施例1と同様に機械特性の評価、BH性の評価、組織観察、および成形性の評価を行った。機械特性、BH特性、フェライト相分率、マルテンサイト相分率、成形性の評価結果を併せて表3に示す。
(Example 2)
No. shown in Table 1. After melting the steels 1 to 3, a slab was formed by continuous casting. The slab was hot-rolled and cold-rolled under the same conditions as in Example 1 and then subjected to continuous annealing under the conditions shown in Table 3. Tempering treatment for 10 minutes at 150 ° C. is performed. An annealed plate of 16 to 31 was obtained. About each of the obtained annealing board, evaluation of a mechanical characteristic, evaluation of BH property, structure | tissue observation, and evaluation of a moldability were performed like Example 1. FIG. Table 3 shows the evaluation results of mechanical properties, BH properties, ferrite phase fraction, martensite phase fraction, and moldability.

表3に示すように、本発明例であるNo.16、17、21、22、23、24、27、28は、いずれも引張強度が440〜640MPaの範囲内であり、かつBH量が60MPa以上の優れたBH特性を有しており、さらにYRが55%以下と低降伏比を有している。ただし、No.23、24はNo.21、22と比較して、降伏比が高く、BH量が低かった。これはNo.23の2次冷却停止温度が180℃と高く、またNo.24の2次冷却速度が150℃/secと他の本発明例より遅かったためと考えられ、2次冷却速度は200℃/sec以上、2次冷却停止温度は100℃以下が好ましいことがわかった。   As shown in Table 3, No. 1 as an example of the present invention. 16, 17, 21, 22, 23, 24, 27, and 28 all have excellent BH characteristics with a tensile strength in the range of 440 to 640 MPa and a BH amount of 60 MPa or more. Has a low yield ratio of 55% or less. However, no. Nos. 23 and 24 are No. Compared with 21 and 22, the yield ratio was high and the BH content was low. This is no. No. 23 secondary cooling stop temperature is as high as 180 ° C. This is considered to be because the secondary cooling rate of 24 was 150 ° C./sec, which was slower than other examples of the present invention, and the secondary cooling rate was 200 ° C./sec or more and the secondary cooling stop temperature was preferably 100 ° C. or less. .

一方、比較例であるNo.18〜20、25、26、29〜31は、いずれも成分組成が本発明範囲内であるにもかかわらず、焼鈍条件が本発明範囲外であるため、いずれかの特性が劣っていた。例えば、No.19、25、30はマルテンサイト相組織が得られず、BH特性の劣化および降伏比の上昇がみられる。No.29はマルテンサイト相分率が高く、成形性が劣っていた。No.18、20はオーステナイト相が安定化せず、炭化物が多数析出するため、降伏比が高く、成形性が劣っていた。No.26は冷却不足により、BH量が低下していた。No.31は、2次冷却時に200℃以下まで冷却しなかったため、硬質なマルテンサイト相が得られず、降伏比(YR)が高く、成形性が劣っていた。   On the other hand, No. which is a comparative example. 18-20, 25, 26, 29-31 were all inferior in properties because the annealing conditions were outside the scope of the present invention, although the component composition was within the scope of the present invention. For example, no. Nos. 19, 25, and 30 show a martensite phase structure, which shows deterioration in BH characteristics and an increase in yield ratio. No. No. 29 had a high martensite phase fraction and poor moldability. No. In Nos. 18 and 20, the austenite phase was not stabilized and a large number of carbides were precipitated, so the yield ratio was high and the moldability was poor. No. No. 26 had a decreased amount of BH due to insufficient cooling. No. Since No. 31 was not cooled to 200 ° C. or lower during the secondary cooling, a hard martensite phase was not obtained, the yield ratio (YR) was high, and the moldability was poor.

Figure 2006233294
Figure 2006233294

Mn、Cr、Moの重み付き合計量であるMn+1.29Cr+3.29MoがBH量に及ぼす影響を示す図。The figure which shows the influence which Mn + 1.29Cr + 3.29Mo which is a weighted total amount of Mn, Cr, and Mo has on the amount of BH.

Claims (3)

質量%で、C:0.01%以上0.040%未満、Si:1.0%以下、Mn:0.3〜1.6%、P:0.07%未満、S:0.03%以下、Al:0.01〜0.10%、N:0.01%以下を含有し、さらに、以下の式(1)を満足し、残部がFeおよび不可避的不純物からなり、鋼板組織として、体積分率で、フェライト相を70%以上、マルテンサイト相を1〜15%含むことを特徴とする焼付硬化特性に優れる低降伏比高強度鋼板。
1.3%≦Mn+1.29Cr+3.29Mo≦2.1% ・・・(1)
ただし、(1)式中Mn、Cr、Moは各元素の含有量を表し、Cr:0.5%以下、Mo:0.5%以下である。
In mass%, C: 0.01% or more and less than 0.040%, Si: 1.0% or less, Mn: 0.3 to 1.6%, P: less than 0.07%, S: 0.03% Hereinafter, Al: 0.01 to 0.10%, N: 0.01% or less, further satisfying the following formula (1), the balance consisting of Fe and inevitable impurities, A low-yield-ratio high-strength steel sheet excellent in bake hardening characteristics, comprising a volume fraction of 70% or more of a ferrite phase and 1 to 15% of a martensite phase.
1.3% ≦ Mn + 1.29Cr + 3.29Mo ≦ 2.1% (1)
However, in the formula (1), Mn, Cr, and Mo represent the content of each element, Cr: 0.5% or less, Mo: 0.5% or less.
質量%で、さらに、V:0.001〜0.1%、B:0.0001〜0.01%、Ti:0.001〜0.1%、Nb:0.001〜0.1%のうち1種または2種以上を含有することを特徴とする請求項1に記載の焼付硬化特性に優れる低降伏比高強度鋼板。   Further, V: 0.001 to 0.1%, B: 0.0001 to 0.01%, Ti: 0.001 to 0.1%, Nb: 0.001 to 0.1% The low yield ratio high-strength steel sheet having excellent bake hardening characteristics according to claim 1, comprising one or more of them. 請求項1または請求項2に記載の化学成分組成を有する鋼の熱延板を、冷間圧延し、Ac点以上Ac点以下の温度範囲で焼鈍した後、3〜20℃/secの冷却速度で550〜750℃の温度範囲まで1次冷却し、さらに100℃/sec以上の冷却速度で200℃以下まで2次冷却することを特徴とする焼付硬化特性に優れる低降伏比高強度鋼板の製造方法。 A steel hot-rolled sheet having the chemical composition according to claim 1 or claim 2 is cold-rolled and annealed in a temperature range of Ac 1 point or more and Ac 3 point or less, and thereafter 3-20 ° C / sec. Low yield ratio high strength steel plate with excellent bake hardening characteristics characterized by primary cooling to a temperature range of 550 to 750 ° C. at a cooling rate, and secondary cooling to 200 ° C. or less at a cooling rate of 100 ° C./sec or more. Manufacturing method.
JP2005050979A 2005-02-25 2005-02-25 Low yield ratio high strength steel sheet with excellent bake hardening characteristics and method for producing the same Expired - Fee Related JP4525383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005050979A JP4525383B2 (en) 2005-02-25 2005-02-25 Low yield ratio high strength steel sheet with excellent bake hardening characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005050979A JP4525383B2 (en) 2005-02-25 2005-02-25 Low yield ratio high strength steel sheet with excellent bake hardening characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006233294A true JP2006233294A (en) 2006-09-07
JP4525383B2 JP4525383B2 (en) 2010-08-18

Family

ID=37041277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005050979A Expired - Fee Related JP4525383B2 (en) 2005-02-25 2005-02-25 Low yield ratio high strength steel sheet with excellent bake hardening characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP4525383B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008548A1 (en) 2007-07-11 2009-01-15 Jfe Steel Corporation Process for producing high-strength cold rolled steel sheet with low yield strength and with less material quality fluctuation
JP2009174019A (en) * 2008-01-25 2009-08-06 Nippon Steel Corp Low-yield-ratio-type high-strength cold rolled steel sheet with excellent bake hardening characteristic and delayed natural aging characteristic, and its manufacturing method
WO2010087529A1 (en) 2009-02-02 2010-08-05 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method therefor
WO2010150919A1 (en) 2009-06-26 2010-12-29 Jfeスチール株式会社 High-strength molten zinc-plated steel sheet and process for production thereof
WO2011013838A1 (en) 2009-07-28 2011-02-03 Jfeスチール株式会社 High-strength cold-rolled steel sheet and method for producing same
KR20160089316A (en) * 2016-07-18 2016-07-27 주식회사 포스코 High strength hot rolled steel sheet having excellent bake hardenability and low yield ratio and method for manufacturing thereof
US11946111B2 (en) * 2016-03-31 2024-04-02 Jfe Steel Corporation Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated steel sheet, method for producing steel sheet, and method for producing coated steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819441A (en) * 1981-07-28 1983-02-04 Nippon Kokan Kk <Nkk> Manufacture of high tensile cold rolled steel plate with low yield ratio and high burning hardenability
JPH11343535A (en) * 1998-05-29 1999-12-14 Kawasaki Steel Corp Coating/baking hardening type high tensile strength steel plate and its production
JP2004307992A (en) * 2003-03-27 2004-11-04 Jfe Steel Kk Dual-phase cold-rolled steel sheet superior in surface distortion resistance and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819441A (en) * 1981-07-28 1983-02-04 Nippon Kokan Kk <Nkk> Manufacture of high tensile cold rolled steel plate with low yield ratio and high burning hardenability
JPH11343535A (en) * 1998-05-29 1999-12-14 Kawasaki Steel Corp Coating/baking hardening type high tensile strength steel plate and its production
JP2004307992A (en) * 2003-03-27 2004-11-04 Jfe Steel Kk Dual-phase cold-rolled steel sheet superior in surface distortion resistance and its manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008548A1 (en) 2007-07-11 2009-01-15 Jfe Steel Corporation Process for producing high-strength cold rolled steel sheet with low yield strength and with less material quality fluctuation
JP2009174019A (en) * 2008-01-25 2009-08-06 Nippon Steel Corp Low-yield-ratio-type high-strength cold rolled steel sheet with excellent bake hardening characteristic and delayed natural aging characteristic, and its manufacturing method
US9297060B2 (en) 2009-02-02 2016-03-29 Jfe Steel Corporation High strength galvanized steel sheet and method for manufacturing the same
US8636852B2 (en) 2009-02-02 2014-01-28 Jfe Steel Corporation High strength galvanized steel sheet and method for manufacturing the same
WO2010087529A1 (en) 2009-02-02 2010-08-05 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method therefor
WO2010150919A1 (en) 2009-06-26 2010-12-29 Jfeスチール株式会社 High-strength molten zinc-plated steel sheet and process for production thereof
JP2011026699A (en) * 2009-06-26 2011-02-10 Jfe Steel Corp High-strength molten zinc-plated steel sheet and process for producing the same
US9255318B2 (en) 2009-06-26 2016-02-09 Jfe Steel Corporation High-steel galvanized steel sheet and method for manufacturing the same
WO2011013838A1 (en) 2009-07-28 2011-02-03 Jfeスチール株式会社 High-strength cold-rolled steel sheet and method for producing same
US9039847B2 (en) 2009-07-28 2015-05-26 Jfe Steel Corporation High strength cold rolled steel sheet and method for manufacturing the same
US9534269B2 (en) 2009-07-28 2017-01-03 Jfe Steel Corporation High strength cold rolled steel sheet and method for manufacturing the same
US11946111B2 (en) * 2016-03-31 2024-04-02 Jfe Steel Corporation Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated steel sheet, method for producing steel sheet, and method for producing coated steel sheet
KR20160089316A (en) * 2016-07-18 2016-07-27 주식회사 포스코 High strength hot rolled steel sheet having excellent bake hardenability and low yield ratio and method for manufacturing thereof
KR101714979B1 (en) 2016-07-18 2017-03-10 주식회사 포스코 High strength hot rolled steel sheet having excellent bake hardenability and low yield ratio and method for manufacturing thereof

Also Published As

Publication number Publication date
JP4525383B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
EP2157203B1 (en) High-strength steel sheet superior in formability
JP4977879B2 (en) Super high strength cold-rolled steel sheet with excellent bendability
JP4640130B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
JP5332355B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR102020411B1 (en) High-strength steel sheet having excellent workablity and method for manufacturing thereof
US20120175028A1 (en) High strength steel sheet and method for manufacturing the same
WO2011118459A1 (en) Ultra high strength cold rolled steel sheet and method for producing same
KR102119332B1 (en) High-strength steel sheet and its manufacturing method
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
JP2012112039A (en) High-strength cold-rolled steel sheet superior in deep-drawability and bake hardenability, and method for manufacturing the same
JP2009035818A (en) High-strength hot dip galvanized steel sheet having excellent press formability, and production method therefor
JP2023100953A (en) Plated steel sheet for hot press forming having excellent impact properties after hot press forming, hot press formed member, and manufacturing methods thereof
JP4525383B2 (en) Low yield ratio high strength steel sheet with excellent bake hardening characteristics and method for producing the same
JP4211520B2 (en) High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same
JP2007077510A (en) High-strength high-ductility galvanized steel sheet excellent in aging resistance and its production method
JP3247908B2 (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP6472692B2 (en) High-strength steel sheet with excellent formability
JP6473022B2 (en) High-strength steel sheet with excellent formability
JP3525812B2 (en) High strength steel plate excellent in impact energy absorption and manufacturing method thereof
JP2020509186A (en) High-tensile steel excellent in bendability and stretch flangeability and its manufacturing method
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP4178940B2 (en) High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same
KR20210080664A (en) Steel sheet having excellent ductility and workablity, and method for manufacturing thereof
JP5076691B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JP4517629B2 (en) Composite structure cold-rolled steel sheet, plated steel sheet having excellent surface strain resistance, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4525383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees