JPH05271860A - Structural steel excellent in brittle fracture resistance and its production - Google Patents

Structural steel excellent in brittle fracture resistance and its production

Info

Publication number
JPH05271860A
JPH05271860A JP6751492A JP6751492A JPH05271860A JP H05271860 A JPH05271860 A JP H05271860A JP 6751492 A JP6751492 A JP 6751492A JP 6751492 A JP6751492 A JP 6751492A JP H05271860 A JPH05271860 A JP H05271860A
Authority
JP
Japan
Prior art keywords
surface layer
rolling
point
plate thickness
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6751492A
Other languages
Japanese (ja)
Other versions
JP2807592B2 (en
Inventor
Tadashi Ishikawa
忠 石川
Yuji Nomiyama
裕治 野見山
Hiroshi Takezawa
博 竹澤
Toshiaki Haji
利昭 土師
Hidesato Mabuchi
秀里 間渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4067514A priority Critical patent/JP2807592B2/en
Publication of JPH05271860A publication Critical patent/JPH05271860A/en
Application granted granted Critical
Publication of JP2807592B2 publication Critical patent/JP2807592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To economically produce a structural steel plate excellent in brittle fracture propagation characteristic with high productivity. CONSTITUTION:This plate is a steel plate which has ferrite structure of <=3mum average circle equivalent diameter or bainite structure in the surface layer part and where the aspect ratio (the ratio of major axis to minor axis) of texture colony having the same crystal orientation in the surface layer part structure is regulated to >=4. A steel slab or a steel plate is cooled rapidly down to a temp. not higher than the temp where ferrite fraction becomes >=50% through the region of >=0.02Xt0(mm) at least in a plate thickness direction from the surface layer when t0 represents the plate thickness at the time of water cooling in the course of rolling. Subsequently, rolling is started or resumed at the point of time when the surface layer part reaches a temp. not lower than the Ar1 point and rolling is done in the range between (Ac3-100) deg.C and Ac3 deg.C. Then, cooling is done at least down to the Ar1 point at a rate of >=1 deg.C/ sec without recuperation up to a temp. not lower than the Ac3 point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、構造物の安全性を確保
するための鋼板の重要な性能の一つである脆性破壊伝播
停止(アレスト)性能をNi元素等の高価な合金元素の
添加に頼ることなく、飛躍的に向上させる鋼板およびそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a brittle fracture propagation arrest (arrest) performance, which is one of the important performances of a steel sheet for ensuring the safety of a structure, added with an expensive alloy element such as Ni element. The present invention relates to a steel sheet and a method for manufacturing the same, which dramatically improves the production efficiency without depending on the above.

【0002】[0002]

【従来の技術】脆性破壊伝播停止(アレスト)性能を向
上させる手段として、特開昭59−47323号公報に
記載されているように未再結晶域で十分に圧下する製造
方法、あるいは、積極的に脆性破壊を生じ易い第二相粒
子を分散させて脆性亀裂先端にマイクロクラックを多数
発生せしめ亀裂先端の応力状態を緩和させ、かつマイク
ロクラックと主亀裂間の合体時に生じる延性破壊により
亀裂停止を容易にさせる方法が提案されている。
2. Description of the Related Art As a means for improving the arresting performance of brittle fracture propagation (arrest), as described in JP-A-59-47323, a production method of sufficiently reducing in a non-recrystallized region, or positively The second phase particles, which tend to cause brittle fracture, are dispersed in the cracks to cause many microcracks at the tips of the brittle cracks to relax the stress state at the crack tips, and to stop the cracks by ductile fracture that occurs during the coalescence between the microcracks and the main cracks. A method of making it easier has been proposed.

【0003】しかし、それらの提案は、板厚中心部の組
織を改質し、脆性亀裂伝播停止性能を向上させるもので
あり、板厚表層部の組織で主として決定される落重試験
におけるNDT特性を必ずしも向上させるものではな
い。また、鋼板の板厚が増大すると上記のような板厚中
心部の組織細粒化が達成できないことがあり、とくに板
厚25mm以上の鋼板のアレスト性能向上技術の開発が望
まれている。
However, those proposals are for modifying the structure of the central part of the plate thickness and improving the brittle crack propagation stopping performance, and the NDT characteristic in the drop weight test mainly determined by the structure of the surface part of the plate thickness. Does not necessarily improve. In addition, when the plate thickness of the steel plate increases, the above-described grain refinement of the central portion of the plate thickness may not be achieved, and in particular, development of a technique for improving the arrest performance of the steel plate having a plate thickness of 25 mm or more is desired.

【0004】一方、鋼板表層部に細粒組織を有する鋼板
の製造方法が特開昭61−235534号公報に記載さ
れており、表層部を5μm以下の組織と規定している
が、鉄鋼協会:材料とプロセス,6(1990),p.
1796記載のように、3μm以下のフェライト粒でも
−120℃以下で容易に脆性破壊を生じてしまい、細粒
組織を表層部に形成せしめるアレスト性能向上方法には
限界がある。
On the other hand, a method for producing a steel sheet having a fine grain structure on the surface layer of the steel sheet is described in JP-A-61-235534, and the surface layer is defined as having a structure of 5 μm or less. Materials and Processes, 6 (1990), p.
As described in 1796, even a ferrite grain of 3 μm or less easily causes brittle fracture at −120 ° C. or less, and there is a limit to the method of improving the arrest performance for forming a fine grain structure in the surface layer portion.

【0005】また、特願平02−24509号明細書に
は、板厚の1/3までの表層部を冷却・復熱させ、表層
部の組織改善により高アレスト化を達成する技術が開示
されている。しかし、この方法では板厚の1/3にいた
る広い範囲にわたり、冷却復熱を実現させなければなら
ず外部熱源なしには板厚中心部が加工フェライトが生成
して靭性が劣化してしまう可能性が大きい。また、かよ
うな製造方法でアレスト性能が向上できるものの、アレ
スト性能向上に必要な組織が明確でなく、効率的にアレ
スト性能を向上するために必要な表層組織、およびその
必要厚みが不明である。
Further, Japanese Patent Application No. 02-24509 discloses a technique for cooling and reheating the surface layer portion up to ⅓ of the plate thickness and improving the structure by improving the structure of the surface layer portion. ing. However, with this method, it is necessary to realize cooling recuperation over a wide range up to 1/3 of the plate thickness, and without an external heat source, processed ferrite is generated in the center part of the plate thickness and toughness may deteriorate. The nature is great. Further, although the arrest performance can be improved by such a manufacturing method, the structure necessary for improving the arrest performance is not clear, and the surface structure necessary for efficiently improving the arrest performance and its necessary thickness are unknown. ..

【0006】[0006]

【発明が解決しようとする課題】本発明は、表層部の組
織改質によりアレスト性能であるKca特性とNDT特
性を向上させるために必要な所要組織と所要厚みを明確
化し、製造コストを大きく上昇させる高価なNi元素等
を添加することなく、アレスト性能の良好な鋼板および
その製造方法を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention clarifies the required structure and required thickness for improving the Kca property and NDT property which are the arrest performance by modifying the structure of the surface layer portion, and greatly increases the manufacturing cost. An object of the present invention is to provide a steel sheet having good arrestability and a method for manufacturing the steel sheet without adding expensive Ni element or the like.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を達
成するために、(1)表層から少なくとも板厚の2%以
上の範囲にわたり、平均円相当粒径が3μm以下のフェ
ライト組織、もしくはベーナイト組織を有し、且つ、そ
の表層部組織の同一結晶方位を有する集合組織コロニー
のアスペクト比(長径/短径の比)が4以上であること
を特徴とする鋼板を基本手段とする。
In order to achieve the above object, the present invention provides (1) a ferrite structure having a mean equivalent circle diameter of 3 μm or less over a range of at least 2% of the plate thickness from the surface layer, or A steel sheet having a bainite structure and having an aspect ratio (ratio of major axis / minor axis) of a texture colony having the same crystal orientation of its surface layer structure is 4 or more is a basic means.

【0008】更に本発明は(2)Ac3 点以上の温度の
鋼片もしくは鋼板を、圧延中途中水冷時の板厚をt0
した時、表層から少なくとも板厚方向に0.02×t0
(mm)以上の領域を2℃/sec でフェライト分率が50
%以上となる温度以下に急冷して、その後、当該表層部
がAr1 点以上の温度から圧延を開始もしくは再開し、
(Ac3 点−100)℃からAc3 点の範囲で圧延を終
了させ、その後Ac3点まで復熱させることなく、1℃
/sec 以上で少なくともAr3 点まで冷却とすることを
特徴とすることを第二の手段とし、(3)Ac3 点以上
の温度の鋼片もしくは鋼板を、圧延中途中水冷時の板厚
をt0 とした時、表層から少なくとも板厚方向に0.0
2×t0 (mm)以上の領域を2℃/sec でフェライト分
率が50%以上となる温度以下に急冷して、その後、当
該表層部がAr1 点以上の温度から圧延を開始もしくは
再開し、(Ac3 −100)℃からAc3 ℃の範囲で圧
延を終了させ、その後Ac3 点まで復熱させることなく
冷却速度が5℃/sec 以上で加速冷却して製造すること
を第三の手段とし、(4)550℃以下で焼戻し熱処理
を適用することを第四の手段とするものである。
Further, according to the present invention, (2) a steel slab or a steel plate having a temperature of Ac 3 or more is 0.02 × t from the surface layer at least in the plate thickness direction when the plate thickness during water cooling during rolling is t 0. 0
The ferrite fraction is 50 at 2 ° C / sec in the area above (mm).
% Or more, and then the surface layer portion starts or restarts rolling from a temperature of Ar 1 point or more,
Rolling is completed within the range of (Ac 3 points −100) ° C. to Ac 3 points, and then 1 ° C. without reheating to the Ac 3 points.
The second means is characterized in that cooling is performed to at least the Ar 3 point for at least 3 sec / sec, and (3) a steel slab or a steel plate having a temperature of the Ac 3 point or more is set to have a thickness during water cooling during rolling. When t 0 , it is 0.0 from the surface layer at least in the plate thickness direction.
A region of 2 × t 0 (mm) or more is rapidly cooled to a temperature at which the ferrite fraction is 50% or more at 2 ° C./sec, and then the surface layer portion starts or restarts rolling at a temperature of Ar 1 point or more. Then, the rolling is completed in the range of (Ac 3 -100) ° C to Ac 3 ° C, and thereafter, accelerated cooling is performed at a cooling rate of 5 ° C / sec or more without reheating to the Ac 3 point. And (4) applying a tempering heat treatment at 550 ° C. or lower is the fourth means.

【0009】本発明において、対象とする構造用鋼は、
例えば前記した特公昭58−14849号公報に記載さ
れ、次記するように、通常の構造用鋼が所要の材質を得
るために、従来から当業分野での活用で確認されている
作用・効果の関係を基に定めている添加元素の種類と量
を同様に使用して同等の作用と効果が得られる。従って
これ等の元素を含む鋼を本発明は対象鋼とするものであ
る。
In the present invention, the target structural steel is
For example, as described in JP-B-58-14849 mentioned above, as will be described below, in order to obtain the required material for the ordinary structural steel, the actions and effects that have been conventionally confirmed in the utilization in the field of the art. The same action and effect can be obtained by similarly using the types and amounts of the additional elements defined based on the relationship of. Therefore, the present invention is intended for steels containing these elements.

【0010】これ等の各成分元素とその添加理由と量は
以下の通りである。Cは鋼の強度を向上する有効な成分
として0.02%以上添加するものであるが、0.20
%を超える過剰な含有量では、2相域圧延時の変形抵抗
を増して圧延を困難にするばかりか、溶接部に島状マル
テンサイトを析出し、鋼の靭性を著しく劣化させるの
で、0.02%〜0.20%に規制する。
The respective constituent elements, the reasons for their addition and the amounts thereof are as follows. C is an effective component for improving the strength of steel and is added in an amount of 0.02% or more.
If the content exceeds 0.1%, not only does the deformation resistance during the two-phase region rolling increase and rolling becomes difficult, but island martensite precipitates in the welded portion, significantly degrading the toughness of the steel. It is regulated to 02% to 0.20%.

【0011】Siは溶鋼の脱酸元素として必要であり、
強度増加元素として有用であるが、1.0%を超えると
鋼の加工性が低下し、溶接部の靭性が劣化し、0.01
%未満では脱酸効果が不十分なため、添加量を0.01
〜1.0%に規制する。
Si is necessary as a deoxidizing element for molten steel,
Although it is useful as a strength increasing element, if it exceeds 1.0%, the workability of the steel is deteriorated and the toughness of the welded portion is deteriorated.
%, The deoxidizing effect is insufficient, so the addition amount is 0.01
Regulate to ~ 1.0%.

【0012】Mnは鋼材の強度を向上する成分として
0.3%以上の添加が必要であるが、Mnの添加は変態
温度を下げるので、過剰の添加は2相域圧延温度を下げ
すぎ変形抵抗が上昇するので2.0%を上限とする。
Although Mn must be added in an amount of 0.3% or more as a component for improving the strength of the steel material, the addition of Mn lowers the transformation temperature. Therefore, the upper limit is 2.0%.

【0013】AlおよびNはAl窒化物による鋼の微細
化の他、圧延過程での固溶、析出による鋼の結晶方位の
整合および再結晶のために添加するが、添加量が少ない
時は効果がなく、過剰の添加は鋼の靭性を劣化させるの
で、Alは0.001〜0.20%に、Nは0.020
%以下とする。
Al and N are added not only for refining steel by Al nitride but also for solid solution during rolling process, matching of crystal orientation of steel due to precipitation and recrystallization, but when the addition amount is small, it is effective. However, since the addition of an excessive amount deteriorates the toughness of steel, Al is 0.001 to 0.20% and N is 0.020.
% Or less.

【0014】PおよびSは、母材の靭性確保のため、そ
れぞれ0.01%以下、0.01%以下とする。以上
が、本発明の対象とする鋼の基本成分であるが、母材強
度の上昇或いは、継手靭性の向上の目的のため、要求さ
れる性質に応じて、合金元素を添加する場合は、変態温
度を下げ過ぎると2相域での変形抵抗が増し、圧延が困
難になるので、添加する合金としてはNi,Cr,M
o,Cu,W,P,Co,V,Nb,Ti,Zr,T
a,Hf,希土類元素,Y,Ca,Mg,Te,Se,
Bの1種類以上が使用できるが、その添加量は合計で
4.5%以下に規制する。尚、平均円相当粒径とは、該
当する組織の個別の粒に注目して、その面積が等しくな
るように想定した円の直径を求め、平均したものであ
る。
P and S are 0.01% or less and 0.01% or less, respectively, in order to secure the toughness of the base material. The above is the basic composition of the steel to be the subject of the present invention, for the purpose of increasing the base metal strength or improving the joint toughness, depending on the properties required, when adding an alloying element, transformation If the temperature is lowered too much, the deformation resistance in the two-phase region increases and rolling becomes difficult, so the alloys to be added are Ni, Cr, M.
o, Cu, W, P, Co, V, Nb, Ti, Zr, T
a, Hf, rare earth element, Y, Ca, Mg, Te, Se,
One or more types of B can be used, but the total addition amount is restricted to 4.5% or less. Note that the average circle-equivalent grain diameter is obtained by focusing on individual grains of a corresponding tissue, obtaining the diameters of circles assumed to have equal areas, and averaging the diameters.

【0015】[0015]

【作用】本発明者らは、Ni元素を含有しないフェライ
ト・パーライト鋼板のフェライト粒径を5μm以下に細
粒化しても、母材靭性であるvTrsは殆ど向上しなか
った事実に着目し、その機構の解明を通して、鋼板の靭
性を向上させるために必要な脆性破壊に対する抵抗に関
する考察、および実験を実施した。
The present inventors focused on the fact that even if the ferrite grain size of the ferrite-pearlite steel sheet containing no Ni element was reduced to 5 μm or less, the base material toughness vTrs was hardly improved. Through the elucidation of the mechanism, consideration about the resistance to brittle fracture necessary for improving the toughness of the steel sheet and the experiment were conducted.

【0016】亀裂、あるいは切欠の先端における局部応
力が鋼板の組織によって決定される限界微視的破壊応力
以上になると、脆性破壊が発生することが既に知られて
いる。すなわち、鋼板の靭性を向上させるためには、
鋼板の持つ限界微視的破壊応力を向上させる方法と、
亀裂あるいは切欠先端の応力をなんらかの手段で低下さ
せる方法が考えられる。
It is already known that brittle fracture occurs when the local stress at the tip of the crack or notch exceeds the critical microscopic fracture stress determined by the structure of the steel sheet. That is, in order to improve the toughness of the steel sheet,
A method of improving the limit microscopic fracture stress of a steel plate,
It is conceivable to reduce the stress at the crack or notch tip by some means.

【0017】上記の方法としては、集合組織を発達さ
せて、鋼板の板厚と平行方向にセパレーションという縦
割れを生じさせ、結果的に亀裂あるいは切欠先端の拘束
を解放し、応力を低下させる現象が知られている。すな
わち、限界微視的破壊応力に局所応力が達する以前に、
必ずセパレーションが発生すればよいことがわかる。そ
のためには、鋼板の限界破壊応力がセパレーション発生
応力に比べ高いことが必要である。しかし、実際のフェ
ライト−オーステナイト2相域で圧延された鋼板では、
塑性変形の支配的な温度では、破壊に先立ちセパレーシ
ョンを発生するが、低温では脆性破壊を呈する。
As the above method, a phenomenon in which a texture is developed to cause vertical cracks called separation in the direction parallel to the plate thickness of the steel sheet, and as a result, cracks or notch tips are released and stress is reduced. It has been known. That is, before the local stress reaches the critical microscopic fracture stress,
It turns out that it suffices that separation occurs. For that purpose, it is necessary that the critical fracture stress of the steel sheet is higher than the separation generation stress. However, in the actual steel sheet rolled in the ferrite-austenite two-phase region,
Separation occurs prior to fracture at the temperature at which plastic deformation prevails, but brittle fracture occurs at low temperatures.

【0018】これは、低温になると鋼材の降伏点が上昇
し、亀裂先端の塑性域が小さくなるために、セパレーシ
ョンの発生に必要な結晶方位の異なるコロニー間での塑
性異方性による局部変形が生じないためであると考えら
れるので、下記に示すような化学成分を有する一般的な
構造用鋼を用いて、種々の実験を行った。 C :0.04〜0.15% Si:0.15〜
0.25% Mn:0.4〜1.6% Al:0.01〜
0.05% P :0.005〜0.008% S :0.001
〜0.003% まず、集合組織によりセパレーションを発生させるため
に必要な組織形態を定量化するため、種々2相域圧延条
件を変化させて集合組織レベルの異なる鋼板を製造し
た。集合組織を組織上で定量化するために、結晶方位に
よって酸化皮膜の厚みの変化を利用したテンパーカラー
法を適用して同一結晶方位を有するコロニーを現出さ
せ、そのアスペクト比(長径/短径の比)と板厚方向の
限界破壊応力を評価した。その結果、図1に示すように
アスペクト比が4以上であれば、板厚方向の限界破壊応
力は集合組織のないアスペクト比約1の場合の1/2以
下となることを知見した。図2はアスペクト比の模式図
である。
This is because the yield point of the steel material rises at low temperatures and the plastic region at the crack tip becomes smaller, so that local deformation due to plastic anisotropy between colonies with different crystal orientations necessary for the occurrence of separation is caused. It is considered that this is because it does not occur, so various experiments were conducted using general structural steels having the chemical compositions shown below. C: 0.04 to 0.15% Si: 0.15 to
0.25% Mn: 0.4 to 1.6% Al: 0.01 to
0.05% P: 0.005-0.008% S: 0.001
~ 0.003% First, in order to quantify the microstructure morphology necessary for generating separation by the texture, various two-phase rolling conditions were changed to manufacture steel sheets having different texture levels. In order to quantify the texture on the texture, a temper color method that uses the change in the thickness of the oxide film depending on the crystal orientation was applied to reveal colonies with the same crystal orientation, and the aspect ratio (major axis / minor axis) Ratio) and the critical fracture stress in the plate thickness direction were evaluated. As a result, as shown in FIG. 1, it has been found that when the aspect ratio is 4 or more, the critical fracture stress in the plate thickness direction is 1/2 or less of the case where the aspect ratio is about 1 without texture. FIG. 2 is a schematic diagram of the aspect ratio.

【0019】次にアスペクト比が4以上となるように2
相域圧延を実施した鋼板を用いて、セパレーションの発
生限界温度に及ぼすフェライト粒径の関係を調査した。
その結果を図3に示す。−170℃以下の低温域でもセ
パレーションを生じさせるためにはフェライト粒径が3
μm以下であることを知見した。
Next, the aspect ratio becomes 2 or more so that it becomes 4 or more.
The relationship between the ferrite grain size and the critical temperature at which separation occurs was investigated using a steel sheet that had been phase-rolled.
The result is shown in FIG. In order to cause separation even in a low temperature range of −170 ° C. or less, the ferrite grain size is 3
It was found that it was less than μm.

【0020】図4に、アスペクト比の異なるフェライト
粒径と脆性破壊発生靭性Kcとの関係を示す。すなわ
ち、集合組織を発達させ、且つセパレーションを極低温
でも発生させるように、フェライト粒径を3μm以下に
細粒化することが脆性破壊抵抗を向上させる決め手とな
る。これは、マトリックス組織であるフェライトを超細
粒化し限界微視的破壊応力を高め、かつセパレーション
を発生可能な集合組織を発達させたためである。
FIG. 4 shows the relationship between the ferrite grain sizes having different aspect ratios and the brittle fracture initiation toughness Kc. That is, it is a decisive factor for improving the brittle fracture resistance to reduce the ferrite grain size to 3 μm or less so that the texture is developed and the separation is generated even at an extremely low temperature. This is because ferrite, which is a matrix structure, was made into ultrafine grains to enhance the critical microscopic fracture stress and to develop a texture structure capable of generating separation.

【0021】この組織を達成するためには、例えば、昇
温過程中のフェライトにある必要量の加工を与え、且つ
オーステナイト化への逆変態を防止すれば、加工フェラ
イトに導入された転位は回復、再配列を起こし、フェラ
イトの超細粒化により限界微視的破壊応力の向上がはか
れ、且つフェライトへ与えた加工により発達させた集合
組織は、そのまま残留させることにより本発明の組織が
達成できることを知見した。
In order to achieve this structure, for example, if the ferrite is subjected to a necessary amount of working during the temperature rising process and the reverse transformation to austenite is prevented, the dislocations introduced into the worked ferrite are recovered. , The rearrangement is caused, the ultimate microscopic fracture stress is improved by the ultra-fine graining of ferrite, and the texture developed by the processing given to ferrite achieves the texture of the present invention by leaving it as it is. I found that I could do it.

【0022】そこで、圧延中に鋼板表面を水冷し、一旦
フェライト変態させてしまい、冷却によっても殆ど温度
の低下しない板厚中心部の顕熱を利用して、表層部のフ
ェライト組織を昇温させながらさらに圧延を行い、表層
部のみ集合組織を有する3μm以下の超細粒組織を形成
させた。
Therefore, during rolling, the surface of the steel sheet is water-cooled to transform it into ferrite, and the sensible heat of the center of the sheet thickness where the temperature hardly drops even by cooling is used to raise the ferrite structure of the surface layer portion. While further rolling, an ultrafine grain structure of 3 μm or less having a texture only in the surface layer portion was formed.

【0023】この時、圧延後空冷させたものは、圧延後
の温度が高いため超細粒組織の一部が粒成長を生じ、目
的の組織が得られないことがあった。そこで、圧延後粒
成長を抑制するため、Ar1 点まで冷却させたところ1
℃/sec 以上の表層部冷却速度であれば所定組織を得る
ことが確認できた。
At this time, in the case where the material was air-cooled after rolling, the temperature after rolling was high, so that a part of the ultrafine grain structure caused grain growth, and the target structure could not be obtained. Therefore, in order to suppress the grain growth after rolling, when cooled to the Ar 1 point, 1
It was confirmed that a predetermined structure could be obtained if the cooling rate of the surface layer portion was not less than ° C / sec.

【0024】また、圧延中の水冷条件等を変化させて、
その表層改質組織の厚みを変化させた鋼板のKca性能
を調査した結果、表層改質組織の厚み増大によってKc
a特性が向上し、鋼板に要求されるKca性能に応じて
必要な表層改質組織の厚みが存在することが知見され
た。
Also, by changing the water cooling conditions during rolling,
As a result of investigating the Kca performance of the steel sheet in which the thickness of the surface layer modified structure is changed, Kc is increased by increasing the thickness of the surface layer modified structure.
It has been found that the a-characteristics are improved, and that the required thickness of the surface-modified structure exists depending on the Kca performance required for the steel sheet.

【0025】[0025]

【実施例】実施例の供試鋼の成分を表1に、製造条件お
よび得られた材質を表2に比較例と共に示す。
[Examples] Table 1 shows the components of the sample steels of Examples, and Table 2 shows the manufacturing conditions and the obtained materials together with Comparative Examples.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】本発明例の試験番号1〜12および比較例
の試験番号13〜16,21,22,24は、粗圧延後
に冷却を適用し、鋼板表層部をフェライト変態させたも
のであるが、比較例の試験番号14,21,22は冷却
速度が遅かったため、鋼板全体の温度が低下し、冷却後
の圧延が昇温加工とはならなかった。また、比較例の試
験番号24は、冷却後経過時間が長すぎて冷却後の圧延
の所要条件を満たすことができなかった。そのため、比
較例である試験番号21,22,24の表層部の組織は
細粒化しなかった。
The test numbers 1 to 12 of the present invention and the test numbers 13 to 16, 21, 22, and 24 of the comparative examples are those in which cooling was applied after rough rolling and the surface layer of the steel sheet was transformed into ferrite. In the test numbers 14, 21, and 22 of the comparative examples, the cooling rate was slow, so that the temperature of the entire steel sheet decreased, and the rolling after cooling did not become the temperature rising working. Moreover, in the test number 24 of the comparative example, the elapsed time after cooling was too long to satisfy the requirements for rolling after cooling. Therefore, the microstructures of the surface layer portions of test numbers 21, 22, and 24, which are comparative examples, were not made fine.

【0030】これらの比較例の材質は、板厚全体が2相
域圧延となってしまい、母材靭性であるvTrsも劣化
し、NDT特性、アレスト特性ともに劣化した。また、
比較例の試験番号17〜20,23は、いずれも粗圧延
後の冷却は実施しておらず、仕上げ圧延温度が板厚平均
でAr3 点直上を狙っていたため、表面の温度はAr3
点以下となり、ここでの圧延によりフェライトの異常粒
成長が生じ、その結果表層部のフェライト粒径が粗大化
した。
In the materials of these comparative examples, the entire plate thickness was rolled in the two-phase region, the vTrs which is the toughness of the base material was deteriorated, and both the NDT characteristics and the arrest characteristics were deteriorated. Also,
In each of the test numbers 17 to 20 and 23 of the comparative examples, cooling after rough rolling was not carried out, and the finish rolling temperature was aimed at just above the Ar 3 point in the plate thickness average, so that the surface temperature was Ar 3
Below the point, rolling caused abnormal ferrite grain growth, and as a result, the ferrite grain size in the surface layer was coarsened.

【0031】また、比較例13,16は所定の冷却・圧
延を実施しているものの、圧延終了後空冷したため、フ
ェライト粒径が3μm以下にならず、比較例15,16
は圧延後の復熱過程でAc3 以上に復熱したので部分的
に粒成長を生じ、所定の組織が得られなかった。したが
って、これらの比較例である試験番号13〜20,23
はアレスト性能としてKca=600kgf/mm1.5 を示す
温度、NDT特性共に−60℃には達しなかった。
Further, in Comparative Examples 13 and 16, although the predetermined cooling / rolling was carried out, the ferrite grain size did not become 3 μm or less because of air cooling after the completion of rolling, and Comparative Examples 15 and 16
In the recuperating process after rolling, the alloy recuperated to Ac 3 or more, so that grain growth partially occurred and a predetermined structure could not be obtained. Therefore, test numbers 13 to 20 and 23 which are comparative examples
As for the arrest performance, both temperature and NDT characteristics showing Kca = 600 kgf / mm 1.5 did not reach -60 ° C.

【0032】これに対し、本発明例の試験番号1〜12
の材質は、表2に示す通り、所要の製造条件を満足し、
目標の強度・靭性を満足すると共に、本発明の狙いであ
るNDT温度が−70℃以上を示し、アレスト性能であ
るKca=600kgf/mm1.5を示す温度も十分な特性で
あった。
On the other hand, test numbers 1 to 12 of the examples of the present invention
The material of the material satisfies the required manufacturing conditions, as shown in Table 2,
In addition to satisfying the target strength and toughness, the NDT temperature, which is the aim of the present invention, was -70 ° C. or higher, and the temperature at which the arrest performance, Kca = 600 kgf / mm 1.5 , was also a sufficient characteristic.

【0033】[0033]

【発明の効果】本発明は上記した手段を用いて上記した
作用を利用したので、粗圧延後、表層部のみ冷却してA
1 点以下とした後、板厚内部の顕熱により復熱しなが
ら圧延を実施すれば、NDT特性を劣化させる表層部の
脆化組織を生成させることなく板厚中心部に十分な未再
結晶域圧延を実施するため、アレスト性能であるNDT
特性とKca特性を両立することを可能とするもので、
当業分野はもちろん、関連分野にもたらす効果が大き
い。
Since the present invention utilizes the above-mentioned action by using the above-mentioned means, after the rough rolling, only the surface layer portion is cooled to
After r 1 or less, if rolling is performed while recovering heat by sensible heat inside the plate thickness, sufficient unrecrystallized in the center part of the plate thickness without generating an embrittlement structure in the surface layer portion that deteriorates NDT characteristics. NDT, which has arrest performance for rolling area rolling
It is possible to achieve both characteristics and Kca characteristics,
It has a great effect not only in the field of art but also in related fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】テンパーカラー法で現出させた組織の同一方位
を有するコロニーの長径/短径の比(アスペクト比)と
板厚方向の限界破壊応力の関係の図表である。
FIG. 1 is a diagram showing a relationship between a ratio of major axis / minor axis (aspect ratio) of a colony having the same orientation of a tissue developed by a temper color method and a critical fracture stress in a plate thickness direction.

【図2】アスペクト比の模式図である。FIG. 2 is a schematic diagram of an aspect ratio.

【図3】フェライト粒径とセパレーション発生限界温度
との関係の図表である。
FIG. 3 is a chart showing a relationship between a ferrite grain size and a separation generation limit temperature.

【図4】フェライト粒径と−165℃における脆性破壊
発生靭性であるKc値との関係の図表である。
FIG. 4 is a chart showing the relationship between the ferrite grain size and the Kc value, which is the toughness at which brittle fracture occurs at −165 ° C.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月4日[Submission date] December 4, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】[0028]

【表3】 [Table 3]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0032】これに対し、本発明例の試験番号1〜12
の材質は、表2に示す通り、所要の製造条件を満足し、
目標の強度・靭性を満足すると共に、本発明の狙いであ
るNDT温度が−70℃以上を示し、アレスト性能であ
るKca=600kgf/mm1.5を示す温度も十分な特性で
あった。また、疲労特性も本発明例は良好であった。
On the other hand, test numbers 1 to 12 of the examples of the present invention
The material of the material satisfies the required manufacturing conditions, as shown in Table 2,
In addition to satisfying the target strength and toughness, the NDT temperature, which is the aim of the present invention, was -70 ° C. or higher, and the temperature at which the arrest performance, Kca = 600 kgf / mm 1.5 , was also a sufficient characteristic. The fatigue characteristics of the inventive examples were also good.

フロントページの続き (72)発明者 土師 利昭 大分市大字西ノ洲1番地 新日本製鐵株式 会社大分製鐵所内 (72)発明者 間渕 秀里 大分市大字西ノ洲1番地 新日本製鐵株式 会社大分製鐵所内Front page continuation (72) Inventor Toshiaki Hajishi Oita-shi Osamu Nishinosu 1st Nippon Steel Co., Ltd. Oita Steel Co., Ltd. Inside the ironworks

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋼板の表裏層部にそれぞれ板厚の2%以
上の範囲にわたって平均円相当径で3μm以下のフェラ
イト組織、もしくはベーナイト組織を有し、且つその表
層部組織の同一結晶方位を有する集合組織コロニーのア
スペクト比(長径/短径の比)が4以上であることを特
徴とする耐脆性破壊特性の良好な構造用鋼。
1. The front and back layers of a steel sheet each have a ferrite structure or bainite structure with an average equivalent circle diameter of 3 μm or less over a range of 2% or more of the plate thickness, and have the same crystal orientation of the surface layer structure. A structural steel having good brittle fracture resistance, characterized in that the texture colony has an aspect ratio (ratio of major axis / minor axis) of 4 or more.
【請求項2】 Ac3 点以上の温度の鋼片もしくは鋼板
を、圧延中途中水冷時の板厚をt0 とした時、表層から
少なくとも板厚方向に0.02×t0 (mm)以上の領域
を2℃/sec 以上の冷速でフェライト分率が50%以上
となるまで急冷して、その後、当該表層部がAr1 点以
上の温度から圧延を開始もしくは再開し、(Ac3 点−
100)℃からAc3 点の範囲で圧延を終了し、その後
Ac3点以上に復熱させることなく少なくともAr1
迄を当該表層部を1℃/sec 以上の冷速で冷却し、表層
部から少なくとも板厚の2%以上の範囲にわたって平均
円相当粒径が3μm以下のフェライト組織、もしくはベ
ーナイト組織を有し、且つ、その表層部組織の同一結晶
方位を有する集合組織コロニーのアスペクト比(長径/
短径の比)を4以上とすることを特徴とする耐脆性破壊
特性の良好な構造用鋼板の製造方法。
2. A steel plate or a steel plate having a temperature of Ac 3 points or more is 0.02 × t 0 (mm) or more from the surface layer at least in the plate thickness direction when the plate thickness during water cooling during rolling is t 0. Area is rapidly cooled at a cooling rate of 2 ° C./sec or more until the ferrite fraction reaches 50% or more, and then the surface layer portion starts or restarts rolling at a temperature of Ar 1 point or more, and (Ac 3 point −
Rolling is completed within the range of 100) ° C. to Ac 3 points, and then the surface layer portion is cooled at a cooling rate of 1 ° C./sec or more until at least the Ar 1 point without reheating to the Ac 3 point or more, and then the surface layer portion To at least 2% of the plate thickness, the aspect ratio (major axis) of a textured colony having a ferrite structure or bainite structure with an average circle-equivalent grain size of 3 μm or less and having the same crystallographic orientation of its surface layer structure /
A ratio of minor axis) is 4 or more, and a method for producing a structural steel sheet having good brittle fracture resistance.
【請求項3】 圧延を終了させ、その後Ac3 点以上に
復熱させることなく冷却速度が5℃/sec 以上で加速冷
却することを特徴とする請求項2記載の耐脆性破壊特性
の良好な構造用鋼板の製造方法。
3. The brittle fracture resistance is good according to claim 2, wherein the rolling is terminated, and thereafter, accelerated cooling is performed at a cooling rate of 5 ° C./sec or more without reheat to the Ac 3 point or more. Method for manufacturing structural steel sheet.
【請求項4】 圧延を終了後Ac3 点以上に復熱させる
ことなく冷却速度が5℃/sec 以上で加速冷却し、さら
に焼戻し熱処理をすることを特徴とする請求項2記載の
耐脆性破壊特性の良好な構造用鋼板の製造方法。
4. The embrittlement-resistant fracture according to claim 2, wherein after the rolling is finished, accelerated cooling is performed at a cooling rate of 5 ° C./sec or more without reheating to Ac 3 point or more, and further tempering heat treatment is performed. A method for manufacturing a structural steel sheet having good characteristics.
JP4067514A 1992-03-25 1992-03-25 Method for producing structural steel sheet with good brittle fracture resistance Expired - Lifetime JP2807592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4067514A JP2807592B2 (en) 1992-03-25 1992-03-25 Method for producing structural steel sheet with good brittle fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4067514A JP2807592B2 (en) 1992-03-25 1992-03-25 Method for producing structural steel sheet with good brittle fracture resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP22333696A Division JP2971401B2 (en) 1996-08-26 1996-08-26 Structural steel plate with good brittle fracture resistance

Publications (2)

Publication Number Publication Date
JPH05271860A true JPH05271860A (en) 1993-10-19
JP2807592B2 JP2807592B2 (en) 1998-10-08

Family

ID=13347172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4067514A Expired - Lifetime JP2807592B2 (en) 1992-03-25 1992-03-25 Method for producing structural steel sheet with good brittle fracture resistance

Country Status (1)

Country Link
JP (1) JP2807592B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389164A (en) * 1993-02-10 1995-02-14 Nippon Steel Corporation Production method of strong and tough thick steel plate
WO1995026424A1 (en) * 1994-03-29 1995-10-05 Nippon Steel Corporation Steel plate excellent in prevention of brittle crack propagation and low-temperature toughness and process for producing the plate
JP2008179878A (en) * 2006-12-28 2008-08-07 Jfe Steel Kk High-strength thick steel plate superior in brittle crack propagation preventing characteristic, and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819432A (en) * 1981-07-24 1983-02-04 Nippon Steel Corp Manufacture of steel for line pipe with superior characteristic of stopping propagation of brittle crack
JPS61235534A (en) * 1985-04-09 1986-10-20 Nippon Steel Corp Thick steel plate excellent in stopping characteristics for transmission of brittleness and crack and its production
JPS624826A (en) * 1985-07-01 1987-01-10 Kobe Steel Ltd Manufacture of high strength and toughness steel plate for line pipe superior in characteristic for stopping unstable ductility fracture propagation
JPH032322A (en) * 1989-02-06 1991-01-08 Nippon Steel Corp Manufacture of steel plate having excellent brittle fracture-propagation stop characteristics
JPH059651A (en) * 1991-07-05 1993-01-19 Kobe Steel Ltd Steel plate having excellent property of stopping propagation of brittle fracture and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819432A (en) * 1981-07-24 1983-02-04 Nippon Steel Corp Manufacture of steel for line pipe with superior characteristic of stopping propagation of brittle crack
JPS61235534A (en) * 1985-04-09 1986-10-20 Nippon Steel Corp Thick steel plate excellent in stopping characteristics for transmission of brittleness and crack and its production
JPS624826A (en) * 1985-07-01 1987-01-10 Kobe Steel Ltd Manufacture of high strength and toughness steel plate for line pipe superior in characteristic for stopping unstable ductility fracture propagation
JPH032322A (en) * 1989-02-06 1991-01-08 Nippon Steel Corp Manufacture of steel plate having excellent brittle fracture-propagation stop characteristics
JPH059651A (en) * 1991-07-05 1993-01-19 Kobe Steel Ltd Steel plate having excellent property of stopping propagation of brittle fracture and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389164A (en) * 1993-02-10 1995-02-14 Nippon Steel Corporation Production method of strong and tough thick steel plate
WO1995026424A1 (en) * 1994-03-29 1995-10-05 Nippon Steel Corporation Steel plate excellent in prevention of brittle crack propagation and low-temperature toughness and process for producing the plate
US6090226A (en) * 1994-03-29 2000-07-18 Nippon Steel Corporation Steel plate excellent in brittle crack propagation arrest characteristics and low temperature toughness and process for producing same
JP2008179878A (en) * 2006-12-28 2008-08-07 Jfe Steel Kk High-strength thick steel plate superior in brittle crack propagation preventing characteristic, and its manufacturing method

Also Published As

Publication number Publication date
JP2807592B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
JP3848465B2 (en) Method for producing thick high-tensile steel with excellent low-temperature toughness
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP2006161111A (en) Hot rolled steel plate and its production method
JP4502272B2 (en) Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JP7070814B1 (en) Thick steel plate and its manufacturing method
JPS62205230A (en) Manufacture of steel plate for low temperature service superior in characteristic for stopping brittle cracking propagation
JPH1171615A (en) Production of thick steel plate excellent in low temperature toughness
JP2659654B2 (en) Steel plate excellent in brittle fracture characteristics and fatigue characteristics and method for producing the same
JP2807592B2 (en) Method for producing structural steel sheet with good brittle fracture resistance
JP3261515B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP3348359B2 (en) Structural steel with excellent arrest performance and its manufacturing method
JP2662485B2 (en) Steel sheet having good low-temperature toughness and method for producing the same
JPH05271861A (en) Structural steel for welding excellent in brittle fracture propagation arresting characteristic
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP3359349B2 (en) Structural steel with excellent brittle fracture resistance
JP2971401B2 (en) Structural steel plate with good brittle fracture resistance
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
JP2633757B2 (en) Structural steel plate for welding with excellent brittle fracture arrestability and method of manufacturing the same
JPH1121625A (en) Production of thick steel plate excellent in strength and toughness
JPH0734126A (en) Production of low-alloy seamless steel pipe for finely grained structure
JP3000860B2 (en) Manufacturing method of austenitic stainless steel plate

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070724

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100724

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110724

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 14