JPS58136717A - Manufacture of high tensile hot rolled steel strip containing vanadium - Google Patents

Manufacture of high tensile hot rolled steel strip containing vanadium

Info

Publication number
JPS58136717A
JPS58136717A JP1710782A JP1710782A JPS58136717A JP S58136717 A JPS58136717 A JP S58136717A JP 1710782 A JP1710782 A JP 1710782A JP 1710782 A JP1710782 A JP 1710782A JP S58136717 A JPS58136717 A JP S58136717A
Authority
JP
Japan
Prior art keywords
temperature
rolled
steel
less
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1710782A
Other languages
Japanese (ja)
Inventor
Kazutoshi Kunishige
国重 和俊
Masashi Takahashi
高橋 政司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1710782A priority Critical patent/JPS58136717A/en
Publication of JPS58136717A publication Critical patent/JPS58136717A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture the titled steel strip with superior strength, ductility and toughness by holding a continuously cast slab of a low carbon steel consisting of Si, Mn, S, Al, V, N and the balance essentially Fe at a specified temp., hot rolling the slab, and coiling the resulting strip after rapid cooling. CONSTITUTION:A steel slab consisting of, by weight, 0.02-0.15% C, <=1.50% Si, 0.5-2.20% Mn, <=0.010% S, 0.005-0.020% sol.Al, 0.02-0.30% V, 0.0050- 0.0200% N and the balance Fe with inevitable impurities is manufactured by a continuous casting method. The slab is held at the A3 point - 1,180 deg.C for a fixed time and hot rolled at <=1,100 deg.C and >=70% draft. After finishing the rolling at 850-680 deg.C, the resulting strip is rapidly cooled to 650-500 deg.C at >=3 deg.C/sec cooling rate and coiled at the temp.

Description

【発明の詳細な説明】 この発明は、ラインパイプや自動車構造物などの素材と
して好適力、高い強度を有するとともに延性及び低温靭
性にもすぐれているバナジウム(V)含有熱延高張力鋼
帯の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vanadium (V)-containing hot-rolled high-strength steel strip that is suitable as a material for line pipes, automobile structures, etc. and has high strength and excellent ductility and low-temperature toughness. This relates to a manufacturing method.

近年、省エネルギーや、圧延段階を特定の条件で細かく
コントロールしようという制御圧延の立場から、被圧延
材を比較的低温度に加熱して熱間圧延を実施しようとい
う低温加熱圧延法が、!Y♀に、0.02〜o、 o 
8 % (以下、鋼の組成成分mを表わす際のチは重量
係とする)のAeを含有し、さらにNb又はV、あるい
はその両者を含有した高張力鋼の熱間圧延製品の製造に
対して試みられていイ)1゜しかしながら、この上うな
鋼種のものに低温加熱圧延法を適用しようとすると、特
にNb含有鋼では、その内部に形成されがちなNb(C
N)という化合物の溶解度積が小さいので、低温加熱時
に未固溶の粗大なNb(ON)の析出物が存在すること
となり、大幅な強度低下を招くという厄介な問題を有し
ていた。一方、■含有鋼の場合には、上述のような見地
に立てば、V(CN)化合物が鋼への溶解度積が大きい
ことから、 Nb含有鋼にみられるような不都合が生じ
ないはずであるが、実際には、第1図にも示されるよう
に、■含有鋼であってもNb含有鋼と同じように低温加
熱圧延を施すと大幅な強度低下を招くという現象を生ず
るものであった。
In recent years, from the viewpoint of energy saving and controlled rolling, which aims to finely control the rolling stage under specific conditions, the low-temperature heating rolling method, in which hot rolling is carried out by heating the material to be rolled to a relatively low temperature, has been developed. Y♀, 0.02~o, o
For the production of hot-rolled products of high-strength steel containing 8% Ae (hereinafter, when expressing the compositional component m of steel, CH is a weight factor) and further containing Nb or V, or both. However, when applying the low-temperature heating rolling method to these steel types, Nb (C) tends to form inside the steel, especially in Nb-containing steel.
Since the solubility product of the compound N) is small, coarse precipitates of undissolved Nb(ON) are present during low-temperature heating, which poses a troublesome problem of causing a significant decrease in strength. On the other hand, in the case of Nb-containing steel, from the above-mentioned perspective, the disadvantages seen in Nb-containing steel should not occur because the V(CN) compound has a large solubility product in steel. However, in reality, as shown in Figure 1, even with Nb-containing steel, when subjected to low-temperature hot rolling, the strength of the Nb-containing steel decreases significantly. .

第3図は、Nb含有鋼及び■含有鋼のそれぞれについて
、1100℃以下の温度にて85%の圧下率で熱間圧延
を行ない、soo℃で圧延を終了して11龍厚の板材と
しだ熱延シミュレーション材の強度に及ぼす加熱温度の
影響を示した線図であり、 Nb含有鋼としては、C:
008%、Si:0.3% + Mn ’ :1.、2
 % r  b : 0007 % r Nb : 0
03 % + 5− AQ : 0.04 %、  N : 0.0104 
%、 i’e及び不純物残り、から成る組成のものを用
い、■含崩鋼としては、C:0.11%、 Si ’、
 0.3%、 Mn : ]、 :S%。
Figure 3 shows that Nb-containing steel and ■-containing steel were each hot-rolled at a temperature below 1100°C with a rolling reduction of 85%, and the rolling was completed at soo°C to form a plate with a thickness of 11. It is a diagram showing the influence of heating temperature on the strength of hot-rolled simulation material, and as Nb-containing steel, C:
008%, Si: 0.3% + Mn': 1. ,2
% r b : 0007 % r Nb : 0
03% + 5- AQ: 0.04%, N: 0.0104
%, i'e and remaining impurities, ■ As the impregnated steel, C: 0.11%, Si',
0.3%, Mn: ], :S%.

S:0.007係、v:o、os%、/V:0.0乏)
%、N二0.0110 %+Fe及び不純物:残り、か
ら成る組成のものを用いた。
S: 0.007, v: o, os%, /V: 0.0 poor)
%, N20.0110% + Fe, and impurities: the remainder.

本発明者等は、上述のような観点から、通常の高温加熱
圧延法で得られる高強度を可能外限り保持しつつ、良好
な延性と低温靭性な有する高張力熱延鋼板を低温加熱圧
延法で得るべく、特に、粗大なNb(CN)の析出によ
って強度低下を起すことかはつきシしているNb含有鋼
は除外して、強度低下の原因が明確でないV含有鋼に着
目し、低温加熱圧延によるその強度低下の原因に基礎的
考察を加えつつ、被圧延材や熱延条件について種々研究
を重ねた結果、以下(a、)〜(C)に示す如き知見を
得るに至ったのである。
From the above-mentioned viewpoints, the present inventors developed a high-strength hot-rolled steel sheet with good ductility and low-temperature toughness by low-temperature hot-rolling, while maintaining the high strength obtained by ordinary high-temperature hot-rolling as much as possible. In order to obtain a high As a result of conducting various studies on rolled materials and hot rolling conditions while adding basic considerations to the causes of strength reduction due to hot rolling, we have obtained the knowledge shown in (a) to (C) below. be.

a)  V含有鋼の強度の向上は、熱延・巻取り後の徐
冷中にVNが析出する析出強化に基づくものであるが、
低温加熱時にVNが素地に固溶してい 6− たとしても、鋼中に特定量°以上のACが存在するとそ
れによってAQNが析出することとなり、このために固
溶N量が減少するので、熱延後適切な温度で巻取っても
巻取後の徐冷中に析出するVNが少なくなって大きな強
度低下を生ずるものであること。
a) The improvement in the strength of V-containing steel is based on precipitation strengthening in which VN precipitates during slow cooling after hot rolling and coiling.
Even if VN is dissolved in the base material during low-temperature heating, if a certain amount or more of AC is present in the steel, AQN will precipitate, which will reduce the amount of solid solution N. Even if it is coiled at an appropriate temperature after hot rolling, less VN will precipitate during slow cooling after coiling, resulting in a large decrease in strength.

第2図(alおよび(blは、基本組成が、C’:0.
10%、Si:0.3%、 Mn : −L、 3%、
V二0.10%、N:OO]、00%、Fe及び不純物
である鋼に種々の量のAlを含有したものの連続鋳造ス
ラブを、1100℃以下の温度にて85%の圧下率で圧
延し、800℃の温度で圧延を終了した後、600℃で
巻取った11mm厚の熱延シミュレーション材について
、その機械的性質に及ぼすAg量と加熱温度の影響を示
したもので1通常の005%AN −V鋼では低温加熱
により大幅な強度低下を生じているが、0015%7V
 −V鋼やO,OO2%Al −V鋼では強度低下が少
111′ ないという結果からも、上述のようなAlの影響が確認
された。
FIG. 2 (al and (bl) have a basic composition of C':0.
10%, Si: 0.3%, Mn: -L, 3%,
Continuously cast slabs of V20.10%, N:OO], 00%, Fe and impurity steel containing various amounts of Al were rolled at a temperature of 1100°C or less at a reduction rate of 85%. This graph shows the influence of the amount of Ag and the heating temperature on the mechanical properties of a hot-rolled simulation material of 11 mm thickness that was rolled at 600°C after rolling at 800°C. %AN -V steel has a significant strength decrease due to low temperature heating, but 0015%7V
The above-mentioned influence of Al was confirmed from the result that there was little decrease in strength in the -V steel and the O,OO 2% Al -V steel.

また、第2図(a)および(blに示す結果からは、低
温加熱の0015%A+、−V鋼やO,OO2%AA 
−V鋼は、低温加熱の005%AQ −V鋼と比較して
強度が高いにもかかわらずこれと同等以上の伸びを有し
ておシ、またシャルピー破面遷移温度に関しては、いず
れも−50℃以下を示しており、すぐれた値を示してい
ることも明らかどなった。
In addition, from the results shown in Figure 2 (a) and (bl), 0015%A+, -V steel and O, OO2%AA
Although the -V steel has higher strength than the 005% AQ -V steel heated at low temperature, it has an elongation equal to or higher than that of the -V steel, and in terms of the Charpy fracture transition temperature, both - It was clear that the temperature was below 50°C, which is an excellent value.

b)  v含有鋼を分塊圧延すると、分塊の圧子により
VNが歪誘起析出しやすく、そのため音調圧延に先立っ
てAC3〜1180℃という低温加熱圧延で使用される
温度域に加熱しても粗大なVNが未固溶のまま残ること
とな9、強度低下の原因となるが、連続鋳造スラブを使
用した場合にはこのような現象を極力抑えることができ
ること。
b) When V-containing steel is bloomed and rolled, VN tends to be strain-induced precipitated by the indenter of the bloomer, so even if it is heated to the temperature range used in low-temperature heating rolling of 3 to 1180°C AC prior to tone rolling, it will not become coarse. VN remains undissolved and causes a decrease in strength, but when a continuous casting slab is used, this phenomenon can be suppressed as much as possible.

C)従って、低AQ鋼に適当量のNと■を添加した鋼の
鋳片を連続鋳造にて得た後、これに低温加熱圧延を施し
、これに若干の急冷を加えれば、良好な強度、延性及び
靭性な有する熱延製品が帽られること。
C) Therefore, if a slab of low AQ steel with appropriate amounts of N and ■ added is obtained by continuous casting, then subjected to low-temperature hot rolling and then slightly quenched, good strength can be obtained. , hot-rolled products with ductility and toughness are capped.

したがって、この発明は上記知見に基いてなされたもの
で、連続鋳造法によって、 C:0.02〜015 %、 Si:1.50%以下、 Mn :  0.5〜2.2 0  %、S:0.01
0多以下、 sot、AE−0,005〜0.020%、V:0.0
2〜0.30%、 N:0.0050〜0.0200%、 を含有し、さらに必要に応じて、 Nb:0.10%以下、 Mo:0.5%以下、 Cu:0.5%以下、 Ni:0.5%以下、 Cr:1.0%以下、 Ca:0.0100%以下、 のうちの1種以上を含有し、 Fe及び不可避不純物:残り、 から成る鋼の鋳片を得た後、これをA3点〜1180℃
の温度範囲内に一定時間保持し、ついで1100℃以下
の温度で70%以上の加工率にて熱間圧延を施すととも
に、850〜680℃の温度範囲で 9 − 圧延を終了し、その後、13℃/5ecJ以上の冷却j
J IAI’で急冷して、圧延利が650〜!500℃
の湛1Ωにまで冷却されたらその温度範囲で巻取ること
匠よって、強度、延性及び靭性のすぐれたV含イ4高張
力熱延鋼帯を得ることに特徴を有するものである。
Therefore, this invention was made based on the above knowledge, and by a continuous casting method, C: 0.02-015%, Si: 1.50% or less, Mn: 0.5-2.20%, S. :0.01
0 or less, sot, AE-0,005 to 0.020%, V: 0.0
2 to 0.30%, N: 0.0050 to 0.0200%, and if necessary, Nb: 0.10% or less, Mo: 0.5% or less, Cu: 0.5% Hereinafter, a steel slab containing one or more of the following: Ni: 0.5% or less, Cr: 1.0% or less, Ca: 0.0100% or less, the remainder being Fe and unavoidable impurities. After obtaining this, it was heated to A3 point ~ 1180℃
9 - Maintain the temperature within the temperature range for a certain period of time, then perform hot rolling at a temperature of 1100°C or lower with a processing rate of 70% or more, and complete the rolling in the temperature range of 850 to 680°C. Cooling of ℃/5ecJ or more
Rapid cooling with J IAI', rolling yield is 650~! 500℃
After the steel is cooled down to 1Ω, it is coiled within that temperature range to obtain a V-containing 4 high tensile strength hot rolled steel strip with excellent strength, ductility and toughness.

なお、この発明のV含有高張力熱延鋼帯の製造方法にお
いては、VNの歪誘起析出を防止するために、被圧延材
として連続鋳造鋳片を使用するものであるが、連続鋳造
鋳片であっても、Ar3点J′J。
In addition, in the method for manufacturing a V-containing high-strength hot-rolled steel strip of the present invention, a continuously cast slab is used as the material to be rolled in order to prevent strain-induced precipitation of VN. Even so, Ar3 points J′J.

下に一度冷却された後Ac3〜1180℃に加熱された
場合にはやはυVNの析出核が多くて、加熱時に粗大な
VNが生成されやすく、強度上胃効宋が損なわれる恐れ
が残ることから、好ましくは、連続鋳造法によって得た
鋳片を一旦冷却することなく、そのままA3点〜118
0℃の温度範囲に一定時間保持してから熱間圧延を施す
という、いわゆるホットチャージを採用するのがよい。
If the material is cooled down and then heated to 3 to 1180°C, there will be many nuclei of υVN precipitated, and coarse VN is likely to be generated during heating, which may result in loss of strength and effectiveness. Therefore, preferably, the slab obtained by the continuous casting method is directly heated to A3 to 118 points without being cooled.
It is preferable to employ so-called hot charging, in which hot rolling is performed after holding the material in a temperature range of 0° C. for a certain period of time.

ついで、この発明の熱延鋼帯の製造方法において、鋼の
組成成分量、加熱保持温度、圧延温度。
Next, in the method for producing a hot-rolled steel strip of the present invention, the compositional component amount, heating holding temperature, and rolling temperature of the steel.

加工率、圧延終了温度、冷却速度、及び巻取温度10− を−]二述のように限定した理由を説明する。Processing rate, rolling end temperature, cooling rate, and winding temperature 10- -] The reason for limiting it as mentioned above will be explained.

■ C C成分には、パーライト量や低温変態生成量を増加させ
て強度の上宿をもたらす作用があるが、その含有量が0
.02%未満では高張力鋼板として必要な50 kg/
m4以上の高強度を得ることができず、一方、0.15
%を越えて含有させると低温靭性や延性の劣化を生じる
ようになることから、その含有量を0.02〜015%
と限定した。
■ C The C component has the effect of increasing the amount of pearlite and the amount of low-temperature transformation products, resulting in an increase in strength, but when its content is 0.
.. If it is less than 0.02%, the required 50 kg/
It is not possible to obtain high strength of m4 or more, and on the other hand, 0.15
If the content exceeds 0.02% to 0.15%, it will cause deterioration of low temperature toughness and ductility.
limited to.

■ 5I Sl成分は、固溶体強化を通じて鋼の強度上昇に有効な
ものであるが、1.50%を越えて含有せしめると溶接
性の劣化を来たすようになることから、その含有量を1
50%以下と限定した。
■ The 5I Sl component is effective in increasing the strength of steel through solid solution strengthening, but if it is contained in excess of 1.50%, weldability will deteriorate, so the content should be reduced to 1.5%.
It was limited to 50% or less.

■ Mn Mn成分には、固溶体強化及び低温変態強化を通じて鋼
の強度を上昇する作用があるが、その含有量が05%未
満では所定の高輪度を得ることができず、一方、220
%を越えて含有せしめると溶接性を劣化するようになる
ことから、その含有量を05〜220係と限定した。
■ Mn The Mn component has the effect of increasing the strength of steel through solid solution strengthening and low-temperature transformation strengthening, but if its content is less than 0.5%, it is not possible to obtain the specified high degree of hardness.
Since weldability deteriorates if the content exceeds 0.05% to 220%.

■ S 8分は、Mnと結合して非金属介在物を生成し、圧延直
角方向のシャルピーのシェルフエネルギーの低下や局部
延性の低下を生ずるので、可及的に少なくすることが望
ましいが、特にO,Oi 0%を越える含有量では靭性
劣化傾向が著しくなるので、その含有量をO,O]、 
00%下と限定した。
■S 8 minutes combines with Mn to form non-metallic inclusions, causing a decrease in Charpy shelf energy in the direction perpendicular to rolling and a decrease in local ductility, so it is desirable to reduce it as much as possible, but in particular If the O, Oi content exceeds 0%, the toughness tends to deteriorate significantly, so the content should be reduced to O, O],
It was limited to below 00%.

■ sot、Affi sot、M、成分は、通常、脱酸元素として鋼中に0.
005%以上含有されると良いとされているが、一般に
AMギルド鋼では細粒化効果を狙って0.02〜007
%程度添加されている。しかしながら、低温加熱低温圧
延を行なう場合は、5at−AQの細粒化効果が無くて
も鋼の十分な細粒化が得られるうえ、Siの含有量を1
5%近くの高い値とした場合にはSlのみで十分な脱酸
効果が得られるので、AQを添加して完全脱酸を図る必
要もない。このようなことから、sot、AQの添加は
多い必要がないが、soL、AQの含有量が0005係
未満では、A系のMn5j介在物が多くなりシャルピー
のシェルフエネルギーが低くなって低温靭性な悪化させ
、鋼の用途が極端に制限されるようになる。一方、so
b、AQ含有量が0020%を越えると低温加熱時にA
gNが優先的に析出してV Nの析出量の低下を招き、
強度の低下をもたらすようになる。このよう々ことから
、5ot−A+!の含有量を0005〜0020%と限
定した。
■ sot, Affi sot, M, component is usually 0.0% in steel as a deoxidizing element.
It is said that it is good to contain 0.005% or more, but in AM guild steel, generally 0.02 to 0.07
% is added. However, when performing low-temperature heating and low-temperature rolling, sufficient grain refining of steel can be obtained even without the grain refining effect of 5at-AQ, and the Si content can be reduced to 1
When the value is as high as 5%, a sufficient deoxidizing effect can be obtained with only Sl, so there is no need to add AQ to achieve complete deoxidation. For this reason, it is not necessary to add a large amount of soL and AQ, but if the content of soL and AQ is less than 0005, the number of A-based Mn5j inclusions increases, the Charpy shelf energy decreases, and low-temperature toughness deteriorates. As a result, the uses of steel become extremely limited. On the other hand, so
b. If the AQ content exceeds 0.020%, A
gN precipitates preferentially, leading to a decrease in the amount of VN precipitated,
This results in a decrease in strength. Because of all this, 5ot-A+! The content was limited to 0005-0020%.

■ V ■成分には、固溶Nと結びついて、その析出強化により
鋼の強度を確保する作用がある。すなわち、V(CN)
の溶解度積はNb(CN)などと比べて大きく、低温加
熱時に多量に素地に固溶することができ、従って、加熱
時に適量の固溶Nがあれば、適切な熱延条件及び冷却条
件の組合せにより、VNによる大きい析出強化を生じる
ものであるが、■の含有量が0.02%未満では前記作
用に所望の効果を得ることができず、一方、030%を
越えて含有させてもそれ以上の効果の向上が期待できな
いことから、その含有量を0.02〜030係と限定し
た。
(2) The component (V) combines with solid solution N and has the effect of ensuring the strength of the steel through its precipitation strengthening. That is, V(CN)
The solubility product of Nb (CN) is larger than that of Nb (CN), etc., and a large amount of Nb can form a solid solution in the substrate during low-temperature heating. The combination produces large precipitation strengthening due to VN, but if the content of Since no further improvement in the effect could be expected, the content was limited to 0.02 to 0.30 parts.

13− ■  N N成分には、■と結合することによってV Nとして析
出し、鋼を強化する作用があるが、その含有量がO,O
O50%未満であると、特にS(’1)、AQの含有量
が0.02%近くの場合にはAeNとして消費されてし
まって上記作用に所望の効果を期待することができなく
なり、一方、0.0200%を越えて含有させると鋼片
割れを発生しやすくなることから、その含有量をO,O
O50〜0.0200%と限定した。
13- ■ N The N component precipitates as V N by combining with ■ and has the effect of strengthening steel, but its content is
If O is less than 50%, especially when the content of S('1) and AQ is close to 0.02%, it will be consumed as AeN and the desired effect cannot be expected from the above action. If the content exceeds 0.0200%, steel flakes will easily occur, so the content should be reduced to O, O.
It was limited to O50-0.0200%.

しかし、VNの析出強化を最大限に引き出すには多い方
が良く、0.0100%以上含有させることが好ましい
However, in order to maximize the precipitation strengthening of VN, more is better, and it is preferably contained in an amount of 0.0100% or more.

■ Nb Nb成分には、低温加熱の制御圧延を行なう際にフェラ
イト粒を微細化し、良好な延性、優れた低温靭性なもた
らす作用があるが、0.10%を越えて含有させてもそ
れ以上の効果の向上がみられないことから、その含有量
を010%以下と限定した。
■ Nb The Nb component has the effect of refining ferrite grains during controlled rolling with low-temperature heating, resulting in good ductility and excellent low-temperature toughness. Since no improvement in the effect was observed, the content was limited to 0.010% or less.

■ Mo、 Cu、 Ni及びCr 14− Mo、 Cu、 Ni及びCr成分には、Mnと同様に
鋼の強度を向上する作用があるが、Mo、Cu及びNi
が05係を越えて含有された場合、そしてcrが10%
を越えて含有された場合には、いずれも溶接性の劣化を
来たすようになることから、 Mo、 Cu及びNiの
含有量を05%以−l”−+Crの含有量を10%以下
とそれぞれ限定した。
■ Mo, Cu, Ni, and Cr 14- Mo, Cu, Ni, and Cr components have the effect of improving the strength of steel like Mn, but Mo, Cu, and Ni
is contained in excess of 05, and CR is 10%
If the content exceeds 0.05%, the weldability of any of them will deteriorate. Limited.

σi)  Ca Ca成分には、AI! 203やMnSと結合してA系
介在物やB系介在物を減少させ、圧延直角方向のシャル
ピーのシェルフエネルギーを向上させるとともに局部延
性をも向上する作用があるが、0.0100係を越えて
含有させると鋼中のC系介在物が多くなって、逆にシェ
ルフエネルギーや局部延性を低下するようになることか
ら、その含有量を0.0100係以下と限定した。
σi) Ca Ca component contains AI! It combines with 203 and MnS to reduce A-based inclusions and B-based inclusions, improves the Charpy shelf energy in the direction perpendicular to rolling, and also improves local ductility. If C-based inclusions are included, the number of C-based inclusions in the steel will increase, which will conversely reduce shelf energy and local ductility, so the content was limited to 0.0100 modulus or less.

(i■ 連鋳片をA3点〜1]80℃に保持する理由A
8点より低い温度で保持したのでは、V (CN)の溶
解度積は著しく低く、■添加による析出強化が期待でき
ないばかりでなく、フェライト域圧延となって延性の低
下が大きくなる。一方、]180℃より高い温度に保持
するのは、省エネルギーという目的上好ましくないばか
りでなく、加熱時の初期オーステナイト粒が大きくて所
望の良好な強度、延性、低温靭性な得ることができなく
なる1゜このような理由からA3点〜l]80℃の温度
範囲に保持することとした。
(i ■ Point A3 ~ 1) Reason A for holding the continuous cast piece at 80℃
If the temperature is maintained at a temperature lower than 8 points, the solubility product of V (CN) is extremely low, and not only precipitation strengthening due to addition cannot be expected, but also rolling occurs in the ferrite region, resulting in a significant decrease in ductility. On the other hand, holding the temperature higher than 180°C is not only undesirable for the purpose of energy saving, but also makes it impossible to obtain the desired good strength, ductility, and low-temperature toughness because the initial austenite grains during heating are large. For these reasons, it was decided to maintain the temperature in the range of 80°C from point A3 to point A.

@  1100℃以下で’i’o%以上の加工率で圧下
する理由 これ以外の条件では、オーステナイト粒の細粒化があま
り期待できないので、1100℃以下の温度にて70%
以上の加工率で圧下することとした。
@ Reason for reducing at a processing rate of 'i'o% or more at temperatures below 1100℃ Under other conditions, it is not expected that the austenite grains will become much finer, so at a temperature below 1100℃
It was decided to reduce at the above processing rate.

0 圧延終了温度 850℃を越える温度で仕上げると微細粒フェライトを
得ることが困難であり、一方、680℃よりも低温で仕
上げるとフェライトを加工することとなって延性が大幅
に劣化することから、圧延終了温度を850〜680℃
と限定した。
0 It is difficult to obtain fine-grained ferrite when finishing at a temperature exceeding 850°C, while finishing at a temperature lower than 680°C results in significant deterioration of ductility due to processing of ferrite. Rolling end temperature 850-680℃
limited to.

q■ 3℃/Sec以−ヒの急冷を有ない、fi 50
〜500℃で巻取る理由 圧延後の冷却速度が3℃/secより遅い場合、あるい
は650℃より高い温度で巻取った場合には、■添加の
目的である強度に有効な微細VNの析出物が得られず、
また500℃より低い温度で巻取った場合には、VNの
析出が大幅に抑制されてやはり高強度が得られ々い。こ
のようなことから、3℃/see以上の急冷を行なった
後、650〜500℃の温度範囲で巻取ることとした。
q ■ No rapid cooling of 3℃/Sec or more, fi 50
Reasons for coiling at ~500°C If the cooling rate after rolling is slower than 3°C/sec, or if coiling is performed at a temperature higher than 650°C, ■ fine VN precipitates that are effective for strength, which is the purpose of addition. is not obtained,
Furthermore, if the wire is wound at a temperature lower than 500.degree. C., the precipitation of VN will be greatly suppressed and high strength will still not be obtained. For this reason, it was decided to perform rapid cooling at 3° C./see or higher and then wind it up in a temperature range of 650 to 500° C.

つぎに、この発明を実施例によシ比較例を対比しながら
説明する。
Next, the present invention will be explained by comparing examples and comparative examples.

まず、連続鋳造によって第1表に示すような化学組成の
鋼の鋳片を得た。つぎに、この鋳片を同じく第1表に示
したような条件の熱延シミュレーション実験に付し、仕
上板厚11m、の熱延コイルを得た。このようにして得
られた各熱延コイルについてその機械的特性を測定し、
その結果も第1表に併せて示した。
First, steel slabs having the chemical composition shown in Table 1 were obtained by continuous casting. Next, this slab was subjected to a hot rolling simulation experiment under the conditions shown in Table 1 to obtain a hot rolled coil with a finished plate thickness of 11 m. Measuring the mechanical properties of each hot rolled coil obtained in this way,
The results are also shown in Table 1.

第1表において、試験番号lは通常のM含有量の低N鋼
を熱延したものであるが、このようにし−:+−7− て得られた熱延鋼帯は50 kg/rru?rを切る引
張シ強さの低強度のものとなっている。試験番号2〜5
のものは、同じ低Al1− V −N鋼であるが、この
うちの試験番号2〜4のものは熱延条件がこの発明の範
囲からはずれているので高い強度と良好な延性、優れた
低温靭性が得られていないのに対して、熱延条件がこの
発明の範囲内の試験番号5のものは良好な結果が得られ
ている。
In Table 1, test number 1 is a hot-rolled low-N steel with a normal M content, and the hot-rolled steel strip obtained in this way has a weight of 50 kg/rru? It has a low tensile strength of less than r. Test number 2-5
These are the same low Al1-V-N steels, but the hot rolling conditions for those with test numbers 2 to 4 are outside the scope of this invention, so they have high strength, good ductility, and excellent low temperature properties. While toughness was not obtained, good results were obtained in test number 5, where the hot rolling conditions were within the scope of the present invention.

上述のように、この発明によれば、エネルギー消費の少
ない低温加熱圧延によって、高強度と、良好な延性、及
びすぐれた低温靭性を併せもった高張力熱延鋼帯を得る
ことができるなど、工業上すぐれた効果がもたらされる
のである。
As described above, according to the present invention, it is possible to obtain a high-strength hot-rolled steel strip that has high strength, good ductility, and excellent low-temperature toughness by low-temperature hot rolling with low energy consumption. This brings about excellent industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Nb鋼及びV鋼の熱延シミュレーション材の
強度に及ぼす加熱温度の影響を示した線図、第2図(a
)および(b)は、V含有鋼の熱延シミュレーション材
の機械的性質に及ぼすM含有量と加熱温度の影響を示す
線図である。 19− 棄1図 1050     1150     1250力U 
涜務 温ノ剣 (0c) 第 (a) +050        1250 aa=温膚 (0C) 2図 (b) 1050       1250 力a 熱 ブX A″ (℃ン
Figure 1 is a diagram showing the influence of heating temperature on the strength of hot rolled simulation materials of Nb steel and V steel, and Figure 2 (a
) and (b) are diagrams showing the influence of M content and heating temperature on the mechanical properties of a hot rolled simulation material of V-containing steel. 19- Discard 1 figure 1050 1150 1250 force U
Sacrificial Warm Sword (0c) No. (a) +050 1250 aa = Warm Skin (0C) 2 (b) 1050 1250 Force a Heat Bu X A'' (℃n

Claims (4)

【特許請求の範囲】[Claims] (1)連続鋳造法によって、 C:0.02〜:’0.15%、 Sl:1.50%以下、 Mn: 0.5〜2.20%、 S:0.010チ以下、 soL、M : 0.005〜0.020%、V : 
0.02〜0.30 %、 N:0.0050〜0.0200チ、 Fe及び不可避不純物、残シ、 (以上重量%)から成る鋼の鋳片を得た後、これをA3
点〜1180℃の温度範囲内に一定時間保持し、ついで
1100℃以下の温度で’70%以上の加工率にて熱間
圧延を施すとともに、850〜680℃の温度範囲で圧
延を終了し、その後、;う℃/sec以上の冷却速度で
急冷して、圧延材が650〜500℃の温度にまで冷却
されたらその温度範囲で巻取ることを特徴とする、強度
、延性及び・靭性のすぐれたバナジウム含有高張力熱延
銅帯の製造方法。
(1) By continuous casting method, C: 0.02~:'0.15%, Sl: 1.50% or less, Mn: 0.5~2.20%, S: 0.010% or less, soL, M: 0.005-0.020%, V:
After obtaining a steel slab consisting of 0.02 to 0.30%, N: 0.0050 to 0.0200%, Fe and unavoidable impurities, and residue (more than weight %), this is A3.
The material is maintained within a temperature range of 1180°C for a certain period of time, and then hot rolled at a temperature of 1100°C or less at a processing rate of 70% or more, and the rolling is completed in a temperature range of 850°C to 680°C. After that, the rolled material is rapidly cooled at a cooling rate of 0°C/sec or more, and once the rolled material has cooled to a temperature of 650 to 500°C, it is coiled in that temperature range. A method for producing a vanadium-containing high-tensile hot-rolled copper strip.
(2)連続鋳造法によって得た鋳片を、一旦冷却するこ
となく、そのままA3点〜1180℃の温度範囲に一定
時間保持してから熱間圧延を施す特許請求の範囲第1項
に記載のバナジウム含有高張力熱延銅帯の製造方法。
(2) The method according to claim 1, wherein the slab obtained by the continuous casting method is maintained at a temperature range of A3 point to 1180°C for a certain period of time without being cooled, and then hot rolled. A method for producing a vanadium-containing high-tensile hot-rolled copper strip.
(3)連続鋳造法によって、 C:0.02〜0.15%、 Si:1.50係以下、 Mn: 0.5〜2.20%、 S:0.010%以F。 sot、Alt :0.005〜0.020%、V:0
.02〜030%、 N:0.0050〜0.0200%、 を含むとともに、さらに、 Nl):0.10%以下、 Mo:0.5係以下、 Cu : 0.5%以下、 Ni:0.5  % 以 −ト 、 Cr:]、O%以下、 Ca、:0.0100%以下、 のうちの1種以上を含有し、 P′e及び不可避不純物、残9、 (以上重量%)から成る鋼の鋳片を得た後、これをA3
点〜11.80℃の温度範囲内に一定時間保持し、つい
で1100℃以下の温度で70%以上の加工率にて熱間
圧延を施すとともに、850〜680℃の温度範囲で圧
延を終了し、その後、3℃/ secす、上の冷却速度
で急冷して、圧延材が650〜500℃の温度にまで冷
却されたらその温度範囲で巻取ることを特徴とする、強
度、延性及び靭性のすぐれたバナジウム含有高張力熱延
鋼帯の製造方法。
(3) Continuous casting method: C: 0.02-0.15%, Si: 1.50% or less, Mn: 0.5-2.20%, S: 0.010% or more. sot, Alt: 0.005-0.020%, V: 0
.. 02-030%, N: 0.0050-0.0200%, and further includes: Nl): 0.10% or less, Mo: 0.5% or less, Cu: 0.5% or less, Ni: 0 Contains one or more of the following: .5% or more, Cr: ], O% or less, Ca: 0.0100% or less, P'e and unavoidable impurities, the balance 9. (by weight) After obtaining a steel slab of A3
The material is maintained within a temperature range of 11.80°C for a certain period of time, then hot rolled at a temperature of 1100°C or less at a processing rate of 70% or more, and the rolling is completed in a temperature range of 850°C to 680°C. Then, the rolled material is rapidly cooled at a cooling rate of 3°C/sec, and when the rolled material is cooled to a temperature of 650 to 500°C, it is coiled in that temperature range. An excellent method for producing vanadium-containing high-tensile hot-rolled steel strip.
(4)連続鋳造法にJ−って得た鋳片を、一旦冷却する
ことなく、そのままA3点〜1180℃の温度範囲に一
定時間保持してから熱間圧延を施す!1!iπ[請求の
範囲第3項に記載のバナジウム含不高張力熱延鋼帯の製
造方法。
(4) The slab obtained by continuous casting is kept in the temperature range of A3 point to 1180°C for a certain period of time without being cooled, and then hot rolled! 1! iπ [The method for producing a vanadium-free high-tensile strength hot-rolled steel strip according to claim 3.
JP1710782A 1982-02-05 1982-02-05 Manufacture of high tensile hot rolled steel strip containing vanadium Pending JPS58136717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1710782A JPS58136717A (en) 1982-02-05 1982-02-05 Manufacture of high tensile hot rolled steel strip containing vanadium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1710782A JPS58136717A (en) 1982-02-05 1982-02-05 Manufacture of high tensile hot rolled steel strip containing vanadium

Publications (1)

Publication Number Publication Date
JPS58136717A true JPS58136717A (en) 1983-08-13

Family

ID=11934802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1710782A Pending JPS58136717A (en) 1982-02-05 1982-02-05 Manufacture of high tensile hot rolled steel strip containing vanadium

Country Status (1)

Country Link
JP (1) JPS58136717A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170220A (en) * 1983-03-18 1984-09-26 Nippon Kokan Kk <Nkk> Production of un-tempered type low temperature steel plate
US4773947A (en) * 1983-08-02 1988-09-27 Nissan Motor Co., Ltd. Manufacturing process for high temperature carburized case harden steel
CN105861799A (en) * 2016-05-31 2016-08-17 攀钢集团攀枝花钢铁研究院有限公司 Thick vanadium-containing pipeline steel and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471714A (en) * 1977-11-21 1979-06-08 Nippon Kokan Kk <Nkk> Manufacture of control-rolled high tensile steel with no separation
JPS55115924A (en) * 1979-03-02 1980-09-06 Nippon Kokan Kk <Nkk> Production of high toughness high tensile steel plate
JPS5729528A (en) * 1980-07-28 1982-02-17 Sumitomo Metal Ind Ltd Preparation of thick hot rolled high tension steel belt having excellent low temperature toughness
JPS57143432A (en) * 1981-02-28 1982-09-04 Kobe Steel Ltd Manufacture of unnormalized v-containing steel with high toughness and strength

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471714A (en) * 1977-11-21 1979-06-08 Nippon Kokan Kk <Nkk> Manufacture of control-rolled high tensile steel with no separation
JPS55115924A (en) * 1979-03-02 1980-09-06 Nippon Kokan Kk <Nkk> Production of high toughness high tensile steel plate
JPS5729528A (en) * 1980-07-28 1982-02-17 Sumitomo Metal Ind Ltd Preparation of thick hot rolled high tension steel belt having excellent low temperature toughness
JPS57143432A (en) * 1981-02-28 1982-09-04 Kobe Steel Ltd Manufacture of unnormalized v-containing steel with high toughness and strength

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170220A (en) * 1983-03-18 1984-09-26 Nippon Kokan Kk <Nkk> Production of un-tempered type low temperature steel plate
US4773947A (en) * 1983-08-02 1988-09-27 Nissan Motor Co., Ltd. Manufacturing process for high temperature carburized case harden steel
CN105861799A (en) * 2016-05-31 2016-08-17 攀钢集团攀枝花钢铁研究院有限公司 Thick vanadium-containing pipeline steel and production method thereof

Similar Documents

Publication Publication Date Title
JP4843982B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof
JP6212956B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and wear resistance and method for producing the same
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
JP3301348B2 (en) Manufacturing method of hot-rolled high-tensile steel sheet
JP5195413B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and toughness anisotropy and method for producing the same
JP4506434B2 (en) High strength steel plate with excellent rigidity and method for producing the same
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JPS58136717A (en) Manufacture of high tensile hot rolled steel strip containing vanadium
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP2004137554A (en) Steel sheet having excellent workability, and production method therefor
JPH1036917A (en) Production of high strength hot-rolled steel plate excellent in stretch-flanging property
JP2002256389A (en) High tensile strength hot rolled steel sheet and production method therefor
JPS58733B2 (en) Method for manufacturing non-temperature high tensile strength hot rolled steel strip for processing
JPH04120243A (en) High tensile strength cold rolled steel sheet and its production
JP2000096137A (en) Production of steel having fine crystal grain structure
JPH0762487A (en) High strength and high workability steel sheet for can producing excellent in baking hardenability, aging resistance and non-earing
JP4002315B2 (en) High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
JPH04314828A (en) Production of high strength hot-dip galvanized steel plate excellent in workability
JP3831057B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent workability
JPS5945735B2 (en) Method for manufacturing high-strength cold-rolled steel sheets with excellent ductility through continuous annealing
JPH08337816A (en) Production of low yield ratio hot rolled steel sheet for line pipe
JPH0693376A (en) Cold rolled sheet of ferrite single phase for deep drawing having nonaging characteristic at ordinary temperature and its production
JPH08295944A (en) Production of high strength hot rolled steel sheet excellent in ductility and workability