JPH0693376A - Cold rolled sheet of ferrite single phase for deep drawing having nonaging characteristic at ordinary temperature and its production - Google Patents

Cold rolled sheet of ferrite single phase for deep drawing having nonaging characteristic at ordinary temperature and its production

Info

Publication number
JPH0693376A
JPH0693376A JP4245306A JP24530692A JPH0693376A JP H0693376 A JPH0693376 A JP H0693376A JP 4245306 A JP4245306 A JP 4245306A JP 24530692 A JP24530692 A JP 24530692A JP H0693376 A JPH0693376 A JP H0693376A
Authority
JP
Japan
Prior art keywords
steel
rolled
cold
deep drawing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4245306A
Other languages
Japanese (ja)
Other versions
JP3175063B2 (en
Inventor
Kosaku Shioda
浩作 潮田
Naoki Yoshinaga
直樹 吉永
Giichi Matsumura
義一 松村
Osamu Akisue
治 秋末
Kunio Nishimura
邦夫 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24530692A priority Critical patent/JP3175063B2/en
Priority to US08/240,782 priority patent/US5486241A/en
Priority to PCT/JP1993/001314 priority patent/WO1994006948A1/en
Priority to EP93919662A priority patent/EP0612857B1/en
Priority to KR1019940701624A priority patent/KR0128986B1/en
Priority to DE69325791T priority patent/DE69325791D1/en
Publication of JPH0693376A publication Critical patent/JPH0693376A/en
Application granted granted Critical
Publication of JP3175063B2 publication Critical patent/JP3175063B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide superior secondary working brittleness resistance and hardenability in coating/backing by controlling respective contents of C, P, and B to values in specific ranges in a steel free from Ti and Nb. CONSTITUTION:The steel has a composition consisting of, by weight, 0.0001-O.0015% C, <=1.2% Si, 0.03-3.0% Mn, 0.01-0.15% p, 0.0010-0.020% S, 0.005-0.1% Al, 0.001-0.0080% N, 0.0001-0.0030% B, and the balance Fe with inevitable impurities. A slab of the steel with this chemical composition is finish-hot-rolled at >=(Ar3-100 deg.C) and coiled at 600-700 deg.C. Subsequently, the resulting plate us cold-rolled at >=60% rolling rate and continuously annealed at 600-900 deg.C, by which a cold rolled sheet of ferrite single phase for deep drawing having nonaging characteristic at ordinary temp. can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、常温非時効深絞り用フ
ェライト単相冷延鋼板およびその製造方法に関する。本
発明が係わる冷延鋼板とは、自動車、家庭電気製品、建
物などのプレス成形をして使用されるものである。そし
て、表面処理をしない狭義の冷延鋼板と、防錆のため
に、例えばZnメッキや合金化Znメッキなどの表面処
理を施した冷延鋼板の両方を含む。本発明による鋼板
は、強度と加工性を兼ね備えた鋼板であるので、使用に
当っては今までの鋼板より板厚を減少できること、すな
わち軽量化が可能となる。したがって、地球環境保全に
寄与できるものと期待される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferrite single-phase cold-rolled steel sheet for non-aging deep drawing at room temperature and a method for producing the same. The cold-rolled steel sheet according to the present invention is used by press forming automobiles, household electric appliances, buildings and the like. Further, it includes both a cold-rolled steel sheet in a narrow sense that is not surface-treated and a cold-rolled steel sheet that has been subjected to surface treatment such as Zn plating or alloyed Zn plating for rust prevention. Since the steel sheet according to the present invention is a steel sheet having both strength and workability, it is possible to reduce the plate thickness in use, that is, to reduce the weight, in use. Therefore, it is expected to contribute to global environment conservation.

【0002】[0002]

【従来の技術】溶鋼の真空脱ガス処理の最近の進歩によ
り、極低炭素鋼の溶製が容易になった現在、良好な加工
性を有する極低炭素鋼板の需要は益々増加しつつある。
このような極低炭素鋼板は、一般的にTiおよびNbの
うち少なくとも1種を含有することはよく知られてい
る。すなわち、TiおよびNbは、鋼中の侵入型固溶元
素(C、N)と強い引力の相互作用を持ち、炭窒化物を
容易に形成する。したがって、侵入型固溶元素の存在し
ない鋼(IF鋼:Interstitial Free
Steel)が得られる。IF鋼は、歪時効や加工性
を劣化させる原因となる侵入型固溶元素を含まないの
で、非時効で極めて良好な加工性を有する特徴がある。
さらに、TiやNbの添加は粗大化しやすい極低炭素鋼
の熱間圧延板の結晶粒径を細粒化し、冷延焼鈍板の深絞
り性を改善する重要な役割も持つ。しかし、TiやNb
を添加した極低炭素鋼は次のような問題を有する。第一
に製造コストが高くつく点である。すなわち、極低炭素
化のための真空処理コストに加え、高価なTiやNbの
添加を必要とする点である。第二に製品板に固溶CやN
が残存しないので、二次加工脆化が発生したり塗装焼き
付け硬化が消失したりする。第三にTiやNbは強い酸
化物形成元素であり、これらの酸化物が表面品質を劣化
させたりする。
2. Description of the Related Art Recent advances in vacuum degassing of molten steel have facilitated the melting of ultra-low carbon steel, and nowadays, the demand for ultra-low carbon steel sheets having good workability is increasing.
It is well known that such an ultra-low carbon steel sheet generally contains at least one of Ti and Nb. That is, Ti and Nb have a strong attractive interaction with the interstitial solid solution elements (C, N) in steel, and easily form carbonitrides. Therefore, steel without interstitial solid solution elements (IF steel: Interstitial Free)
Steel) is obtained. Since the IF steel does not contain an interstitial solid solution element that causes strain aging or deterioration of workability, it has a characteristic of being non-aging and having very good workability.
Furthermore, the addition of Ti or Nb also has an important role of improving the deep drawability of the cold-rolled annealed sheet by reducing the grain size of the hot-rolled sheet of ultra-low carbon steel that tends to coarsen. However, Ti and Nb
The ultra-low carbon steel added with has the following problems. First, the manufacturing cost is high. That is, it is necessary to add expensive Ti and Nb in addition to the vacuum processing cost for extremely low carbonization. Second, solid solution C and N on the product plate
Does not remain, so that secondary processing embrittlement occurs and paint baking hardening disappears. Thirdly, Ti and Nb are strong oxide forming elements, and these oxides deteriorate the surface quality.

【0003】IF鋼のこのような問題を解決する目的
で、従来から多くの研究開発が行われてきた。例えば、
特開昭60−197846号公報および特開昭63−7
2830号公報では、TiやNbを添加しない極低炭素
鋼板およびその製造方法が開示されており、基本的には
C量が0.0010〜0.0080%の鋼を連続焼鈍す
るに際し、高温焼鈍を用いていったん一部のαをγに変
態させ、冷却速度を制御してγからの低温変態生成物を
生成し、これとαとの混合組織にすることにより、上記
課題を解決している。しかし、極低炭素鋼の(α+γ)
二相域は極めて狭く、精度よく温度制御することは困難
であり、また高温焼鈍に付随する種々の問題、例えば高
温通板性が不良、板形状が悪い、エネルギー消費量が多
いなどの問題が発生する。したがって、本発明の鋼板は
α単相の組織から成るものとする。また、特開昭59−
80727号公報、特開昭60−103129号公報、
特開平1−184251号公報などにおいては、Tiや
Nbなどの高価な元素を添加せず、C量が0.0015
%以下の領域を含む冷延鋼板およびその製造方法が開示
されている。しかし、これらの場合には、本発明の1つ
の特徴であるBが添加されていない。全C量が0.00
15%以下となると、たとえTiやNbが添加されてい
なくとも、結晶粒界に存在するCが極度に減少し、二次
加工脆化が発生する。さらに、特開昭58−14133
5号公報においては、C量が0.0015%以下の領域
を含み、かつBを0.0005〜0.0020%添加し
ている。しかし、C量が0.0015%以下の領域とな
ると、一般的に熱間圧延板の結晶粒径が粗大となり、冷
延焼鈍板のr値が確保できない。したがって、添加元素
あるいは熱間圧延方法に何らかの対策が必要となる。
[0003] A lot of research and development has been conducted so far for the purpose of solving such problems of IF steel. For example,
JP-A-60-197846 and JP-A-63-7
Japanese Patent No. 2830 discloses an ultra-low carbon steel sheet to which Ti or Nb is not added and a method for producing the same. Basically, when continuously annealing a steel having a C content of 0.0010 to 0.0080%, high temperature annealing is performed. The above problem is solved by temporarily transforming a part of α into γ by using, and producing a low temperature transformation product from γ by controlling the cooling rate, and forming a mixed structure of this and α. . However, for ultra low carbon steel (α + γ)
The two-phase region is extremely narrow, it is difficult to control the temperature with high accuracy, and various problems associated with high temperature annealing, such as poor hot stripability, poor plate shape, and high energy consumption, are problems. Occur. Therefore, the steel sheet of the present invention is assumed to have an α single phase structure. In addition, JP-A-59-
80727, JP-A-60-103129,
In JP-A-1-184251 and the like, the amount of C is 0.0015 without adding expensive elements such as Ti and Nb.
Disclosed is a cold-rolled steel sheet including a region of not more than%, and a manufacturing method thereof. However, in these cases, B, which is one of the features of the present invention, is not added. Total C amount is 0.00
If it is 15% or less, even if Ti or Nb is not added, C existing in the crystal grain boundaries is extremely reduced, and secondary work embrittlement occurs. Furthermore, JP-A-58-14133
In Japanese Patent No. 5, gazette contains a region where the amount of C is 0.0015% or less, and 0.0005 to 0.0020% of B is added. However, when the amount of C is in the range of 0.0015% or less, the crystal grain size of the hot-rolled sheet is generally large, and the r value of the cold-rolled annealed sheet cannot be secured. Therefore, some measure is required for the additive element or the hot rolling method.

【0004】[0004]

【発明が解決しようとする課題】以上のことから明らか
なように、本発明者らはもちろんのこと当業界において
も、TiやNbなどの高価な添加元素を使用しない極低
炭素鋼を用いて、耐二次加工脆化特性を有し、塗装焼き
付け硬化性能も付与した常温非時効絞り用冷延鋼板およ
びその製造方法を確立することが、長年求められてき
た。
As is apparent from the above, the present inventors and of course, in the field of the present invention, using ultra-low carbon steel which does not use expensive additive elements such as Ti and Nb. It has long been required to establish a cold-rolled steel sheet for room-temperature non-aged drawing which has secondary work embrittlement resistance and also has a paint bake hardening performance, and a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】TiやNbなどの高価な
炭窒化物形成元素を使用せずして常温非時効特性を達成
する一つの手段として、全C量を一定量以下に制御した
極低炭素Alキルドを用いる方法を見出した。すなわ
ち、本発明鋼を用いれば、製品板においてNはAlを添
加することによりAlNとして固定され得るので、歪時
効の原因となるのはCである。本発明者らが鋭意研究開
発を行った結果、全C量が15ppm以下となると、た
とえ調質圧延率が0.5%と通常より低圧延率でも、安
定的に常温で非時効となることが判明した。また、既に
述べたように本発明においては、α単相の組織からなる
鋼板を前提としている。
[Means for Solving the Problems] As one means for achieving room-temperature non-aging characteristics without using expensive carbonitride-forming elements such as Ti and Nb, a pole whose total C content is controlled below a certain amount is used. A method using low carbon Al killed has been found. That is, when the steel of the present invention is used, N can be fixed as AlN by adding Al in the product plate, so that C causes strain aging. As a result of diligent research and development by the present inventors, when the total C amount is 15 ppm or less, even if the temper rolling ratio is 0.5% and is lower than usual, a stable non-aging is performed at room temperature. There was found. Further, as described above, the present invention is premised on the steel sheet having the α single phase structure.

【0006】次に耐二次加工脆化特性について述べる。
二次加工脆化の問題は、全C量が上述のように15pp
m以下となると発生しやすくなることが判明した。これ
は、粒界を強化するCの量が著しく減少したためと考え
られる。さらに、後述するように深絞り性を改善した
り、強度を上昇させるためにPを添加すると、この問題
はさらに厳しくなる。この問題を解決する手段として、
本発明のようにTiやNbなどの元素を添加しない極低
炭素鋼においてもB添加が有効であることが、初めて判
明した。
Next, the secondary working embrittlement resistance will be described.
The problem of secondary processing embrittlement is that the total C content is 15 pp as described above.
It has been found that when it is less than m, it tends to occur. It is considered that this is because the amount of C that strengthens the grain boundaries was significantly reduced. Further, as will be described later, when P is added to improve the deep drawability or increase the strength, this problem becomes more severe. As a means to solve this problem,
It has been found for the first time that B addition is effective even in an extremely low carbon steel to which elements such as Ti and Nb are not added as in the present invention.

【0007】第三にTiやNbなどの元素を添加しない
極低炭素鋼板の深絞り性を改善する方策について述べ
る。一般に、TiやNbを添加しない鋼において、全C
量を低減すると熱間圧延板の結晶粒径は大きくなり、特
に全C量が15ppm以下の領域となると著しく大きく
なり、時には板厚方向に延びた極めて粗大な柱状晶とな
る。しかし、深絞り性に好ましい板面{111}方位粒
は、初期結晶粒界から優先的に核生成するので、極低炭
素化してもr値はむしろ低下する。そこで、TiやNb
など高価な元素を添加せずとも熱間圧延板の結晶粒径を
細粒化する方策について検討を加えた結果、1)P添加
が効果的であり、0.01%以上の添加が好ましい、
2)Bと共存するとこの効果がさらに顕著となる、3)
さらに好ましくは、熱間圧延終了後1.0秒以内に50
℃/sec以上の冷却速度で冷却すると、さらに細粒化
することが判明した。上記1)については理由がかなら
ずしも明確でないが、Pを添加するとa)γ粒が細粒化
する、b)変態したαの粒成長が抑制される、ことなど
が原因となったものと推察する。一方、Bの添加は変態
の速度を抑制するので変態後のα粒径が小さくなるもの
と考えられる。また、熱間圧延仕上げ後の急冷は、粒成
長の抑制やγ/α比の増加などにより細粒化に有効であ
ったものと思われる。
Thirdly, a method for improving the deep drawability of an ultra low carbon steel sheet to which elements such as Ti and Nb are not added will be described. Generally, in steels without addition of Ti or Nb, the total C
When the amount is reduced, the crystal grain size of the hot-rolled sheet becomes large, particularly when the total C amount is in the range of 15 ppm or less, it becomes remarkably large, and sometimes it becomes extremely coarse columnar crystals extending in the sheet thickness direction. However, the plate plane {111} oriented grains, which are preferable for deep drawability, preferentially nucleate from the initial grain boundaries, so the r value is rather lowered even if the carbon is extremely low. Therefore, Ti and Nb
As a result of investigating a method of refining the crystal grain size of the hot-rolled sheet without adding an expensive element, 1) P addition is effective, and 0.01% or more is preferable,
2) When coexisting with B, this effect becomes more remarkable 3)
More preferably, within 50 seconds after completion of hot rolling, 50
It was found that the particles became finer when cooled at a cooling rate of ° C / sec or more. Regarding the above 1), the reason is not always clear, but it is presumed that it was caused by adding P, a) the γ grains became finer, and b) the grain growth of transformed α was suppressed. . On the other hand, it is considered that the addition of B suppresses the transformation speed, and therefore the α-grain size after transformation becomes small. Further, it is considered that the quenching after the hot rolling finish was effective for the grain refinement by suppressing the grain growth and increasing the γ / α ratio.

【0008】本発明は、このような思想と新知見に基づ
いて構築されたものであり、その要旨とするところは、
以下のとおりである。 (1)重量%で、C:0.0001〜0.0015%、
Si:1.2%以下、Mn:0.03〜3.0%、P:
0.01〜0.15%、S:0.0010〜0.020
%、Al:0.005〜0.1%、N:0.0001〜
0.0080%、B:0.0001〜0.0030%を
含み、残部Feおよび不可避的不純物からなる耐二次加
工脆化特性に優れ、塗装焼き付け硬化特性を有する常温
非時効深絞り用フェライト単相冷延鋼板。 (2)前項1記載の化学成分よりなるスラブを(Ar3
−100)℃以上の温度で熱間圧延の仕上げを行い、6
00℃から750℃の温度で巻取り、60%以上の圧延
率で冷間圧延を行い、600〜900℃で連続焼鈍を行
うことを特徴とする常温非時効深絞り用フェライト単相
冷延鋼板の製造方法。
The present invention is constructed on the basis of such an idea and new knowledge, and the gist thereof is as follows.
It is as follows. (1) C: 0.0001 to 0.0015% by weight,
Si: 1.2% or less, Mn: 0.03 to 3.0%, P:
0.01-0.15%, S: 0.0010-0.020
%, Al: 0.005-0.1%, N: 0.0001-
0.0080%, B: 0.0001 to 0.0030%, excellent in secondary processing embrittlement resistance consisting of balance Fe and unavoidable impurities, and has a paint bake hardening property. Phase cold rolled steel sheet. (2) A slab composed of the chemical components described in 1 above (Ar 3
Finish the hot rolling at a temperature of -100) ℃ or more,
A ferrite single-phase cold-rolled steel sheet for non-aging deep drawing at room temperature, which is wound at a temperature of 00 to 750 ° C., cold-rolled at a rolling ratio of 60% or more, and continuously annealed at 600 to 900 ° C. Manufacturing method.

【0009】[0009]

【作用】ここに本発明において鋼組成および製造条件を
上述のように限定する理由についてさらに説明する。 1)C:Cは製品の材質特性を決定する極めて重要な元
素である。C量が0.0015%超となると、もはや常
温非時効でなくなるので、上限を0.0015%とす
る。一方、C量が0.0001%未満となると、二次加
工脆化が発生する。また、製鋼技術上極めて到達困難な
領域であり、コストも著しく上昇する。したがって、下
限は0.0001%とする。
The reason why the steel composition and manufacturing conditions are limited as described above in the present invention will be further described. 1) C: C is an extremely important element that determines the material properties of products. When the amount of C exceeds 0.0015%, it is no longer normal temperature non-aged, so the upper limit is made 0.0015%. On the other hand, if the C content is less than 0.0001%, secondary working embrittlement occurs. In addition, it is an extremely difficult area to reach in terms of steelmaking technology, and the cost increases significantly. Therefore, the lower limit is made 0.0001%.

【0010】2)Si:Siは安価に強度を上昇させる
元素であるが、1.2%超となると化成処理性の低下や
メッキ性の低下などの問題が生じるので、その上限を
1.2%とする。 3)Mn:MnはSiと同様に強度を上昇させるのに有
効な元素である。また、Tiなどを添加しない本発明鋼
ではMnがSを固定するので、Mnは熱間圧延時の割れ
を防止する役割をもつ。低Mn化は従来からr値の向上
に好ましいと言われているが、Mn量が0.03%未満
では熱間圧延時に割れが生じる。したがって、Mn量の
下限を0.03%とする。一方、MnはPと共存すると
極低炭素鋼の熱間圧延板の結晶粒径を細粒化するという
新知見を得た。これは、両元素が熱力学的にはAr3
度に対して相殺する方向に働き、かつ両元素ともγから
αへの変態を速度論的には遅らせるためと思われる。し
たがって、Mn量を著しく増加させると一般的にはr値
が激しく劣化するが、本発明のようにP量が0.01%
以上の極低炭素鋼では3.0%まで添加してもそれほど
劣化しないという有益な知見も得た。以上の理由から、
Mn量の上限は3.0%とする。
2) Si: Si is an element that increases the strength at a low cost, but if it exceeds 1.2%, problems such as deterioration of chemical conversion treatment property and plating property occur, so its upper limit is 1.2. %. 3) Mn: Mn is an element effective for increasing the strength like Si. Further, in the steel of the present invention to which Ti or the like is not added, Mn fixes S, so Mn has a role of preventing cracks during hot rolling. It has been conventionally said that lowering Mn is preferable for improving the r value, but if the Mn content is less than 0.03%, cracking occurs during hot rolling. Therefore, the lower limit of the amount of Mn is set to 0.03%. On the other hand, a new finding was obtained that Mn coexists with P to reduce the grain size of the hot-rolled sheet of ultra-low carbon steel. This is because both elements act thermodynamically in the direction of canceling the Ar 3 temperature, and both elements delay the transformation from γ to α kinetically. Therefore, when the Mn content is increased remarkably, the r value generally deteriorates sharply, but the P content is 0.01% as in the present invention.
The useful knowledge that the above ultra-low carbon steel does not deteriorate so much even when added up to 3.0% was obtained. For the above reasons,
The upper limit of the amount of Mn is 3.0%.

【0011】4)P:PもSi、Mnと同様に強度を上
昇させる元素として知られており、その添加量は狙いと
する強度レベルに応じて変化する。さらに、TiやNb
を添加しない極低炭素鋼の熱間圧延板の結晶粒径は一般
的に粗粒化するが、0.01%以上のPの添加により、
顕著に細粒化するという新知見を得た。したがって、P
量の下限値を0.01%とする。しかし、添加量が0.
15%超となると、冷間圧延性の劣化、二次加工脆化な
どが発生するので、P量の上限値を0.15%とする。
また、上記3)に記述したように、Pの細粒化効果はM
nと共存するとさらに顕著となる。
4) P: P is also known as an element for increasing the strength like Si and Mn, and the addition amount thereof changes depending on the target strength level. In addition, Ti and Nb
The crystal grain size of the ultra-low carbon steel hot-rolled sheet without addition of Cr generally becomes coarse, but the addition of 0.01% or more of P causes
We have obtained a new finding that the particles are noticeably finer. Therefore, P
The lower limit of the amount is 0.01%. However, when the addition amount is 0.
If it exceeds 15%, deterioration of cold rolling property, secondary work embrittlement and the like occur, so the upper limit of the amount of P is made 0.15%.
Also, as described in 3) above, the grain refining effect of P is M
It becomes more remarkable when coexisting with n.

【0012】5)S:S量は低いほうが好ましいが、
0.0010%未満になると製造コストが上昇するの
で、これを下限値とする。一方、0.020%超になる
とMnSが数多く析出して加工性が劣化するので、これ
を上限値とする。 6)Al:Alは脱酸調整に使用するが、0.005%
未満では安定して脱酸することが困難となる。一方、
0.1%超になるとコスト上昇を招く。したがって、こ
れらの値を下限値および上限値とする。
5) S: The lower the S content, the better,
If it is less than 0.0010%, the manufacturing cost increases, so this is made the lower limit. On the other hand, if it exceeds 0.020%, a large amount of MnS precipitates and the workability deteriorates, so this is made the upper limit. 6) Al: Al is used for deoxidation adjustment, but 0.005%
If it is less than 0.1, it becomes difficult to perform stable deoxidation. on the other hand,
If it exceeds 0.1%, the cost increases. Therefore, these values are set as the lower limit and the upper limit.

【0013】7)N:Nは低い方が好ましい。しかし、
0.0001%未満にするには著しいコスト上昇を招く
ので、これを下限値にする。一方、0.0080%超に
なると、もはやAlでNを固定することが困難となり、
歪時効の原因となる固溶Nが残存したり、AlNの分率
が増加したりして加工性が劣化する。したがって、0.
0080%をN量の上限値とする。
7) N: N is preferably low. But,
If it is less than 0.0001%, a significant cost increase will occur, so this is made the lower limit. On the other hand, if it exceeds 0.0080%, it becomes difficult to fix N with Al,
Workability deteriorates because the solid solution N that causes the strain aging remains or the fraction of AlN increases. Therefore, 0.
Let 0080% be the upper limit of the N amount.

【0014】8)B:Bは結晶粒界に偏析し、二次加工
脆化の防止に有効である。その効果は、0.0001〜
0.0030%の添加で十分である。0.0001%未
満では効果は不十分であり、0.0030%超になると
添加コストの上昇やスラブ割れの原因となる。次に、製
造条件の限定理由を述べる。
8) B: B segregates at the grain boundaries and is effective in preventing secondary work embrittlement. The effect is 0.0001-
Addition of 0.0030% is sufficient. If it is less than 0.0001%, the effect is insufficient, and if it exceeds 0.0030%, the addition cost increases and slab cracking occurs. Next, the reasons for limiting the manufacturing conditions will be described.

【0015】9)熱間圧延の仕上温度:製品板の加工性
(r値)を確保するために、(Ar 3 −100)℃以上
の温度で仕上げる。また、仕上げ後、1秒以内に50℃
/sec以上の冷却速度で急冷すると熱間圧延板の結晶
粒径が細粒化するので、このような条件が好ましい。 10)巻取温度:750℃超となると、酸洗性が劣化し
たりコイルの長手方向で材質が不均一となるので、これ
を上限値とする。一方、600℃未満となると熱間圧延
板でのAlNの析出が不十分となるので、製品板の加工
性が劣化する。したがって、これを下限値とする。
9) Finishing temperature of hot rolling: Workability of product sheet
In order to secure (r value), (Ar 3-100) ℃ or more
Finish at the temperature of. Also, within 50 seconds after finishing,
Crystals of hot-rolled sheet when rapidly cooled at a cooling rate of over 1 / sec
Such conditions are preferable because the particle size becomes finer. 10) Winding temperature: When it exceeds 750 ° C, the pickling property deteriorates.
This is because the material becomes uneven in the longitudinal direction of the coil.
Is the upper limit. On the other hand, when the temperature is lower than 600 ° C, hot rolling is performed.
Since the precipitation of AlN on the plate becomes insufficient, processing of the product plate
Sex deteriorates. Therefore, this is the lower limit.

【0016】11)冷間圧延:通常の条件でよく、製品
板のr値を確保する目的から、圧下率は60%以上とす
る。 12)焼鈍:焼鈍温度が600〜900℃の連続焼鈍と
する。焼鈍温度が600℃未満では再結晶は不十分であ
り、製品板の加工性が問題となる。焼鈍温度の上昇とと
もに加工性は向上するが、900℃超では高温すぎて板
破断や板の平坦度が悪化する。
11) Cold rolling: Normal conditions may be used, and the rolling reduction is 60% or more for the purpose of ensuring the r value of the product sheet. 12) Annealing: Continuous annealing is performed at an annealing temperature of 600 to 900 ° C. If the annealing temperature is lower than 600 ° C., recrystallization is insufficient and the workability of the product sheet becomes a problem. Although the workability improves as the annealing temperature rises, if it exceeds 900 ° C, the temperature will be too high and the plate fracture and the flatness of the plate will deteriorate.

【0017】かくして、本発明は新思想と新知見に基づ
いて構築されたものであり、本発明によれば、TiやN
bなどの高価な元素を添加せずとも、常温非時効で塗装
焼き付け硬化性を有し、耐二次加工脆化特性にすぐれた
深絞り用冷延鋼板が得られる。
Thus, the present invention is constructed based on new ideas and new findings, and according to the present invention, Ti and N are
Even if an expensive element such as b is not added, a cold-rolled steel sheet for deep drawing which is non-aging at room temperature, has a paint bake hardenability, and is excellent in secondary work embrittlement resistance can be obtained.

【0018】[0018]

【実施例】【Example】

実施例1 表1に示す組成を有する鋼を実験室的に真空溶製した。
すなわち、鋼A(A−1〜A−5)と鋼B(B−1〜B
−5)のグループは、C量が0.0003%から0.0
030%まで5水準変化している。ここで、P量が、鋼
Aは0.015%であり、鋼Bは0.050%である。
一方、鋼C(C−1〜C−6)と鋼D(D−1〜D−
6)のグループは、P量が0.0002%から0.04
%まで6水準変化している。ここで、鋼CはC量が0.
0005%であり、鋼DはC量が0.0012%であ
る。このような化学組成を持つインゴットを、スラブ加
熱温度1150℃、仕上温度910℃、巻取温度710
℃で熱間圧延し、4.0mm厚の鋼板とした。酸洗後8
0%の圧下率の冷間圧延を施し、0.8mmの冷延板と
し、次いで加熱速度15℃/sec、均熱780℃×5
0sec、冷却速度20℃/secの連続焼鈍をした。
さらに、0.8%の圧下率の調質圧延をし、引張試験に
供した。引張試験方法は、JIS2241記載の方法に
従った。塗装焼き付け硬化性(BH性)は、2%引張予
歪ののち170℃−20minの焼き付け相当処理を行
い、再度引張試験をした時の降伏点の上昇量である。
Example 1 A steel having the composition shown in Table 1 was vacuum-melted in a laboratory.
That is, steel A (A-1 to A-5) and steel B (B-1 to B)
-5) group has a C content of 0.0003% to 0.0
Five levels have changed to 030%. Here, the amount of P is 0.015% for steel A and 0.050% for steel B.
On the other hand, Steel C (C-1 to C-6) and Steel D (D-1 to D-
In the group of 6), the amount of P is 0.0002% to 0.04.
6 levels are changing up to%. Here, steel C has a C content of 0.
0005% and Steel D has a C content of 0.0012%. An ingot having such a chemical composition is heated at a slab temperature of 1150 ° C., a finishing temperature of 910 ° C., and a winding temperature of 710.
It was hot-rolled at ℃ to obtain a steel plate having a thickness of 4.0 mm. 8 after pickling
Cold rolling of 0% reduction rate is performed to make a 0.8 mm cold rolled sheet, and then heating rate is 15 ° C./sec, soaking is 780 ° C. × 5.
Continuous annealing was performed at 0 sec and a cooling rate of 20 ° C./sec.
Further, it was temper-rolled with a rolling reduction of 0.8% and subjected to a tensile test. The tensile test method was according to the method described in JIS2241. The paint bake hardenability (BH property) is the amount of increase in the yield point when the tensile test is performed again after 170% -20 min baking equivalent treatment after 2% tensile prestrain.

【0019】図1から明らかなように、TiやNbなど
を添加せずとも全C量が0.0015%以下になると、
100℃−1hr後の降伏点伸び(YP−El)が0.
2%以下となり常温非時効の目標を達成する。また、全
C量が0.0001%以上になると、TiやNbを添加
した極低炭素鋼ではなかなか困難なBH性を付与するこ
とが可能となる。一方、図2から明らかなように、P添
加量を0.01%以上とすると、TiやNbを添加しな
い極低炭素鋼の欠点である低いr値、特にr45が著しく
改善され、深絞り用鋼板として十分なレベルとなる。
As is clear from FIG. 1, when the total C content is 0.0015% or less without adding Ti, Nb, or the like,
Yield point elongation (YP-El) after 100 ° C-1 hr is 0.
It will be less than 2% and achieve the target of non-aging at room temperature. Further, when the total amount of C is 0.0001% or more, it becomes possible to impart the BH property which is very difficult with the ultra-low carbon steel to which Ti or Nb is added. On the other hand, as is clear from FIG. 2, when the P addition amount is 0.01% or more, the low r value, especially r 45 , which is a drawback of the ultra-low carbon steel containing no Ti or Nb, is remarkably improved, and the deep drawing is performed. It is a sufficient level as a steel plate for use.

【0020】実施例2 実施例1の知見をベースに、表2に示す化学組成を有す
る鋼を実機規模で溶製、鋳造し、続いて熱間圧延(加熱
温度:1200℃、仕上温度:930℃、巻取温度:7
10℃)、冷間圧延(圧下率:80%)、連続焼鈍(7
80℃−40secの保定と400℃−2minの過時
効処理から成る)、調質圧延(0.8%)に供した。引
張試験は、実施例1と同様の方法に従った。また、二次
加工性は、焼鈍板を円盤に打ち抜き、絞り比1.6でカ
ップに絞り、種々の温度に変化させた材料を円錐台状の
工具の上に伏せて、高さ1mから300kgの重りを落
として衝撃を加え、破壊した場合の延性−脆性遷移温度
によって評価し、−20℃以下の値を良好とした。表3
から明らかなように、本発明に従えば、TiやNbなど
高価な元素が添加されていない鋼を用いて、強度レベル
が30kgf/mm 2 から45kgf/mm2 級までの
常温非時効深絞り用冷延鋼板が得られ、BH性能も同時
に兼ね備えることが可能である。また、微量Bの添加に
より耐二次加工脆化特性が著しく改善されることがわか
る。ここで、鋼3−1、3−2は、PとMnの同時添加
により高強度化したものであるが、高Mnであるにもか
かわらず良好なr、r45となる。これはPとMnの同時
添加は、熱間圧延板の細粒化にも有効であるためと考え
られる。
Example 2 Based on the findings of Example 1, it has the chemical composition shown in Table 2.
Steel is melted and cast on a full scale, followed by hot rolling (heating
Temperature: 1200 ° C, finishing temperature: 930 ° C, winding temperature: 7
10 ° C), cold rolling (reduction: 80%), continuous annealing (7
80 ℃ -40sec retention and 400 ℃ -2min overtime
It was subjected to tempering treatment) and temper rolling (0.8%). Pull
The tension test followed the same method as in Example 1. Also secondary
As for workability, the annealed plate was punched into a disk and the draw ratio was 1.6.
The material that has been changed to various temperatures,
Place it on the tool and drop a 300kg weight from a height of 1m.
Ductility-brittle transition temperature when shock is applied and fractured as
The value of -20 ° C or lower was evaluated as good. Table 3
As is clear from the above, according to the present invention, Ti, Nb, etc.
Strength level using steel without the addition of expensive elements
Is 30 kgf / mm 2To 45 kgf / mm2Up to
Cold rolled steel sheet for non-aging deep drawing at room temperature is obtained, and BH performance is also
It is possible to combine both. Also, for the addition of a small amount of B
It can be seen that the secondary work embrittlement resistance is significantly improved.
It Here, in the steels 3-1, 3-2, P and Mn are simultaneously added.
Although it has a higher strength, it has a high Mn.
Good r, r45Becomes This is a simultaneous P and Mn
It is thought that the addition is effective for making the hot-rolled sheet finer.
To be

【0021】実施例3 表2の鋼1−1、2−1を用いて、熱間圧延終了後の冷
却条件について実機設備を用いて検討を加えた。表4に
熱間圧延条件と、製品板のrおよびr45との関係を示
す。ここで、熱間圧延条件として、仕上げ後の冷却条
件、特に急冷開始までの時間および冷却速度を検討し
た。また、冷間圧延は圧下率が80%であり、板厚は
0.8mmである。780℃−40secの連続焼鈍、
および0.8%の圧下率の調質圧延に供した。表4から
明らかなように、通常の条件でも深絞り用鋼板としての
rおよびr45を満たすが、好ましくは熱間圧延終了後で
きるだけ速やかに急冷すると、r特にr45が著しく改善
される。これは、熱間圧延板の結晶粒径が熱間圧延直後
急冷により細粒化するためと考えられる。
Example 3 Using the steels 1-1 and 2-1 in Table 2, the cooling conditions after completion of hot rolling were examined using actual equipment. Table 4 shows the relationship between hot rolling conditions and r and r 45 of the product sheet. Here, as hot rolling conditions, the cooling conditions after finishing, particularly the time until the start of quenching and the cooling rate were examined. The cold rolling has a reduction rate of 80% and a plate thickness of 0.8 mm. Continuous annealing at 780 ° C.-40 sec,
And subjected to temper rolling with a rolling reduction of 0.8%. As is clear from Table 4, r and r 45 as a deep-drawing steel sheet are satisfied even under normal conditions, but preferably r, particularly r 45 is remarkably improved by rapid cooling as soon as possible after completion of hot rolling. It is considered that this is because the crystal grain size of the hot rolled plate is refined by rapid cooling immediately after hot rolling.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【発明の効果】以上詳述したように、本発明によればT
iやNbなどの高価な元素を添加せずとも、常温非時効
で深絞り性に優れた冷延鋼板が得られ、耐二次加工脆化
特性と塗装焼き付け硬化性も付与できる。また、本発明
は、電気メッキおよび溶融メッキなどを施す表面処理鋼
板、およびその製造にも適用が可能である。このよう
に、本発明は従来技術と比較して安価にかつ安定的に優
れた性能を有する鋼板の製造を可能とするばかりでな
く、高価な元素の地球資源を確保したり、あるいは本発
明による高強度鋼板の利用により地球環境保全にも寄与
するものと考えられ、その効果は著しい。
As described above in detail, according to the present invention, T
A cold-rolled steel sheet that is not aged at room temperature and has excellent deep drawability can be obtained without adding an expensive element such as i or Nb, and secondary work embrittlement resistance and paint bake hardenability can also be imparted. Further, the present invention can be applied to a surface-treated steel sheet subjected to electroplating, hot dip plating, etc., and its production. As described above, the present invention not only enables the production of a steel sheet having excellent performance stably and inexpensively as compared with the prior art, but also secures earth resources of expensive elements, or according to the present invention. The use of high-strength steel sheets is considered to contribute to global environmental conservation, and the effect is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】BH量およびYP−El(100℃−1hr時
効後)とC量との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the BH amount and YP-El (after aging at 100 ° C. for 1 hr) and the C amount.

【図2】rおよびr45とP量との関係を示す図である。FIG. 2 is a diagram showing the relationship between r and r 45 and the amount of P.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋末 治 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 西村 邦夫 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Akisue 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Co., Ltd. Corporate Technology Development Division (72) Inventor Kunio Nishimura 1-1 Hibahata-cho, Tobata-ku, Kitakyushu, Fukuoka No. New Nippon Steel Co., Ltd., Yawata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.0001〜0.00
15%、Si:1.2%以下、Mn:0.03〜3.0
%、P:0.01〜0.15%、S:0.0010〜
0.020%、Al:0.005〜0.1%、N:0.
0001〜0.0080%、B:0.0001〜0.0
030%を含み、残部Feおよび不可避的不純物からな
る耐二次加工脆化特性に優れ、塗装焼き付け硬化特性を
有する常温非時効深絞り用フェライト単相冷延鋼板。
1. C: 0.0001 to 0.00 in% by weight.
15%, Si: 1.2% or less, Mn: 0.03 to 3.0
%, P: 0.01 to 0.15%, S: 0.0010
0.020%, Al: 0.005-0.1%, N: 0.
0001 to 0.0080%, B: 0.0001 to 0.0
Ferrite single-phase cold-rolled steel sheet for normal temperature non-aged deep drawing which contains 030% and is excellent in secondary work embrittlement resistance consisting of balance Fe and unavoidable impurities and has paint bake hardening characteristics.
【請求項2】 請求項1記載の化学成分よりなるスラブ
を(Ar3 −100)℃以上の温度で熱間圧延の仕上げ
を行い、600℃から750℃の温度で巻取り、60%
以上の圧延率で冷間圧延を行い、600〜900℃で連
続焼鈍を行うことを特徴とする常温非時効深絞り用フェ
ライト単相冷延鋼板の製造方法。
2. A slab made of the chemical composition according to claim 1 is hot-rolled at a temperature of (Ar 3 -100) ° C. or higher and wound at a temperature of 600 ° C. to 750 ° C.
A method for producing a ferrite single-phase cold-rolled steel sheet for normal temperature non-aged deep drawing, which comprises performing cold rolling at the above-mentioned rolling ratios and continuous annealing at 600 to 900 ° C.
JP24530692A 1992-09-14 1992-09-14 Ferrite single-phase cold-rolled steel sheet for non-aging deep drawing at room temperature and method for producing the same Expired - Lifetime JP3175063B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP24530692A JP3175063B2 (en) 1992-09-14 1992-09-14 Ferrite single-phase cold-rolled steel sheet for non-aging deep drawing at room temperature and method for producing the same
US08/240,782 US5486241A (en) 1992-09-14 1993-09-14 Non-aging at room temperature ferritic single-phase cold-rolled steel sheet and hot-dip galvanized steel sheet for deep drawing having excellent fabrication embrittlement resistance and paint-bake hardenability and process for producing the same
PCT/JP1993/001314 WO1994006948A1 (en) 1992-09-14 1993-09-14 Ferrite single phase cold rolled steel sheet or fused zinc plated steel sheet for cold non-ageing deep drawing and method for manufacturing the same
EP93919662A EP0612857B1 (en) 1992-09-14 1993-09-14 Ferrite single phase cold rolled steel sheet or fused zinc plated steel sheet for cold non-ageing deep drawing and method for manufacturing the same
KR1019940701624A KR0128986B1 (en) 1992-09-14 1993-09-14 Ferrite single phase cold rolled steel sheet or fused zinc plated steel sheet for cold non-ahing deep drawing and method for manufacturing the same
DE69325791T DE69325791D1 (en) 1992-09-14 1993-09-14 Ferristically single-phase cold-rolled steel sheet or zinc-plated steel sheet for deep drawing without any signs of cold aging and process for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24530692A JP3175063B2 (en) 1992-09-14 1992-09-14 Ferrite single-phase cold-rolled steel sheet for non-aging deep drawing at room temperature and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0693376A true JPH0693376A (en) 1994-04-05
JP3175063B2 JP3175063B2 (en) 2001-06-11

Family

ID=17131717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24530692A Expired - Lifetime JP3175063B2 (en) 1992-09-14 1992-09-14 Ferrite single-phase cold-rolled steel sheet for non-aging deep drawing at room temperature and method for producing the same

Country Status (1)

Country Link
JP (1) JP3175063B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855696A (en) * 1995-03-27 1999-01-05 Nippon Steel Corporation Ultra low carbon, cold rolled steel sheet and galvanized steel sheet having improved fatigue properties and processes for producing the same
US9297057B2 (en) 2003-11-10 2016-03-29 Posco Cold rolled steel sheet having aging resistance and superior formability, and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855696A (en) * 1995-03-27 1999-01-05 Nippon Steel Corporation Ultra low carbon, cold rolled steel sheet and galvanized steel sheet having improved fatigue properties and processes for producing the same
US9297057B2 (en) 2003-11-10 2016-03-29 Posco Cold rolled steel sheet having aging resistance and superior formability, and process for producing the same

Also Published As

Publication number Publication date
JP3175063B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
JP3424619B2 (en) High tensile cold rolled steel sheet and method for producing the same
US3988173A (en) Cold rolled steel sheet having excellent workability and method thereof
JP2003221623A (en) Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet
WO1994006948A1 (en) Ferrite single phase cold rolled steel sheet or fused zinc plated steel sheet for cold non-ageing deep drawing and method for manufacturing the same
JPS6256209B2 (en)
JPH06102816B2 (en) Cold rolled steel sheet with a composite structure having excellent workability, non-aging at room temperature, and bake hardenability, and a method for producing the same
JP2000265244A (en) Hot-dip galvanized steel sheet excellent in strength and ductility, and its manufacture
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
JP2004143470A (en) Steel sheet excellent in paint bake hardenability and retarded natural aging hardenability and its manufacturing process
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JPS6111294B2 (en)
JPH05230614A (en) Manufacture of high strength hot dip calvanized steel sheet for deep drawing
JP3175063B2 (en) Ferrite single-phase cold-rolled steel sheet for non-aging deep drawing at room temperature and method for producing the same
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
JP3288514B2 (en) Manufacturing method of high-strength cold-rolled steel sheet for deep drawing
JPS638164B2 (en)
JP2755014B2 (en) Method for producing high-strength cold-rolled steel sheet for deep drawing with excellent secondary work brittleness resistance
JPH0849038A (en) Baking hardening type cold rolled steel sheet excellent in deep drawability and its production
RU2788613C1 (en) Cold-rolled coated steel sheet and method for production thereof
JPH07252590A (en) High tensile strength cold rolled steel plate for deep drawing excellent in balance of strength-ductility and its production
JPH06212354A (en) Thin steel sheet for deep drawing having nonaging property
JP3419000B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and secondary work brittle resistance, and method for producing the same
JPH0693377A (en) Hot-dip galvanized sheet of ferrite single phase steel excellent in plating characteristic and its production
JP2984884B2 (en) Non-aging steel sheet for deep drawing and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080406

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 12