JP2004143470A - Steel sheet excellent in paint bake hardenability and retarded natural aging hardenability and its manufacturing process - Google Patents

Steel sheet excellent in paint bake hardenability and retarded natural aging hardenability and its manufacturing process Download PDF

Info

Publication number
JP2004143470A
JP2004143470A JP2002292572A JP2002292572A JP2004143470A JP 2004143470 A JP2004143470 A JP 2004143470A JP 2002292572 A JP2002292572 A JP 2002292572A JP 2002292572 A JP2002292572 A JP 2002292572A JP 2004143470 A JP2004143470 A JP 2004143470A
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
less
rolled
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002292572A
Other languages
Japanese (ja)
Inventor
Naoki Yoshinaga
吉永 直樹
Manabu Takahashi
高橋 学
Naoki Maruyama
丸山 直紀
Natsuko Sugiura
杉浦 夏子
Atsushi Takahashi
高橋 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002292572A priority Critical patent/JP2004143470A/en
Publication of JP2004143470A publication Critical patent/JP2004143470A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet of good paint bake hardenability and retarded natural aging hardenability and its manufacturing process. <P>SOLUTION: The steel sheet which contains, by mass%, 0.0005-0.0025% C, ≤2.0% Si, ≤3.0% Mn, ≤0.15% P, ≤0.015% S, 0.2-1.4% Cr, 0.003-0.020% O, ≤0.008% Al, 0.001-0.005% N and the balance Fe and inevitable impurities is offered. It is preferable that solid-soluted C is ≤0.0020% and solid-soluted N is 0.0005-0.004%. A hot rolled and cold rolled steel sheet, and further a cold steel sheet for a galvanized sheet which has good paint bake hardenability and retarded natural aging hardenability is obtained by remaining solid-soluted N and adding Cr and O into an ultralow carbon steel. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、塗装焼付硬化性能(BH)、常温遅時効性、成形性を兼ね備えた鋼板の製造方法に関するものである。
【0002】
本発明が係わる鋼板とは、自動車、家庭電気製品、建物などに使用されるものである。そして、表面処理をしない狭義の鋼板と、防錆のために溶融Znメッキ、合金化溶融Znメッキ、電気Znメッキなどの表面処理を施した広義の鋼板を含む。本発明による鋼板は、塗装焼付硬化性能を有する鋼板であるので、使用に当たっては今までの鋼板より板厚を減少できること、すなわち軽量化が可能となる。したがって、地球環境保全に寄与できるものと考えられる。
【0003】
【従来の技術】
溶鋼の真空脱ガス処理の最近の進歩により、極低炭素鋼の溶製が容易になった現在、良好な加工性を有する極低炭素鋼板の需要は益々増加しつつある。この中でも、例えば特許文献1などに開示されているTiとNbを複合添加した極低炭素鋼板は、きわめて良好な加工性を有し、塗装焼付硬化(BH)性を兼備し、溶融亜鉛メッキ特性にも優れているので、重要な位置をしめつつある。しかしながら、そのBH量は通常のBH鋼板のレベルを超えるものではなく、さらなるBH量を付与しようとすると常温非時効性が確保できなくなるという欠点を有する。
【0004】
高BH性と常温遅時効性とを兼ね備えた鋼板に関する技術については、例えば、特許文献2がある。これは極低炭素鋼に多量のNbとB、さらにはTiを複合添加して焼鈍後の組織をフェライト相と低温変態生成相との複合組織とし高r値、高BH、高延性および常温非時効性を兼ね備えた冷延鋼板を得るものである。しかしながら、この技術には以下のような実操業上の問題点を有することがあきらかとなった。1)このような多量のNb,BさらにはTiを含有する成分の鋼では、α→γ変態点が低下するわけではなく、複合組織を得るためには極めて高い温度の焼鈍が必須となり、連続焼鈍時に板破断等のトラブルの原因となること、2)α+γの温度領域がきわめて狭いため、板幅方向に組織が変化し、結果として材質が大きくばらついたり、数℃の焼鈍温度の変化によって複合組織になる場合とならない場合があり、製造がきわめて不安定となる。
【0005】
また、特許文献3には、Nbを添加した極低炭素冷延鋼板において焼鈍後の冷却速度を制御することによって粒界中の炭素濃度を高めて、高BHと常温遅時効性との両立が可能であることが示されている。しかしながら、これによっても高BHと常温遅時効性とのバランスは十分とは言えない。
【0006】
さらに、従来のBH鋼板では、BHの熱処理条件が170℃−20分であれば所定のBH量を得ることができるが、この条件が160℃−10分や150℃−10分ではBHが低下してしまうという問題がある。
【0007】
【特許文献1】
特開昭59−31827号公報
【特許文献2】
特公平3−2224号公報
【特許文献3】
特開平7−300623号公報
【0008】
【発明が解決しようとする課題】
上述の通り、従来のBH鋼板は、安定的な製造が困難であったり、BH量を増加させると同時に常温遅時効性が失われるという欠点を有していた。また、塗装焼付の温度が現状の170℃に対して160℃ないし150℃のような低温になると十分なBH量が得られないという問題がある。
【0009】
本発明は、高BH性と常温遅時効性とを兼ね備え、また、BHの温度が低温となっても十分なBH量を有する鋼板とその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、上記の目標を達成するために、鋭意、研究を遂行し、以下に述べるような従来にはない知見を得た。
【0011】
すなわち、固溶Nの残存する鋼にCrを添加し、さらにO(酸素)を添加することにより従来以上に優れたBHと常温遅時効性を有し、かつ塗装焼付条件が低温短時間となっても高BH性を確保することが可能であることを見いだしたものである。
【0012】
本発明は、このような思想と新知見に基づいて構築された従来にはない全く新しい鋼板であり、その要旨とするところは以下のとおりである。
(1)質量%で、C:0.0005〜0.0025%、Si:2.0%以下、Mn:3.0%以下、P:0.15%以下、S:0.015%以下、Cr:0.2〜1.4%、O:0.003〜0.020%、Al:0.008%以下、N:0.001〜0.005%を含有し、残部Feおよび不可避的不純物からなり、2%引張変形後170℃にて20分間の熱処理を施すことによって評価されるBH170が45MPa以上で、かつ2%引張変形後160℃にて10分間の熱処理を施すことによって評価されるBH160、および2%引張変形後150℃にて10分間の熱処理で評価されるBH150がいずれも40MPa以上であることを特徴とする塗装焼付硬化性能と常温遅時効性に優れた鋼板。
(2)質量%で、さらに、Mo:0.001〜1.0%を含有することを特徴とする(1)記載の塗装焼付硬化性能と常温遅時効性に優れた鋼板。
(3)質量%で、さらに、V,Zr,Ce,Ti,Nb,Mgのうち1種または2種以上を合計で0.001〜0.02%含有することを特徴とする(1)または(2)記載の塗装焼付硬化性能と常温遅時効性に優れた鋼板。
(4)質量%で、さらに、固溶C:0.0020%以下、固溶N:0.0005%〜0.004%を含有することを特徴とする(1)〜(3)のいずれか1項記載の塗装焼付硬化性能と常温遅時効性に優れた鋼板。
(5)質量%で、さらに、Caを0.0005〜0.01%含有することを特徴とする(1)〜(4)のいずれか1項記載の塗装焼付硬化性能と常温遅時効性に優れた鋼板。
(6)質量%で、さらに、B:0.0001〜0.0015%を含有することを特徴とする(1)〜(5)のいずれか1項記載の塗装焼付硬化性能と常温遅時効性に優れた鋼板。
(7)質量%で、さらに、Sn,Cu,Ni,Co,ZnおよびWの1種又は2種以上を合計で0.001〜1.0質量%含有することを特徴とする(1)〜(6)のいずれか1項記載の塗装焼付硬化性能と常温遅時効性に優れた鋼板。
(8)フェライト単相組織からなり、結晶粒径が8μm以上であることを特徴とする(1)〜(7)のいずれか1項に記載の塗装焼付硬化性能と常温遅時効性に優れた鋼板。
(9)(1)〜(7)のいずれか1項に記載の化学成分を有するスラブを(Ar点−100)℃以上で熱間圧延を行い、熱間圧延終了温度から600℃以下まで平均冷却速度10℃/s以上で冷却し、ついで750℃以下で巻き取ることを特徴とする塗装焼付硬化性能と常温遅時効性に優れた熱延鋼板の製造方法。
(10)(1)〜(7)のいずれか1項に記載の化学成分を有するスラブを(Ar点−100)℃以上で熱間圧延を行い、95%以下の圧下率で冷間圧延を施し、最高到達温度が600℃以上1100℃以下となるように焼鈍し、600℃から450℃以下まで平均冷却速度10℃/s以上で冷却し、さらに300〜100℃の温度域を平均冷却速度15℃/s以下で冷却することを特徴とする塗装焼付硬化性能と常温遅時効性に優れた冷延鋼板の製造方法。
(11)(1)〜(7)のいずれか1項に記載の化学成分を有するスラブを(Ar点−100)℃以上で熱間圧延を行い、95%以下の圧下率で冷間圧延を施し、最高到達温度が600℃以上1100℃以下となるように焼鈍し、600℃から450℃以下まで平均冷却速度10℃/s以上で冷却し、ついで150〜450℃で120秒間以上の過時効処理を行なうことを特徴とする塗装焼付硬化性能と常温遅時効性に優れた冷延鋼板の製造方法。
(12)(1)〜(7)のいずれか1項に記載の化学成分を有するスラブを(Ar点−100)℃以上で熱間圧延を行い、95%以下の圧下率で冷間圧延を施し、連続溶融亜鉛メッキラインにて最高到達温度が600℃以上1100℃以下となるように焼鈍し、600℃以下亜鉛メッキ浴温度まで平均冷却速度5℃/s以上で冷却したのち、300℃から100℃以下まで平均冷却速度15℃/s以下で冷却することを特徴とする塗装焼付硬化性能と常温遅時効性に優れた亜鉛メッキ冷延鋼板の製造方法。
(13)600℃以下の鉛メッキ浴温度まで平均冷却速度5℃/s以上で冷却したのち、460〜550℃で1秒以上の熱処理を行い、300℃から100℃以下まで平均冷却速度15℃/s以下で冷却することを特徴とする(12)記載の塗装焼付硬化性能と常温遅時効性に優れた亜鉛メッキ冷延鋼板の製造方法。
【0013】
【発明の実施の形態】
ここに本発明において鋼組成および製造条件を上述のように限定する理由についてさらに説明する。
【0014】
Cは安価に強度を増加させる元素であるので、その添加量は狙いとする強度レベルに応じて変化するが、Cを0.0005%未満とするのは製鋼技術上困難でコストアップとなる。また、十分なBH性を付与するためには少量のCが存在している方が好ましいのでこれを下限とする。一方、C量が0.0025%を超えると成形性の劣化を招くだけでなく、本発明で重要な高BH性と常温非時効性を両立することが困難となるのでこれを上限とする。0.0007%以上0.0020%未満がさらに好ましいCの範囲である。
【0015】
Siは固溶体強化元素として強度を増加させる働きがあることの他、マルテンサイトやベイナイトさらには残留γ等を含む組織を得るためにも有効であり、その添加量は狙いとする強度レベルに応じて変化するが、添加量が2.0%超となるとプレス成形性が劣悪となったり、化成処理性の低下を招いたりするのでこれを上限とする。溶融亜鉛めっきまたは合金化溶融亜鉛めっきを施す場合には、メッキ密着性の低下、合金化反応の遅延による生産性の低下などの問題が生ずるので0.6%以下とする。自動車のドアやフード等の外板パネルなどの表面品位が特に重要な用途に対しては0.05%を上限とする。下限は特に設けないが、0.001%以下とするのは製造コストが高くなるのでこれが実質的な下限である。また、Al量の制御の観点でAl脱酸を行うことが困難な場合には、Siで脱酸することもあり得る。この場合には0.04%以上のSiが含有される。
【0016】
Mnは固溶体強化元素として有用である他、MnSを形成し熱延時のSによる耳割れを抑制したり、熱延板組織を微細にしたり、マルテンサイトやベイナイトさらには残留γ等を含む組織を得るためにも有効であるので必要に応じて添加する。さらにMnは固溶Nに起因する常温時効を抑制する効果を有するので0.3%以上添加することが好ましい。ただし、深絞り性を必要とする場合には、0.15%以下、さらには0.10%未満とすることが好ましい。一方、3.0%を超えると強度が高くなりすぎて延性が低下したり、亜鉛メッキの密着性が阻害されたりするのでこれを上限とする。
【0017】
PはSiと同様に安価に強度を上昇する元素として知られており強度を増加する必要がある場合にはさらに積極的に添加する。また、Pは熱延組織を微細にし、加工性を向上する効果も有する。ただし、添加量が0.15%を超えると、スポット溶接後の疲労強度が劣悪となったり、降伏強度が増加し過ぎてプレス時に面形状不良を引き起こす。さらに、連続溶融亜鉛メッキ時に合金化反応が極めて遅くなり、生産性が低下する。また、2次加工性も劣化する。したがって、その上限値を0.15%とする。
【0018】
Sは0.015%超では、熱間割れの原因となったり、加工性を劣化させるのでこれを上限とする。
【0019】
Crは本発明において重要である。0.2%以上のCr添加によって初めて高BH性と耐常温時効性とを両立することが可能となる。NはCよりも拡散速度が大きいため、耐常温時効性を確保することが困難であることが知られている。このため自動車の外板パネル等、外観が重視される部材にはNを活用したBH鋼板は適用されていない。しかしながらCrを積極的に添加することで、BH性を損なうことなく常温遅時効性を得ることが可能であることを新たに見いだした。これらの元素によって耐常温時効性が向上する機構は必ずしも明らかではないが、以下のように推察される。常温付近では、これらの元素とNとがペアやクラスターを形成し、Nの拡散を抑えるため耐常温時効性が確保されるのに対して、150〜170℃での塗装焼付処理においては、Nがこれらのペアやクラスターから脱出し、転位を固着するため高BH性が発現する。Crの上限は、加工性の確保、めっき密着性とコストの点から決定され、1.4%とする。0.4〜1.0%がより好ましい範囲である。
【0020】
O(酸素)は本発明において特に重要な元素である。Oを所定の量に制御することによって上記したCrのBHと常温遅時効性との寄与が大きくなることを発見した。この理由は必ずしも明らかではないが、酸化物の周辺にCrとNが優先的に偏析し、上述したように、Crが常温でNの拡散を抑制する効果を助長しているためと推察される。O量は、0.003%以上とすることでこのような効果が明確になるためこれを下限とする。一方で、Oが0.020%を超えるとこのような効果が飽和する傾向となるだけでなく、r値や延性等の加工性が劣化するため0.020%を上限とする。0.005〜0.015%がより好ましいOの範囲である。Oは通常はFeの酸化物として存在するが、Al、Ce、Zr、Mg、Siなどの酸化物またはそれらの複合酸化物として存在しても構わない。ただし、Al系の酸化物では高BHと常温遅時効性との両立に対する寄与が小さく、また表面性状を劣化させるので極力低減することが望まれる。また、酸化物の形態やサイズ、分布は特に限定しないが、表面積を大きくする観点で、球状が好ましく、その平均直径は1.0μm以下、また製品板の結晶粒界に存在する割合が体積率で20%以下であることが好ましい。これらの要件はいずれもCrとNの偏析に有効なサイトを極力増加させる観点に立つものである。同様の観点から酸化物のみならず、MnS、CaS、CuS等を微細分散させることも有効である。
【0021】
Alは脱酸調製剤として使用しても良い。ただし、AlはNと結合しAlNを形成する結果、BH性が低下するので、その添加は製造技術上無理のない範囲で必要最小限にとどめることが望ましい。この観点から冷延鋼板の場合には上限を0.008%未満とする。Al量が0.008%超では、固溶Nを確保するために全N量を多量に添加せねばならず、製造コストや成形性の点で不利である。0.005%未満がより好ましく、0.003%未満がさらに好ましい上限である。
【0022】
Nは本発明において重要である。すなわち、本発明においては、主としてNによって高BH性を達成するものである。したがって、0.001%以上の添加が必須である。一方でNが多すぎると常温遅時効性を確保するために過剰のCrを添加しなくてはならなくなったり、加工性が劣化したりするので0.005%を上限値とする。より好ましくは、0.001〜0.004%である。
【0023】
さらに、NはAlと結合してAlNを形成しやすいので、BHに寄与するNを確保するために、N−0.52Al>0を満たすことが好ましい。より好ましくは、N−0.52Al>0.0005%とする。この式は化学量論的にAlよりもN量が多いことが必要条件であることから決められたものである。
【0024】
Moは主に固溶強化元素として0.001%以上含有しても良いこととした。また、多量添加では炭窒化物形成による強化も期待できる半面、延性劣化が著しいため上限を1.0%とした。
【0025】
VはCrの存在下で添加すると常温遅時効性の確保に有効に作用するため、0.001%以上添加することが好ましい。一方、下記のZr,Ce,Ti,Nb,Mgと合わせ、これらの1種又は2種以上の合計で0.02%超の添加は窒化物の形成を助長するのでこれを上限とする。
【0026】
Zr,Ce,Ti,Nb,Mgは脱酸元素として有効で、かつ溶鋼中で浮上しにくいために鋼中に酸化物として残存しやすいので、CrやNの偏析サイトとして有効に働く。また、NbやTiには加工性を向上せしめる効果があることは広く知られているので、単独添加の場合それぞれ0.001%以上添加することが好ましい。しかし、添加量が多すぎると窒化物を形成し、固溶Nの確保が困難となるので、前記のVを含めこれらの1種又は2種類以上添加する際も合計で0.02%以下とする。
【0027】
固溶C量は0.0020%以下とすることが好ましい。本発明においては、主としてNによって高BH性と常温遅時効性とを確保するので、固溶C量が多すぎると常温遅時効性を確保することが困難となる。固溶Cは0.0015%未満とすることがより好ましい。固溶C量の調整は、全C量を上述の上限以下とすることによって行っても良いし、巻取温度や過時効処理条件によって所定のレベルまで低減しても良い。
【0028】
固溶Nは合計で0.0005〜0.004%とすることが好ましい。ここで固溶Nとは単独でFe中に存在するNだけでなく、Cr,Mo,V,Mn,Si,Pなどの置換型固溶元素とペアやクラスターを形成するNも含む。固溶N量は、全N量からAlN、NbN、VN、TiN、BN、ZrNなどの化合物として存在するN量(抽出残査の化学分析から定量)を差し引いた値から求めることができる。また、内部摩擦法やFIM(Field Ion Microscopy)によって求めても良い。固溶Nが0.0005%未満では十分なBHを得ることができない。また、0.004%を超えてもBH性は向上するが、常温遅時効性を得ることが困難となる。より好ましくは、0.0008〜0.0022%である。
【0029】
Caは、脱酸元素として有用であるほか、硫化物の形態制御にも効果を奏するので、0.0005〜0.01%の範囲で添加しても良い。0.0005%未満では効果が十分でなく、0.01%超添加すると加工性が劣化するのでこの範囲とする。
【0030】
Bは2次加工脆化の防止に有効であるので必要に応じて添加する。添加量が0.0001%未満では効果がほとんどなく、0.0015%を超えて添加しても効果が飽和するだけでなく、BNが形成され易くなり、固溶Nを確保することが困難となる。0.0001〜0.0004%がより望ましい範囲である。
【0031】
これらを主成分とする鋼に機械的強度の増加や疲労特性向上などのため、Sn,Cu,Ni,Co,ZnおよびWの1種又は2種以上を合計で0.001〜1%含有しても構わない。
【0032】
本発明によって得られる熱延鋼板の組織は、フェライトを面積率最大の相とし、炭化物、窒化物、硫化物等の析出相を除くとフェライト100%(フェライト単層組織)からなることが好ましい。本発明においてはフェライトが100%であると、最も良好な延性およびBHと常温遅時効性とのバランスを得ることが可能である。ただし、鋼の強度等の要求特性を満たすためにベイナイトまたはアシキュラーフェライトを混在させても良い。フェライトの平均結晶粒径は8μm以上であることが望ましい。これによって良好な成形性が確保されるからである。10μm超であればより好ましい。上限は特に設けないが、結晶粒径が大きすぎるとプレス後に肌荒れなどが生じやすいので50μm未満であることが望ましい。
【0033】
次に、製造条件の限定理由について述べる。
【0034】
熱間圧延に供するスラブは特に限定するものではない。すなわち、連続鋳造スラブや薄スラブキャスターなどで製造したものであればよい。また、鋳造後に直ちに熱間圧延を行う連続鋳造−直接圧延(CC−DR)のようなプロセスにも適合する。
【0035】
熱延鋼板を最終製品とする場合には以下のように製造条件を限定する必要がある。すなわち、熱延の仕上げ温度は、(Ar−100)℃以上とする。(Ar−100)℃未満では、加工性を確保するのが困難であったり板厚精度の問題を生じたりする。Ar点以上がより好ましい範囲である。仕上げ温度の上限は特に定めることなく本発明の効果を得ることができるが、r値を確保するためには1000℃以下とすることが好ましい。
【0036】
なお、熱延の加熱温度は特に限定するものではないが、固溶Nを確保するために溶解させる必要のある場合には、1150℃以上とすることが望ましい。
【0037】
熱延後は熱間圧延終了温度から少なくとも600℃までは、平均冷却速度が10℃/s以上となるように冷却する必要がある。これによって常温遅時効性が向上する。冷却速度が30℃/s以上で在れば、BH性と耐常温時効性に対してより一層好ましい。平均冷却速度の上限は特に定めないが、あまり高すぎると組織が不均一になりやすいので1000℃/s以下とすることが好ましい。
【0038】
巻取温度は、750℃以下とする。下限は特に設けないが、良好な常温遅時効性を得るためには200℃以上とすることが好ましい。
【0039】
熱延後は必要に応じて酸洗し、その後インラインまたはオフラインで圧下率10%以下のスキンパスまたは圧下率40%程度までの冷間圧延を施しても構わない。
【0040】
つぎに冷延板を最終製品とする場合の製造条件について示す。
【0041】
熱延の仕上げ温度は製品板の加工性を確保するという観点から(Ar−100)℃以上とする必要がある。仕上げ温度の上限は熱延板と同様に、1000℃以下とすることが好ましい。
【0042】
冷間圧延の圧下率は95%以下とする。95%超とするのは設備への負荷が過大となるだけでなく、製品の機械的性質の異方性が大きくなる。好ましくは、86%以下である。圧下率の下限は特に定めないが、加工性を確保するためには30%以上とすることが好ましい。
【0043】
焼鈍は、最高到達温度が600℃〜1100℃とする。焼鈍温度が600℃未満では、再結晶が完了せず、加工性が劣悪となる。一方、焼鈍温度が1100℃超では、組織が粗大化したり、加工性の低下を招く。650〜900℃がより好ましい範囲である。
【0044】
焼鈍後の冷却は、本発明において重要である。すなわち、焼鈍後の600℃から450℃以下までの冷却速度を10℃/s以上とし、さらに300℃から100℃までの平均冷却速度を15℃/s以下とすることで高BH性と常温遅時効性とを兼備した鋼板を製造することが可能となる。450℃までの冷却速度は30℃/s以上さらには50℃/s以上とすることがより一層好ましく、300℃から100℃までの平均冷却速度は10℃/s以下とすることはより好ましい。ただし、過時効処理を施す場合にはこの限りではない。450℃までの冷却速度の上限は特に定めないが、板形状を均一にするためには200℃/s以下とすることが好ましく、300℃から100℃までの平均冷却速度の下限も特に定めないが、生産性を確保するために3℃/s以上とすることが好ましい。
【0045】
冷却後の過時効処理は常温遅時効性を向上せしめるのに有効である。このためには、過時効温度を150〜450℃とするのが良く、時間は120秒以上とする。過時効処理時間の上限は特に定めないが、長すぎると生産性を低下させるので1000秒以下とすることが好ましい。
【0046】
一方、溶融亜鉛メッキを施す場合には、焼鈍後、600℃以下の亜鉛メッキ浴温度までの平均冷却速度を5℃/s以上とする。この場合にも高BH性と常温遅時効性とをさらに向上させるためには10℃/s以上さらには20℃/s以上とすることが好ましい。
【0047】
平均冷却速度の上限は特に定めないが、良好な板形状を保つためには200℃/s以下とすることが好ましい。
【0048】
その後、Zn−Fe合金化処理を必要とする場合には460℃〜550℃の範囲に1秒以上再加熱する。加熱時間の上限は特に定めないが、生産性確保の観点から40秒以下とすることが好ましい。
【0049】
その後、300℃から100℃以下までの平均冷却速度は15℃/s以下とする。平均冷却速度の下限は特に定めないが、生産性確保の観点から3℃/s以上とすることが好ましい。
【0050】
これらの条件が常温遅時効性の向上に好適であることの理由は必ずしも明らかではないが、酸化物の周辺にCrとNが偏析することを助長しているものと推測される。
【0051】
調質圧延は、常温遅時効性のさらなる向上、また、形状強制のために圧下率3%以下の範囲で行うのがよい。3%を超えると降伏強度が高くなったり、設備の負荷が大きくなるのでこれを上限とする。
【0052】
本発明によって得られる冷延鋼板の組織は、フェライトを面積率最大の相とし、炭化物、窒化物、硫化物等の析出相を除くとフェライト100%(フェライト単層組織)からなることが好ましい。本発明においてはフェライトが100%であると、最も良好な延性およびBHと常温遅時効性とのバランスを得ることが可能である。ただし鋼の強度等の要求特性を満たすためにベイナイト、アシキュラーフェライト、マルテンサイトを混在させても良い。フェライトの平均結晶粒径は8μm以上であることが好ましい。これによって延性や深絞り性等の成形性に優れた鋼板を得ることができる。10μm超であればなお好ましい。上限は特に設けないが、結晶粒径が大きすぎるとプレス後に肌荒れなどが生じやすいので50μm未満であることが望ましい。
【0053】
本発明によって得られる鋼板は、BH170が45MPa以上、BH160およびBH150がいずれも40MPa以上である。BH170が60MPa以上、BH160およびBH150が50MPa以上がより好ましい範囲である。BHの上限は特に限定しないが、BH170が140MPa、BH160およびBH150が125MPaを超えると耐常温時効性を確保することが困難となる。なお、BH170とは、2%引張変形後170℃にて20分間の熱処理を施すことによって、BH160は2%引張変形後160℃にて10分間の熱処理を施すことによって、さらにBH150は2%引張変形後150℃にて10分間の熱処理で評価されるBHを表す。
【0054】
常温遅時効性は人工時効後の降伏点伸びによって評価される。本発明によって得られる鋼板は、100℃にて1時間熱処理後の引張試験における降伏点伸びが0.4%以下、さらに好ましくは0.3%以下である。
【0055】
次に本発明を実施例にて説明する。
【0056】
【実施例】
〔実施例1〕
表1の鋼をスラブ加熱温度1200℃、仕上げ温度930℃、巻取り温度650℃で熱間圧延し、3.5mm厚の鋼帯とした。酸洗後、80%の圧下率の冷間圧延を施し0.7mm厚の冷延板とし、ついで連続焼鈍設備にて加熱速度10℃/s、最高到達温度800℃とする焼鈍を行い、その後表2中に示す種々の冷却速度で600℃から450℃の範囲を冷却し、また過時効処理温度も変化させた。なお過時効処理時間は180秒一定とした。300℃から50℃までの冷却速度も変化させた。さらに1.0%の圧下率の調質圧延をし、JIS5号引張試験片を採取しBH、人工時効後の降伏点伸びの測定を行った。
【0057】
結果を表2に示す。これより明らかなとおり、本発明の化学成分を有する鋼を適正な条件で焼鈍した場合には、高BH性と常温遅時効性とを両立することができた。これに対してO量が本発明の範囲よりも少ないと常温遅時効性が劣化し、逆に多すぎると伸びやr値が劣化した。
【0058】
【表1】

Figure 2004143470
【0059】
【表2】
Figure 2004143470
【0060】
〔実施例2〕
表1の鋼のうちB,Gをスラブ加熱温度1150℃、仕上げ温度910℃、巻取り温度650℃で熱間圧延し、4.0mm厚の鋼帯とした。酸洗後、80%の圧下率の冷間圧延を施し0.8mm厚の冷延板とし、ついで連続溶融亜鉛メッキ設備にて加熱速度14℃/s、最高到達温度800℃とする焼鈍を行い、600℃以下460℃までを種々の冷却速度で冷却し、460℃の亜鉛浴に浸漬させたのち、15℃/sにて500℃まで再加熱し、15秒間保持を行った。300℃から50℃までの冷却速度も変化させた。その後、さらに0.8%の圧下率の調質圧延をし、JIS5号引張試験片を採取しBH、人工時効後の降伏点伸びの測定を行った。
【0061】
結果を表3に示す。これより明らかなとおり、適正な条件で製造した場合には、高BH性と常温時遅効性とを両立することができた。
【0062】
【表3】
Figure 2004143470
【0063】
【発明の効果】
以上説明したように、本発明は高BH性と常温時効性とを備え、またBHの温度が低温になっても十分なBH量を有する鋼板を提供することが可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a steel sheet having both paint bake hardening performance (BH), normal temperature delayed aging, and formability.
[0002]
The steel sheet according to the present invention is used for automobiles, home appliances, buildings, and the like. Further, it includes a steel plate in a narrow sense without surface treatment and a steel plate in a broad sense subjected to surface treatment such as hot-dip Zn plating, alloyed hot-dip Zn plating, and electric Zn plating for rust prevention. Since the steel sheet according to the present invention is a steel sheet having paint bake hardening performance, it is possible to reduce the thickness of the steel sheet in use, that is, to reduce the weight, in use. Therefore, it is considered that it can contribute to global environmental conservation.
[0003]
[Prior art]
With the recent progress in vacuum degassing of molten steel, it has become easier to produce ultra-low carbon steel. At present, the demand for ultra-low carbon steel sheets having good workability is increasing. Among these, for example, the ultra-low carbon steel sheet to which Ti and Nb are added in combination as disclosed in Patent Literature 1 and the like has extremely good workability, also has paint bake hardening (BH) properties, and has hot-dip galvanizing properties. Because it is excellent, it is becoming an important position. However, the BH amount does not exceed the level of a normal BH steel sheet, and there is a disadvantage that non-aging at room temperature cannot be ensured if a further BH amount is to be added.
[0004]
Patent Literature 2 discloses, for example, a technique relating to a steel sheet having both high BH property and ordinary-temperature delayed aging property. This is because a very large amount of Nb, B, and Ti are added to a very low carbon steel and the structure after annealing is changed to a composite structure of a ferrite phase and a low-temperature transformation generation phase to obtain a high r value, a high BH, a high ductility, and a non-normal temperature. This is to obtain a cold-rolled steel sheet having aging properties. However, it has become apparent that this technology has the following practical operational problems. 1) In steels containing such a large amount of Nb, B and Ti, the α → γ transformation point does not necessarily decrease, and in order to obtain a composite structure, annealing at an extremely high temperature is indispensable. 2) Since the temperature range of α + γ is extremely narrow, the structure changes in the width direction of the sheet, and as a result, the material varies greatly and the composite is changed due to a change in the annealing temperature of several degrees Celsius. It may or may not be an organization, making production extremely unstable.
[0005]
Further, Patent Document 3 discloses that, by controlling the cooling rate after annealing in an ultra-low carbon cold rolled steel sheet to which Nb is added, the carbon concentration in the grain boundaries is increased, thereby achieving both high BH and normal temperature delayed aging. It has been shown that this is possible. However, even by this, the balance between high BH and normal temperature delayed aging cannot be said to be sufficient.
[0006]
Further, in the conventional BH steel sheet, a predetermined BH amount can be obtained if the BH heat treatment condition is 170 ° C. for 20 minutes, but the BH decreases when the condition is 160 ° C. for 10 minutes or 150 ° C. for 10 minutes. There is a problem of doing.
[0007]
[Patent Document 1]
JP-A-59-31827
[Patent Document 2]
Japanese Patent Publication No. 3-2224
[Patent Document 3]
JP-A-7-300623
[0008]
[Problems to be solved by the invention]
As described above, the conventional BH steel sheet has a drawback that stable production is difficult and that the BH content is increased and at the same time the normal-temperature delayed aging is lost. Further, there is a problem that a sufficient BH amount cannot be obtained when the temperature of the paint baking is lower than the current 170 ° C., such as 160 ° C. to 150 ° C.
[0009]
An object of the present invention is to provide a steel sheet having both high BH properties and normal-temperature delayed aging properties, and having a sufficient BH amount even when the BH temperature is low, and a method for producing the same.
[0010]
[Means for Solving the Problems]
The present inventors have earnestly conducted research in order to achieve the above-mentioned goal, and have obtained unprecedented knowledge as described below.
[0011]
That is, by adding Cr to steel in which solid solution N remains, and further adding O (oxygen), it has better BH and room-temperature delayed aging than ever before, and the coating baking condition is reduced to a short time at low temperature. However, it has been found that high BH can be ensured.
[0012]
The present invention is an unprecedented and completely new steel plate constructed based on such ideas and new findings, and the gist thereof is as follows.
(1) In mass%, C: 0.0005 to 0.0025%, Si: 2.0% or less, Mn: 3.0% or less, P: 0.15% or less, S: 0.015% or less, Cr: 0.2 to 1.4%, O: 0.003 to 0.020%, Al: 0.008% or less, N: 0.001 to 0.005%, balance Fe and inevitable impurities BH170 is evaluated by applying a heat treatment at 170 ° C. for 20 minutes after 2% tensile deformation, and is evaluated by applying a heat treatment at 160 ° C. for 10 minutes after 2% tensile deformation. BH160 and BH150 evaluated by heat treatment at 150 ° C. for 10 minutes after 2% tensile deformation are each 40 MPa or more.
(2) The steel sheet having excellent paint bake hardening performance and normal temperature delayed aging according to (1), further containing Mo: 0.001 to 1.0% by mass%.
(3) It is characterized in that it further contains one or more of V, Zr, Ce, Ti, Nb, and Mg in a mass% of 0.001 to 0.02% in total (1) or (2) A steel sheet having excellent paint bake hardening performance and normal temperature delayed aging as described in (2).
(4) In any one of (1) to (3), further containing 0.0020% or less of solute C and 0.0005% to 0.004% of solute N in mass%. 2. A steel sheet having excellent baking hardening performance and normal temperature delayed aging according to item 1.
(5) The coating bake hardening performance and the ordinary temperature delayed aging according to any one of (1) to (4), further containing 0.0005 to 0.01% by mass of Ca. Excellent steel plate.
(6) The coating baking hardening performance and the normal temperature delayed aging according to any one of (1) to (5), further containing B: 0.0001 to 0.0015% by mass%. Excellent steel plate.
(7) It is characterized in that it further contains one or more of Sn, Cu, Ni, Co, Zn and W in a total amount of 0.001 to 1.0% by mass. (6) The steel sheet according to any one of (1) and (2), which is excellent in baking hardenability and delayed aging at room temperature.
(8) It is composed of a ferrite single phase structure and has a crystal grain size of 8 μm or more, and is excellent in paint baking hardening performance and ordinary temperature delayed aging according to any one of (1) to (7). steel sheet.
(9) A slab having the chemical component according to any one of (1) to (7) is prepared by (Ar 3 Hot rolling at a temperature of -100 ° C. or higher, cooling from an end temperature of the hot rolling to 600 ° C. or lower at an average cooling rate of 10 ° C./s or higher, and then winding at 750 ° C. or lower. A method for producing hot-rolled steel sheets with excellent performance and normal-temperature delayed aging.
(10) A slab having the chemical component according to any one of (1) to (7) is prepared by (Ar 3 Hot rolling at -100 ° C or higher, cold rolling at a rolling reduction of 95% or lower, annealing at a maximum temperature of 600 to 1100 ° C, from 600 to 450 ° C Cooling excellent in paint baking hardening performance and normal temperature delayed aging characterized by cooling at an average cooling rate of 10 ° C / s or more and further cooling at a temperature of 300 to 100 ° C at an average cooling rate of 15 ° C / s or less. Manufacturing method of rolled steel sheet.
(11) A slab having the chemical component according to any one of (1) to (7) is prepared by using (Ar) 3 Hot rolling at -100 ° C or higher, cold rolling at a rolling reduction of 95% or lower, annealing at a maximum temperature of 600 to 1100 ° C, from 600 to 450 ° C A method for producing a cold-rolled steel sheet having excellent baking hardenability and delayed aging at room temperature, wherein the steel sheet is cooled at an average cooling rate of 10 ° C./s or more and then overaged at 150 to 450 ° C. for 120 seconds or more. .
(12) A slab having the chemical component according to any one of (1) to (7) is prepared by (Ar 3 Hot rolling at -100 ° C or higher, cold rolling at a rolling reduction of 95% or lower, annealing in a continuous hot-dip galvanizing line so that the maximum temperature is 600 ° C or higher and 1100 ° C or lower, After baking at an average cooling rate of 5 ° C./s or more to a galvanizing bath temperature of 600 ° C. or less, and then cooling from 300 ° C. to 100 ° C. or less at an average cooling rate of 15 ° C./s or less, paint baking hardening performance and normal temperature A method for producing galvanized cold-rolled steel sheets with excellent late aging.
(13) After cooling to a lead plating bath temperature of 600 ° C. or less at an average cooling rate of 5 ° C./s or more, heat treatment at 460 to 550 ° C. for 1 second or more, and an average cooling rate of 15 ° C. from 300 ° C. to 100 ° C. or less. The method for producing a galvanized cold-rolled steel sheet according to (12), wherein the steel sheet is cooled at a rate not higher than / s.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Here, the reason why the steel composition and the production conditions are limited as described above in the present invention will be further described.
[0014]
Since C is an element that increases strength at low cost, the amount of addition varies depending on the intended strength level, but making C less than 0.0005% is difficult in steelmaking technology and increases the cost. Further, in order to impart sufficient BH properties, it is preferable that a small amount of C is present, so this is set as the lower limit. On the other hand, if the C content exceeds 0.0025%, not only is the moldability deteriorated, but also it becomes difficult to achieve both high BH property and non-aging property at room temperature, which are important in the present invention. 0.0007% or more and less than 0.0020% is a more preferable range of C.
[0015]
In addition to the function of increasing the strength as a solid solution strengthening element, Si is also effective in obtaining a structure containing martensite, bainite, and residual γ, etc., and the amount of addition depends on the intended strength level. However, if the addition amount exceeds 2.0%, press formability deteriorates or chemical conversion property deteriorates, so this is made the upper limit. When hot-dip galvanizing or alloyed hot-dip galvanizing is performed, problems such as a reduction in plating adhesion and a reduction in productivity due to a delay in the alloying reaction occur. For applications in which the surface quality is particularly important, such as the outer panel of an automobile door or hood, the upper limit is 0.05%. There is no particular lower limit, but the lower limit of 0.001% is a substantial lower limit because the production cost is high. Further, when it is difficult to perform Al deoxidation from the viewpoint of controlling the amount of Al, deoxidation may be performed with Si. In this case, 0.04% or more of Si is contained.
[0016]
Mn is useful as a solid solution strengthening element, forms MnS, suppresses edge cracking due to S during hot rolling, makes a hot rolled sheet structure fine, obtains a structure containing martensite, bainite, and residual γ. Therefore, it is added as necessary. Further, Mn has an effect of suppressing normal temperature aging caused by solid solution N, so that it is preferable to add 0.3% or more. However, when deep drawability is required, it is preferably 0.15% or less, more preferably less than 0.10%. On the other hand, if it exceeds 3.0%, the strength becomes too high and the ductility is reduced, or the adhesion of galvanizing is hindered.
[0017]
P, like Si, is known as an element that increases the strength at low cost, and is added more actively when the strength needs to be increased. P also has the effect of making the hot-rolled structure finer and improving workability. However, when the addition amount exceeds 0.15%, the fatigue strength after spot welding becomes inferior, and the yield strength increases too much, causing poor surface shape at the time of pressing. Further, the alloying reaction during continuous hot-dip galvanizing becomes extremely slow, and the productivity is reduced. Further, the secondary workability also deteriorates. Therefore, the upper limit is set to 0.15%.
[0018]
If S exceeds 0.015%, it causes hot cracking and deteriorates workability. Therefore, the upper limit is set.
[0019]
Cr is important in the present invention. Only by adding 0.2% or more of Cr, it becomes possible to achieve both the high BH property and the aging resistance at normal temperature. It is known that since N has a higher diffusion rate than C, it is difficult to ensure normal-temperature aging resistance. Therefore, a BH steel sheet utilizing N is not applied to a member whose appearance is important such as an outer panel of an automobile. However, it has been newly found that by positively adding Cr, it is possible to obtain normal-temperature delayed aging without impairing the BH property. The mechanism by which these elements improve the aging resistance at room temperature is not necessarily clear, but is presumed as follows. In the vicinity of room temperature, these elements and N form pairs or clusters, and the room temperature aging resistance is secured to suppress the diffusion of N. On the other hand, in the baking treatment at 150 to 170 ° C., N Escapes from these pairs and clusters and fixes the dislocations, thereby exhibiting high BH properties. The upper limit of Cr is determined from the viewpoint of ensuring workability, plating adhesion and cost, and is set to 1.4%. 0.4 to 1.0% is a more preferable range.
[0020]
O (oxygen) is a particularly important element in the present invention. It has been found that by controlling O to a predetermined amount, the above-described contribution of BH of Cr and ordinary-temperature delayed aging becomes large. The reason for this is not necessarily clear, but it is presumed that Cr and N segregate preferentially around the oxide, and as described above, Cr promotes the effect of suppressing the diffusion of N at room temperature. . Since the effect becomes clear when the O content is 0.003% or more, the lower limit is set. On the other hand, if O exceeds 0.020%, not only does such an effect tend to be saturated, but also the workability such as the r value and ductility deteriorates, so 0.020% is made the upper limit. 0.005 to 0.015% is a more preferable range of O. O is usually present as an oxide of Fe, but may be present as an oxide of Al, Ce, Zr, Mg, Si or the like or a composite oxide thereof. However, Al-based oxides make only a small contribution to the compatibility between high BH and delayed aging at room temperature, and also degrade the surface properties. The form, size, and distribution of the oxide are not particularly limited, but are preferably spherical from the viewpoint of increasing the surface area, the average diameter is 1.0 μm or less, and the proportion of the oxide present at the grain boundaries of the product plate is the volume ratio. Is preferably 20% or less. These requirements are all from the viewpoint of increasing the number of effective sites for segregation of Cr and N as much as possible. From the same viewpoint, it is effective to finely disperse not only oxides but also MnS, CaS, CuS and the like.
[0021]
Al may be used as a deoxidizing agent. However, since Al combines with N to form AlN, the BH property is reduced. Therefore, it is desirable that the addition of Al be kept to the minimum necessary within a range that is reasonable in production technology. From this viewpoint, in the case of a cold-rolled steel sheet, the upper limit is made less than 0.008%. If the Al content exceeds 0.008%, a large amount of the total N must be added in order to secure solid solution N, which is disadvantageous in terms of manufacturing cost and moldability. Less than 0.005% is more preferred, and less than 0.003% is an even more preferred upper limit.
[0022]
N is important in the present invention. That is, in the present invention, a high BH property is achieved mainly by N. Therefore, addition of 0.001% or more is essential. On the other hand, if the N content is too large, excessive Cr must be added to secure the normal temperature delayed aging property, or the workability is deteriorated. Therefore, the upper limit is made 0.005%. More preferably, it is 0.001 to 0.004%.
[0023]
Further, since N is easily combined with Al to form AlN, it is preferable to satisfy N−0.52Al> 0 in order to secure N that contributes to BH. More preferably, N-0.52Al> 0.0005%. This formula is determined because a necessary condition is that the N amount is stoichiometrically larger than the Al amount.
[0024]
Mo may be mainly contained as a solid solution strengthening element in an amount of 0.001% or more. Further, when a large amount is added, strengthening by carbonitride formation can be expected, but ductility deterioration is remarkable, so the upper limit is set to 1.0%.
[0025]
If V is added in the presence of Cr, it will effectively act to ensure normal-temperature delayed aging, so it is preferably added at 0.001% or more. On the other hand, in combination with the following Zr, Ce, Ti, Nb, and Mg, the addition of one or more of them in a total amount of more than 0.02% promotes the formation of nitrides, so the upper limit is set.
[0026]
Zr, Ce, Ti, Nb, and Mg are effective as deoxidizing elements and are difficult to float in molten steel, so that they tend to remain as oxides in the steel, and thus effectively work as Cr and N segregation sites. Since it is widely known that Nb and Ti have an effect of improving workability, it is preferable to add 0.001% or more of each in the case of single addition. However, if the addition amount is too large, nitrides are formed, and it becomes difficult to secure solid solution N. Therefore, when one or more of them including V is added, the total amount is 0.02% or less. I do.
[0027]
The amount of solid solution C is preferably set to 0.0020% or less. In the present invention, the high BH property and the normal temperature aging property are secured mainly by N. Therefore, if the amount of solid solution C is too large, it is difficult to secure the normal temperature aging property. More preferably, the solid solution C is less than 0.0015%. The adjustment of the amount of solid solution C may be performed by making the total amount of C equal to or less than the upper limit described above, or may be reduced to a predetermined level depending on the winding temperature and the overaging condition.
[0028]
It is preferable that the total amount of solute N is 0.0005 to 0.004%. Here, the solute N includes not only N existing alone in Fe but also N forming a pair or a cluster with a substitutional solute element such as Cr, Mo, V, Mn, Si, or P. The amount of solute N can be determined from a value obtained by subtracting the amount of N present as a compound such as AlN, NbN, VN, TiN, BN, or ZrN (determined from the chemical analysis of the extraction residue) from the total N amount. Further, it may be obtained by an internal friction method or FIM (Field Ion Microscopy). If the solute N is less than 0.0005%, sufficient BH cannot be obtained. Further, even if the content exceeds 0.004%, the BH property is improved, but it is difficult to obtain normal temperature delayed aging. More preferably, it is 0.0008 to 0.0022%.
[0029]
Ca is useful as a deoxidizing element and also has an effect on controlling the form of sulfide. Therefore, Ca may be added in the range of 0.0005 to 0.01%. If the content is less than 0.0005%, the effect is not sufficient, and if the content exceeds 0.01%, the workability is deteriorated.
[0030]
B is effective in preventing the embrittlement of secondary working, and is added as necessary. If the addition amount is less than 0.0001%, there is almost no effect. If the addition amount exceeds 0.0015%, not only the effect is saturated, but also BN is easily formed, and it is difficult to secure solid solution N. Become. 0.0001 to 0.0004% is a more desirable range.
[0031]
In order to increase the mechanical strength and the fatigue properties of steel containing these as main components, one or more of Sn, Cu, Ni, Co, Zn and W are contained in a total amount of 0.001 to 1%. It does not matter.
[0032]
The structure of the hot-rolled steel sheet obtained by the present invention is preferably composed of 100% ferrite (single-layer ferrite structure) excluding a phase having a maximum area ratio of ferrite and excluding a precipitation phase such as carbide, nitride, or sulfide. In the present invention, when the content of ferrite is 100%, it is possible to obtain the best ductility and the balance between BH and normal temperature aging. However, bainite or acicular ferrite may be mixed in order to satisfy required characteristics such as strength of steel. The average crystal grain size of the ferrite is desirably 8 μm or more. This is because good formability is ensured. More preferably, it is more than 10 μm. There is no particular upper limit, but if the crystal grain size is too large, the surface is likely to be rough after pressing, so that it is preferably less than 50 μm.
[0033]
Next, reasons for limiting the manufacturing conditions will be described.
[0034]
The slab to be subjected to hot rolling is not particularly limited. That is, it may be any one manufactured with a continuous cast slab or a thin slab caster. It is also suitable for processes such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting.
[0035]
When using a hot-rolled steel sheet as a final product, it is necessary to limit the manufacturing conditions as follows. That is, the finishing temperature of hot rolling is (Ar 3 -100) C or higher. (Ar 3 If the temperature is lower than (−100) ° C., it is difficult to secure workability or a problem of thickness accuracy occurs. Ar 3 A point or more is a more preferable range. The effect of the present invention can be obtained without any particular upper limit of the finishing temperature, but it is preferably 1000 ° C. or lower in order to secure the r value.
[0036]
The heating temperature of hot rolling is not particularly limited, but is preferably set to 1150 ° C. or higher when it is necessary to dissolve in order to secure solid solution N.
[0037]
After hot rolling, cooling must be performed so that the average cooling rate is 10 ° C./s or more from the hot rolling end temperature to at least 600 ° C. Thereby, the normal temperature delayed aging is improved. If the cooling rate is 30 ° C./s or more, it is more preferable for the BH property and the aging resistance at room temperature. The upper limit of the average cooling rate is not particularly defined, but if it is too high, the structure is likely to be non-uniform.
[0038]
The winding temperature is 750 ° C. or less. Although there is no particular lower limit, the temperature is preferably set to 200 ° C. or higher in order to obtain good normal-temperature delayed aging.
[0039]
After the hot rolling, pickling may be performed if necessary, and then a skin pass with a rolling reduction of 10% or less or cold rolling up to a rolling reduction of about 40% may be performed in-line or off-line.
[0040]
Next, the manufacturing conditions when the cold rolled sheet is used as the final product will be described.
[0041]
The finishing temperature of hot rolling is determined from the viewpoint of ensuring the workability of the product sheet (Ar 3 (−100) ° C. or higher. The upper limit of the finishing temperature is preferably set to 1000 ° C. or lower, similarly to the hot-rolled sheet.
[0042]
The rolling reduction of the cold rolling is set to 95% or less. If it exceeds 95%, not only does the load on the equipment become excessive, but also the anisotropy of the mechanical properties of the product increases. Preferably, it is 86% or less. Although the lower limit of the rolling reduction is not particularly defined, it is preferably at least 30% in order to secure workability.
[0043]
Annealing is performed at a maximum temperature of 600C to 1100C. If the annealing temperature is lower than 600 ° C., recrystallization is not completed, and the workability becomes poor. On the other hand, when the annealing temperature is higher than 1100 ° C., the structure becomes coarse and the workability is lowered. 650-900 degreeC is a more preferable range.
[0044]
Cooling after annealing is important in the present invention. In other words, the cooling rate from 600 ° C. to 450 ° C. or less after annealing is set to 10 ° C./s or more, and the average cooling rate from 300 ° C. to 100 ° C. is set to 15 ° C./s or less, whereby high BH property and room temperature delay are achieved. It is possible to manufacture a steel plate having both aging properties. The cooling rate to 450 ° C. is more preferably 30 ° C./s or more, more preferably 50 ° C./s or more, and the average cooling rate from 300 ° C. to 100 ° C. is more preferably 10 ° C./s or less. However, this is not always the case when performing overage processing. Although the upper limit of the cooling rate up to 450 ° C. is not particularly defined, it is preferably 200 ° C./s or less in order to make the plate shape uniform, and the lower limit of the average cooling rate from 300 ° C. to 100 ° C. is not particularly defined. However, in order to secure productivity, the temperature is preferably set to 3 ° C./s or more.
[0045]
The overaging treatment after cooling is effective for improving the normal temperature delayed aging property. For this purpose, the overaging temperature is preferably set to 150 to 450 ° C., and the time is set to 120 seconds or more. The upper limit of the overaging treatment time is not particularly defined, but if it is too long, the productivity is reduced.
[0046]
On the other hand, when hot-dip galvanizing is performed, the average cooling rate to a galvanizing bath temperature of 600 ° C. or less after annealing is 5 ° C./s or more. Also in this case, in order to further improve the high BH property and the normal temperature delayed aging property, the temperature is preferably 10 ° C./s or more, more preferably 20 ° C./s or more.
[0047]
The upper limit of the average cooling rate is not particularly defined, but is preferably 200 ° C./s or less in order to maintain a good plate shape.
[0048]
Thereafter, when a Zn-Fe alloying treatment is required, reheating is performed in a range of 460 ° C to 550 ° C for 1 second or more. The upper limit of the heating time is not particularly limited, but is preferably 40 seconds or less from the viewpoint of securing the productivity.
[0049]
Thereafter, the average cooling rate from 300 ° C. to 100 ° C. or less is set to 15 ° C./s or less. The lower limit of the average cooling rate is not particularly limited, but is preferably 3 ° C./s or more from the viewpoint of securing productivity.
[0050]
Although the reason why these conditions are suitable for improving the normal-temperature delayed aging property is not necessarily clear, it is presumed that Cr and N promote the segregation around the oxide.
[0051]
The temper rolling is preferably performed in a range of a rolling reduction of 3% or less for further improving the normal temperature delayed aging property and forcing the shape. If it exceeds 3%, the yield strength increases and the load on the equipment increases, so the upper limit is set.
[0052]
The structure of the cold-rolled steel sheet obtained by the present invention is preferably made of ferrite 100% (single-layer ferrite structure) excluding a phase having a maximum area ratio of ferrite and excluding a precipitation phase such as carbide, nitride, or sulfide. In the present invention, when the content of ferrite is 100%, it is possible to obtain the best ductility and the balance between BH and normal temperature aging. However, bainite, acicular ferrite, and martensite may be mixed in order to satisfy required characteristics such as strength of steel. The average crystal grain size of the ferrite is preferably 8 μm or more. Thereby, a steel sheet excellent in formability such as ductility and deep drawability can be obtained. More preferably, it is more than 10 μm. There is no particular upper limit, but if the crystal grain size is too large, the surface is likely to be rough after pressing, so that it is preferably less than 50 μm.
[0053]
The steel plate obtained by the present invention has BH170 of 45 MPa or more, and BH160 and BH150 of all 40 MPa or more. It is more preferable that BH170 be 60 MPa or more, and BH160 and BH150 be 50 MPa or more. The upper limit of BH is not particularly limited. However, if BH 170 exceeds 140 MPa and BH 160 and BH 150 exceed 125 MPa, it becomes difficult to secure normal temperature aging resistance. BH170 is subjected to a heat treatment at 170 ° C. for 20 minutes after 2% tensile deformation, BH160 is subjected to a heat treatment at 160 ° C. after 2% tensile deformation, and BH150 is further subjected to a 2% tensile deformation. It represents BH evaluated by heat treatment at 150 ° C. for 10 minutes after deformation.
[0054]
Cold aging is evaluated by the yield point elongation after artificial aging. The steel sheet obtained by the present invention has a yield point elongation of 0.4% or less, more preferably 0.3% or less in a tensile test after heat treatment at 100 ° C. for 1 hour.
[0055]
Next, the present invention will be described with reference to examples.
[0056]
【Example】
[Example 1]
The steel shown in Table 1 was hot-rolled at a slab heating temperature of 1200 ° C., a finishing temperature of 930 ° C., and a winding temperature of 650 ° C. to form a 3.5 mm thick steel strip. After pickling, cold rolling is performed at a rolling reduction of 80% to form a cold-rolled sheet having a thickness of 0.7 mm. Then, annealing is performed in a continuous annealing facility at a heating rate of 10 ° C./s and a maximum ultimate temperature of 800 ° C. The range of 600 ° C. to 450 ° C. was cooled at various cooling rates shown in Table 2, and the overaging temperature was also changed. Note that the overaging treatment time was fixed at 180 seconds. The cooling rate from 300 ° C. to 50 ° C. was also varied. Further, temper rolling was performed at a rolling reduction of 1.0%, JIS No. 5 tensile test pieces were collected, and BH and the yield point elongation after artificial aging were measured.
[0057]
Table 2 shows the results. As is clear from this, when the steel having the chemical composition of the present invention was annealed under appropriate conditions, it was possible to achieve both the high BH property and the normal temperature delayed aging property. On the other hand, when the O content is less than the range of the present invention, the normal temperature aging property is deteriorated, and when it is too large, the elongation and the r value are deteriorated.
[0058]
[Table 1]
Figure 2004143470
[0059]
[Table 2]
Figure 2004143470
[0060]
[Example 2]
Of the steels in Table 1, B and G were hot-rolled at a slab heating temperature of 1150 ° C., a finishing temperature of 910 ° C., and a winding temperature of 650 ° C. to form a 4.0 mm thick steel strip. After pickling, cold rolling is performed at a rolling reduction of 80% to form a cold-rolled sheet having a thickness of 0.8 mm. Then, annealing is performed at a continuous hot-dip galvanizing equipment at a heating rate of 14 ° C / s and a maximum temperature of 800 ° C. After cooling at various cooling rates from 600 ° C. to 460 ° C., and immersing in a zinc bath at 460 ° C., it was reheated to 500 ° C. at 15 ° C./s and held for 15 seconds. The cooling rate from 300 ° C. to 50 ° C. was also varied. After that, temper rolling was further performed at a rolling reduction of 0.8%, JIS No. 5 tensile test pieces were collected, and BH and yield point elongation after artificial aging were measured.
[0061]
Table 3 shows the results. As is evident from the above, when manufactured under appropriate conditions, both high BH property and delayed action at room temperature could be achieved.
[0062]
[Table 3]
Figure 2004143470
[0063]
【The invention's effect】
As described above, the present invention can provide a steel sheet having high BH properties and normal-temperature aging, and having a sufficient BH amount even when the temperature of BH becomes low.

Claims (13)

質量%で、C:0.0005〜0.0025%、Si:2.0%以下、Mn:3.0%以下、P:0.15%以下、S:0.015%以下、Cr:0.2〜1.4%、O:0.003〜0.020%、Al:0.008%以下、N:0.001〜0.005%を含有し、残部Feおよび不可避的不純物からなり、2%引張変形後170℃にて20分間の熱処理を施すことによって評価されるBH170が45MPa以上で、かつ2%引張変形後160℃にて10分間の熱処理を施すことによって評価されるBH160、および2%引張変形後150℃にて10分間の熱処理で評価されるBH150がいずれも40MPa以上であることを特徴とする塗装焼付硬化性能と常温遅時効性に優れた鋼板。In mass%, C: 0.0005 to 0.0025%, Si: 2.0% or less, Mn: 3.0% or less, P: 0.15% or less, S: 0.015% or less, Cr: 0 0.2 to 1.4%, O: 0.003 to 0.020%, Al: 0.008% or less, N: 0.001 to 0.005%, the balance being Fe and unavoidable impurities, BH170 evaluated by performing a heat treatment at 170 ° C. for 20 minutes after 2% tensile deformation is 45 MPa or more, and BH160 evaluated by performing a heat treatment at 160 ° C. for 10 minutes after 2% tensile deformation, and BH150 evaluated by heat treatment at 150 ° C. for 10 minutes after 2% tensile deformation is 40 MPa or more. 質量%で、さらに、Mo:0.001〜1.0%を含有することを特徴とする請求項1記載の塗装焼付硬化性能と常温遅時効性に優れた鋼板。2. The steel sheet according to claim 1, which further contains Mo: 0.001 to 1.0% by mass%, and further has excellent baking hardenability and delayed aging at room temperature. 質量%で、さらに、V,Zr,Ce,Ti,Nb,Mgのうち1種または2種以上を合計で0.001〜0.02%含有することを特徴とする請求項1または2記載の塗装焼付硬化性能と常温遅時効性に優れた鋼板。3. The method according to claim 1, wherein one or more of V, Zr, Ce, Ti, Nb, and Mg are contained in a total of 0.001 to 0.02% by mass%. 4. Steel sheet with excellent paint bake hardening performance and delayed aging at room temperature. 質量%で、さらに、固溶C:0.0020%以下、固溶N:0.0005%〜0.004%を含有することを特徴とする請求項1〜3のいずれか1項記載の塗装焼付硬化性能と常温遅時効性に優れた鋼板。The coating according to any one of claims 1 to 3, further comprising 0.0020% or less of solid solution C and 0.0005% to 0.004% of solid solution N in mass%. A steel sheet with excellent bake hardening performance and normal temperature delayed aging. 質量%で、さらに、Caを0.0005〜0.01%含有することを特徴とする請求項1〜4のいずれか1項記載の塗装焼付硬化性能と常温遅時効性に優れた鋼板。The steel sheet according to claim 1, further comprising 0.0005 to 0.01% by mass of Ca in terms of mass%, and having excellent baking hardenability and delayed aging at room temperature. 質量%で、さらに、B:0.0001〜0.0015%を含有することを特徴とする請求項1〜5のいずれか1項記載の塗装焼付硬化性能と常温遅時効性に優れた鋼板。The steel sheet according to any one of claims 1 to 5, wherein the steel sheet has excellent paint bake hardening performance and ordinary-temperature late aging property, further containing B: 0.0001 to 0.0015% by mass%. 質量%で、さらに、Sn,Cu,Ni,Co,ZnおよびWの1種又は2種以上を合計で0.001〜1.0質量%含有することを特徴とする請求項1〜6のいずれか1項記載の塗装焼付硬化性能と常温遅時効性に優れた鋼板。7. The composition according to claim 1, further comprising 0.001 to 1.0% by mass in total of one or more of Sn, Cu, Ni, Co, Zn and W. 4. A steel sheet having excellent paint bake hardening performance and normal temperature delayed aging according to item 1. フェライト単相組織からなり、結晶粒径が8μm以上であることを特徴とする請求項1〜7のいずれか1項に記載の塗装焼付硬化性能と常温遅時効性に優れた鋼板。The steel sheet according to any one of claims 1 to 7, comprising a ferrite single-phase structure and having a crystal grain size of 8 µm or more, and having excellent baking hardenability and delayed aging at room temperature. 請求項1〜7のいずれか1項に記載の化学成分を有するスラブを(Ar点−100)℃以上で熱間圧延を行い、熱間圧延終了温度から600℃以下まで平均冷却速度10℃/s以上で冷却し、ついで750℃以下で巻き取ることを特徴とする塗装焼付硬化性能と常温遅時効性に優れた熱延鋼板の製造方法。The slab having the chemical composition according to any one of claims 1 to 7 is hot-rolled at (Ar 3 points-100) C or higher, and the average cooling rate is 10C from the hot-rolling end temperature to 600C or lower. A method for producing a hot-rolled steel sheet having excellent baking hardening performance and delayed aging at room temperature, wherein the hot-rolled steel sheet is cooled at 750 ° C./s or higher and then wound at 750 ° C. or lower. 請求項1〜7のいずれか1項に記載の化学成分を有するスラブを(Ar点−100)℃以上で熱間圧延を行い、95%以下の圧下率で冷間圧延を施し、最高到達温度が600℃以上1100℃以下となるように焼鈍し、600℃から450℃以下まで平均冷却速度10℃/s以上で冷却し、さらに300〜100℃の温度域を平均冷却速度15℃/s以下で冷却することを特徴とする塗装焼付硬化性能と常温遅時効性に優れた冷延鋼板の製造方法。The slab having the chemical composition according to any one of claims 1 to 7 is hot-rolled at a temperature of (Ar 3 points-100) ° C or higher, and cold-rolled at a rolling reduction of 95% or less to achieve a maximum value. Anneal so that the temperature becomes 600 ° C. or more and 1100 ° C. or less, cool from 600 ° C. to 450 ° C. or less at an average cooling rate of 10 ° C./s or more, and further reduce the temperature range of 300 to 100 ° C. to an average cooling rate of 15 ° C./s. A method for producing a cold-rolled steel sheet having excellent baking hardening performance and delayed aging at room temperature, characterized by cooling below. 請求項1〜7のいずれか1項に記載の化学成分を有するスラブを(Ar点−100)℃以上で熱間圧延を行い、95%以下の圧下率で冷間圧延を施し、最高到達温度が600℃以上1100℃以下となるように焼鈍し、600℃から450℃以下まで平均冷却速度10℃/s以上で冷却し、ついで150〜450℃で120秒間以上の過時効処理を行なうことを特徴とする塗装焼付硬化性能と常温遅時効性に優れた冷延鋼板の製造方法。The slab having the chemical composition according to any one of claims 1 to 7 is hot-rolled at a temperature of (Ar 3 points-100) ° C or higher, and cold-rolled at a rolling reduction of 95% or less to achieve a maximum value. Annealing so that the temperature is 600 ° C or higher and 1100 ° C or lower, cooling from 600 ° C to 450 ° C or lower at an average cooling rate of 10 ° C / s or higher, and then performing an overage treatment at 150 to 450 ° C for 120 seconds or longer A method for producing a cold-rolled steel sheet having excellent paint bake hardening performance and normal-temperature delayed aging characteristics. 請求項1〜7のいずれか1項に記載の化学成分を有するスラブを(Ar点−100)℃以上で熱間圧延を行い、95%以下の圧下率で冷間圧延を施し、連続溶融亜鉛メッキラインにて最高到達温度が600℃以上1100℃以下となるように焼鈍し、600℃以下亜鉛メッキ浴温度まで平均冷却速度5℃/s以上で冷却したのち、300℃から100℃以下まで平均冷却速度15℃/s以下で冷却することを特徴とする塗装焼付硬化性能と常温遅時効性に優れた亜鉛メッキ冷延鋼板の製造方法。The slab having the chemical composition according to any one of claims 1 to 7 is hot-rolled at (Ar 3 points-100) ° C or higher, cold-rolled at a rolling reduction of 95% or lower, and continuously melted. Anneal in a galvanizing line so that the maximum temperature is 600 ° C or higher and 1100 ° C or lower, and cool to a galvanizing bath temperature of 600 ° C or lower at an average cooling rate of 5 ° C / s or higher, and then from 300 ° C to 100 ° C or lower. A method for producing a galvanized cold-rolled steel sheet having excellent baking hardening performance and delayed aging at room temperature, characterized by cooling at an average cooling rate of 15 ° C./s or less. 600℃以下の鉛メッキ浴温度まで平均冷却速度5℃/s以上で冷却したのち、460〜550℃で1秒以上の熱処理を行い、300℃から100℃以下まで平均冷却速度15℃/s以下で冷却することを特徴とする請求項12記載の塗装焼付硬化性能と常温遅時効性に優れた亜鉛メッキ冷延鋼板の製造方法。After cooling to a lead plating bath temperature of 600 ° C or less at an average cooling rate of 5 ° C / s or more, heat treatment is performed at 460 to 550 ° C for 1 second or more, and an average cooling rate of 15 ° C / s or less from 300 ° C to 100 ° C or less. The method for producing a galvanized cold-rolled steel sheet according to claim 12, wherein the galvanized cold-rolled steel sheet has excellent baking hardening performance and normal-temperature aging property.
JP2002292572A 2002-08-29 2002-10-04 Steel sheet excellent in paint bake hardenability and retarded natural aging hardenability and its manufacturing process Pending JP2004143470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292572A JP2004143470A (en) 2002-08-29 2002-10-04 Steel sheet excellent in paint bake hardenability and retarded natural aging hardenability and its manufacturing process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002251536 2002-08-29
JP2002292572A JP2004143470A (en) 2002-08-29 2002-10-04 Steel sheet excellent in paint bake hardenability and retarded natural aging hardenability and its manufacturing process

Publications (1)

Publication Number Publication Date
JP2004143470A true JP2004143470A (en) 2004-05-20

Family

ID=32472795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292572A Pending JP2004143470A (en) 2002-08-29 2002-10-04 Steel sheet excellent in paint bake hardenability and retarded natural aging hardenability and its manufacturing process

Country Status (1)

Country Link
JP (1) JP2004143470A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206954A (en) * 2005-01-27 2006-08-10 Nippon Steel Corp Hot dip galvannealed steel sheet having excellent press formability and film adhesion at the time of press forming
WO2006088223A1 (en) * 2005-02-18 2006-08-24 Nippon Steel Corporation Method for producing extremely low carbon steel sheet and extremely low carbon cast piece having excellent surface characteristics, workability and formability
WO2007043168A1 (en) * 2005-10-05 2007-04-19 Nippon Steel Corporation Cold-rolled steel sheet excellent in coating curability in baking and cold slow-aging property and process for producing the same
JP2007254766A (en) * 2006-03-20 2007-10-04 Nippon Steel Corp Steel sheet for deep drawing excellent in low-temperature baking hardenability and room-temperature non-aging property and method for producing the same
JP2010053451A (en) * 2003-11-10 2010-03-11 Posco Cold-rolled steel sheet having aging resistance and superior workability, and method for manufacturing the same
JP2011246767A (en) * 2010-05-27 2011-12-08 Sumitomo Metal Ind Ltd Bake-hardenable cold rolled steel sheet and method for producing the same
KR101917464B1 (en) * 2016-12-22 2018-11-09 주식회사 포스코 Cold-Rolled Steel Sheet Having Excellent Formability And Manufacturing Method Thereof
CN109778080A (en) * 2019-01-22 2019-05-21 宋鑫 A kind of superhigh intensity super high-low temperature impact fracturing pump pump head body
KR20190078406A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Cold rolled steel sheet having excellent high temperature mechanical properties as well as room temperature workability and method of manufacturing the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053451A (en) * 2003-11-10 2010-03-11 Posco Cold-rolled steel sheet having aging resistance and superior workability, and method for manufacturing the same
US9297057B2 (en) 2003-11-10 2016-03-29 Posco Cold rolled steel sheet having aging resistance and superior formability, and process for producing the same
JP2010077536A (en) * 2003-11-10 2010-04-08 Posco Cold rolled steel sheet having aging resistance and superior formability, and method for producing the same
JP2006206954A (en) * 2005-01-27 2006-08-10 Nippon Steel Corp Hot dip galvannealed steel sheet having excellent press formability and film adhesion at the time of press forming
JP4486518B2 (en) * 2005-01-27 2010-06-23 新日本製鐵株式会社 Alloyed hot-dip galvanized steel sheet with excellent press formability and coating adhesion during press forming
WO2006088223A1 (en) * 2005-02-18 2006-08-24 Nippon Steel Corporation Method for producing extremely low carbon steel sheet and extremely low carbon cast piece having excellent surface characteristics, workability and formability
CN101278066B (en) * 2005-10-05 2011-12-14 新日本制铁株式会社 Cold-rolled steel plate with excellent bake hardening performance and normal temperature defer aging and manufacturing method thereof
US9290835B2 (en) 2005-10-05 2016-03-22 Nippon Steel & Summitomo Metal Corporation Cold-rolled steel sheet excellent in paint bake hardenability and ordinary-temperature non-aging property and method of producing the same
EP1932932A1 (en) * 2005-10-05 2008-06-18 Nippon Steel Corporation Cold-rolled steel sheet excellent in coating curability in baking and cold slow-aging property and process for producing the same
WO2007043168A1 (en) * 2005-10-05 2007-04-19 Nippon Steel Corporation Cold-rolled steel sheet excellent in coating curability in baking and cold slow-aging property and process for producing the same
EP1932932A4 (en) * 2005-10-05 2009-12-23 Nippon Steel Corp Cold-rolled steel sheet excellent in coating curability in baking and cold slow-aging property and process for producing the same
KR101099774B1 (en) 2005-10-05 2011-12-28 신닛뽄세이테쯔 카부시키카이샤 Cold-rolled steel sheet excellent in coating curability in baking and cold slow-aging property and process for producing the same
JP2007254766A (en) * 2006-03-20 2007-10-04 Nippon Steel Corp Steel sheet for deep drawing excellent in low-temperature baking hardenability and room-temperature non-aging property and method for producing the same
JP2011246767A (en) * 2010-05-27 2011-12-08 Sumitomo Metal Ind Ltd Bake-hardenable cold rolled steel sheet and method for producing the same
KR101917464B1 (en) * 2016-12-22 2018-11-09 주식회사 포스코 Cold-Rolled Steel Sheet Having Excellent Formability And Manufacturing Method Thereof
KR20190078406A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Cold rolled steel sheet having excellent high temperature mechanical properties as well as room temperature workability and method of manufacturing the same
KR102045654B1 (en) * 2017-12-26 2019-11-15 주식회사 포스코 Cold rolled steel sheet having excellent high temperature mechanical properties as well as room temperature workability and method of manufacturing the same
CN111527228A (en) * 2017-12-26 2020-08-11 Posco公司 Cold-rolled steel sheet having excellent high-temperature characteristics and room-temperature workability, and method for producing same
CN111527228B (en) * 2017-12-26 2021-12-21 Posco公司 Cold-rolled steel sheet having excellent high-temperature characteristics and room-temperature workability, and method for producing same
US11578379B2 (en) 2017-12-26 2023-02-14 Posco Cold-rolled steel sheet having excellent high-temperature properties and room-temperature workability
CN109778080A (en) * 2019-01-22 2019-05-21 宋鑫 A kind of superhigh intensity super high-low temperature impact fracturing pump pump head body

Similar Documents

Publication Publication Date Title
JP3958921B2 (en) Cold-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same
JP5532188B2 (en) Manufacturing method of high-strength steel sheet with excellent workability
JP6458833B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
JP6458834B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
JP4367300B2 (en) High-strength cold-rolled steel sheet excellent in ductility and chemical conversion property and method for producing the same
JP2003221623A (en) Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet
JP2008255442A (en) High-tensile-strength hot-dip galvanized steel sheet and manufacturing method therefor
KR101099774B1 (en) Cold-rolled steel sheet excellent in coating curability in baking and cold slow-aging property and process for producing the same
JP4227431B2 (en) High strength and high ductility steel sheet and method for producing the same
JP4537865B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP2576894B2 (en) Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same
JP2013224477A (en) High-strength thin steel sheet excellent in workability and method for manufacturing the same
JP2004143470A (en) Steel sheet excellent in paint bake hardenability and retarded natural aging hardenability and its manufacturing process
KR20210118442A (en) High-strength steel sheet and its manufacturing method
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP3745496B2 (en) Manufacturing method of cold-rolled steel sheet and alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance
JP4436348B2 (en) Hot-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same
JP4482360B2 (en) Cold-rolled steel sheet excellent in paint bake hardening performance and room temperature slow aging and method for producing the same
WO2020080493A1 (en) Steel sheet and manufacturing method for steel sheet
JPH06122939A (en) Cold rolled steel sheet or galvanized cold rolled steel sheet excellent in baking hardenability and formability and production thereof
JPH07268584A (en) Production of high strength galvannealed steel sheet excellent in resistance to secondary working brittleness
RU2788613C1 (en) Cold-rolled coated steel sheet and method for production thereof
JP3613149B2 (en) Hot-dip galvanized steel sheet
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP2984884B2 (en) Non-aging steel sheet for deep drawing and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040901

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060721

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109