WO2017094593A1 - Non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed - Google Patents

Non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed Download PDF

Info

Publication number
WO2017094593A1
WO2017094593A1 PCT/JP2016/084857 JP2016084857W WO2017094593A1 WO 2017094593 A1 WO2017094593 A1 WO 2017094593A1 JP 2016084857 W JP2016084857 W JP 2016084857W WO 2017094593 A1 WO2017094593 A1 WO 2017094593A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
yield strength
bainite
amount
heat
Prior art date
Application number
PCT/JP2016/084857
Other languages
French (fr)
Japanese (ja)
Inventor
皓至 倉田
晴弥 川野
喜一郎 田代
元樹 柿崎
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP16870530.9A priority Critical patent/EP3385399A4/en
Priority to CN201680064618.1A priority patent/CN108350540A/en
Priority to KR1020187018576A priority patent/KR20180085791A/en
Publication of WO2017094593A1 publication Critical patent/WO2017094593A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a non-tempered steel sheet having high yield strength in which the low temperature toughness deterioration of the weld heat affected zone and the hardness of the weld heat affected zone are suppressed. More specifically, the present invention relates to a non-tempered steel sheet having high yield strength of API standard X80 class used for transportation line pipes such as oil and natural gas.
  • Controlling rolling is an example of a manufacturing method for satisfying these requirements.
  • Controlled rolling is a technique in which crystal grains are refined by appropriately controlling the temperature and rolling reduction during rolling, and accelerated cooling is performed after hot rolling. In controlled rolling, tempering such as heating after accelerated cooling is unnecessary.
  • a steel sheet obtained by such a method is generally called a non-tempered steel sheet.
  • Patent Documents 1 to 4 disclose a method for producing a steel sheet having a high yield strength of API standard X80 class with no tempering.
  • JP 2006-328523 A International Publication No. 2010/052927 Pamphlet JP 2006-169591 A JP 2008-261012 A
  • Patent Document 1 and Patent Document 2 do not control Ceq, which is an index for evaluating the toughness and hardness of the weld heat affected zone, toughness degradation in the weld heat affected zone and the weld heat impact. There is a risk of curing the part.
  • the present invention has been made in view of such circumstances, and its purpose is to provide a non-tempered steel sheet having a high yield strength that suppresses the low temperature toughness deterioration of the weld heat affected zone and the hardness of the weld heat affected zone. It is to provide.
  • the non-heat treated steel sheet having a high yield strength with suppressed low temperature toughness deterioration of the weld heat affected zone and hardness of the weld heat affected zone according to the present invention, which has solved the above problems, is C% by mass. % Over 0.10% or less, Si: 0.15 to 0.50%, Mn: 1.20 to 2.50%, P: over 0% to 0.020% or less, S: over 0% to 0.0050%
  • Nb 0.020 to 0.100%
  • Zr 0.0001 to 0.0100%
  • Ca 0.00.
  • the area ratio of the following metal structure satisfies bainite: 80 area% or more and island martensite: 0 area% or more and 0.26 area% or less, and the maximum hardness of the bainite is 270 HV. It has a gist where it meets the above.
  • Ceq C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
  • a value 1.15 ⁇ Mn + 2.20 ⁇ Mo + 6.50 ⁇ Nb (2)
  • B value 1.20 ⁇ Mn + 0.50 ⁇ Ni + 4.25 ⁇ Nb (3)
  • C, Mn, Cu, Ni, Cr, Mo, V, and Nb are mass%, respectively, and indicate the contents of C, Mn, Cu, Ni, Cr, Mo, V, and Nb.
  • the non-tempered steel sheet is for a line pipe.
  • a non-tempered steel sheet having a high yield strength with suppressed low temperature toughness deterioration of the weld heat affected zone and hardness of the weld heat affected zone can be obtained.
  • FIG. 1 is a graph showing the relationship between the bainite area ratio and the yield strength.
  • FIG. 2 is a graph showing the relationship between the maximum hardness of bainite and the yield strength.
  • FIG. 3 is a graph showing the relationship between the area ratio of the island martensite (hereinafter, the island martensite may be referred to as MA) and the yield strength.
  • the present inventors examined factors that govern the yield strength of non-tempered steel sheets.
  • the yield strength of the non-tempered steel sheet has a close correlation with the area ratio of bainite and island martensite in the metal structure, and the maximum hardness of bainite, and when these are controlled within a predetermined range It was found that high yield strength of API standard X80 grade can be obtained.
  • the present inventors have studied from various angles in order to realize a non-tempered steel sheet having high yield strength and low-temperature toughness deterioration of the weld heat affected zone and suppressing the hardness of the weld heat affected zone.
  • the chemical composition is controlled so as to satisfy the relationships of the above formulas (1) to (3), the low temperature toughness deterioration of the weld heat affected zone is suppressed, and the hardness of the weld heat affected zone is further reduced.
  • the present invention has been completed.
  • non-tempered steel sheet is preferably heated from a steel material satisfying a predetermined component composition by hot rolling, and then from a cooling start temperature of 730 ° C. or higher to a cooling stop temperature of 370 to 550 ° C., Average cooling rate: It can be produced by cooling at 10 to 50 ° C./second.
  • high yield strength of API standard X80 class means that the yield strength in the sheet width direction of the steel sheet is 555 MPa or more and 705 MPa or less.
  • each structure with respect to the entire metal structure is bainite: 80 area% or more, island-like martensite: 0 area% or more, 0.26 area at a quarter position of the sheet thickness t of the steel sheet. % Or less, and the maximum hardness of bainite: 270 HV or more is satisfied.
  • Bainite 80 area% or more Bainite is a structure that contributes to improving the yield strength, and is an important structure for securing high yield strength of API standard X80.
  • the lower limit of the area ratio of bainite when the area of the whole metal structure is 100% is 80 area% or more.
  • the lower limit of the area ratio of bainite is preferably 82 area% or more, more preferably 84 area% or more.
  • FIG. 1 shows No. 1 in Table 2 using steel types A to X in Table 1 of Examples described later.
  • 2 is a graph showing the relationship between the area ratio of bainite and the yield strength in a non-tempered steel sheet produced under the production conditions 1 to 24.
  • all examples satisfying the desired high yield strength of 555 MPa or more had a bainite area ratio of 80% or more in the metal structure, and in order to satisfy the high yield strength, the bainite area It can be seen that it is effective to increase the rate to 80% or more.
  • the yield strength does not satisfy 555 MPa or more even though the bainite area ratio is 80% or more.
  • these have a bainite hardness of less than 270 HV described later or an MA area ratio of 0. This is an example of over 26%.
  • Maximum hardness of bainite 270 HV or higher
  • the maximum hardness of bainite is important for obtaining high yield strength stably by suppressing variation in yield strength, and it is necessary to control it to 270 HV or higher. Thereby, high yield strength of API standard X80 class can be secured stably.
  • the lower limit of the maximum hardness of bainite is preferably 275 HV or higher.
  • the upper limit of the maximum hardness of the bainite is preferably 310 HV or less, more preferably 300 HV or less.
  • FIG. 2 shows No. 1 in Table 2 using steel types A to X in Table 1 of Examples described later.
  • 2 is a graph showing the relationship between the maximum hardness of bainite and the yield strength in a non-heat treated steel sheet produced under the production conditions 1 to 24.
  • all examples satisfying the desired 555 MPa or more have a maximum bainite hardness of 270 HV or more in the metal structure, and in order to satisfy high yield strength, the bainite maximum hardness is 270 HV or more. It can be seen that it is effective to increase it.
  • the bainite maximum hardness is 270 HV or more
  • the yield strength does not satisfy 555 MPa or more, but these have a bainite area ratio of less than 80% or an MA area ratio of 0.26%. It is an example of exceeding.
  • maximum hardness of bainite means the average value of the upper three points when the Vickers hardness of bainite is measured by the method described in the examples described later. The present inventors have found that high yield strength can be stably obtained by controlling the maximum hardness of bainite.
  • Island-like martensite 0 area% or more and 0.26 area% or less
  • Island-like martensite is a structure that lowers the yield strength, so it is necessary to reduce the MA area ratio in order to ensure the desired high yield strength. is there. Therefore, the upper limit of the MA area ratio when the area of the entire metal structure is 100% is set to 0.26 area% or less.
  • the upper limit of the MA area ratio is preferably 0.25 area% or less.
  • FIG. 3 shows No. in Table 2 using A to X in Table 1 of Examples described later.
  • 2 is a graph showing the relationship between the area ratio of island martensite and the yield strength in a non-tempered steel sheet produced under the production conditions of 1 to 24.
  • the MA area ratio in the metal structure is 0.26% or less, and in order to satisfy the high yield strength, the MA area ratio is 0.26%. It can be seen that the following control is effective.
  • the yield strength does not satisfy 555 MPa or more even though the MA area ratio is 0.26% or less, these may have a bainite area ratio of less than 80% or a bainite maximum hardness. This is an example of less than 270 HV.
  • the structure of the non-tempered steel sheet according to the present invention is as described above.
  • the remaining structure other than the above is ferrite, martensite, or pearlite.
  • C, Mn, Cu, Ni, Cr, Mo, and V are mass%, respectively, and show content of C, Mn, Cu, Ni, Cr, Mo, and V.
  • Ceq defined by the above formula (1) is an important index for determining the low temperature toughness of HAZ and the hardness of HAZ. When Ceq is 0.44 or more, the low temperature toughness of HAZ and the hardness properties of HAZ deteriorate rapidly, and if Ceq is less than 0.44, good low temperature toughness of HAZ and hardness of HAZ part can be ensured. it can.
  • the upper limit of Ceq is set to less than 0.44.
  • the upper limit of Ceq is preferably 0.43 or less, more preferably 0.42 or less.
  • the lower limit of Ceq is preferably 0.37 or more, more preferably 0.38 or more.
  • a value: 2.50 or more A value 1.15 ⁇ Mn + 2.20 ⁇ Mo + 6.50 ⁇ Nb (2)
  • Mn, Mo, and Nb are the mass%, respectively, and show content of Mn, Mo, and Nb.
  • the A value was found for the first time by the present inventors, and the contents of Mn and Mo effective for suppressing ferrite transformation among the elements constituting Ceq described above, and further the content of Nb Is a parameter controlled to satisfy the above equation (2).
  • By controlling the A value to 2.50 or more an increase in Ceq can be suppressed and a bainite area ratio important for realizing high yield strength can be secured. In order to increase the bainite area ratio, the higher the A value, the better.
  • the lower limit of the A value is 2.50 or more.
  • the lower limit of the A value is preferably 2.52 or more, more preferably 2.54 or more.
  • the upper limit of the A value is preferably 3.00 or less, more preferably 2.95 or less.
  • Mn, Ni, and Nb are mass%, respectively, and show the content of Mn, Ni, and Nb.
  • the B value was found for the first time by the present inventors, and by reducing the transformation temperature of bainite, each content of Mn, Ni, and Nb effective for introducing high-density dislocations is expressed by the above formula ( 3) Parameters controlled to satisfy.
  • the B value By setting the B value to 2.37 or more, the maximum hardness of bainite can be ensured while suppressing an increase in Ceq. In order to increase the maximum hardness of bainite, the higher the B value, the better.
  • the lower limit of the B value is 2.37 or more.
  • the lower limit of the B value is preferably 2.39 or more.
  • the upper limit of the B value is preferably 2.70 or less, more preferably 2.68 or less.
  • C more than 0.04% and 0.10% or less C is an element indispensable for securing the high yield strength of the base material (steel plate), and therefore the lower limit of the C content is more than 0.04%.
  • the lower limit of the C amount is preferably 0.05% or more, more preferably 0.06% or more.
  • the upper limit of the amount of C needs to be 0.10% or less. is there.
  • the upper limit of the C amount is preferably 0.09% or less, more preferably 0.08% or less.
  • Si 0.15-0.50% Si is an element that has a deoxidizing action and is effective for improving the yield strength of the base material. Therefore, the lower limit of the Si amount is set to 0.15% or more.
  • the lower limit of the Si amount is preferably 0.18% or more, more preferably 0.20% or more.
  • the upper limit of the Si amount needs to be 0.50% or less.
  • the upper limit of the Si amount is preferably 0.45% or less, more preferably 0.40% or less.
  • Mn 1.20-2.50%
  • Mn is an element effective for improving the yield strength of the base material.
  • the lower limit of the amount of Mn needs to be 1.20% or more.
  • the lower limit of the amount of Mn is preferably 1.50% or more, more preferably 1.70% or more.
  • the upper limit of the amount of Mn is made 2.50% or less.
  • the upper limit of the amount of Mn is preferably 2.20% or less, and more preferably 2.00% or less.
  • P more than 0% and 0.020% or less
  • P is an element inevitably contained in the steel material, and when the P content exceeds 0.020%, the low temperature toughness of the HAZ is remarkably deteriorated. Therefore, the upper limit of the P amount is 0.020% or less.
  • the upper limit of the amount of P is preferably 0.015% or less, more preferably 0.010% or less. Note that P is an impurity inevitably contained in the steel, and it is impossible to make the amount 0% in industrial production.
  • S more than 0% to 0.0050% or less S is an element that affects the low temperature toughness of HAZ as in the case of P.
  • the upper limit of the amount of S is made 0.0050% or less.
  • the upper limit of the amount of S is preferably 0.0030% or less, more preferably 0.0020% or less.
  • S is an impurity inevitably contained in the steel, and it is impossible for industrial production to make the amount 0%.
  • Nb 0.020 to 0.100%
  • Nb is an element effective for increasing the yield strength and the low temperature toughness of the base material without deteriorating the weldability, and therefore the lower limit of the Nb amount needs to be 0.020% or more.
  • the lower limit of the Nb amount is preferably 0.030% or more, more preferably 0.040% or more.
  • the upper limit of the Nb amount is made 0.100% or less.
  • the upper limit of the Nb amount is preferably 0.070% or less, more preferably 0.060% or less.
  • Ti is an element effective for improving the yield strength of the base metal, and further, it precipitates as TiN in the steel, and is necessary for improving the low temperature toughness of HAZ by suppressing coarsening of austenite grains in the HAZ during welding. It is an element.
  • the lower limit of the Ti amount needs to be 0.003% or more.
  • the lower limit of the Ti amount is preferably 0.005% or more, more preferably 0.007% or more.
  • the upper limit of the amount of Ti is made 0.020% or less.
  • the upper limit of the Ti amount is preferably 0.018% or less, more preferably 0.016% or less.
  • N 0.0010 to 0.0075%
  • N is an element necessary for improving the low temperature toughness of HAZ by suppressing the coarsening of austenite grains in the HAZ during welding by precipitating as TiN in the steel.
  • the lower limit of the N amount needs to be 0.0010% or more.
  • the lower limit of the N amount is preferably 0.0020% or more, and more preferably 0.0030% or more.
  • the upper limit of the amount of N is made 0.0075% or less.
  • the upper limit of the N amount is preferably 0.0070% or less, and more preferably 0.0065% or less.
  • Zr 0.0001 to 0.0100%
  • Zr is an element that contributes to the improvement of low temperature toughness in HAZ by forming and dispersing an oxide, and for that purpose, the lower limit of the amount of Zr needs to be 0.0001% or more.
  • the lower limit of the amount of Zr is preferably 0.0003% or more, more preferably 0.0005% or more.
  • the upper limit of the amount of Zr needs to be 0.0100% or less.
  • the upper limit of the amount of Zr is preferably 0.0050% or less, more preferably 0.0030% or less.
  • Ca 0.0005 to 0.0030%
  • Ca has an action of controlling the form of sulfide, and is an element that suppresses the formation of MnS by forming CaS and improves the low temperature toughness of HAZ.
  • the lower limit of the Ca amount is 0.0005% or more. It is necessary to.
  • the lower limit of the Ca content is preferably 0.0006% or more.
  • the upper limit of the Ca content is 0.0030% or less.
  • the upper limit of the Ca content is preferably 0.0028% or less, and more preferably 0.0026% or less.
  • REM 0.0001 to 0.0050% REM, which is a rare earth element, is an element effective for controlling the morphology of sulfides, and suppresses the generation of MnS that is harmful to the low temperature toughness of HAZ.
  • the lower limit of the REM amount is set to 0.0001% or more.
  • the amount of REM is preferably 0.0003% or more, more preferably 0.0005% or more.
  • the upper limit of the REM amount is 0.0050% or less.
  • the upper limit of the REM amount is preferably 0.0040% or less, more preferably 0.0030% or less.
  • REM means lanthanoid elements (15 elements from La to Lu), Sc (scandium), and Y (yttrium).
  • lanthanoid elements 15 elements from La to Lu
  • Sc scandium
  • Y yttrium
  • Al 0.010 to 0.050%
  • Al is a strong deoxidizing element, and in order to obtain a deoxidizing effect, the lower limit of the Al amount needs to be 0.010% or more.
  • the lower limit of the Al content is preferably 0.015% or more, more preferably 0.018% or more.
  • the upper limit of the amount of Al needs to be 0.050% or less.
  • the upper limit of the amount of Al is preferably 0.045% or less, and more preferably 0.042% or less.
  • B 0.0003% or less (including 0%)
  • the amount of B is an element that significantly deteriorates the low-temperature toughness of HAZ.
  • the upper limit of the amount of B is set to 0.0003% or less.
  • the upper limit of the amount of B is preferably 0.0002% or less, more preferably 0.0001% or less.
  • Mo more than 0% to 0.30% or less
  • Cu more than 0% to 0.30% or less
  • Ni more than 0% to 0.30% or less
  • Cr more than 0% to 0.30% or less
  • V more than 0%
  • One or more selected from the group consisting of 0.050% or less Mo, Cu, Ni, Cr, and V are effective elements for improving the yield strength. These elements may be added alone or in combination of two or more. The reasons for setting the ranges of the contents of these elements are as follows.
  • Mo more than 0% and 0.30% or less Mo is an element effective for improving the yield strength of the base material, and therefore the lower limit of the Mo amount is preferably 0.01% or more.
  • the lower limit of the amount of Mo is more preferably 0.05% or more, and more preferably 0.10% or more.
  • the upper limit of the Mo amount is set to 0.30% or less.
  • the upper limit of the Mo amount is preferably 0.25% or less, more preferably 0.20% or less.
  • Cu more than 0% and 0.30% or less Cu is an element effective for increasing the yield strength, and therefore the lower limit of the Cu content is preferably 0.01% or more.
  • the lower limit of the amount of Cu is more preferably 0.05% or more, and still more preferably 0.10% or more.
  • the upper limit of the amount of Cu is made 0.30% or less.
  • the upper limit of the amount of Cu is preferably 0.27% or less, more preferably 0.25% or less.
  • Ni more than 0% and 0.30% or less Ni is an element effective for improving the yield strength of the base metal, and therefore the lower limit of the Ni content is preferably 0.01% or more.
  • the lower limit of the Ni amount is more preferably 0.05% or more, and still more preferably 0.10% or more.
  • the upper limit of the Ni amount is set to 0.30% or less from an economical viewpoint.
  • the upper limit of the Ni content is preferably 0.27% or less, more preferably 0.25% or less.
  • Cr more than 0% and 0.30% or less Cr is an element effective for improving the yield strength, and therefore the lower limit of the Cr content is preferably 0.01% or more.
  • the lower limit of the Cr amount is more preferably 0.05% or more, and still more preferably 0.10% or more. However, if the Cr content exceeds 0.30%, it becomes easy to produce MA, so the upper limit of the Cr content is 0.30% or less.
  • the upper limit of the Cr amount is preferably 0.27% or less, more preferably 0.25% or less.
  • V more than 0% and 0.050% or less V is an element effective for improving the yield strength.
  • the lower limit of the V amount is preferably 0.001% or more.
  • the lower limit of the V amount is more preferably 0.002% or more, and still more preferably 0.003% or more.
  • the upper limit of the amount of V is made 0.050% or less.
  • the upper limit of the V amount is preferably 0.030% or less, more preferably 0.010% or less.
  • the elements in steel used in the present invention are as described above, and the balance is substantially iron. However, it is naturally allowed that steel contains inevitable impurities brought in depending on the situation of raw materials, materials, manufacturing equipment, and the like. Examples of the inevitable impurities include As, Sb, Sn, O, and H.
  • the steel sheet of the present invention can be produced, for example, by producing a slab such as a slab, heating the obtained slab, performing hot rolling, and then performing accelerated cooling.
  • the slab After casting as described above, the slab is heated and hot rolled.
  • the heating temperature for heating the slab is preferably 1000 to 1200 ° C. If the heating temperature is too low, Nb in the steel does not sufficiently dissolve, and high yield strength cannot be ensured. Therefore, the lower limit of the heating temperature is more preferably 1100 ° C. or more, and further preferably 1120 ° C. or more. However, if the heating temperature is too high, the austenite grains become coarse and the low temperature toughness of the base material deteriorates, so the upper limit of the heating temperature is more preferably 1180 ° C. or less.
  • the hot rolling start temperature is preferably 900 to 1100 ° C. If the hot rolling start temperature is too low, rolling in the austenite recrystallization region cannot be ensured, austenite grains become coarse, and the low temperature toughness of the base material may deteriorate. Therefore, the lower limit of the hot rolling start temperature is more preferably 930 ° C or higher, and still more preferably 950 ° C or higher. On the other hand, if the hot rolling start temperature is too high, the austenite grains after recrystallization become coarse and the low temperature toughness of the base material may be deteriorated. Therefore, the upper limit of the hot rolling start temperature is more preferably 1090 ° C. or less, and still more preferably 1080 ° C. or less.
  • the rolling reduction from 950 ° C. to the hot rolling end temperature is preferably 40 to 80%. If the rolling reduction from 950 ° C. to the hot rolling finish temperature is too low, the strain introduced into the austenite grains cannot be secured, and the grains after bainite transformation become coarse, which may deteriorate the low temperature toughness of the base material. Therefore, the lower limit of the rolling reduction is more preferably 50% or more, and still more preferably 60% or more. On the other hand, if the rolling reduction from 950 ° C. to the hot rolling end temperature is too high, strain is excessively introduced into the austenite grains, and the hardenability is lowered. Therefore, the upper limit of the rolling reduction is more preferably 77% or less, and further preferably 75% or less.
  • the hot rolling end temperature is preferably 770 to 880 ° C. If the hot rolling end temperature is too low, strain is excessively introduced into the austenite grains, and the hardenability is lowered. Therefore, the lower limit of the hot rolling end temperature is more preferably 790 ° C. or higher, further preferably 800 ° C. or higher. On the other hand, if the hot rolling finish temperature is too high, the strain introduced into the austenite grains cannot be ensured, and the grains after the bainite transformation become coarse, which may deteriorate the low temperature toughness of the base material. Therefore, the upper limit of the hot rolling end temperature is more preferably 860 ° C. or less, and further preferably 850 ° C. or less.
  • Accelerated cooling is preferably performed as follows after the hot rolling is completed. It is not necessarily limited to this condition.
  • the cooling start temperature after the hot rolling is preferably 730 ° C. or higher. If the temperature is lower than 730 ° C., ferrite transformation is promoted and ferrite precipitates, so that the metal structure does not become bainite, and it may be difficult to ensure high yield strength of the base material. Therefore, the lower limit of the cooling start temperature is more preferably 735 ° C. or higher, and further preferably 740 ° C. or higher. Although the upper limit of cooling start temperature is not specifically limited, More preferably, it is 860 degrees C or less, More preferably, it is 850 degrees C or less.
  • accelerated cooling is preferably performed at an average cooling rate of preferably 10 to 50 ° C./second.
  • the average cooling rate of accelerated cooling preferably 10 ° C./second or more, it is possible to prevent precipitation of ferrite by transforming untransformed austenite into a bainite structure, and further increase the maximum hardness of bainite. It is easy to improve the yield strength. Therefore, the lower limit of the average cooling rate is more preferably 13 ° C./second or more, and further preferably 15 ° C./second or more.
  • the upper limit of the average cooling rate is preferably 50 ° C./second or less.
  • the upper limit of the average cooling rate is more preferably 45 ° C./second or less in consideration of the formability to the steel pipe.
  • the cooling stop temperature is preferably 370 to 550 ° C.
  • the lower limit of the cooling stop temperature is more preferably 390 ° C. or higher, and further preferably 400 ° C. or higher.
  • the upper limit of the cooling stop temperature is more preferably 540 ° C. or less, and further preferably 530 ° C. or less.
  • the average cooling rate at this time is preferably about 0.1 to 5 ° C./second.
  • the plate thickness of the steel plate according to the present invention is not particularly limited, but in order to obtain a line pipe, the lower limit of the plate thickness is preferably 6 mm or more, more preferably 10 mm or more.
  • the upper limit of the plate thickness is preferably 32 mm or less, more preferably 30 mm or less, from the viewpoint of securing a necessary cooling rate and suppressing the precipitation of ferrite.
  • the non-tempered steel sheet obtained as described above is particularly useful for line pipes.
  • the line pipe obtained by using the non-heat treated steel sheet of the present invention reflects the characteristics of the non-heat treated steel sheet, and has excellent low temperature toughness and hardness characteristics and yield strength of HAZ.
  • REM 35Fe-30REM-35Si alloy containing 50% Ce and 20% La was used as the REM.
  • REM and Ca were added after deoxidation with Al and Zr.
  • REM and Ca were added in order of REM and Ca, and the time from REM addition to Ca addition was made into 4 minutes or more.
  • the slab was produced so that solidification might be completed within 200 minutes after Ca addition.
  • a test piece of 12 mm ⁇ 32 mm ⁇ 55 mm was cut out from the steel plates 1 to 24 so that the rolling direction and the vertical direction of the steel plate were the length of the test piece, and used as a reproducible thermal cycle test piece.
  • a thermal cycle with a maximum heating temperature of 1350 ° C. simulating a coarse-grained heat-affected zone in the vicinity of the melting line was applied to the reproduced thermal cycle test piece. Specifically, after heating to 1350 ° C. and holding for 5 seconds, the temperature range of 800 to 500 ° C. was cooled over 30 seconds.
  • the Charpy impact test was implemented by the method prescribed
  • a Charpy impact test was conducted at ⁇ 10 ° C., and the absorbed energy passed 27 J or more.
  • HAZ weld heat affected zone
  • No. in Table 2 Nos. 17 to 24 are Nos. 1 and 2 in Table 2 that satisfy the preferable requirements defined in the present invention by using the steel types Q to X in Table 1 that satisfy the component composition defined in the present invention. This is an example manufactured under the manufacturing conditions of 17-24. These show that the low temperature toughness and hardness characteristics of HAZ are good, and a steel sheet having a high yield strength of 555 MPa or more is obtained.
  • No. 1 to 16 do not satisfy any of the requirements defined in the present invention.
  • No. in Table 2. 1 is an example using the steel type A in Table 1 having a large Ceq, although the component composition of each element satisfies the requirements specified in the present invention, and the maximum hardness of the HAZ is high because of the large Ceq. As a result, the low temperature toughness of the HAZ was reduced.
  • No. in Table 2. 2 is an example using the steel type B of Table 1 with a large amount of B and a small A value and B value. Since the area ratio of bainite is low and the maximum hardness of bainite is low, the yield strength is low. Since the amount was large, the low temperature toughness of HAZ was lowered.
  • No. in Table 2 No. 3 is an example using the steel type C in Table 1 having a large B amount and Ti amount, and a small A value and B value, and the low temperature toughness of HAZ was lowered because the B amount and Ti amount were large.
  • a value and B value were small, since B exceeded 0.0003% and Mo was also compounded, the area ratio of bainite, the maximum hardness of bainite, and the yield strength increased.
  • No. 4 is an example using the steel type D of Table 1 having a small A value and B value, and the yield strength was low because the area ratio of bainite was low and the maximum hardness of bainite was low.
  • No. 5 is an example using the steel type E of Table 1 having a small A value. Since the area ratio of bainite was low, the yield strength was low.
  • No. in Table 2. 6 is an example using the steel type F of Table 1 with a small B value. Although the bainite has 80% by area or more, the yield strength is low because the maximum hardness of the bainite is low.
  • No. in Table 2. 7 is an example using the steel type G of Table 1 that does not include Mo, Cu, Ni, Cr, and V, and has a small A value and B value, and does not include Mo, Cu, Ni, Cr, and V.
  • the yield strength was low because the area ratio of bainite was low and the maximum hardness of bainite was low.
  • No. 8 is an example using the steel type H of Table 1 with a small amount of C and a small B value. Since the amount of C was small and the maximum hardness of bainite was low, the yield strength was low.
  • No. 9 is an example using the steel type I of Table 1 with a small amount of Si and a small A value. Since the amount of Si was small and the area ratio of bainite was low, the yield strength was low.
  • No. in Table 2. 11 is an example using the steel type K of Table 1 with a small amount of Mn and Nb, and a small A value and B value.
  • the amount of Mn and Nb is small, the area ratio of bainite is low, and the maximum hardness of bainite. , The yield strength was low.
  • No. in Table 2 is an example using the steel type L in Table 1 having a small Nb amount, containing no Mo, Cu, Ni, Cr, and V, and having a small A value and B value.
  • the Nb amount is small, and Mo, Cu, Since Ni, Cr, and V were not included, the area ratio of bainite was low, and the maximum hardness of bainite was low, so the yield strength was low.
  • No. in Table 2 No. 13 is an example using the steel type M of Table 1 with a large amount of Ni and a small A value and B value. MA was large, the area ratio of bainite was low, and the yield strength was low.
  • No. in Table 2. 14 is an example using the steel type N in Table 1 with a large amount of Cr and a small A value and B value. MA is large, the area ratio of bainite is low, the maximum hardness of bainite is low, and the yield strength is low. Became lower.
  • No. in Table 2. 15 is an example using the steel type O of Table 1 with a small amount of Mn, a large amount of Cr, and a small A value and B value.
  • the amount of Mn is small, the amount of MA is large, the area ratio of bainite is low, The maximum hardness decreased and the yield strength decreased.
  • No. in Table 2. 16 is an example using the steel type P of Table 1 with a large amount of V and a small A value and B value. MA is large, the area ratio of bainite is low, the maximum hardness of bainite is low, and the yield strength is low. Became lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Provided is a non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed. A non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed, the non-heat-treated steel sheet characterized by including predetermined components in the steel, the Ceq specified by expression (1) is less than 0.44, the A value specified by expression (2) is 2.5 or greater, the B value specified by expression (3) is 2.37 or greater, the area ratios of the metallographic structure below at a position 1/4 of the thickness of the steel sheet satisfy the values of 80% or more of bainite and 0% to 0.26% of island martensite, and the maximum hardness of the bainite is 270 HV or greater. (1): Ceq = C + Mn/6 + (Cu + Ni)/15 + (Cr + Mo + V)/5. (2): A value = 1.15 × Mn + 2.20 × Mo + 6.50 × Nb. (3): B value = 1.20 × Mn + 0.50 × Ni + 4.25 × Nb.

Description

溶接熱影響部の低温靭性劣化および溶接熱影響部の硬さを抑制した高降伏強度を有する非調質鋼板Non-tempered steel sheet with high yield strength that suppresses low temperature toughness degradation of weld heat affected zone and hardness of weld heat affected zone
 本発明は、溶接熱影響部の低温靭性劣化および溶接熱影響部の硬さを抑制した高降伏強度を有する非調質鋼板に関する。より詳しくは、石油、天然ガス等の輸送用ラインパイプに使用されるAPI規格X80級の高降伏強度を有する非調質鋼板に関する。 The present invention relates to a non-tempered steel sheet having high yield strength in which the low temperature toughness deterioration of the weld heat affected zone and the hardness of the weld heat affected zone are suppressed. More specifically, the present invention relates to a non-tempered steel sheet having high yield strength of API standard X80 class used for transportation line pipes such as oil and natural gas.
 天然ガスや原油を長距離輸送するラインパイプにおいては、敷設費や輸送費の低減を目指し、パイプ素材そのものを高強度化して肉厚の増大を制限するニーズが高まっている。現在、米国石油協会(American Petroleum Institute、API)においては、高降伏強度鋼としてX80級鋼が規格化され、実用化されている。 In the case of line pipes that transport natural gas and crude oil over long distances, there is a growing need to limit the increase in wall thickness by increasing the strength of the pipe material itself in order to reduce laying costs and transportation costs. Currently, in the American Petroleum Institute (API), X80 grade steel is standardized and put into practical use as high yield strength steel.
 上記のようなラインパイプとして用いられる鋼板には、高降伏強度に加えて、高靭性、短工期、低コストが望まれており、これらを満たすための製造方法として制御圧延が挙げられる。制御圧延は、圧延時の温度や圧下率などを適切に制御することによって結晶粒を微細化し、熱間圧延後に加速冷却を実施する技術である。制御圧延では、加速冷却後の加熱等の調質は不要である。このような方法により得られた鋼板は一般に非調質鋼板と呼ばれている。 In addition to high yield strength, steel sheets used as line pipes as described above are desired to have high toughness, a short work period, and low cost. Controlling rolling is an example of a manufacturing method for satisfying these requirements. Controlled rolling is a technique in which crystal grains are refined by appropriately controlling the temperature and rolling reduction during rolling, and accelerated cooling is performed after hot rolling. In controlled rolling, tempering such as heating after accelerated cooling is unnecessary. A steel sheet obtained by such a method is generally called a non-tempered steel sheet.
 非調質の高降伏強度鋼板については、従来より様々な技術開発がなされてきた。例えば特許文献1~4には、非調質にてAPI規格X80級の高降伏強度を有する鋼板の製造方法が開示されている。 Various technologies have been developed for non-tempered high yield strength steel sheets. For example, Patent Documents 1 to 4 disclose a method for producing a steel sheet having a high yield strength of API standard X80 class with no tempering.
特開2006-328523号公報JP 2006-328523 A 国際公開第2010/052927号パンフレットInternational Publication No. 2010/052927 Pamphlet 特開2006-169591号公報JP 2006-169591 A 特開2008-261012号公報JP 2008-261012 A
 ところでラインパイプは寒冷地に敷設されることも多いため、溶接熱影響部(Heat Affected Zone、HAZ)の低温靭性に優れることが必須である。また溶接施工性の観点から、溶接熱影響部の硬さを抑制することが近年強く望まれている。 Incidentally, since the line pipe is often laid in a cold region, it is essential that the low temperature toughness of the heat affected zone (Heat Affected Zone, HAZ) is excellent. Further, in recent years, it has been strongly desired to suppress the hardness of the weld heat affected zone from the viewpoint of welding workability.
 しかしながら、特許文献1および特許文献2に記載の鋼板は、溶接熱影響部の靭性および硬さを評価する指標であるCeqを低く制御していないため、溶接熱影響部の靭性劣化および溶接熱影響部の硬化のおそれがある。 However, since the steel sheets described in Patent Document 1 and Patent Document 2 do not control Ceq, which is an index for evaluating the toughness and hardness of the weld heat affected zone, toughness degradation in the weld heat affected zone and the weld heat impact. There is a risk of curing the part.
 また特許文献3および特許文献4に記載の方法では、溶接熱影響部の低温靭性を劣化させる成分であるBを多量に添加しているため、溶接熱影響部の低温靭性の劣化のおそれがある。 Further, in the methods described in Patent Literature 3 and Patent Literature 4, since a large amount of B, which is a component that degrades the low temperature toughness of the weld heat affected zone, is added, there is a risk of the low temperature toughness of the weld heat affected zone being deteriorated. .
 本発明は、この様な状況に鑑みてなされたものであり、その目的は、溶接熱影響部の低温靭性劣化および溶接熱影響部の硬さを抑制した高降伏強度を有する非調質鋼板を提供することにある。 The present invention has been made in view of such circumstances, and its purpose is to provide a non-tempered steel sheet having a high yield strength that suppresses the low temperature toughness deterioration of the weld heat affected zone and the hardness of the weld heat affected zone. It is to provide.
 上記課題を解決し得た本発明に係る溶接熱影響部の低温靭性劣化および溶接熱影響部の硬さを抑制した高降伏強度を有する非調質鋼板は、質量%で、C:0.04%超0.10%以下、Si:0.15~0.50%、Mn:1.20~2.50%、P:0%超0.020%以下、S:0%超0.0050%以下、Nb:0.020~0.100%、Ti:0.003~0.020%、N:0.0010~0.0075%、Zr:0.0001~0.0100%、Ca:0.0005~0.0030%、REM:0.0001~0.0050%、Al:0.010~0.050%、およびB:0.0003%以下(0%を含む)を含有し、更に、Mo:0%超0.30%以下、Cu:0%超0.30%以下、Ni:0%超0.30%以下、Cr:0%超0.30%以下、およびV:0%超0.050%以下よりなる群から選択される1種以上を含み、残部は鉄および不可避的不純物からなり、下記式(1)で規定されるCeqが0.44未満、下記式(2)で規定されるA値が2.50以上、および下記式(3)で規定されるB値が2.37以上であると共に、鋼板の板厚の1/4位置において下記金属組織の面積率が、ベイナイト:80面積%以上、および島状マルテンサイト:0面積%以上0.26面積%以下を満足し、前記ベイナイトの最大硬さが270HV以上を満たすところに要旨を有する。
 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
 A値=1.15×Mn+2.20×Mo+6.50×Nb ・・・(2)
 B値=1.20×Mn+0.50×Ni+4.25×Nb ・・・(3)
 但し、C、Mn、Cu、Ni、Cr、Mo、V、およびNbは、それぞれ質量%で、C、Mn、Cu、Ni、Cr、Mo、V、およびNbの含有量を示す。
The non-heat treated steel sheet having a high yield strength with suppressed low temperature toughness deterioration of the weld heat affected zone and hardness of the weld heat affected zone according to the present invention, which has solved the above problems, is C% by mass. % Over 0.10% or less, Si: 0.15 to 0.50%, Mn: 1.20 to 2.50%, P: over 0% to 0.020% or less, S: over 0% to 0.0050% Hereinafter, Nb: 0.020 to 0.100%, Ti: 0.003 to 0.020%, N: 0.0010 to 0.0075%, Zr: 0.0001 to 0.0100%, Ca: 0.00. 0005 to 0.0030%, REM: 0.0001 to 0.0050%, Al: 0.010 to 0.050%, and B: 0.0003% or less (including 0%), and Mo : More than 0% and 0.30% or less, Cu: more than 0% and 0.30% or less, Ni: more than 0% and 0.30% or less, Cr 1 or more selected from the group consisting of more than 0% and 0.30% or less, and V: more than 0% and 0.050% or less, and the balance consists of iron and inevitable impurities, and is defined by the following formula (1) Ceq is less than 0.44, the A value defined by the following formula (2) is 2.50 or more, and the B value defined by the following formula (3) is 2.37 or more. At the 1/4 position of the thickness, the area ratio of the following metal structure satisfies bainite: 80 area% or more and island martensite: 0 area% or more and 0.26 area% or less, and the maximum hardness of the bainite is 270 HV. It has a gist where it meets the above.
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
A value = 1.15 × Mn + 2.20 × Mo + 6.50 × Nb (2)
B value = 1.20 × Mn + 0.50 × Ni + 4.25 × Nb (3)
However, C, Mn, Cu, Ni, Cr, Mo, V, and Nb are mass%, respectively, and indicate the contents of C, Mn, Cu, Ni, Cr, Mo, V, and Nb.
 本発明の好ましい実施形態において、上記非調質鋼板は、ラインパイプ用である。 In a preferred embodiment of the present invention, the non-tempered steel sheet is for a line pipe.
 本発明によれば、上記構成を採用することにより、溶接熱影響部の低温靭性劣化および溶接熱影響部の硬さを抑制した高降伏強度を有する非調質鋼板が得られる。 According to the present invention, by adopting the above configuration, a non-tempered steel sheet having a high yield strength with suppressed low temperature toughness deterioration of the weld heat affected zone and hardness of the weld heat affected zone can be obtained.
図1は、ベイナイト面積率と降伏強度との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the bainite area ratio and the yield strength. 図2は、ベイナイトの最大硬さと降伏強度との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the maximum hardness of bainite and the yield strength. 図3は、島状マルテンサイト(以下、島状マルテンサイトをMAと呼ぶ場合がある)の面積率と降伏強度との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the area ratio of the island martensite (hereinafter, the island martensite may be referred to as MA) and the yield strength.
 まず本発明者らは、非調質鋼板の降伏強度を支配する因子について検討した。その結果、非調質鋼板の降伏強度は金属組織中のベイナイトおよび島状マルテンサイトの各面積率、並びにベイナイトの最大硬さと密接な相関関係を有しており、これらを所定の範囲に制御すると、API規格X80級の高降伏強度が得られることを見出した。 First, the present inventors examined factors that govern the yield strength of non-tempered steel sheets. As a result, the yield strength of the non-tempered steel sheet has a close correlation with the area ratio of bainite and island martensite in the metal structure, and the maximum hardness of bainite, and when these are controlled within a predetermined range It was found that high yield strength of API standard X80 grade can be obtained.
 更に、本発明者らは、高降伏強度でしかも溶接熱影響部の低温靭性劣化および溶接熱影響部の硬さを抑制した非調質鋼板を実現するため様々な角度から検討した。その結果、上記式(1)~(3)の関係を満足するように化学成分組成を制御すれば、溶接熱影響部の低温靭性劣化が抑制され、更に溶接熱影響部の硬さを低減することができることを見出し、本発明を完成した。 Furthermore, the present inventors have studied from various angles in order to realize a non-tempered steel sheet having high yield strength and low-temperature toughness deterioration of the weld heat affected zone and suppressing the hardness of the weld heat affected zone. As a result, if the chemical composition is controlled so as to satisfy the relationships of the above formulas (1) to (3), the low temperature toughness deterioration of the weld heat affected zone is suppressed, and the hardness of the weld heat affected zone is further reduced. The present invention has been completed.
 更に、このような非調質鋼板は、好ましくは、所定の成分組成を満足する鋼材を加熱して熱間圧延した後、730℃以上の冷却開始温度から370~550℃の冷却停止温度まで、平均冷却速度:10~50℃/秒で冷却することによって製造することができる。 Further, such a non-tempered steel sheet is preferably heated from a steel material satisfying a predetermined component composition by hot rolling, and then from a cooling start temperature of 730 ° C. or higher to a cooling stop temperature of 370 to 550 ° C., Average cooling rate: It can be produced by cooling at 10 to 50 ° C./second.
 本明細書において「API規格X80級の高降伏強度」とは、鋼板の板幅方向の降伏強度が555MPa以上705MPa以下であることを意味する。 In this specification, “high yield strength of API standard X80 class” means that the yield strength in the sheet width direction of the steel sheet is 555 MPa or more and 705 MPa or less.
 まず、本発明の非調質鋼板の組織について説明する。 First, the structure of the non-heat treated steel sheet of the present invention will be described.
 本発明に係る非調質鋼板は、鋼板の板厚tの1/4位置において、金属組織全体に対する各組織が、ベイナイト:80面積%以上、島状マルテンサイト:0面積%以上0.26面積%以下、およびベイナイトの最大硬さ:270HV以上を満足するものである。 In the non-tempered steel sheet according to the present invention, each structure with respect to the entire metal structure is bainite: 80 area% or more, island-like martensite: 0 area% or more, 0.26 area at a quarter position of the sheet thickness t of the steel sheet. % Or less, and the maximum hardness of bainite: 270 HV or more is satisfied.
 ベイナイト:80面積%以上
 ベイナイトは、降伏強度向上に寄与する組織であり、API規格X80級の高降伏強度を確保するために重要な組織である。ベイナイトが80面積%を下回ると降伏強度が低下する。そのために、金属組織全体の面積を100%としたときのベイナイトの面積率の下限を80面積%以上とする。ベイナイトの面積率の下限は、好ましくは82面積%以上、より好ましくは84面積%以上である。
Bainite: 80 area% or more Bainite is a structure that contributes to improving the yield strength, and is an important structure for securing high yield strength of API standard X80. When bainite is less than 80 area%, the yield strength decreases. Therefore, the lower limit of the area ratio of bainite when the area of the whole metal structure is 100% is 80 area% or more. The lower limit of the area ratio of bainite is preferably 82 area% or more, more preferably 84 area% or more.
 図1は、後記する実施例の表1の鋼種A~Xを用いて、表2のNo.1~24の製造条件で製造して得られた非調質鋼板におけるベイナイトの面積率と降伏強度との関係を示すグラフである。図1に示す通り、所望とする555MPa以上の高降伏強度を満足している実施例は全て金属組織中のベイナイト面積率が80%以上であり、高降伏強度を満足するためには、ベイナイト面積率を80%以上に高めることが有効であることが分かる。図1には、ベイナイト面積率が80%以上にも関わらず降伏強度が555MPa以上を満足していない例もあるが、これらは後記するベイナイト硬さが270HV未満であるか、MA面積率が0.26%超えの例である。 FIG. 1 shows No. 1 in Table 2 using steel types A to X in Table 1 of Examples described later. 2 is a graph showing the relationship between the area ratio of bainite and the yield strength in a non-tempered steel sheet produced under the production conditions 1 to 24. As shown in FIG. 1, all examples satisfying the desired high yield strength of 555 MPa or more had a bainite area ratio of 80% or more in the metal structure, and in order to satisfy the high yield strength, the bainite area It can be seen that it is effective to increase the rate to 80% or more. In FIG. 1, there is an example in which the yield strength does not satisfy 555 MPa or more even though the bainite area ratio is 80% or more. However, these have a bainite hardness of less than 270 HV described later or an MA area ratio of 0. This is an example of over 26%.
 ベイナイトの最大硬さ:270HV以上
 ベイナイトの最大硬さは、降伏強度のばらつきを抑制して安定して高降伏強度を得るために重要であり、270HV以上に制御する必要がある。これにより、API規格X80級の高降伏強度を安定して確保することができる。ベイナイトの最大硬さの下限は、好ましくは275HV以上である。しかしながら、鋼管への成形性を考慮すると、ベイナイトの最大硬さの上限は、好ましくは310HV以下、より好ましくは300HV以下とする。
Maximum hardness of bainite: 270 HV or higher The maximum hardness of bainite is important for obtaining high yield strength stably by suppressing variation in yield strength, and it is necessary to control it to 270 HV or higher. Thereby, high yield strength of API standard X80 class can be secured stably. The lower limit of the maximum hardness of bainite is preferably 275 HV or higher. However, considering the formability to the steel pipe, the upper limit of the maximum hardness of the bainite is preferably 310 HV or less, more preferably 300 HV or less.
 図2は、後記する実施例の表1の鋼種A~Xを用いて、表2のNo.1~24の製造条件で製造して得られた非調質鋼板におけるベイナイトの最大硬さと降伏強度との関係を示すグラフである。図2に示す通り、所望とする555MPa以上を満足している実施例は全て金属組織中のベイナイト最大硬さが270HV以上であり、高降伏強度を満足するためにはベイナイト最大硬さを270HV以上に高めることが有効であることが分かる。ここで、ベイナイト最大硬さが270HV以上にも関わらず降伏強度が555MPa以上を満足していない例もあるが、これらはベイナイト面積率が80%未満であるか、MA面積率が0.26%超えの例である。 FIG. 2 shows No. 1 in Table 2 using steel types A to X in Table 1 of Examples described later. 2 is a graph showing the relationship between the maximum hardness of bainite and the yield strength in a non-heat treated steel sheet produced under the production conditions 1 to 24. As shown in FIG. 2, all examples satisfying the desired 555 MPa or more have a maximum bainite hardness of 270 HV or more in the metal structure, and in order to satisfy high yield strength, the bainite maximum hardness is 270 HV or more. It can be seen that it is effective to increase it. Here, although the bainite maximum hardness is 270 HV or more, there is an example where the yield strength does not satisfy 555 MPa or more, but these have a bainite area ratio of less than 80% or an MA area ratio of 0.26%. It is an example of exceeding.
 ここで「ベイナイトの最大硬さ」とは、後記する実施例に記載の方法でベイナイトのビッカース硬さを測定したときの上位3点の平均値を意味する。本発明者らは、ベイナイトの最大硬さを制御することにより、高降伏強度を安定して得られることを見出した。 Here, “maximum hardness of bainite” means the average value of the upper three points when the Vickers hardness of bainite is measured by the method described in the examples described later. The present inventors have found that high yield strength can be stably obtained by controlling the maximum hardness of bainite.
 島状マルテンサイト:0面積%以上0.26面積%以下
 島状マルテンサイトは、降伏強度を低下させる組織であるため、所望とする高降伏強度を確保するためにMA面積率を低減させる必要がある。そのために金属組織全体の面積を100%としたときのMA面積率の上限を0.26面積%以下とする。MA面積率の上限は、好ましくは0.25面積%以下である。
Island-like martensite: 0 area% or more and 0.26 area% or less Island-like martensite is a structure that lowers the yield strength, so it is necessary to reduce the MA area ratio in order to ensure the desired high yield strength. is there. Therefore, the upper limit of the MA area ratio when the area of the entire metal structure is 100% is set to 0.26 area% or less. The upper limit of the MA area ratio is preferably 0.25 area% or less.
 図3は、後記する実施例の表1のA~Xを用いて、表2のNo.1~24の製造条件で製造して得られた非調質鋼板における島状マルテンサイトの面積率と降伏強度との関係を示すグラフである。図3に示す通り、555MPa以上を満足している実施例は全て金属組織中のMA面積率が0.26%以下であり、高降伏強度を満足するためにはMA面積率を0.26%以下に制御することが有効であることが分かる。ここで、MA面積率が0.26%以下にも関わらず降伏強度が555MPa以上を満足していない例もあるが、これらは、ベイナイト面積率が80%未満であるか、ベイナイト最大硬さが270HV未満の例である。 FIG. 3 shows No. in Table 2 using A to X in Table 1 of Examples described later. 2 is a graph showing the relationship between the area ratio of island martensite and the yield strength in a non-tempered steel sheet produced under the production conditions of 1 to 24. As shown in FIG. 3, in all examples satisfying 555 MPa or more, the MA area ratio in the metal structure is 0.26% or less, and in order to satisfy the high yield strength, the MA area ratio is 0.26%. It can be seen that the following control is effective. Here, although there is an example where the yield strength does not satisfy 555 MPa or more even though the MA area ratio is 0.26% or less, these may have a bainite area ratio of less than 80% or a bainite maximum hardness. This is an example of less than 270 HV.
 本発明に係る非調質鋼板の組織は上記の通りである。上記以外の残部組織はフェライト、マルテンサイト、またはパーライトである。 The structure of the non-tempered steel sheet according to the present invention is as described above. The remaining structure other than the above is ferrite, martensite, or pearlite.
 次に、鋼中成分について説明する。 Next, the components in steel will be described.
 まず上記式(1)~式(3)で表されるCeq、A値、およびB値と、降伏強度、HAZの低温靭性およびHAZの硬さとの関係を説明する。 First, the relationship between the Ceq, A value, and B value represented by the above formulas (1) to (3), the yield strength, the low temperature toughness of HAZ, and the hardness of HAZ will be described.
 Ceq:0.44未満
 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
 但し、C、Mn、Cu、Ni、Cr、Mo、およびVは、それぞれ質量%で、C、Mn、Cu、Ni、Cr、Mo、およびVの含有量を示す。
 上記式(1)で定義されるCeqは、HAZの低温靭性およびHAZの硬さを決定する重要な指標である。Ceqが0.44以上になるとHAZの低温靱性およびHAZの硬さ特性は急激に劣化し、Ceqが0.44未満であれば良好なHAZの低温靱性およびHAZ部の硬さの確保することができる。そのために、Ceqの上限を0.44未満とする。Ceqの上限は、好ましくは0.43以下、より好ましくは0.42以下とする。一方、各元素の含有量の下限等を考慮すると、Ceqの下限は、好ましくは0.37以上、より好ましくは0.38以上とする。
Ceq: Less than 0.44 Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
However, C, Mn, Cu, Ni, Cr, Mo, and V are mass%, respectively, and show content of C, Mn, Cu, Ni, Cr, Mo, and V.
Ceq defined by the above formula (1) is an important index for determining the low temperature toughness of HAZ and the hardness of HAZ. When Ceq is 0.44 or more, the low temperature toughness of HAZ and the hardness properties of HAZ deteriorate rapidly, and if Ceq is less than 0.44, good low temperature toughness of HAZ and hardness of HAZ part can be ensured. it can. Therefore, the upper limit of Ceq is set to less than 0.44. The upper limit of Ceq is preferably 0.43 or less, more preferably 0.42 or less. On the other hand, considering the lower limit of the content of each element, the lower limit of Ceq is preferably 0.37 or more, more preferably 0.38 or more.
 A値:2.50以上
 A値=1.15×Mn+2.20×Mo+6.50×Nb ・・・(2)
 但し、Mn、Mo、およびNbは、それぞれ質量%で、Mn、Mo、およびNbの含有量を示す。
 A値は、本発明者らによって初めて見出されたものであり、前述したCeqを構成する元素のうちフェライト変態を抑制するために有効なMnおよびMoの各含有量、更にはNbの含有量が上記式(2)を満たすように制御したパラメータである。A値を2.50以上とすることによりCeqの上昇を抑えつつ、高降伏強度の実現に重要なベイナイト面積率を確保することができる。ベイナイト面積率を上昇させるためにはA値は高いほどよく、API規格X80級の高降伏強度を確保するために、A値の下限を2.50以上とする。A値の下限は、好ましくは2.52以上、より好ましくは2.54以上とする。一方、各元素の含有量の上限等を考慮すると、A値の上限は、好ましくは3.00以下、より好ましくは2.95以下とする。
A value: 2.50 or more A value = 1.15 × Mn + 2.20 × Mo + 6.50 × Nb (2)
However, Mn, Mo, and Nb are the mass%, respectively, and show content of Mn, Mo, and Nb.
The A value was found for the first time by the present inventors, and the contents of Mn and Mo effective for suppressing ferrite transformation among the elements constituting Ceq described above, and further the content of Nb Is a parameter controlled to satisfy the above equation (2). By controlling the A value to 2.50 or more, an increase in Ceq can be suppressed and a bainite area ratio important for realizing high yield strength can be secured. In order to increase the bainite area ratio, the higher the A value, the better. In order to ensure high yield strength of API standard X80 class, the lower limit of the A value is 2.50 or more. The lower limit of the A value is preferably 2.52 or more, more preferably 2.54 or more. On the other hand, considering the upper limit of the content of each element, the upper limit of the A value is preferably 3.00 or less, more preferably 2.95 or less.
 B値:2.37以上
 B値=1.20×Mn+0.50×Ni+4.25×Nb ・・・(3)
 但し、Mn、Ni、およびNbは、それぞれ質量%で、Mn、Ni、およびNbの含有量を示す。
 B値は、本発明者らによって初めて見出されたものであり、ベイナイトの変態温度を低下させることにより、高密度の転位の導入に有効なMn、Ni、Nbの各含有量が上記式(3)満たすように制御したパラメータである。B値を2.37以上とすることにより、Ceqの上昇を抑えつつ、ベイナイトの最大硬さを確保することができる。ベイナイトの最大硬さを上昇させるためにはB値は高いほどよく、API規格X80級の高降伏強度を確保するために、B値の下限を2.37以上とする。B値の下限は、好ましくは2.39以上とする。一方、各元素の含有量の上限等を考慮すると、B値の上限は、好ましくは2.70以下、より好ましくは2.68以下とする。
B value: 2.37 or more B value = 1.20 × Mn + 0.50 × Ni + 4.25 × Nb (3)
However, Mn, Ni, and Nb are mass%, respectively, and show the content of Mn, Ni, and Nb.
The B value was found for the first time by the present inventors, and by reducing the transformation temperature of bainite, each content of Mn, Ni, and Nb effective for introducing high-density dislocations is expressed by the above formula ( 3) Parameters controlled to satisfy. By setting the B value to 2.37 or more, the maximum hardness of bainite can be ensured while suppressing an increase in Ceq. In order to increase the maximum hardness of bainite, the higher the B value, the better. In order to ensure high yield strength of API standard X80 class, the lower limit of the B value is 2.37 or more. The lower limit of the B value is preferably 2.39 or more. On the other hand, considering the upper limit of the content of each element, the upper limit of the B value is preferably 2.70 or less, more preferably 2.68 or less.
 C:0.04%超0.10%以下
 Cは、母材(鋼板)の高降伏強度を確保するために必要不可欠な元素であり、そのためにC量の下限を0.04%超とする必要がある。C量の下限は、好ましくは0.05%以上、より好ましくは0.06%以上である。しかしながら、C量が過剰になると島状マルテンサイトが生成しやすくなり、降伏強度が低下すると共に、溶接施工性が低下するようになるため、C量の上限を0.10%以下とする必要がある。C量の上限は、好ましくは0.09%以下、より好ましくは0.08%以下である。
C: more than 0.04% and 0.10% or less C is an element indispensable for securing the high yield strength of the base material (steel plate), and therefore the lower limit of the C content is more than 0.04%. There is a need. The lower limit of the C amount is preferably 0.05% or more, more preferably 0.06% or more. However, when the amount of C is excessive, island martensite is likely to be generated, yield strength is lowered, and welding workability is lowered. Therefore, the upper limit of the amount of C needs to be 0.10% or less. is there. The upper limit of the C amount is preferably 0.09% or less, more preferably 0.08% or less.
 Si:0.15~0.50%
 Siは、脱酸作用を有する上に、母材の降伏強度向上に有効な元素であり、そのためにSi量の下限を0.15%以上とする。Si量の下限は、好ましくは0.18%以上であり、より好ましくは0.20%以上である。しかしながら、Si量が過剰になると溶接施工性やHAZの低温靭性が劣化するようになるため、Si量の上限を0.50%以下とする必要がある。Si量の上限は、好ましくは0.45%以下、より好ましくは0.40%以下である。
Si: 0.15-0.50%
Si is an element that has a deoxidizing action and is effective for improving the yield strength of the base material. Therefore, the lower limit of the Si amount is set to 0.15% or more. The lower limit of the Si amount is preferably 0.18% or more, more preferably 0.20% or more. However, since the weldability and low temperature toughness of the HAZ deteriorate when the Si amount is excessive, the upper limit of the Si amount needs to be 0.50% or less. The upper limit of the Si amount is preferably 0.45% or less, more preferably 0.40% or less.
 Mn:1.20~2.50%
 Mnは、母材の降伏強度向上に有効な元素であり、そのためにMn量の下限を1.20%以上とする必要がある。Mn量の下限は、好ましくは1.50%以上であり、より好ましくは1.70%以上である。しかしながら、Mn量が過剰になると溶接施工性が劣化するため、Mn量の上限を2.50%以下とする。Mn量の上限は、好ましくは2.20%以下であり、より好ましくは2.00%以下である。
Mn: 1.20-2.50%
Mn is an element effective for improving the yield strength of the base material. For this reason, the lower limit of the amount of Mn needs to be 1.20% or more. The lower limit of the amount of Mn is preferably 1.50% or more, more preferably 1.70% or more. However, since the weldability deteriorates when the amount of Mn becomes excessive, the upper limit of the amount of Mn is made 2.50% or less. The upper limit of the amount of Mn is preferably 2.20% or less, and more preferably 2.00% or less.
 P:0%超0.020%以下
 Pは、鋼材中に不可避的に含まれる元素であり、P量が0.020%を超えるとHAZの低温靭性を著しく劣化させる。そのためにP量の上限は0.020%以下とする。P量の上限は、好ましくは0.015%以下、より好ましくは0.010%以下である。なお、Pは鋼中に不可避的に含まれる不純物であり、その量を0%にすることは工業生産上不可能である。
P: more than 0% and 0.020% or less P is an element inevitably contained in the steel material, and when the P content exceeds 0.020%, the low temperature toughness of the HAZ is remarkably deteriorated. Therefore, the upper limit of the P amount is 0.020% or less. The upper limit of the amount of P is preferably 0.015% or less, more preferably 0.010% or less. Note that P is an impurity inevitably contained in the steel, and it is impossible to make the amount 0% in industrial production.
 S:0%超0.0050%以下
 Sは、上記Pと同様にHAZの低温靭性に影響を与える元素であり、S量が0.0050%を超えると粗大な硫化物が生成してHAZの低温靭性を劣化させる。そのためにS量の上限を0.0050%以下とする。S量の上限は、好ましくは0.0030%以下、より好ましくは0.0020%以下である。なお、Sは鋼中に不可避的に含まれる不純物であり、その量を0%にすることは工業生産上不可能である。
S: more than 0% to 0.0050% or less S is an element that affects the low temperature toughness of HAZ as in the case of P. When the amount of S exceeds 0.0050%, coarse sulfides are generated and HAZ Deteriorates low temperature toughness. Therefore, the upper limit of the amount of S is made 0.0050% or less. The upper limit of the amount of S is preferably 0.0030% or less, more preferably 0.0020% or less. In addition, S is an impurity inevitably contained in the steel, and it is impossible for industrial production to make the amount 0%.
 Nb:0.020~0.100%
 Nbは、溶接施工性を劣化させることなく降伏強度と母材の低温靭性を高めるのに有効な元素であり、そのためにNb量の下限を0.020%以上とする必要がある。Nb量の下限は、好ましくは0.030%以上、より好ましくは0.040%以上である。しかしながら、Nb量が過剰になって0.100%を超えると、HAZの低温靭性が劣化するようになるため、Nb量の上限を0.100%以下とする。Nb量の上限は、好ましくは0.070%以下、より好ましくは0.060%以下である。
Nb: 0.020 to 0.100%
Nb is an element effective for increasing the yield strength and the low temperature toughness of the base material without deteriorating the weldability, and therefore the lower limit of the Nb amount needs to be 0.020% or more. The lower limit of the Nb amount is preferably 0.030% or more, more preferably 0.040% or more. However, if the Nb amount becomes excessive and exceeds 0.100%, the low temperature toughness of the HAZ deteriorates, so the upper limit of the Nb amount is made 0.100% or less. The upper limit of the Nb amount is preferably 0.070% or less, more preferably 0.060% or less.
 Ti:0.003~0.020%
 Tiは、母材の降伏強度向上に有効な元素であり、更に、鋼中にTiNとして析出することで、溶接時のHAZでのオーステナイト粒の粗大化抑制によるHAZの低温靭性の向上に必要な元素である。このような効果を発揮させるためにTi量の下限を0.003%以上とする必要がある。Ti量の下限は、好ましくは0.005%以上、より好ましくは0.007%以上である。しかしながら、Ti量が過剰になると、固溶TiやTiC析出物が増加してHAZの低温靭性が劣化するため、Ti量の上限を0.020%以下とする。Ti量の上限は、好ましくは0.018%以下、より好ましくは0.016%以下である。
Ti: 0.003-0.020%
Ti is an element effective for improving the yield strength of the base metal, and further, it precipitates as TiN in the steel, and is necessary for improving the low temperature toughness of HAZ by suppressing coarsening of austenite grains in the HAZ during welding. It is an element. In order to exert such an effect, the lower limit of the Ti amount needs to be 0.003% or more. The lower limit of the Ti amount is preferably 0.005% or more, more preferably 0.007% or more. However, if the amount of Ti becomes excessive, solid solution Ti and TiC precipitates increase and the low temperature toughness of the HAZ deteriorates, so the upper limit of the amount of Ti is made 0.020% or less. The upper limit of the Ti amount is preferably 0.018% or less, more preferably 0.016% or less.
 N:0.0010~0.0075%
 Nは、鋼中にTiNとして析出することで、溶接時のHAZでのオーステナイト粒の粗大化抑制によるHAZの低温靭性の向上に必要な元素である。このような効果を発揮させるためにN量の下限を0.0010%以上とする必要がある。N量の下限は、好ましくは0.0020%以上であり、より好ましくは0.0030%以上である。しかしながら、N量が過剰になると、固溶Nの存在によりHAZの低温靭性が劣化するため、N量の上限を、0.0075%以下とする。N量の上限は、好ましくは0.0070%以下であり、より好ましくは0.0065%以下である。
N: 0.0010 to 0.0075%
N is an element necessary for improving the low temperature toughness of HAZ by suppressing the coarsening of austenite grains in the HAZ during welding by precipitating as TiN in the steel. In order to exert such an effect, the lower limit of the N amount needs to be 0.0010% or more. The lower limit of the N amount is preferably 0.0020% or more, and more preferably 0.0030% or more. However, if the amount of N becomes excessive, the low temperature toughness of the HAZ deteriorates due to the presence of solute N, so the upper limit of the amount of N is made 0.0075% or less. The upper limit of the N amount is preferably 0.0070% or less, and more preferably 0.0065% or less.
 Zr:0.0001~0.0100%
 Zrは、酸化物を形成して分散することでHAZでの低温靭性の向上に寄与する元素であり、そのためにZr量の下限を0.0001%以上とする必要がある。Zr量の下限は、好ましくは0.0003%以上、より好ましくは0.0005%以上である。しかしながら、Zr量が過剰になると粗大な介在物を形成してHAZの低温靭性を劣化させるため、Zr量の上限を0.0100%以下とする必要がある。Zr量の上限は、好ましくは0.0050%以下、より好ましくは0.0030%以下である。
Zr: 0.0001 to 0.0100%
Zr is an element that contributes to the improvement of low temperature toughness in HAZ by forming and dispersing an oxide, and for that purpose, the lower limit of the amount of Zr needs to be 0.0001% or more. The lower limit of the amount of Zr is preferably 0.0003% or more, more preferably 0.0005% or more. However, if the amount of Zr is excessive, coarse inclusions are formed and the low temperature toughness of the HAZ is deteriorated, so the upper limit of the amount of Zr needs to be 0.0100% or less. The upper limit of the amount of Zr is preferably 0.0050% or less, more preferably 0.0030% or less.
 Ca:0.0005~0.0030%
 Caは、硫化物の形態を制御する作用があり、CaSを形成することによってMnSの形成を抑制し、HAZの低温靭性を向上させる元素であり、そのためにCa量の下限を0.0005%以上とする必要がある。Ca量の下限は、好ましくは0.0006%以上である。しかしながら、Ca量が0.0030%を超えて過剰になると、HAZの低温靭性が劣化するため、Ca量の上限を0.0030%以下とする。Ca量の上限は、好ましくは0.0028%以下であり、より好ましくは0.0026%以下である。
Ca: 0.0005 to 0.0030%
Ca has an action of controlling the form of sulfide, and is an element that suppresses the formation of MnS by forming CaS and improves the low temperature toughness of HAZ. For this reason, the lower limit of the Ca amount is 0.0005% or more. It is necessary to. The lower limit of the Ca content is preferably 0.0006% or more. However, if the Ca content exceeds 0.0030% and becomes excessive, the low temperature toughness of the HAZ deteriorates, so the upper limit of the Ca content is 0.0030% or less. The upper limit of the Ca content is preferably 0.0028% or less, and more preferably 0.0026% or less.
 REM:0.0001~0.0050%
 希土類元素であるREMは、硫化物の形態制御に有効な元素であり、HAZの低温靭性に有害なMnSの生成を抑制する。このような効果を発揮させるためにREM量の下限を0.0001%以上とする。REM量は好ましくは0.0003%以上、より好ましくは0.0005%以上である。しかしながら、REMを多量に含有させても効果が飽和するため、REM量の上限は0.0050%以下とする。REM量の上限は、好ましくは0.0040%以下、より好ましくは0.0030%以下である。尚、本発明において、REMとは、ランタノイド元素(LaからLuまでの15元素)とSc(スカンジウム)およびY(イットリウム)を意味する。これらの元素のなかでも、Ce、LaおよびNdよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくは、CeおよびLaのうち少なくとも1種を含有するのがよい。
REM: 0.0001 to 0.0050%
REM, which is a rare earth element, is an element effective for controlling the morphology of sulfides, and suppresses the generation of MnS that is harmful to the low temperature toughness of HAZ. In order to exert such an effect, the lower limit of the REM amount is set to 0.0001% or more. The amount of REM is preferably 0.0003% or more, more preferably 0.0005% or more. However, even if a large amount of REM is contained, the effect is saturated, so the upper limit of the REM amount is 0.0050% or less. The upper limit of the REM amount is preferably 0.0040% or less, more preferably 0.0030% or less. In the present invention, REM means lanthanoid elements (15 elements from La to Lu), Sc (scandium), and Y (yttrium). Among these elements, it is preferable to contain at least one element selected from the group consisting of Ce, La, and Nd, and it is more preferable to contain at least one of Ce and La.
 Al:0.010~0.050%
 Alは、強脱酸元素であり、脱酸効果を得るためにAl量の下限を0.010%以上とする必要がある。Al量の下限は、好ましくは0.015%以上、より好ましくは0.018%以上である。しかしながら、Al量が過剰になると、AlNが多量に生成し、TiN析出量が減少することでHAZの低温靭性が損なわれるため、Al量の上限を0.050%以下とする必要がある。Al量の上限は、好ましくは0.045%以下であり、より好ましくは0.042%以下である。
Al: 0.010 to 0.050%
Al is a strong deoxidizing element, and in order to obtain a deoxidizing effect, the lower limit of the Al amount needs to be 0.010% or more. The lower limit of the Al content is preferably 0.015% or more, more preferably 0.018% or more. However, when the amount of Al becomes excessive, a large amount of AlN is generated, and the amount of TiN precipitation decreases, so that the low temperature toughness of HAZ is impaired. Therefore, the upper limit of the amount of Al needs to be 0.050% or less. The upper limit of the amount of Al is preferably 0.045% or less, and more preferably 0.042% or less.
 B:0.0003%以下(0%を含む)
 B量は、HAZの低温靭性を著しく劣化させる元素であり、そのためにB量の上限を0.0003%以下とする。B量の上限は、好ましくは0.0002%以下であり、より好ましくは0.0001%以下である。なお、Bを、0.0003%を超えて添加した場合において、Moの複合添加は、母材の降伏強度の過度な上昇を引き起こす。
B: 0.0003% or less (including 0%)
The amount of B is an element that significantly deteriorates the low-temperature toughness of HAZ. For this reason, the upper limit of the amount of B is set to 0.0003% or less. The upper limit of the amount of B is preferably 0.0002% or less, more preferably 0.0001% or less. When B is added in excess of 0.0003%, the combined addition of Mo causes an excessive increase in the yield strength of the base material.
 Mo:0%超0.30%以下、Cu:0%超0.30%以下、Ni:0%超0.30%以下、Cr:0%超0.30%以下、およびV:0%超0.050%以下よりなる群から選択される1種以上
 Mo、Cu、Ni、Cr、およびVは、降伏強度向上に有効な元素である。これらの元素は単独で添加しても良いし、二種以上を併用しても良い。これらの元素の含有量の範囲設定理由は下記の通りである。
Mo: more than 0% to 0.30% or less, Cu: more than 0% to 0.30% or less, Ni: more than 0% to 0.30% or less, Cr: more than 0% to 0.30% or less, and V: more than 0% One or more selected from the group consisting of 0.050% or less Mo, Cu, Ni, Cr, and V are effective elements for improving the yield strength. These elements may be added alone or in combination of two or more. The reasons for setting the ranges of the contents of these elements are as follows.
 Mo:0%超0.30%以下
 Moは、母材の降伏強度の向上に有効な元素であり、そのためにMo量の下限を好ましくは0.01%以上とする。Mo量の下限は、より好ましくは0.05%以上、より好ましくは0.10%以上である。しかし、Mo量が0.30%を超えるとHAZでの低温靭性および溶接施工性が劣化するため、Mo量の上限を0.30%以下とする。Mo量の上限は、好ましくは0.25%以下、より好ましくは0.20%以下である。
Mo: more than 0% and 0.30% or less Mo is an element effective for improving the yield strength of the base material, and therefore the lower limit of the Mo amount is preferably 0.01% or more. The lower limit of the amount of Mo is more preferably 0.05% or more, and more preferably 0.10% or more. However, if the Mo amount exceeds 0.30%, the low temperature toughness and welding workability in HAZ deteriorate, so the upper limit of the Mo amount is set to 0.30% or less. The upper limit of the Mo amount is preferably 0.25% or less, more preferably 0.20% or less.
 Cu:0%超0.30%以下
 Cuは、降伏強度を高めるのに有効な元素であり、そのためにCu量の下限を好ましくは0.01%以上とする。Cu量の下限は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかしながら、Cu量が過剰になると、MAが生成し易くなるため、Cu量の上限を0.30%以下とする。Cu量の上限は、好ましくは0.27%以下、より好ましくは0.25%以下である。
Cu: more than 0% and 0.30% or less Cu is an element effective for increasing the yield strength, and therefore the lower limit of the Cu content is preferably 0.01% or more. The lower limit of the amount of Cu is more preferably 0.05% or more, and still more preferably 0.10% or more. However, if the amount of Cu becomes excessive, MA is likely to be generated, so the upper limit of the amount of Cu is made 0.30% or less. The upper limit of the amount of Cu is preferably 0.27% or less, more preferably 0.25% or less.
 Ni:0%超0.30%以下
 Niは、母材の降伏強度の向上に有効な元素であり、そのためにNi量の下限を好ましくは0.01%以上とする。Ni量の下限は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかしながら、Ni量が過剰になると、MAが生成し易くなる。更に、構造用鋼材として極めて高価となるため、経済的な観点からNi量の上限を0.30%以下とする。Ni量の上限は、好ましくは0.27%以下、より好ましくは0.25%以下である。
Ni: more than 0% and 0.30% or less Ni is an element effective for improving the yield strength of the base metal, and therefore the lower limit of the Ni content is preferably 0.01% or more. The lower limit of the Ni amount is more preferably 0.05% or more, and still more preferably 0.10% or more. However, when the amount of Ni becomes excessive, MA is easily generated. Furthermore, since it becomes very expensive as a structural steel material, the upper limit of the Ni amount is set to 0.30% or less from an economical viewpoint. The upper limit of the Ni content is preferably 0.27% or less, more preferably 0.25% or less.
 Cr:0%超0.30%以下
 Crは、降伏強度の向上に有効な元素であり、そのためにCr量の下限を好ましくは0.01%以上とする。Cr量の下限は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかしながら、Cr量が0.30%を超えるとMAが生成し易くなるため、Cr量の上限を0.30%以下とする。Cr量の上限は、好ましくは0.27%以下、より好ましくは0.25%以下である。
Cr: more than 0% and 0.30% or less Cr is an element effective for improving the yield strength, and therefore the lower limit of the Cr content is preferably 0.01% or more. The lower limit of the Cr amount is more preferably 0.05% or more, and still more preferably 0.10% or more. However, if the Cr content exceeds 0.30%, it becomes easy to produce MA, so the upper limit of the Cr content is 0.30% or less. The upper limit of the Cr amount is preferably 0.27% or less, more preferably 0.25% or less.
 V:0%超0.050%以下
 Vは、降伏強度の向上に有効な元素であり、そのためにV量の下限を好ましくは0.001%以上とする。V量の下限は、より好ましくは0.002%以上、更に好ましくは0.003%以上である。しかしながら、V量が0.050%を超えるとMAが生成し易くなるため、V量の上限を0.050%以下とする。V量の上限は、好ましくは0.030%以下、より好ましくは0.010%以下である。
V: more than 0% and 0.050% or less V is an element effective for improving the yield strength. For this reason, the lower limit of the V amount is preferably 0.001% or more. The lower limit of the V amount is more preferably 0.002% or more, and still more preferably 0.003% or more. However, if the amount of V exceeds 0.050%, it becomes easy to produce MA, so the upper limit of the amount of V is made 0.050% or less. The upper limit of the V amount is preferably 0.030% or less, more preferably 0.010% or less.
 本発明に用いられる鋼中元素は上記の通りであり、残部は実質的に鉄である。但し、原料、資材、製造設備等の状況によって持ち込まれる不可避的不純物が鋼中に含まれることは当然に許容される。上記不可避的不純物として、例えば、As、Sb、Sn、O、H等が挙げられる。 The elements in steel used in the present invention are as described above, and the balance is substantially iron. However, it is naturally allowed that steel contains inevitable impurities brought in depending on the situation of raw materials, materials, manufacturing equipment, and the like. Examples of the inevitable impurities include As, Sb, Sn, O, and H.
 次に、上記鋼板を製造する方法について説明する。 Next, a method for manufacturing the steel sheet will be described.
 本発明の鋼板は、例えば、スラブ等の鋳片を作製し、得られた鋳片を加熱して、熱間圧延を行った後に加速冷却を行うことにより製造することができる。 The steel sheet of the present invention can be produced, for example, by producing a slab such as a slab, heating the obtained slab, performing hot rolling, and then performing accelerated cooling.
 以下、各工程について詳述する。 Hereinafter, each process will be described in detail.
 まず、鋳造工程において、REMとCaで硫化物の形態を制御するために、AlとZrを添加して、AlとZrOを形成させて脱酸を行なった後に、REMとCaを添加することが好ましい。特にCaは、酸化物を形成しやすい元素である。またCaは硫化物(CaS)よりも酸化物(CaO)を形成しやすく、CaSからの復硫を防ぐために、鋳造完了までの時間を制御することが好ましい。そのため、溶鋼処理工程においては、Al、Zr、REMおよびCaを、この順に添加するときに、Ca添加から200分以内に凝固が完了するように鋳片を作製することが好ましい。但し、REMを添加してから、REMよりも硫化物形成能の高いCaを添加するまでの時間は4分以上確保することが好ましい。このような工程によって、CaやREMは、酸化物を形成することなく、硫化物として存在しやすくなる。 First, in the casting process, in order to control the form of sulfide with REM and Ca, Al and Zr are added, Al 2 O 3 and ZrO are formed, deoxidation is performed, and then REM and Ca are added. It is preferable to do. In particular, Ca is an element that easily forms an oxide. In addition, Ca is more likely to form oxide (CaO) than sulfide (CaS), and it is preferable to control the time until completion of casting in order to prevent resulfurization from CaS. Therefore, in the molten steel treatment process, when adding Al, Zr, REM, and Ca in this order, it is preferable to produce a slab such that solidification is completed within 200 minutes from the addition of Ca. However, it is preferable to secure 4 minutes or more after adding REM until adding Ca having a higher sulfide forming ability than REM. By such a process, Ca and REM easily exist as sulfides without forming oxides.
 上記のようにして鋳造を行なった後、鋳片を加熱して、熱間圧延を行う。 After casting as described above, the slab is heated and hot rolled.
 鋳片を加熱するときの加熱温度は1000~1200℃とすることが好ましい。加熱温度が低すぎると、鋼中のNbが十分に固溶せず、高降伏強度が確保できないため、加熱温度の下限は、より好ましくは1100℃以上、更に好ましくは1120℃以上とする。しかしながら、加熱温度を高くし過ぎると、オーステナイト粒が粗大化して母材の低温靭性が劣化してしまうため、加熱温度の上限は、より好ましくは1180℃以下とする。 The heating temperature for heating the slab is preferably 1000 to 1200 ° C. If the heating temperature is too low, Nb in the steel does not sufficiently dissolve, and high yield strength cannot be ensured. Therefore, the lower limit of the heating temperature is more preferably 1100 ° C. or more, and further preferably 1120 ° C. or more. However, if the heating temperature is too high, the austenite grains become coarse and the low temperature toughness of the base material deteriorates, so the upper limit of the heating temperature is more preferably 1180 ° C. or less.
 次に熱間圧延を行なう。熱間圧延開始温度は、900~1100℃とすることが好ましい。熱間圧延開始温度が低すぎるとオーステナイト再結晶域での圧延が確保出来ず、オーステナイト粒が粗大となり、母材の低温靭性が劣化するおそれがある。そのために熱間圧延開始温度の下限は、より好ましくは930℃以上、更に好ましくは950℃以上とする。一方、熱間圧延開始温度が高すぎると再結晶後のオーステナイト粒が粗大となり、母材の低温靭性が劣化するおそれがある。そのために熱間圧延開始温度の上限は、より好ましくは1090℃以下、更に好ましくは1080℃以下とする。 Next, hot rolling is performed. The hot rolling start temperature is preferably 900 to 1100 ° C. If the hot rolling start temperature is too low, rolling in the austenite recrystallization region cannot be ensured, austenite grains become coarse, and the low temperature toughness of the base material may deteriorate. Therefore, the lower limit of the hot rolling start temperature is more preferably 930 ° C or higher, and still more preferably 950 ° C or higher. On the other hand, if the hot rolling start temperature is too high, the austenite grains after recrystallization become coarse and the low temperature toughness of the base material may be deteriorated. Therefore, the upper limit of the hot rolling start temperature is more preferably 1090 ° C. or less, and still more preferably 1080 ° C. or less.
 950℃から熱間圧延終了温度までの圧下率は40~80%とすることが好ましい。950℃から熱間圧延終了温度までの圧下率が低すぎるとオーステナイト粒内への導入する歪が確保出来ずベイナイト変態後の粒が粗大となり、母材の低温靭性が劣化するおそれがある。そのために圧下率の下限は、より好ましくは50%以上、更に好ましくは60%以上とする。一方、950℃から熱間圧延終了温度までの圧下率が高すぎるとオーステナイト粒内への歪導入が過剰となり、焼入性が低下する。そのために圧下率の上限は、より好ましくは77%以下、更に好ましくは75%以下とする。 The rolling reduction from 950 ° C. to the hot rolling end temperature is preferably 40 to 80%. If the rolling reduction from 950 ° C. to the hot rolling finish temperature is too low, the strain introduced into the austenite grains cannot be secured, and the grains after bainite transformation become coarse, which may deteriorate the low temperature toughness of the base material. Therefore, the lower limit of the rolling reduction is more preferably 50% or more, and still more preferably 60% or more. On the other hand, if the rolling reduction from 950 ° C. to the hot rolling end temperature is too high, strain is excessively introduced into the austenite grains, and the hardenability is lowered. Therefore, the upper limit of the rolling reduction is more preferably 77% or less, and further preferably 75% or less.
 熱間圧延終了温度は、770~880℃とすることが好ましい。熱間圧延終了温度が低すぎるとオーステナイト粒内への歪導入が過剰となり、焼入性が低下する。そのために熱間圧延終了温度の下限は、より好ましくは790℃以上、更に好ましくは800℃以上とする。一方、熱間圧延終了温度が高すぎるとオーステナイト粒内への導入する歪が確保出来ずベイナイト変態後の粒が粗大となり、母材の低温靭性が劣化するおそれがある。そのために熱間圧延終了温度の上限は、より好ましくは860℃以下、更に好ましくは850℃以下とする。 The hot rolling end temperature is preferably 770 to 880 ° C. If the hot rolling end temperature is too low, strain is excessively introduced into the austenite grains, and the hardenability is lowered. Therefore, the lower limit of the hot rolling end temperature is more preferably 790 ° C. or higher, further preferably 800 ° C. or higher. On the other hand, if the hot rolling finish temperature is too high, the strain introduced into the austenite grains cannot be ensured, and the grains after the bainite transformation become coarse, which may deteriorate the low temperature toughness of the base material. Therefore, the upper limit of the hot rolling end temperature is more preferably 860 ° C. or less, and further preferably 850 ° C. or less.
 熱間圧延終了後、以下のようにして加速冷却を行うことが好ましい。なお、必ずしもこの条件に限定されるものではない。 Accelerated cooling is preferably performed as follows after the hot rolling is completed. It is not necessarily limited to this condition.
 熱間圧延終了後の冷却開始温度は、730℃以上とすることが好ましい。730℃を下回ると、フェライト変態が促進されてフェライトが析出するため金属組織がベイナイトにならず、母材の高降伏強度の確保が困難になる場合がある。そのために冷却開始温度の下限は、より好ましくは735℃以上、更に好ましくは740℃以上である。冷却開始温度の上限は、特に限定されないが、より好ましくは860℃以下、更に好ましくは850℃以下である。 The cooling start temperature after the hot rolling is preferably 730 ° C. or higher. If the temperature is lower than 730 ° C., ferrite transformation is promoted and ferrite precipitates, so that the metal structure does not become bainite, and it may be difficult to ensure high yield strength of the base material. Therefore, the lower limit of the cooling start temperature is more preferably 735 ° C. or higher, and further preferably 740 ° C. or higher. Although the upper limit of cooling start temperature is not specifically limited, More preferably, it is 860 degrees C or less, More preferably, it is 850 degrees C or less.
 熱間圧延終了後、ただちに好ましくは10~50℃/秒の平均冷却速度で加速冷却を行う。加速冷却の平均冷却速度を好ましくは10℃/秒以上とすることで、未変態オーステナイトをベイナイト組織に変態させてフェライトの析出を防止することができ、更に、ベイナイトの最大硬さを高くして、降伏強度を向上させ易くなる。そのために平均冷却速度の下限は、より好ましくは13℃/秒以上、更に好ましくは15℃/秒以上である。一方、50℃/秒を超える平均冷却速度では、鋼板表面近傍でマルテンサイト変態が生じ、鋼板の降伏強度は上昇するものの、鋼板表面の硬さが著しく上昇し、鋼管への成形性が劣化し易くなるため、平均冷却速度の上限は、好ましくは50℃/秒以下とする。平均冷却速度の上限は、鋼管への成形性を考慮すると、より好ましくは45℃/秒以下である。 Immediately after completion of hot rolling, accelerated cooling is preferably performed at an average cooling rate of preferably 10 to 50 ° C./second. By making the average cooling rate of accelerated cooling preferably 10 ° C./second or more, it is possible to prevent precipitation of ferrite by transforming untransformed austenite into a bainite structure, and further increase the maximum hardness of bainite. It is easy to improve the yield strength. Therefore, the lower limit of the average cooling rate is more preferably 13 ° C./second or more, and further preferably 15 ° C./second or more. On the other hand, at an average cooling rate exceeding 50 ° C./sec, martensitic transformation occurs near the surface of the steel sheet and the yield strength of the steel sheet increases, but the hardness of the steel sheet surface increases remarkably and the formability to the steel pipe deteriorates. Since it becomes easy, the upper limit of the average cooling rate is preferably 50 ° C./second or less. The upper limit of the average cooling rate is more preferably 45 ° C./second or less in consideration of the formability to the steel pipe.
 冷却停止温度は、好ましくは370~550℃とする。冷却停止温度を370~550℃とすることで、MA面積率が低減され、555MPa以上の高降伏強度が得られ易くなる。そのため冷却停止温度の下限は、より好ましくは390℃以上、更に好ましくは400℃以上とする。冷却停止温度の上限は、より好ましくは540℃以下、更に好ましくは530℃以下とする。 The cooling stop temperature is preferably 370 to 550 ° C. By setting the cooling stop temperature to 370 to 550 ° C., the MA area ratio is reduced, and a high yield strength of 555 MPa or more is easily obtained. Therefore, the lower limit of the cooling stop temperature is more preferably 390 ° C. or higher, and further preferably 400 ° C. or higher. The upper limit of the cooling stop temperature is more preferably 540 ° C. or less, and further preferably 530 ° C. or less.
 370~550℃まで冷却を行った後は、放冷などの通常の冷却を行って室温まで冷却すると本発明の非調質鋼板が得られる。具体的には、このときの平均冷却速度は、おおむね0.1~5℃/秒であることが好ましい。 After cooling to 370 to 550 ° C., normal cooling such as cooling is performed to cool to room temperature, and the non-tempered steel sheet of the present invention is obtained. Specifically, the average cooling rate at this time is preferably about 0.1 to 5 ° C./second.
 本発明に係る鋼板の板厚は特に限定されないが、ラインパイプとするためには、板厚の下限は、好ましくは6mm以上、より好ましくは10mm以上である。一方、必要な冷却速度を確保して、フェライトの析出を抑制する観点より、板厚の上限は、好ましくは32mm以下、より好ましくは30mm以下である。 The plate thickness of the steel plate according to the present invention is not particularly limited, but in order to obtain a line pipe, the lower limit of the plate thickness is preferably 6 mm or more, more preferably 10 mm or more. On the other hand, the upper limit of the plate thickness is preferably 32 mm or less, more preferably 30 mm or less, from the viewpoint of securing a necessary cooling rate and suppressing the precipitation of ferrite.
 上記の様にして得られた非調質鋼板は、特に、ラインパイプ用として有用に利用される。また、本発明の非調質鋼板を用いて得られるラインパイプは、非調質鋼板の特性が反映されて、HAZの低温靭性と硬さ特性、および降伏強度が優れたものとなる。 The non-tempered steel sheet obtained as described above is particularly useful for line pipes. Moreover, the line pipe obtained by using the non-heat treated steel sheet of the present invention reflects the characteristics of the non-heat treated steel sheet, and has excellent low temperature toughness and hardness characteristics and yield strength of HAZ.
 本願は、2015年12月4日に出願された日本国特許出願第2015-237839号に基づく優先権の利益を主張するものである。2015年12月4日に出願された日本国特許出願第2015-237839号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2015-237839 filed on Dec. 4, 2015. The entire contents of the specification of Japanese Patent Application No. 2015-237839 filed on December 4, 2015 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be implemented with modifications within a range that can meet the purpose described above and below. They are all included in the technical scope of the present invention.
 下記表1に示す成分組成の鋼種A~X(残部は鉄および不可避的不純物)を溶製してスラブとした後、下記表2に示す条件で加熱、熱間圧延を行い、次いで下記表2に示す条件で冷却して板厚:20mmの鋼板を製造した。 Steel grades A to X having the composition shown in Table 1 below (the balance being iron and inevitable impurities) were melted to form a slab, and then heated and hot-rolled under the conditions shown in Table 2 below. The steel sheet of thickness 20mm was manufactured by cooling on the conditions shown in.
 詳細には、本実施例では、REMとしてCeを50%、Laを20%含有する35Fe-30REM-35Si合金を用いた。また、溶鋼処理工程においては、AlおよびZrで脱酸を行った後にREMとCaを添加した。またREMおよびCaは、REM、Caの順に添加し、REM添加からCa添加までの時間を4分以上とした。またCa添加後200分以内に凝固が完了するように鋳片を作製した。 Specifically, in this example, a 35Fe-30REM-35Si alloy containing 50% Ce and 20% La was used as the REM. In the molten steel treatment step, REM and Ca were added after deoxidation with Al and Zr. Moreover, REM and Ca were added in order of REM and Ca, and the time from REM addition to Ca addition was made into 4 minutes or more. Moreover, the slab was produced so that solidification might be completed within 200 minutes after Ca addition.
 また、表2の冷却停止温度まで冷却を行った後は、放冷を行って室温まで冷却した。このときの平均冷却速度は、おおむね1℃/秒であった。 In addition, after cooling to the cooling stop temperature shown in Table 2, it was allowed to cool and cooled to room temperature. The average cooling rate at this time was approximately 1 ° C./second.
 ベイナイトの面積率の測定
 上記鋼板から20mm×15mm×15mmの試験片を切り出し、圧延方向と平行な断面を研磨し、ナイタール腐食を施した。その後、板厚tの1/4位置の組織を、光学顕微鏡を用いて100倍で観察を行ない、画像解析によって、金属組織全体を100%としたときのベイナイトの面積率を測定した。測定は合計3視野について行い、その平均値を求めた。本実施例では、上記ベイナイトと後記するMA以外の残部組織についてもベイナイトと同様の観察を行った。
Measurement of area ratio of bainite A test piece of 20 mm × 15 mm × 15 mm was cut out from the steel plate, a cross section parallel to the rolling direction was polished, and nital corrosion was performed. Thereafter, the structure at 1/4 position of the plate thickness t was observed at 100 times using an optical microscope, and the area ratio of bainite was measured by image analysis when the entire metal structure was 100%. The measurement was performed for a total of 3 fields of view, and the average value was obtained. In this example, the same observation as that of bainite was performed for the remaining bainite and the remaining structure other than MA described later.
 MAの面積率の測定
 上記鋼板から20mm×15mm×15mmの試験片を切り出し、圧延方向と平行な断面を研磨し、レペラー腐食を施した。その後、板厚tの1/4位置の組織を、光学顕微鏡を用いて1000倍で観察を行ない、画像解析によって、金属組織全体を100%としたときのMAの面積率を測定した。測定は合計3視野について行い、その平均値を求めた。
Measurement of area ratio of MA A test piece of 20 mm × 15 mm × 15 mm was cut out from the steel sheet, the cross section parallel to the rolling direction was polished, and subjected to repeller corrosion. Thereafter, the structure at the 1/4 position of the plate thickness t was observed at 1000 times using an optical microscope, and the area ratio of MA when the entire metal structure was 100% was measured by image analysis. The measurement was performed for a total of 3 fields of view, and the average value was obtained.
 ベイナイトの最大硬さの測定
 上記鋼板から20mm×15mm×15mmの試験片を切り出し、圧延方向と平行な断面を露出させた。その後、板厚tの1/4位置の組織を、荷重5gf(0.049N)のビッカース試験機にて、100μm×100μmの範囲内を等間隔で20点測定した。そのうち、上位3点の平均値をベイナイトの最大硬さとした。
Measurement of the maximum hardness of bainite A test piece of 20 mm × 15 mm × 15 mm was cut out from the steel sheet to expose a cross section parallel to the rolling direction. Then, 20 points of the structure at 1/4 position of the plate thickness t were measured at equal intervals in a 100 μm × 100 μm range with a Vickers tester with a load of 5 gf (0.049 N). Among them, the average value of the top three points was the maximum hardness of bainite.
 降伏強度の測定
 上記鋼板から、鋼板の圧延方向と垂直方向が試験片の長手となるように、API5L規格に基づいて、試験片を切り出し、降伏強度として0.5%耐力を測定した。降伏強度は、API規格X80級である555MPa以上705MPa以下を合格とした。
Measurement of Yield Strength From the steel sheet, a test piece was cut out based on the API5L standard so that the rolling direction and the vertical direction of the steel sheet were the length of the test piece, and 0.5% yield strength was measured as the yield strength. As the yield strength, an API standard X80 grade of 555 MPa to 705 MPa was regarded as acceptable.
 溶接熱影響部(HAZ)の低温靭性の評価
 上記表2のNo.1~24の鋼板より、鋼板の圧延方向と垂直方向が試験片の長手となるように12mm×32mm×55mmの試験片を切り出し、再現熱サイクル試験片とした。この再現熱サイクル試験片に、溶融線近傍の粗粒熱影響部を模擬した最高加熱温度1350℃とする熱サイクルを付与した。詳細には、1350℃に加熱して5秒保持した後、800~500℃の温度範囲を30秒かけて冷却した。その後、API5L規格に規定の方法でシャルピー衝撃試験を実施して、HAZの低温靱性を評価した。HAZの低温靭性は、シャルピー衝撃試験を-10℃で行い、吸収エネルギーが、27J以上を合格とした。
Evaluation of low temperature toughness of weld heat affected zone (HAZ) A test piece of 12 mm × 32 mm × 55 mm was cut out from the steel plates 1 to 24 so that the rolling direction and the vertical direction of the steel plate were the length of the test piece, and used as a reproducible thermal cycle test piece. A thermal cycle with a maximum heating temperature of 1350 ° C. simulating a coarse-grained heat-affected zone in the vicinity of the melting line was applied to the reproduced thermal cycle test piece. Specifically, after heating to 1350 ° C. and holding for 5 seconds, the temperature range of 800 to 500 ° C. was cooled over 30 seconds. Then, the Charpy impact test was implemented by the method prescribed | regulated to API5L specification, and the low temperature toughness of HAZ was evaluated. As for the low temperature toughness of HAZ, a Charpy impact test was conducted at −10 ° C., and the absorbed energy passed 27 J or more.
 溶接熱影響部(HAZ)の硬さ特性の評価
 溶接熱影響部の低温靭性の評価と同様に、上記表2のNo.1~24の鋼板より、再現熱サイクル試験片を採取し、熱サイクルを付与した。ビッカース硬さ試験を実施して、HAZの硬さ特性を評価した。HAZの硬さは、荷重98Nで3点測定したときのビッカース硬さの最高値のことを示す。HAZの硬さ特性は、HAZの硬さが225HV未満を合格とした。
Evaluation of hardness characteristics of weld heat affected zone (HAZ) Similar to the evaluation of low temperature toughness of weld heat affected zone, No. 2 in Table 2 above. Reproducible thermal cycle test specimens were collected from 1 to 24 steel plates and subjected to thermal cycling. A Vickers hardness test was performed to evaluate the hardness properties of the HAZ. The hardness of HAZ indicates the highest value of Vickers hardness when three points are measured at a load of 98N. Regarding the hardness characteristics of the HAZ, the hardness of the HAZ was determined to be less than 225 HV.
 これらの結果を表2に記載する。また、ベイナイト、MA以外の残部組織は全てフェライトであった。 These results are shown in Table 2. Moreover, all the remaining structures other than bainite and MA were ferrite.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 これらの結果から、次のように考察することができる。 From these results, it can be considered as follows.
 表2のNo.17~24は、本発明で規定する成分組成を満足する表1の鋼種Q~Xを用いて、本発明で規定する好ましい要件を満足する表2のNo.17~24の製造条件で製造した例である。これらは、HAZの低温靭性と硬さ特性が良好で、且つ555MPa以上の高降伏強度を有する鋼板が得られていることが分かる。 No. in Table 2. Nos. 17 to 24 are Nos. 1 and 2 in Table 2 that satisfy the preferable requirements defined in the present invention by using the steel types Q to X in Table 1 that satisfy the component composition defined in the present invention. This is an example manufactured under the manufacturing conditions of 17-24. These show that the low temperature toughness and hardness characteristics of HAZ are good, and a steel sheet having a high yield strength of 555 MPa or more is obtained.
 これに対して、以下のNo.1~16は、本発明で規定する要件のいずれかを満足しないものである。 In contrast, the following No. 1 to 16 do not satisfy any of the requirements defined in the present invention.
 表2のNo.1は、個々の元素の成分組成は本発明で規定する要件を満足しているが、Ceqが大きい表1の鋼種Aを用いた例であり、Ceqが大きいためHAZの最高硬さが高くなって、それに起因してHAZの低温靱性が低下した。 No. in Table 2. 1 is an example using the steel type A in Table 1 having a large Ceq, although the component composition of each element satisfies the requirements specified in the present invention, and the maximum hardness of the HAZ is high because of the large Ceq. As a result, the low temperature toughness of the HAZ was reduced.
 表2のNo.2は、B量が多く、A値およびB値が小さい表1の鋼種Bを用いた例であり、ベイナイトの面積率が低く、ベイナイトの最大硬さが低いため、降伏強度が低くなり、B量が多いためHAZの低温靱性が低下した。 No. in Table 2. 2 is an example using the steel type B of Table 1 with a large amount of B and a small A value and B value. Since the area ratio of bainite is low and the maximum hardness of bainite is low, the yield strength is low. Since the amount was large, the low temperature toughness of HAZ was lowered.
 表2のNo.3は、B量およびTi量が多く、A値およびB値が小さい表1の鋼種Cを用いた例であり、B量およびTi量が多いためHAZの低温靱性が低下した。なお、A値およびB値が小さかったが、Bが0.0003%を超え、Moも複合添加されているため、ベイナイトの面積率、ベイナイトの最大硬さ、および降伏強度が上昇した。 No. in Table 2. No. 3 is an example using the steel type C in Table 1 having a large B amount and Ti amount, and a small A value and B value, and the low temperature toughness of HAZ was lowered because the B amount and Ti amount were large. In addition, although A value and B value were small, since B exceeded 0.0003% and Mo was also compounded, the area ratio of bainite, the maximum hardness of bainite, and the yield strength increased.
 表2のNo.4は、A値およびB値が小さい表1の鋼種Dを用いた例であり、ベイナイトの面積率が低く、ベイナイトの最大硬さが低いため、降伏強度が低くなった。 No. in Table 2. No. 4 is an example using the steel type D of Table 1 having a small A value and B value, and the yield strength was low because the area ratio of bainite was low and the maximum hardness of bainite was low.
 表2のNo.5は、A値が小さい表1の鋼種Eを用いた例であり、ベイナイトの面積率が低いため、降伏強度が低くなった。 No. in Table 2. No. 5 is an example using the steel type E of Table 1 having a small A value. Since the area ratio of bainite was low, the yield strength was low.
 表2のNo.6は、B値が小さい表1の鋼種Fを用いた例であり、80面積%以上のベイナイトを有しているがベイナイトの最大硬さが低いため、降伏強度が低くなった。 No. in Table 2. 6 is an example using the steel type F of Table 1 with a small B value. Although the bainite has 80% by area or more, the yield strength is low because the maximum hardness of the bainite is low.
 表2のNo.7は、Mo、Cu、Ni、Cr、およびVを含まず、A値およびB値が小さい表1の鋼種Gを用いた例であり、Mo、Cu、Ni、Cr、およびVを含まず、ベイナイトの面積率が低く、ベイナイトの最大硬さが低いため、降伏強度が低くなった。 No. in Table 2. 7 is an example using the steel type G of Table 1 that does not include Mo, Cu, Ni, Cr, and V, and has a small A value and B value, and does not include Mo, Cu, Ni, Cr, and V. The yield strength was low because the area ratio of bainite was low and the maximum hardness of bainite was low.
 表2のNo.8は、C量が少なく、B値が小さい表1の鋼種Hを用いた例であり、C量が少なく、ベイナイトの最大硬さが低いため、降伏強度が低くなった。 No. in Table 2. No. 8 is an example using the steel type H of Table 1 with a small amount of C and a small B value. Since the amount of C was small and the maximum hardness of bainite was low, the yield strength was low.
 表2のNo.9は、Si量が少なく、A値が小さい表1の鋼種Iを用いた例であり、Si量が少なく、ベイナイトの面積率が低いため、降伏強度が低くなった。 No. in Table 2. No. 9 is an example using the steel type I of Table 1 with a small amount of Si and a small A value. Since the amount of Si was small and the area ratio of bainite was low, the yield strength was low.
 表2のNo.10は、Mn量が少なく、A値およびB値が小さい表1の鋼種Jを用いた例であり、Mn量が少なく、ベイナイトの面積率が低く、ベイナイトの最大硬さが低いため、降伏強度が低くなった。 No. in Table 2. 10 is an example using the steel type J of Table 1 with a small amount of Mn and a small A value and B value. Since the amount of Mn is small, the area ratio of bainite is low, and the maximum hardness of bainite is low, yield strength is low. Became lower.
 表2のNo.11は、Mn量およびNb量が少なく、A値およびB値が小さい表1の鋼種Kを用いた例であり、Mn量およびNb量が少なく、ベイナイトの面積率が低く、ベイナイトの最大硬さが低いため、降伏強度が低くなった。 No. in Table 2. 11 is an example using the steel type K of Table 1 with a small amount of Mn and Nb, and a small A value and B value. The amount of Mn and Nb is small, the area ratio of bainite is low, and the maximum hardness of bainite. , The yield strength was low.
 表2のNo.12は、Nb量が少なく、Mo、Cu、Ni、Cr、およびVを含まず、A値およびB値が小さい表1の鋼種Lを用いた例であり、Nb量が少なく、Mo、Cu、Ni、Cr、およびVを含まず、ベイナイトの面積率が低く、ベイナイトの最大硬さが低いため、降伏強度が低くなった。 No. in Table 2. No. 12 is an example using the steel type L in Table 1 having a small Nb amount, containing no Mo, Cu, Ni, Cr, and V, and having a small A value and B value. The Nb amount is small, and Mo, Cu, Since Ni, Cr, and V were not included, the area ratio of bainite was low, and the maximum hardness of bainite was low, so the yield strength was low.
 表2のNo.13は、Ni量が多く、A値およびB値が小さい表1の鋼種Mを用いた例であり、MAが多く、ベイナイトの面積率が低くなって、降伏強度が低くなった。 No. in Table 2. No. 13 is an example using the steel type M of Table 1 with a large amount of Ni and a small A value and B value. MA was large, the area ratio of bainite was low, and the yield strength was low.
 表2のNo.14は、Cr量が多く、A値およびB値が小さい表1の鋼種Nを用いた例であり、MAが多く、ベイナイトの面積率が低く、ベイナイトの最大硬さが低くなって、降伏強度が低くなった。 No. in Table 2. 14 is an example using the steel type N in Table 1 with a large amount of Cr and a small A value and B value. MA is large, the area ratio of bainite is low, the maximum hardness of bainite is low, and the yield strength is low. Became lower.
 表2のNo.15は、Mn量が少なく、Cr量が多く、A値およびB値が小さい表1の鋼種Oを用いた例であり、Mn量が少なく、MAが多く、ベイナイトの面積率が低く、ベイナイトの最大硬さが低くなって降伏強度が低くなった。 No. in Table 2. 15 is an example using the steel type O of Table 1 with a small amount of Mn, a large amount of Cr, and a small A value and B value. The amount of Mn is small, the amount of MA is large, the area ratio of bainite is low, The maximum hardness decreased and the yield strength decreased.
 表2のNo.16は、V量が多く、A値およびB値が小さい表1の鋼種Pを用いた例であり、MAが多く、ベイナイトの面積率が低く、ベイナイトの最大硬さが低くなって、降伏強度が低くなった。 No. in Table 2. 16 is an example using the steel type P of Table 1 with a large amount of V and a small A value and B value. MA is large, the area ratio of bainite is low, the maximum hardness of bainite is low, and the yield strength is low. Became lower.

Claims (2)

  1.  質量%で、
     C :0.04%超0.10%以下、
     Si:0.15~0.50%、
     Mn:1.20~2.50%、
     P :0%超0.020%以下、
     S :0%超0.0050%以下、
     Nb:0.020~0.100%、
     Ti:0.003~0.020%、
     N :0.0010~0.0075%、
     Zr:0.0001~0.0100%、
     Ca:0.0005~0.0030%、
     REM:0.0001~0.0050%、
     Al:0.010~0.050%、および
     B :0.0003%以下(0%を含む)を含有し、
     更に、Mo:0%超0.30%以下、Cu:0%超0.30%以下、Ni:0%超0.30%以下、Cr:0%超0.30%以下、およびV:0%超0.050%以下よりなる群から選択される1種以上を含み、残部は鉄および不可避的不純物からなり、
     下記式(1)で規定されるCeqが0.44未満、
     下記式(2)で規定されるA値が2.50以上、および
     下記式(3)で規定されるB値が2.37以上であると共に、
     鋼板の板厚の1/4位置において下記金属組織の面積率が、
     ベイナイト:80面積%以上、および
     島状マルテンサイト:0面積%以上0.26面積%以下を満足し、
     前記ベイナイトの最大硬さが270HV以上であることを特徴とする溶接熱影響部の低温靭性劣化および溶接熱影響部の硬さを抑制した高降伏強度を有する非調質鋼板。
     Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
     A値=1.15×Mn+2.20×Mo+6.50×Nb ・・・(2)
     B値=1.20×Mn+0.50×Ni+4.25×Nb ・・・(3)
     但し、C、Mn、Cu、Ni、Cr、Mo、V、およびNbは、それぞれ質量%で、C、Mn、Cu、Ni、Cr、Mo、V、およびNbの含有量を示す。
    % By mass
    C: more than 0.04% and 0.10% or less,
    Si: 0.15 to 0.50%,
    Mn: 1.20 to 2.50%,
    P: more than 0% and 0.020% or less,
    S: more than 0% and 0.0050% or less,
    Nb: 0.020 to 0.100%,
    Ti: 0.003 to 0.020%,
    N: 0.0010 to 0.0075%,
    Zr: 0.0001 to 0.0100%,
    Ca: 0.0005 to 0.0030%,
    REM: 0.0001 to 0.0050%,
    Al: 0.010 to 0.050%, and B: 0.0003% or less (including 0%),
    Furthermore, Mo: more than 0% but not more than 0.30%, Cu: more than 0% and not more than 0.30%, Ni: more than 0% and not more than 0.30%, Cr: more than 0% and not more than 0.30%, and V: 0 Including at least one selected from the group consisting of more than% and not more than 0.050%, the balance consisting of iron and inevitable impurities,
    Ceq defined by the following formula (1) is less than 0.44,
    The A value defined by the following formula (2) is 2.50 or more, and the B value defined by the following formula (3) is 2.37 or more,
    The area ratio of the following metal structure at the 1/4 position of the plate thickness of the steel sheet,
    Bainite: 80 area% or more, and island martensite: 0 area% or more and 0.26 area% or less,
    A non-heat treated steel sheet having a high yield strength with suppressed low temperature toughness deterioration of the weld heat affected zone and hardness of the weld heat affected zone, wherein the bainite has a maximum hardness of 270 HV or higher.
    Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
    A value = 1.15 × Mn + 2.20 × Mo + 6.50 × Nb (2)
    B value = 1.20 × Mn + 0.50 × Ni + 4.25 × Nb (3)
    However, C, Mn, Cu, Ni, Cr, Mo, V, and Nb are mass%, respectively, and indicate the contents of C, Mn, Cu, Ni, Cr, Mo, V, and Nb.
  2.  ラインパイプ用である請求項1に記載の非調質鋼板。 The non-heat treated steel sheet according to claim 1, which is used for a line pipe.
PCT/JP2016/084857 2015-12-04 2016-11-24 Non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed WO2017094593A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16870530.9A EP3385399A4 (en) 2015-12-04 2016-11-24 Non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed
CN201680064618.1A CN108350540A (en) 2015-12-04 2016-11-24 The low-temperature flexibility of welding heat affected zone is inhibited to deteriorate the non-quenched and tempered steel plate with high-yield strength with the hardness of welding heat affected zone
KR1020187018576A KR20180085791A (en) 2015-12-04 2016-11-24 A non-tempered steel sheet having a low-temperature toughness deterioration of the weld heat-affected zone and a high yield strength which suppresses the hardness of the weld heat affected zone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015237839 2015-12-04
JP2015-237839 2015-12-04

Publications (1)

Publication Number Publication Date
WO2017094593A1 true WO2017094593A1 (en) 2017-06-08

Family

ID=58796697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084857 WO2017094593A1 (en) 2015-12-04 2016-11-24 Non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed

Country Status (5)

Country Link
EP (1) EP3385399A4 (en)
JP (1) JP2017106107A (en)
KR (1) KR20180085791A (en)
CN (1) CN108350540A (en)
WO (1) WO2017094593A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050010A1 (en) * 2017-09-08 2019-03-14 Jfeスチール株式会社 Steel sheet and method for producing same
EP3733878A4 (en) * 2018-01-30 2021-03-17 JFE Steel Corporation Steel material for line pipes, production method for same, and production method for line pipe
EP3733879A4 (en) * 2018-01-30 2021-03-17 JFE Steel Corporation Steel material for line pipes, production method for same, and production method for line pipe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113430460A (en) * 2021-06-19 2021-09-24 宝钢湛江钢铁有限公司 Low-cost high-strength non-quenched and tempered steel plate with yield strength of 690MPa and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160833A (en) * 2001-11-22 2003-06-06 Kobe Steel Ltd Non-heat-treated thick steel plate with high toughness and high tension, and manufacturing method therefor
JP2006169591A (en) * 2004-12-16 2006-06-29 Kobe Steel Ltd Non-heat treated steel plate with high yield strength
JP2009149917A (en) * 2006-11-30 2009-07-09 Nippon Steel Corp Weld steel pipe for high-strength line pipe excellent in low-temperature toughness, and manufacturing method therefor
JP2010209433A (en) * 2009-03-11 2010-09-24 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone and fatigue characteristics of base metal, and method for manufacturing the same
JP2011006772A (en) * 2009-05-22 2011-01-13 Jfe Steel Corp Steel material for high heat input welding
JP2012193411A (en) * 2011-03-16 2012-10-11 Kobe Steel Ltd High-strength thick steel plate excellent in haz toughness
JP2013237101A (en) * 2012-04-20 2013-11-28 Kobe Steel Ltd Steel having excellent hydrogen induced cracking resistance and method for producing the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290554A (en) * 2004-03-11 2005-10-20 Nippon Steel Corp Steel plate excellent in machinability, toughness and weldability, and method for production thereof
JP4772486B2 (en) 2005-04-26 2011-09-14 新日本製鐵株式会社 High strength steel pipe for low temperature
JP4768447B2 (en) * 2006-01-11 2011-09-07 株式会社神戸製鋼所 Weatherproof steel plate with excellent toughness of weld heat affected zone
JP4950528B2 (en) * 2006-03-16 2012-06-13 株式会社神戸製鋼所 Low yield ratio high strength steel with excellent toughness of heat affected zone and its manufacturing method
JP4515427B2 (en) * 2006-09-29 2010-07-28 株式会社神戸製鋼所 Steel with excellent toughness and fatigue crack growth resistance in weld heat affected zone and its manufacturing method
JP4940886B2 (en) * 2006-10-19 2012-05-30 Jfeスチール株式会社 High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP5037204B2 (en) 2007-04-12 2012-09-26 新日本製鐵株式会社 Method for producing high-strength steel material having yield stress of 500 MPa or more and tensile strength of 570 MPa or more which is excellent in toughness of weld heat affected zone
WO2010052927A1 (en) 2008-11-06 2010-05-14 新日本製鐵株式会社 Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
CN102803535A (en) * 2009-06-11 2012-11-28 新日本制铁株式会社 High strength steel pipe and method for producing same
WO2011065582A1 (en) * 2009-11-25 2011-06-03 Jfeスチール株式会社 Welded steel pipe for linepipe with superior compressive strength and excellent sour resistance, and process for producing same
JP5857400B2 (en) * 2009-11-25 2016-02-10 Jfeスチール株式会社 Welded steel pipe for high compressive strength line pipe and manufacturing method thereof
JP5910219B2 (en) * 2012-03-23 2016-04-27 Jfeスチール株式会社 High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same
JP6226542B2 (en) * 2013-03-22 2017-11-08 株式会社神戸製鋼所 Steel with excellent toughness in weld heat affected zone
US10344362B2 (en) * 2014-03-31 2019-07-09 Jfe Steel Corporation Steel material for highly deformable line pipes having superior strain aging resistance and superior HIC resistance, method for manufacturing same, and welded steel pipe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160833A (en) * 2001-11-22 2003-06-06 Kobe Steel Ltd Non-heat-treated thick steel plate with high toughness and high tension, and manufacturing method therefor
JP2006169591A (en) * 2004-12-16 2006-06-29 Kobe Steel Ltd Non-heat treated steel plate with high yield strength
JP2009149917A (en) * 2006-11-30 2009-07-09 Nippon Steel Corp Weld steel pipe for high-strength line pipe excellent in low-temperature toughness, and manufacturing method therefor
JP2010209433A (en) * 2009-03-11 2010-09-24 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone and fatigue characteristics of base metal, and method for manufacturing the same
JP2011006772A (en) * 2009-05-22 2011-01-13 Jfe Steel Corp Steel material for high heat input welding
JP2012193411A (en) * 2011-03-16 2012-10-11 Kobe Steel Ltd High-strength thick steel plate excellent in haz toughness
JP2013237101A (en) * 2012-04-20 2013-11-28 Kobe Steel Ltd Steel having excellent hydrogen induced cracking resistance and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3385399A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050010A1 (en) * 2017-09-08 2019-03-14 Jfeスチール株式会社 Steel sheet and method for producing same
JPWO2019050010A1 (en) * 2017-09-08 2019-11-07 Jfeスチール株式会社 Steel sheet and manufacturing method thereof
EP3733878A4 (en) * 2018-01-30 2021-03-17 JFE Steel Corporation Steel material for line pipes, production method for same, and production method for line pipe
EP3733879A4 (en) * 2018-01-30 2021-03-17 JFE Steel Corporation Steel material for line pipes, production method for same, and production method for line pipe
US11401568B2 (en) 2018-01-30 2022-08-02 Jfe Steel Corporation Steel material for line pipes, method for producing the same, and method for producing line pipe
US12037666B2 (en) 2018-01-30 2024-07-16 Jfe Steel Corporation Steel material for line pipes, method for producing the same, and method for producing line pipe

Also Published As

Publication number Publication date
JP2017106107A (en) 2017-06-15
EP3385399A1 (en) 2018-10-10
EP3385399A4 (en) 2019-05-22
CN108350540A (en) 2018-07-31
KR20180085791A (en) 2018-07-27

Similar Documents

Publication Publication Date Title
KR101709887B1 (en) Steel plate for line pipe, and line pipe
KR100799421B1 (en) Cold-formed steel pipe and tube having excellent in weldability with 490MPa-class of low yield ratio, and manufacturing process thereof
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP5644982B1 (en) ERW welded steel pipe
JP6682785B2 (en) Steel plate having excellent sour resistance and method of manufacturing the same
JP5910792B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP2012188731A (en) Low yield ratio and high strength hot-rolled steel sheet excellent in low-temperature toughness, and production method therefor
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP6160574B2 (en) High-strength hot-rolled steel sheet excellent in strength-uniform elongation balance and method for producing the same
WO2017094593A1 (en) Non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed
JP2016084524A (en) H shape steel for low temperature and manufacturing method therefor
JP6519024B2 (en) Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP2017071827A (en) H shaped steel and manufacturing method therefor
JP6288288B2 (en) Steel plate for line pipe, manufacturing method thereof and steel pipe for line pipe
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP6521196B1 (en) High strength steel plate for sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel plate for sour line pipe
JP2016156032A (en) H-shaped steel for low temperature and method for producing the same
JP2018115389A (en) Thick steel sheet and method for producing the same
JP7163777B2 (en) Steel plate for line pipe
WO2016068094A1 (en) High-tensile steel sheet having excellent low-temperature toughness in weld heat-affected zone, and method for manufacturing same
JP2006241508A (en) HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD
JP6343472B2 (en) Steel sheets for high-strength line pipes and steel pipes for high-strength line pipes with excellent low-temperature toughness
JP7535028B2 (en) High strength steel plate and method for manufacturing same
WO2021200572A1 (en) High-strength low-alloy steel sheet having exceptional parent-material toughness and welded-joint toughness, and method for manufacturing said steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187018576

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016870530

Country of ref document: EP