JP5910219B2 - High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same - Google Patents

High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same Download PDF

Info

Publication number
JP5910219B2
JP5910219B2 JP2012066442A JP2012066442A JP5910219B2 JP 5910219 B2 JP5910219 B2 JP 5910219B2 JP 2012066442 A JP2012066442 A JP 2012066442A JP 2012066442 A JP2012066442 A JP 2012066442A JP 5910219 B2 JP5910219 B2 JP 5910219B2
Authority
JP
Japan
Prior art keywords
less
steel plate
steel sheet
heat input
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012066442A
Other languages
Japanese (ja)
Other versions
JP2013194316A (en
Inventor
孝一 中島
孝一 中島
長谷 和邦
和邦 長谷
三田尾 眞司
眞司 三田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012066442A priority Critical patent/JP5910219B2/en
Publication of JP2013194316A publication Critical patent/JP2013194316A/en
Application granted granted Critical
Publication of JP5910219B2 publication Critical patent/JP5910219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、海洋構造物、建築、土木、建設産業用機械、ラインパイプ等の各種溶接構造物で使用される鋼材に用いて好適な、大入熱溶接を施した際の溶接熱影響部の低温靭性に優れ、鋼板内の材質均一性に優れた高強度鋼板とその製造方法に関する。   The present invention is suitable for steel materials used in various welded structures such as offshore structures, architecture, civil engineering, construction industry machines, line pipes, etc. The present invention relates to a high-strength steel sheet having excellent low-temperature toughness and excellent material uniformity within the steel sheet, and a method for producing the same.

鋼構造物の大型化やコスト削減の観点から、より高強度や高靭性を有する鋼板の需要が高まっている。鋼板の特性向上や合金元素削減、熱処理省略を目的として、従来、高強度鋼板は、制御圧延と制御冷却を組み合わせた、いわゆるTMCP技術が適用されて製造されている。   From the viewpoint of increasing the size of steel structures and reducing costs, there is an increasing demand for steel sheets having higher strength and higher toughness. Conventionally, for the purpose of improving the properties of steel sheets, reducing alloy elements, and omitting heat treatment, high-strength steel sheets have been manufactured by applying so-called TMCP technology, which combines controlled rolling and controlled cooling.

TMCP技術を用いて鋼材の高強度化を行うには、制御冷却時の冷却速度を大きくすること、および冷却を停止する温度を低くすることが有効である。しかしながら、高冷却速度で制御冷却した場合、鋼板表層部が急冷されるため、鋼板内部に比べて表層部の硬さが高くなり、板厚方向の硬さ分布にばらつきが生じる。   In order to increase the strength of steel using the TMCP technology, it is effective to increase the cooling rate during controlled cooling and to lower the temperature at which cooling is stopped. However, when controlled cooling is performed at a high cooling rate, the surface layer portion of the steel sheet is rapidly cooled, so that the hardness of the surface layer portion is higher than that inside the steel plate, and the hardness distribution in the thickness direction varies.

また、この板厚方向の硬さ分布のばらつきは、冷却停止温度を低くすること、および板厚が厚くなるにしたがって大きくなる傾向があり、鋼板内の材質均一性を確保する観点で問題となる。   In addition, the variation in hardness distribution in the thickness direction tends to increase as the cooling stop temperature is lowered and the thickness increases, which is a problem in terms of ensuring material uniformity in the steel plate. .

特許文献1には、制御冷却に際して、冷却速度を3〜12℃/sという比較的低冷却速度に制御することにより、板厚中心部に対する表面の硬さ上昇を抑える方法が開示されている。   Patent Document 1 discloses a method of suppressing an increase in surface hardness with respect to the center portion of the plate thickness by controlling the cooling rate to a relatively low cooling rate of 3 to 12 ° C./s during controlled cooling.

特許文献2には、冷却過程で、フェライトが析出する温度域で待機を行うことにより、鋼板の組織をフェライトとベイナイトの2相組織とし、表層と板厚中心部の硬さの差を低減した、板厚方向に材質差の小さい鋼板の製造方法が開示されている。   In Patent Document 2, by waiting in a cooling process in the temperature range where ferrite precipitates, the steel sheet has a two-phase structure of ferrite and bainite, and the difference in hardness between the surface layer and the thickness center is reduced. A method of manufacturing a steel sheet having a small material difference in the thickness direction is disclosed.

また、特許文献3、特許文献4には、圧延後、表層部がベイナイト変態を完了する前に表面を復熱させる高冷却速度の制御冷却を行った板厚方向に材質差の小さい鋼板の製造方法が開示されている。   In Patent Documents 3 and 4, the manufacture of steel sheets having a small material difference in the sheet thickness direction after performing rolling and controlled cooling at a high cooling rate for reheating the surface before the surface layer portion completes the bainite transformation. A method is disclosed.

また、鋼板表面のスケール性状にむらがあると、冷却時にスケール厚さに応じてその下部の鋼板の冷却速度に違いを生じて、すなわち鋼板の部分部分で冷却停止温度にばらつきが生じて、スケール性状に対応して板幅方向に鋼板材質のばらつきが生じる。   In addition, if there is unevenness in the scale properties on the surface of the steel sheet, the cooling rate of the lower steel sheet varies depending on the thickness of the scale during cooling, that is, the cooling stop temperature varies in the part of the steel sheet, Corresponding to the properties, the steel plate material varies in the plate width direction.

特許文献5、特許文献6には、冷却直前にデスケーリングを行うことにより、スケール性状による冷却むらを低減し、鋼板形状を改善する方法が開示されている。   Patent Documents 5 and 6 disclose a method for reducing uneven cooling due to scale properties and improving the steel plate shape by performing descaling immediately before cooling.

一方で、造船、建築、土木等の分野で使用される鋼材は、一般に、溶接接合により所望の形状の構造物に仕上げられるため、安全性の観点から、使用される鋼材の母材靱性はもちろんのこと、溶接部の靱性に優れることが要請される。   On the other hand, steel materials used in the fields of shipbuilding, construction, civil engineering, etc. are generally finished in a desired shape by welding, so of course the base material toughness of the steel materials used is of course from the viewpoint of safety. That is, it is required that the toughness of the welded portion is excellent.

これら構造物や船舶は大型化が進んでおり、使用される鋼材の高強度化・厚肉化に伴い、溶接施工にはサブマージアーク溶接、エレクトロガス溶接およびエレクトロスラグ溶接などの高能率な大入熱溶接が適用されている。このため、大入熱溶接により溶接施工したときに、溶接部の靱性に優れた鋼材が必要となっている。   These structures and ships are becoming larger in size, and with the increase in strength and thickness of the steel materials used, the welding work is highly efficient, such as submerged arc welding, electrogas welding, and electroslag welding. Thermal welding is applied. For this reason, when welding is performed by high heat input welding, a steel material excellent in toughness of the welded portion is required.

しかし、一般に、溶接入熱量が大きくなると、溶接熱影響部(HAZ)の組織が粗大化するために、溶接熱影響部の靱性は低下することが知られている。このような大入熱溶接による靱性の低下の改善策として、これまでTiNの微細分散によるオーステナイトの粗粒化抑制やフェライト変態核としての利用技術が実用化されてきた。   However, it is generally known that as the welding heat input increases, the structure of the weld heat affected zone (HAZ) becomes coarse, and the toughness of the weld heat affected zone decreases. As measures for improving the reduction in toughness due to such high heat input welding, the use of austenite as a ferrite transformation nucleus has been put into practical use so far by suppressing the coarsening of austenite by fine dispersion of TiN.

また、特許文献7や入熱量230kJ/cmの溶接ボンド部での靭性改善を目指した特許文献8には、希土類元素(REM)をTiと複合添加することにより、鋼中に微細粒子を分散させてオーステナイトの粒成長を抑制し、溶接部の靭性向上を図る方法が示されている。   Further, in Patent Document 7 and Patent Document 8 aiming to improve toughness at a weld bond portion with a heat input of 230 kJ / cm, a rare earth element (REM) is added in combination with Ti to disperse fine particles in steel. Thus, a method of suppressing the austenite grain growth and improving the toughness of the welded portion is shown.

さらに、Tiの酸化物を分散させる技術やBNのフェライト核生成能を組み合わせる技術も開発されている。このほか、CaやREMを添加することで硫化物の形態を制御し、より高靭性を得られることが知られている。   Furthermore, a technique for combining a Ti oxide dispersion technique and a BN ferrite nucleation ability has been developed. In addition, it is known that by adding Ca or REM, the form of sulfide can be controlled and higher toughness can be obtained.

特公平7−116504号公報Japanese Patent Publication No.7-116504 特許第3911834号公報Japanese Patent No. 3911834 特許第3951428号公報Japanese Patent No. 3951428 特許第3951429号公報Japanese Patent No. 3951429 特開平9−57327号公報JP-A-9-57327 特許第3796133号公報Japanese Patent No. 3796133 特公平03−53367号公報Japanese Patent Publication No. 03-53367 特開昭60−184663号公報JP 60-184663 A

しかしながら、特許文献1の技術は、冷却停止温度が400℃以上と比較的高いため、高冷却速度による高強度化や合金元素の削減、制御圧延の簡略化等といった制御冷却の効果を十分に活用することができない。   However, since the technology of Patent Document 1 has a relatively high cooling stop temperature of 400 ° C. or higher, the effect of controlled cooling such as high strength by high cooling rate, reduction of alloy elements, simplification of controlled rolling, etc. is fully utilized. Can not do it.

特許文献2の製造方法は、Ar3変態点以下での冷却待機でフェライトを析出させるため強度が低下するとともに、冷却待機時間が必要なため製造効率が悪化する。   In the manufacturing method of Patent Document 2, since ferrite is precipitated during cooling standby below the Ar3 transformation point, the strength is lowered, and the cooling standby time is required, so that manufacturing efficiency is deteriorated.

特許文献3、特許文献4の製造方法は、鋼板の成分により変態挙動が異なると、復熱による十分な材質均質化の効果が得られない場合がある。また、高精度な冷却制御が必要なため、適用範囲が限られるとともに製造効率が悪化する。   In the production methods of Patent Document 3 and Patent Document 4, if the transformation behavior differs depending on the components of the steel sheet, sufficient material homogenization effect due to recuperation may not be obtained. Moreover, since highly accurate cooling control is required, the application range is limited and the manufacturing efficiency is deteriorated.

また、特許文献5、特許文献6の方法は、デスケーリングにより鋼板の冷却停止温度のばらつきむらを低減して鋼板形状を改善しているが、板厚方向の硬度分布に対する配慮はなされていない。   Moreover, although the method of patent document 5 and the patent document 6 has improved the steel plate shape by reducing the dispersion | variation nonuniformity of the cooling stop temperature of a steel plate by descaling, the consideration with respect to the hardness distribution of a plate | board thickness direction is not made | formed.

スケールむらにより冷却停止温度のばらつきが大きく生じるのは、比較的冷却速度が低い範囲の冷却の場合である。また、低冷却速度の場合、デスケーリングにより鋼板の平均冷却速度が低下して、強度が低下する懸念がある。その場合、強度の低下を防ぐためには、鋼板表面にある程度のスケール厚さを持ったスケールを付着させておく必要がある。   The variation in the cooling stop temperature due to the unevenness of the scale is large in the case of cooling in a range where the cooling rate is relatively low. Moreover, in the case of a low cooling rate, there exists a possibility that the average cooling rate of a steel plate will fall by descaling and intensity | strength may fall. In that case, in order to prevent a decrease in strength, it is necessary to attach a scale having a certain scale thickness to the steel plate surface.

一方、高強度化を図るべく高冷却速度で冷却した場合、スケールむらによる冷却停止温度のばらつきを低減することはできるが、表層部の硬さはスケール厚さの影響を鋭敏に受けるため、表層硬さ上昇の抑制が課題となる。   On the other hand, when cooling at a high cooling rate to increase the strength, the variation in cooling stop temperature due to unevenness in scale can be reduced, but the hardness of the surface layer is sensitive to the influence of the scale thickness. Suppression of hardness rise becomes a problem.

特許文献7、特許文献8に記載の希土類元素(REM)をTiと複合添加して大入熱溶接熱影響部の靭性を改善する技術は、安定した靭性が得られる鋼材の製造が困難であったり、300kJ/cmを超える大入熱溶接では十分な靭性が得られないという問題があった。   The technique of improving the toughness of the heat-affected zone with high heat input welding by adding rare earth elements (REM) described in Patent Document 7 and Patent Document 8 together with Ti is difficult to produce a steel material with stable toughness. In addition, there is a problem that sufficient toughness cannot be obtained by high heat input welding exceeding 300 kJ / cm.

すなわち、TiNを主体に利用する技術においては、TiNが溶解する温度域に加熱される溶接部での作用がなくなり、また固溶TiおよびNによる地の組織の脆化によって著しく靭性の低下が見られた。   That is, in the technique mainly using TiN, there is no effect in the welded portion heated to the temperature range where TiN dissolves, and the toughness is significantly reduced due to the embrittlement of the ground structure by solid solution Ti and N. It was.

さらに、Tiの酸化物を使った技術においては、酸化物の微細分散が十分均質にできないという問題があった。また、CaやREMを添加する技術においても300kJ/cmを超える大入熱溶接では溶接熱影響部の高靭性を確保することは困難であった。   Further, the technique using Ti oxide has a problem that the fine dispersion of the oxide cannot be made sufficiently uniform. Further, even in the technique of adding Ca or REM, it has been difficult to ensure high toughness of the heat affected zone by high heat input welding exceeding 300 kJ / cm.

したがって、本発明の目的は、このような従来技術の課題を解決し、鋼板内の材質均一性に優れ、かつ、300kJ/cmを超える大入熱溶接を施した際の溶接熱影響部の靭性に優れる高強度鋼板とその製造方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art, have excellent material uniformity in the steel sheet, and toughness of the heat affected zone when high heat input welding exceeding 300 kJ / cm is performed. It is to provide a high-strength steel sheet excellent in resistance and a method for producing the same.

本発明の課題は以下の手段で達成できる。
1.鋼組成が、mass%で、
C:0.030〜0.150%、
Si:0.10%以下、
Mn:1.00〜2.00%、
P:0.030%以下、
S:0.0005〜0.0040%、
Al:0.005〜0.100%、
Ti:0.004〜0.030%、
N:0.0035〜0.0075%、
Ca:0.0005〜0.0030%、
O:0.0040%以下、
Ca、O、Sの各含有量が、下記(1)式を満たし、残部Feおよび不可避的不純物でなり、金属組織が実質的にフェライトとベイナイト組織であり、板厚方向の硬さのばらつきがビッカース硬さでΔHV50以下であり、板幅方向の硬さのばらつきがビッカース硬さでΔHV50以下であり、かつ溶接入熱量が300kJ/cmを超える大入熱溶接を施したときのボンド近傍の熱影響部組織において、島状マルテンサイト体積分率が1%以下であることを特徴とする、鋼板内の材質均一性に優れた大入熱溶接用高強度鋼板。
0<(Ca−(0.18+130×Ca)×O)/1.25/S≦0.8・・・(1)
ただし、Ca、O、Sは各成分の含有量(mass%)とする。
2.鋼組成が、更に、mass%で、B:0.0003〜0.0030、V:0.20%以下のうちから選んだ1種または2種を含有することを特徴とする、1に記載の鋼板内の材質均一性に優れた大入熱溶接用高強度鋼板。
3.鋼組成が、更に、mass%で、Nb:0.030%以下、Ni:1.00%以下、Cu:1.00%以下、Cr:0.70%以下、Mo:0.70%以下、W:0.05〜0.40%のうちから選んだ1種または2種以上を含有することを特徴とする、1または2に記載の鋼板内の材質均一性に優れた大入熱溶接用高強度鋼板。
4.鋼組成が、更に、mass%で、Mg:0.0005〜0.0050%、Zr:0.001〜0.020%、REM:0.001〜0.020%のうちから選んだ1種または2種以上を含有する1乃至3のいずれか一つに記載の鋼板内の材質均一性に優れた大入熱溶接用高強度鋼板。
5.1乃至4のいずれか一つに記載の鋼組成を有する鋼を、900℃以上1300℃以下の温度に加熱し、圧延終了温度が鋼板表面温度で700℃以上900℃以下で熱間圧延した後、鋼板表面の温度が700℃以上から鋼板表面での冷却速度が20℃/s以上100℃/s以下で鋼板表面温度が400℃以上600℃以下まで(2)式を満たす条件で1段目の冷却を行い、その後鋼板平均での冷却速度が4℃/s以上で400℃以下まで2段目の冷却を行うことを特徴とする、鋼板内の材質均一性に優れた大入熱溶接用高強度鋼板の製造方法。
3≦(700−T)/V・・・(2)
T:1段目冷却の鋼板表面冷却停止温度(℃)、V:1段目冷却の鋼板表面での冷却速度(℃/s)
6.熱間圧延後、1段目の冷却を行う前に、鋼板表面での噴射流の衝突圧が1MPa以上でデスケーリングを行い、その後5秒以内に前記1段目の冷却を行うことを特徴とする、5記載の鋼板内の材質均一性に優れた大入熱溶接用高強度鋼板の製造方法。
The object of the present invention can be achieved by the following means.
1. Steel composition is mass%,
C: 0.030 to 0.150%,
Si: 0.10% or less,
Mn: 1.00 to 2.00%,
P: 0.030% or less,
S: 0.0005 to 0.0040%,
Al: 0.005 to 0.100%,
Ti: 0.004 to 0.030%,
N: 0.0035 to 0.0075%,
Ca: 0.0005 to 0.0030%,
O: 0.0040% or less,
Each content of Ca, O, and S satisfies the following formula (1), the balance is Fe and inevitable impurities, the metal structure is substantially a ferrite and bainite structure, and there is a variation in hardness in the thickness direction. Heat in the vicinity of the bond when high heat input welding is performed with a Vickers hardness of ΔHV50 or less, a variation in hardness in the plate width direction of Vickers hardness of ΔHV50 or less, and a welding heat input exceeding 300 kJ / cm. A high-strength steel sheet for high heat input welding with excellent material uniformity in the steel sheet, wherein the affected part structure has an island-like martensite volume fraction of 1% or less.
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S≦0.8 (1)
However, Ca, O, and S are the contents of each component (mass%).
2. 2. The steel composition further comprises one or two selected from B: 0.0003 to 0.0030 and V: 0.20% or less in mass%. High strength steel plate for high heat input welding with excellent material uniformity in the steel plate.
3. Further, the steel composition is mass%, Nb: 0.030% or less, Ni: 1.00% or less, Cu: 1.00% or less, Cr: 0.70% or less, Mo: 0.70% or less, W: For high heat input welding with excellent material uniformity in the steel sheet according to 1 or 2, characterized by containing one or more selected from 0.05 to 0.40% High strength steel plate.
4). The steel composition is further selected by mass%, Mg: 0.0005-0.0050%, Zr: 0.001-0.020%, REM: 0.001-0.020% The high-strength steel plate for high heat input welding excellent in material uniformity in the steel plate according to any one of 1 to 3 containing two or more kinds.
The steel having the steel composition according to any one of 5.1 to 4 is heated to a temperature of 900 ° C. or higher and 1300 ° C. or lower, and the rolling end temperature is 700 ° C. or higher and 900 ° C. or lower at the steel sheet surface temperature. Then, the steel sheet surface temperature is 700 ° C. or higher, the cooling rate on the steel plate surface is 20 ° C./s or higher and 100 ° C./s or lower, and the steel sheet surface temperature is 400 ° C. or higher and 600 ° C. or lower. Large heat input with excellent material uniformity in the steel sheet, characterized by cooling the second stage and then cooling the second stage until the average cooling rate of the steel sheet is 4 ° C / s or higher and 400 ° C or lower. A method for producing high-strength steel sheets for welding.
3 ≦ (700−T) / V (2)
T: Steel sheet surface cooling stop temperature at 1st stage cooling (° C.), V: Cooling rate at the 1st stage cooling steel sheet surface (° C./s)
6). After hot rolling, before performing the first stage cooling, the impact pressure of the jet flow on the steel sheet surface is descaled at 1 MPa or more, and then the first stage cooling is performed within 5 seconds. The manufacturing method of the high strength steel plate for high heat input welding excellent in the material uniformity in the steel plate of 5.

本発明によれば、サブマージアーク溶接、エレクトロガス溶接、エレクトロスラグ溶接などの大入熱溶接により施工される大型の構造物の品質向上に寄与するところ大である。   According to the present invention, it greatly contributes to improving the quality of a large structure constructed by high heat input welding such as submerged arc welding, electrogas welding, and electroslag welding.

本発明では、成分組成、金属組織および材質均一性の指標として板厚方向、板幅方向の硬さのばらつきを規定する。
[成分組成]以下の説明において%はmass%とする。
C:0.030〜0.150%
C量は、構造用鋼として必要な強度を得るために下限を0.030%とし、島状マルテンサイトの生成量を抑えるため、上限を0.150%とする。
In the present invention, variations in hardness in the plate thickness direction and the plate width direction are defined as indicators of component composition, metal structure, and material uniformity.
[Component Composition] In the following description, “%” is “mass%”.
C: 0.030 to 0.150%
The lower limit of C content is 0.030% in order to obtain the strength required for structural steel, and the upper limit is 0.150% in order to suppress the amount of island martensite produced.

Si:0.10%以下
Siは、本発明において、その含有量をきびしく制限する必要があるという点で重要な元素である。Siは鋼中に必ず含有される元素であるが、0.10%を超えて含有すると、大入熱溶接熱影響部に島状マルテンサイトを生成して靱性を劣化させる。しかしながら、鋼中含有量を0.10%以下に制限することにより、大入熱溶接熱影響部における島状マルテンサイトの生成が体積分率で1%以下に抑制され、大入熱溶接熱影響部靭性の向上に大いに寄与する。
Si: 0.10% or less Si is an important element in the present invention in that it is necessary to severely limit its content. Si is an element that must be contained in the steel, but if it exceeds 0.10%, island martensite is generated in the heat-affected zone of high heat input welding and the toughness is deteriorated. However, by limiting the content in steel to 0.10% or less, the formation of island martensite in the high heat input welding heat-affected zone is suppressed to 1% or less in volume fraction, and the high heat input welding heat effect. It greatly contributes to the improvement of toughness.

Mn:1.00〜2.00%
Mnは、母材の強度を確保するために、1.00%以上は必要であり、2.00%を超えると溶接部の靭性を劣化させる。好ましくは、1.00%〜1.60%の範囲である。
Mn: 1.00 to 2.00%
Mn needs to be 1.00% or more in order to ensure the strength of the base material, and if it exceeds 2.00%, the toughness of the welded portion is deteriorated. Preferably, it is in the range of 1.00% to 1.60%.

P:0.030%以下
Pは、不可避的に混入する不純物であり、0.030%を超えると、母材および溶接部の靭性を低下させるため、上限を0.030%とする。
P: 0.030% or less P is an impurity that is inevitably mixed. If P exceeds 0.030%, the toughness of the base metal and the welded portion is lowered, so the upper limit is made 0.030%.

S:0.0005〜0.0040%
Sは、所要のCaSあるいはMnSを生成するために0.0005%以上必要であり、0.0040%を超えると母材の靱性を劣化させる。
S: 0.0005 to 0.0040%
S is required to be 0.0005% or more in order to produce required CaS or MnS, and if it exceeds 0.0040%, the toughness of the base material is deteriorated.

Al:0.005〜0.100%
Alは、鋼の脱酸上0.005%以上、好ましくは0.010%以上必要であり、0.100%を超えて含有すると母材の靱性を低下させると同時に溶接金属の靱性を劣化させる。
Al: 0.005 to 0.100%
Al needs to be 0.005% or more, preferably 0.010% or more in terms of deoxidation of steel, and if contained over 0.100%, the toughness of the base metal is lowered and the toughness of the weld metal is deteriorated simultaneously. .

Ti:0.004〜0.030%
Tiは、凝固時にTiNとなって析出し、溶接熱影響部でのオーステナイトの粗大化抑制やフェライト変態核となって高靱性化に寄与する。0.004%に満たないとその効果が少なく、0.030%を超えるとTiN粒子の粗大化によって期待する効果が得られなくなる。
Ti: 0.004 to 0.030%
Ti precipitates as TiN during solidification and contributes to high toughness by suppressing austenite coarsening in the weld heat affected zone and becoming a ferrite transformation nucleus. If less than 0.004%, the effect is small, and if it exceeds 0.030%, the expected effect cannot be obtained due to the coarsening of TiN particles.

N:0.0035〜0.0075%
Nは、TiNの必要量を確保するうえで必要な元素であり、0.0035%未満では十分なTiN量が得られず、0.0075%を超えると溶接熱サイクルによってTiNが溶解する領域での固溶N量の増加によって靱性が著しく低下する。
N: 0.0035 to 0.0075%
N is an element necessary for securing the necessary amount of TiN, and if it is less than 0.0035%, a sufficient amount of TiN cannot be obtained, and if it exceeds 0.0075%, TiN is dissolved in a region where it is melted by the welding heat cycle. The toughness is remarkably lowered by increasing the amount of dissolved N.

Ca:0.0005〜0.0030%
Caは、Sの固定による靭性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.0005%以上含有することが好ましいが、0.0030%を超えて含有しても効果が飽和する。このため、本発明では、0.0005%から0.0030%の範囲に限定する。
Ca: 0.0005 to 0.0030%
Ca is an element having an effect of improving toughness by fixing S. In order to exhibit such an effect, it is preferable to contain at least 0.0005% or more, but even if it exceeds 0.0030%, the effect is saturated. For this reason, in this invention, it limits to 0.0005% to 0.0030% of range.

O:0.0040%以下
Oは、凝固時に酸化物となって析出する。0.0040%を超えて含有すると、母材および溶接熱影響部の靭性が低下する。
O: 0.0040% or less O precipitates as an oxide during solidification. When it contains exceeding 0.0040%, the toughness of a base material and a welding heat affected zone will fall.

0<(Ca−(0.18+130×Ca)×O)/1.25/S≦0.8・・・(1)
ただし、Ca、O、Sは各成分の含有量を(mass%)を表す。
Ca、OおよびSは、0<(Ca−(0.18+130×Ca)×O)/1.25/S≦0.8の関係を満足するように含有させる必要がある。この場合には、CaS上にMnSが析出した複合硫化物の形態となり、かつ、溶接熱影響部において微細分散するので、溶接熱影響部の靭性が向上する。Ca−(0.18+130×Ca)×O)/1.25/Sの値が0.8を超えると、SがほとんどCaによって固定され、フェライト生成核として働くMnSがCaS上に析出しないために溶接熱影響部の靭性を確保できない。Ca−(0.18+130×Ca)×O)/1.25/Sが0以下の場合には、CaSが晶出しないためにSはMnS単独の形態で析出し、溶接熱影響部での微細分散が達成されない。
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S≦0.8 (1)
However, Ca, O, and S represent the content of each component (mass%).
Ca, O, and S must be contained so as to satisfy the relationship of 0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S≦0.8. In this case, it becomes the form of the composite sulfide in which MnS is precipitated on CaS and is finely dispersed in the weld heat affected zone, so that the toughness of the weld heat affected zone is improved. When the value of Ca− (0.18 + 130 × Ca) × 1.25) / S exceeds 0.8, S is almost fixed by Ca, and MnS that functions as a ferrite nucleation does not precipitate on CaS. The toughness of the heat affected zone cannot be secured. When Ca− (0.18 + 130 × Ca) × O) /1.25/S is 0 or less, since CaS does not crystallize, S precipitates in the form of MnS alone, and is fine in the weld heat affected zone. Dispersion is not achieved.

以上が本発明の基本の鋼組成であり、残部Fe及び不可避的不純物である。これにより、本発明鋼は、溶接入熱量が300kJ/cmを超える大入熱溶接を施したときのボンド近傍の熱影響部組織において、島状マルテンサイト体積分率が1%以下となり、かかる大入熱溶接時の溶接熱影響部においても、優れた靭性を発揮する。   The above is the basic steel composition of the present invention, and the balance is Fe and inevitable impurities. As a result, the steel according to the present invention has an island-like martensite volume fraction of 1% or less in the heat-affected zone structure near the bond when the high heat input welding with a heat input of welding exceeding 300 kJ / cm is applied. Even in the heat affected zone during heat input welding, it exhibits excellent toughness.

なお、鋼板の強度靱性、溶接熱影響部靭性をさらに改善する場合、B、V、Nb、Ni、Cu、Cr、Mo、W、Mg、Zr、REMの1種又は2種以上を含有してもよい。   In addition, when further improving the toughness of a steel plate and the weld heat affected zone toughness, it contains one or more of B, V, Nb, Ni, Cu, Cr, Mo, W, Mg, Zr, and REM. Also good.

B:0.0003〜0.0030%
Bは、溶接熱影響部でBNを生成して、固溶Nを低減するとともにフェライト生成核として作用する元素である。このような効果は0.0003%以上の含有で発揮されるがが、0.0.0030%を超えて添加すると焼入れ性が過度に増して靱性が劣化する。よって、Bを含有させる場合には、0.0003〜0.0030%とすることが好ましい。
B: 0.0003 to 0.0030%
B is an element that generates BN in the weld heat affected zone to reduce solid solution N and act as a ferrite generation nucleus. Such an effect is exhibited when the content is 0.0003% or more, but if added over 0.0.0030%, the hardenability is excessively increased and the toughness is deteriorated. Therefore, when it contains B, it is preferable to set it as 0.0003 to 0.0030%.

V:0.20%以下
Vは、母材の強度・靱性の向上およびVNとしてのフェライト生成核として働くが、0.20%を超えるとかえって靱性の低下を招く。よって、Vを含有させる場合は、0.20%以下とすることが好ましい。
V: 0.20% or less V increases the strength and toughness of the base metal and acts as a ferrite nucleation core as VN. However, if it exceeds 0.20%, it causes a decrease in toughness. Therefore, when V is contained, the content is preferably 0.20% or less.

Nb:0.030%以下
Nbは、母材の強度・靱性および継手の強度を確保するのに有効な元素であるが0.030%を超えて含有すると溶接熱影響部に島状マルテンサイトを形成することにより靱性が劣化する。よって、Nbを含有させる場合は、0.030%以下とすることが好ましい。
Nb: 0.030% or less Nb is an element effective for securing the strength and toughness of the base metal and the strength of the joint, but if it exceeds 0.030%, island martensite is contained in the weld heat affected zone. The toughness deteriorates due to the formation. Therefore, when it contains Nb, it is preferable to set it as 0.030% or less.

Ni:1.00%以下
Niは、母材の高靭性を保ちつつ強度を上昇させるが、1.00%を超えても効果が飽和する。よって、Niを含有させる場合は、1.00%以下とすることが好ましい。
Ni: 1.00% or less Ni increases the strength while maintaining the high toughness of the base material, but the effect is saturated even if it exceeds 1.00%. Therefore, when it contains Ni, it is preferable to set it as 1.00% or less.

Cu:1.00%以下
Cuは、Niと同様の働きを有しているが、1.00%を超えると熱間脆性を生じ、鋼板の表面性状を劣化させる。よって、Cuを含有させる場合は、1.00%以下とすることが好ましい。
Cu: 1.00% or less Cu has a function similar to that of Ni, but when it exceeds 1.00%, hot brittleness is caused and the surface properties of the steel sheet are deteriorated. Therefore, when it contains Cu, it is preferable to set it as 1.00% or less.

Cr:0.70%以下
Crは、母材の高強度化に有効な元素であるが、多量に添加すると靱性に悪影響を与える。よって、Crを含有させる場合は、0.70%以下とすることが好ましい。
Cr: 0.70% or less Cr is an element effective for increasing the strength of the base material, but if added in a large amount, it adversely affects toughness. Therefore, when Cr is contained, the content is preferably 0.70% or less.

Mo:0.70%以下
Moは、母材の高強度化に有効な元素であるが、多量に添加すると靱性に悪影響を与える。よって、Moを含有させる場合は、0.70%以下とすることが好ましい。
Mo: 0.70% or less Mo is an element effective for increasing the strength of the base material, but if added in a large amount, it adversely affects toughness. Therefore, when Mo is contained, the content is preferably 0.70% or less.

W:0.05〜0.40%
Wは、母材の高強度化に有効な元素であり、この効果は0.05%以上含有することにより発揮されるが、過剰に添加すると靱性に悪影響を与えることがある。よって、Wを含有させる場合は、0.05〜0.40%とすることが好ましい。
W: 0.05-0.40%
W is an element effective for increasing the strength of the base material, and this effect is exhibited when it is contained in an amount of 0.05% or more, but if added excessively, the toughness may be adversely affected. Therefore, when it contains W, it is preferable to set it as 0.05 to 0.40%.

Mg:0.0005〜0.0050%
Mgは、酸化物の分散による靱性改善効果を有する元素である。このような効果を発揮させるには0.0005以上含有することが好ましいが、0.0050%を超えて含有しても効果が飽和する。よって、Mgを含有させる場合は、0.0005〜0.0050%とすることが好ましい。
Mg: 0.0005 to 0.0050%
Mg is an element having an effect of improving toughness due to dispersion of oxides. In order to exhibit such an effect, it is preferable to contain 0.0005 or more, but even if it exceeds 0.0050%, the effect is saturated. Therefore, when it contains Mg, it is preferable to set it as 0.0005 to 0.0050%.

Zr:0.001〜0.020%
Zrは、酸化物の分散による靱性改善効果を有する元素である。このような効果を発揮させるには0.001%以上含有することが好ましいが、0.020%を超えて含有しても効果が飽和する。よって、Zrを含有させる場合は、0.001〜0.020%とすることが好ましい。
Zr: 0.001 to 0.020%
Zr is an element having an effect of improving toughness due to dispersion of oxides. In order to exert such an effect, it is preferable to contain 0.001% or more, but even if it exceeds 0.020%, the effect is saturated. Therefore, when it contains Zr, it is preferable to set it as 0.001-0.020%.

REM:0.001〜0.020%
REMは、酸化物の分散による靱性改善効果を有する元素である。このような効果を発揮させるには0.001%以上含有することが好ましいが、0.020%を超えて含有しても効果が飽和する。よって、REMを含有させる場合は、0.001〜0.020%とすることが好ましい。
REM: 0.001-0.020%
REM is an element having an effect of improving toughness due to dispersion of oxides. In order to exert such an effect, it is preferable to contain 0.001% or more, but even if it exceeds 0.020%, the effect is saturated. Therefore, when it contains REM, it is preferable to set it as 0.001-0.020%.

[ミクロ組織]
引張強さ490MPa以上の高強度化を図るために、金属組織(ミクロ組織と言う場合がある)は、実質的にフェライトとベイナイトとの混合組織とする。実質的にフェライトとベイナイトとの混合組織とは、フェライトとベイナイトとの合計の体積分率が95%以上であり、残部として、マルテンサイトやパーライト、島状マルテンサイト、残留オーステナイト等から選ばれる1種または2種以上の合計の体積分率が5%以下である組織である。
[Microstructure]
In order to increase the tensile strength of 490 MPa or more, the metal structure (sometimes referred to as a microstructure) is substantially a mixed structure of ferrite and bainite. The mixed structure of ferrite and bainite is substantially 95% or more of the total volume fraction of ferrite and bainite, and the balance is selected from martensite, pearlite, island martensite, retained austenite, etc. It is a tissue in which the total volume fraction of seeds or two or more kinds is 5% or less.

金属組織中にフェライトとベイナイト組織の他に、マルテンサイト、パーライト、島状マルテンサイト、および残留オーステナイトの1種または2種以上を体積分率で5%を超えで含有すると、強度低下や靭性劣化、表層硬さ上昇が起こるため、これらの組織の体積分率を5%以下とする。但し、表層部において、マルテンサイトや島状マルテンサイト(MA)等の硬質相が生成すると、表層硬さが上昇し、後述する鋼板内の硬さのばらつきが増大するため、表層部はフェライトとベイナイト組織のみの混合組織とすることが望ましい。
金属組織の観察方法は実施例で述べる。
In addition to ferrite and bainite, the metal structure contains one or more of martensite, pearlite, island martensite, and retained austenite in a volume fraction exceeding 5%, resulting in a decrease in strength and toughness deterioration. Since the surface hardness increases, the volume fraction of these tissues is set to 5% or less. However, when a hard phase such as martensite or island-like martensite (MA) is generated in the surface layer portion, the surface layer hardness increases and the hardness variation in the steel sheet described later increases. It is desirable to use a mixed structure consisting of only a bainite structure.
A method for observing the metal structure will be described in Examples.

[硬さのばらつき]
板厚方向の硬さのばらつきをビッカース硬さ(荷重10kg、以下、同じ)でΔHV50以下、板幅方向の硬さのばらつきをビッカース硬さでΔHV50以下とする。
[Hardness variation]
The variation in hardness in the plate thickness direction is set to ΔHV50 or less in terms of Vickers hardness (load 10 kg, hereinafter the same), and the variation in hardness in the plate width direction is set to ΔHV50 or less in terms of Vickers hardness.

鋼板の強度や伸び、成形性などの観点から、鋼板内の硬さのばらつきを抑制することが要求される。板厚方向の硬さのばらつきがビッカース硬さでΔHV50を超えた場合や、板幅方向の硬さのばらつきがビッカース硬さでΔHV50を超えた場合は、上記特性に悪影響を及ぼす。   From the viewpoint of strength, elongation, formability, and the like of the steel sheet, it is required to suppress the variation in hardness within the steel sheet. If the variation in hardness in the thickness direction exceeds ΔHV50 in terms of Vickers hardness, or if the variation in hardness in the width direction of the plate exceeds ΔHV50 in terms of Vickers hardness, the above characteristics are adversely affected.

例えば、鋼板表層部の硬さが鋼板内部に比べてΔHV50を超えて硬くなった場合は、成形後にスプリングバックが起こりやすくなる。また、鋼板幅方向の硬度分布がΔHV50を超えた場合は、成形時に硬い部分と柔らかい部分で変形の仕方に差が生じて思ったような形状にならなかったり、小板に切断した場合にそれぞれの小板で強度や伸びが異なったりする。なお、硬さの測定方法は、実施例において詳述するが、ばらつきとは、測定結果における最大値と最小値の差である。   For example, when the hardness of the steel sheet surface layer portion exceeds ΔHV50 as compared with the inside of the steel sheet, springback is likely to occur after forming. Also, if the hardness distribution in the width direction of the steel sheet exceeds ΔHV50, when the shape is not as expected due to the difference in deformation method between the hard part and the soft part at the time of forming, or when cut into small plates The strength and elongation of the small plates are different. The method for measuring the hardness will be described in detail in the examples. The variation is a difference between the maximum value and the minimum value in the measurement result.

[溶接熱影響部の組織]
溶接入熱量が300kJ/cmを超える大入熱溶接を施したときのボンド近傍(溶接ボンド部と言う場合がある)の溶接熱影響部の組織において、島状マルテンサイト(MAと言う場合がある)の体積分率が1%を超えると靭性が著しく低下するようになるので1%以下とする。溶接ボンド部の組織観察方法は実施例で述べる。
[Structure of weld heat affected zone]
In the structure of the weld heat-affected zone in the vicinity of the bond (sometimes referred to as a weld bond portion) when high heat input welding with a heat input of welding exceeding 300 kJ / cm is applied, it may be called island martensite (MA). ) Exceeds 1%, the toughness is significantly reduced. A method for observing the structure of the weld bond will be described in Examples.

本発明に係る高強度高靱性鋼板は、冷却工程を2段階に分けて、1段目の冷却(一次冷却とも言う)で鋼板全体の高強度化を図りつつ、鋼板表層部における硬化を抑制したミクロ組織を造り込み、2段目の冷却(2次冷却とも言う)において専ら鋼板を高強度化高靭性化することで製造可能である。   The high-strength and high-toughness steel sheet according to the present invention divides the cooling process into two stages and suppresses hardening in the steel sheet surface layer part while increasing the strength of the entire steel sheet by the first stage cooling (also referred to as primary cooling). It can be manufactured by building a microstructure and increasing the strength and toughness of the steel sheet exclusively in the second stage cooling (also referred to as secondary cooling).

[スラブ加熱温度]
スラブ加熱温度は、900℃以上1300℃以下とする。加熱温度が900℃未満ではミクロ組織の均質化が不十分で必要な強度、靱性が得られず、1300℃を超えると靭性が劣化するため、900℃以上1300℃以下とする。なお、ここでの温度は加熱炉の炉内温度であり、スラブはこの温度に中心部まで十分に加熱されるものとする。
[Slab heating temperature]
Slab heating temperature shall be 900 degreeC or more and 1300 degrees C or less. When the heating temperature is less than 900 ° C., the homogenization of the microstructure is insufficient and the required strength and toughness cannot be obtained. When the heating temperature exceeds 1300 ° C., the toughness deteriorates. Here, the temperature is the furnace temperature of the heating furnace, and the slab is sufficiently heated to this temperature to the center.

[圧延終了温度]
加熱されたスラブを熱間圧延する。圧延終了温度は、鋼板の表面温度で700℃以上900℃以下とする。700℃未満では冷却開始温度が低下して十分な強度を得ることができなくなり、900℃を超えるとミクロ組織が粗大化し靱性が劣化するため、700℃以上900℃以下とする。なお、鋼板の表面温度は放射温度計等で測定することができる。
[Rolling end temperature]
The heated slab is hot rolled. The rolling end temperature is 700 ° C. or higher and 900 ° C. or lower as the surface temperature of the steel sheet. If the temperature is lower than 700 ° C., the cooling start temperature is lowered, and sufficient strength cannot be obtained. If the temperature exceeds 900 ° C., the microstructure becomes coarse and the toughness deteriorates. In addition, the surface temperature of a steel plate can be measured with a radiation thermometer or the like.

[1段目の冷却条件]
冷却開始温度は鋼板の表面温度で700℃以上とする。700℃未満では十分な強度が得られなくなるため、700℃以上とする。
[First stage cooling condition]
The cooling start temperature is 700 ° C. or higher at the surface temperature of the steel sheet. If the temperature is lower than 700 ° C, sufficient strength cannot be obtained.

冷却速度は鋼板表面で20℃/s以上100℃/s以下とする。高強度化を図りつつ、鋼板内の硬さのばらつきを低減し、材質均一性を向上させるためには、冷却速度を制御することが重要である。鋼板表面の冷却速度が20℃/s未満では鋼板全体で十分な高強度化が得られず、100℃/sを超えると鋼板表層部でマルテンサイトや島状マルテンサイト(MA)等の硬質相が生成して、表層硬さが著しく上昇するため、鋼板の表面での冷却速度を20℃/s以上100℃/s以下とする。   The cooling rate is 20 ° C./s to 100 ° C./s on the steel sheet surface. It is important to control the cooling rate in order to reduce the hardness variation in the steel sheet and improve the material uniformity while increasing the strength. When the cooling rate of the steel sheet surface is less than 20 ° C./s, sufficient strength cannot be obtained in the whole steel sheet, and when it exceeds 100 ° C./s, a hard phase such as martensite or island martensite (MA) is formed in the steel sheet surface layer. Is generated and the surface hardness is remarkably increased, so that the cooling rate on the surface of the steel sheet is 20 ° C./s or more and 100 ° C./s or less.

冷却停止温度は、鋼板の表面温度で400℃以上600℃以下とする。700℃以上の温度域から、鋼板表面温度で400℃以上600℃以下の温度域まで鋼板表面温度で20℃/s以上100℃/s以下の速度で冷却することにより、鋼板表層部にフェライトとベイナイト相を生成させる。   The cooling stop temperature is 400 ° C. or more and 600 ° C. or less at the surface temperature of the steel sheet. By cooling at a rate of 20 ° C./s to 100 ° C./s at the steel sheet surface temperature from a temperature range of 700 ° C. or more to a temperature range of 400 ° C. to 600 ° C. at the steel sheet surface temperature, ferrite and A bainite phase is generated.

冷却停止温度を400℃未満とすると、2段目の冷却の開始が遅れて冷却の効果が不十分となり、高強度高靭性化が達成できない。   If the cooling stop temperature is less than 400 ° C., the start of the second-stage cooling is delayed and the cooling effect becomes insufficient, and high strength and toughness cannot be achieved.

一方、冷却停止温度が600℃を超えるとフェライトとベイナイトの生成が十分ではなく、その状態で2段目の冷却を開始すると表層部にマルテンサイトや島状マルテンサイト(MA)が生成してしまうため、1段目の冷却停止温度は鋼板の表面温度で400℃以上600℃以下とする。   On the other hand, when the cooling stop temperature exceeds 600 ° C., the generation of ferrite and bainite is not sufficient, and when the second stage cooling is started in that state, martensite and island martensite (MA) are generated in the surface layer portion. Therefore, the cooling stop temperature of the first stage is 400 ° C. or more and 600 ° C. or less as the surface temperature of the steel plate.

更に、1段目の冷却は以下の(2)式を満たすように行う。
3≦(700−T)/V ・・・(2)式
但し、Tは1段目冷却の鋼板表面での冷却終了温度(℃)、Vは1段目冷却の鋼板表面での冷却速度(℃/s)
(2)式は、1段目冷却の冷却時間として3秒以上の継続を必要とすることを示す。表層の組織が硬質とならないように、フェライトやベイナイト相が十分に生成するためには、3秒以上の時間を要するためである。
Further, the first stage cooling is performed so as to satisfy the following expression (2).
3 ≦ (700−T) / V (2) where T is the cooling end temperature (° C.) at the first stage cooling steel plate surface, and V is the cooling rate at the first stage cooling steel plate surface ( ° C / s)
Equation (2) indicates that the cooling time for the first stage cooling requires 3 seconds or more. This is because it takes 3 seconds or more for the ferrite and bainite phases to be sufficiently formed so that the structure of the surface layer does not become hard.

(2)式が満たされない場合は、鋼板表層部にマルテンサイトや島状マルテンサイト(MA)が生成し、表層部の硬さ上昇が著しくなり、硬さのばらつきが大きくなる。   When the formula (2) is not satisfied, martensite and island-like martensite (MA) are generated in the steel sheet surface layer portion, the hardness of the surface layer portion is significantly increased, and the variation in hardness is increased.

[2段目の冷却条件]
冷却速度は鋼板平均で4℃/s以上とする。4℃/s未満であると強度上昇効果が十分得られなくなるため、4℃/s以上とする。鋼板平均としての温度および冷却速度については、物理的に直接測定することはできないが、表面の温度変化を基にしたシミュレーション計算によりリアルタイムで求めることができる。
[Second stage cooling conditions]
The cooling rate is 4 ° C./s or more on the average steel plate. If it is less than 4 ° C./s, the effect of increasing the strength cannot be obtained sufficiently, so that it is 4 ° C./s or more. The average temperature and cooling rate of the steel sheet cannot be directly measured physically, but can be obtained in real time by simulation calculation based on the temperature change of the surface.

冷却停止温度は、鋼板の平均温度で400℃以下とする。合金元素を削減し合理化した鋼組成の鋼においては、400℃を超える温度で冷却を停止すると十分な高強度化が得られないため、冷却停止温度は400℃以下とする。   Cooling stop temperature shall be 400 degrees C or less with the average temperature of a steel plate. In steels with a streamlined steel composition with reduced alloying elements, if cooling is stopped at a temperature exceeding 400 ° C., sufficient strength cannot be obtained, so the cooling stop temperature is 400 ° C. or lower.

以上の製造方法で、鋼板内の材質均一性に優れた高強度鋼板の製造が可能であるが、さらに材質均一性を向上させる場合、1段目の冷却の直前に高衝突圧のデスケーリングを行うことが望ましい。   With the above manufacturing method, it is possible to manufacture a high-strength steel sheet with excellent material uniformity within the steel sheet. However, when further improving the material uniformity, the high impact pressure should be descaled just before the first stage cooling. It is desirable to do.

圧延後の鋼板においては、スケール厚みが大きい場合、圧延前および圧延中のデスケーリング等によりスケールの厚みにムラが生じたり、部分的にスケールの剥離が生じて、鋼板表面の冷却速度が部分的に変化して、材質均一性が損なわれるようになる。   In the steel sheet after rolling, if the scale thickness is large, the scale thickness may become uneven due to descaling, etc. before rolling or during rolling, or part of the scale may peel off, resulting in partial cooling of the steel sheet surface. The uniformity of the material is impaired.

しかし、二次冷却後の鋼板のスケール厚みが15μm以下となるように、1段目の冷却の直前にデスケーリングを行うと、スケールの厚みにムラが生じても冷却速度に大きな差が生じないようになり、板幅方向の硬さのばらつきをΔHV30以下に安定させることができる。制御冷却直前すなわち、本発明においては1段目の冷却の直前の鋼板のスケール厚みを測ることは事実上困難であるが、制御冷却前のスケール厚みは制御冷却後(本発明においては2段目の冷却後)のスケール厚みによって推定することができ、制御冷却後の鋼板のスケール厚みが15μm以下となるように冷却直前にデスケーリングを行うことによって、所望の効果が得られることが解明された。   However, if the descaling is performed immediately before the first stage cooling so that the scale thickness of the steel sheet after the secondary cooling is 15 μm or less, even if unevenness occurs in the thickness of the scale, there is no great difference in the cooling rate. Thus, the variation in hardness in the plate width direction can be stabilized to ΔHV30 or less. Although it is practically difficult to measure the scale thickness of the steel sheet immediately before the control cooling, that is, immediately before the first stage cooling in the present invention, the scale thickness before the control cooling is the value after the control cooling (the second stage in the present invention). It was elucidated that the desired effect can be obtained by performing descaling immediately before cooling so that the scale thickness of the steel sheet after controlled cooling is 15 μm or less. .

デスケーリングを行う場合は、2段目の冷却後のスケール厚みを15μm以下とするため、鋼板表面での噴射流の衝突圧を1MPa以上として行い、その後5秒以内に1段目の冷却を行うことが望ましい。鋼板表面での噴射流の衝突圧が1MPa未満では、デスケーリングが不十分でスケールむらが生じる場合があるため、噴射流の衝突圧は1MPa以上とする。デスケーリングは高圧水を用いて行うが、鋼板表面での噴射流の衝突圧が1MPa以上であれば、他の噴射流を用いても構わない。   When descaling is performed, the scale thickness after the second stage cooling is set to 15 μm or less, so that the collision pressure of the jet flow on the steel plate surface is set to 1 MPa or more, and then the first stage cooling is performed within 5 seconds. It is desirable. If the collision pressure of the jet flow on the steel plate surface is less than 1 MPa, the scaling may be uneven due to insufficient descaling, so the collision pressure of the jet flow is 1 MPa or more. Descaling is performed using high-pressure water, but other jet streams may be used as long as the collision pressure of the jet stream on the steel sheet surface is 1 MPa or more.

そして、デスケーリング後、5秒を超えてから1段目の冷却を行うと、スケールが成長して2段目の冷却後のスケール厚さが15μmを超えるようになるので、デスケーリング後、5秒以内に1段目の冷却を開始することが好ましい。   After the descaling, if the first stage cooling is performed after 5 seconds, the scale grows and the scale thickness after the second stage cooling exceeds 15 μm. It is preferable to start the first stage cooling within seconds.

150kgの高周波溶解炉にて、表1に示す組成の鋼を溶製し、厚さ170mmまで粗圧延後、表2に示す条件にて圧延・冷却し、板厚60mmの厚鋼板を製造した。得られた鋼板の金属組織およびスケール性状を、光学顕微鏡および走査型電子顕微鏡により観察した。   Steel having the composition shown in Table 1 was melted in a 150 kg high-frequency melting furnace, roughly rolled to a thickness of 170 mm, and then rolled and cooled under the conditions shown in Table 2 to produce a thick steel plate having a thickness of 60 mm. The metal structure and scale properties of the obtained steel sheet were observed with an optical microscope and a scanning electron microscope.

金属組織観察は板厚tの1/4部から10視野の断面組織写真(倍率:400〜500倍)を得て、画像解析装置を用いて相分率(体積分率)を測定した。また、鋼板表面を含む断面組織写真からスケール厚さを測定し、10視野の平均値で評価した。なお、2段目の冷却が完了した後にはスケールが成長しないので、上記で観察されるスケール厚さが2段目冷却直後のスケール厚さであるとみなしてかまわない。   In the observation of the metal structure, a cross-sectional structure photograph (magnification: 400 to 500 times) of 10 fields of view was obtained from 1/4 part of the plate thickness t, and the phase fraction (volume fraction) was measured using an image analyzer. Moreover, scale thickness was measured from the cross-sectional structure | tissue photograph containing the steel plate surface, and it evaluated by the average value of 10 visual fields. Since the scale does not grow after the second stage cooling is completed, the scale thickness observed above may be regarded as the scale thickness immediately after the second stage cooling.

機械的特性は、板厚tの1/4部圧延直角方向から平行部14φ×85mm、標点間距離70mmの丸棒引張試験片を採取して引張試験を実施し、母材の強度を評価した。また、板厚tの1/4部圧延方向を長手方向として2mmVノッチシャルピー試験片を採取し、試験温度−40℃での吸収エネルギーvE(−40℃)(3本平均値)を測定し、母材の靭性として評価した。   Mechanical properties are obtained by collecting a round bar tensile test piece with a parallel part of 14φ x 85 mm and a distance between gauge points of 70 mm from the direction perpendicular to the rolling of 1/4 part of the sheet thickness t, and conducting a tensile test to evaluate the strength of the base material. did. In addition, a 2 mm V notch Charpy test piece was taken with the 1/4 direction rolling direction of the sheet thickness t as the longitudinal direction, and the absorbed energy vE (−40 ° C.) (average value of 3 pieces) at a test temperature of −40 ° C. was measured. The toughness of the base material was evaluated.

また、ビッカース硬度計で板厚方向の硬さと板幅方向の硬さを測定した。なお、板幅方向の硬さは、表面下1mm位置、板厚tの1/4位置、板厚tの1/2位置(板厚中心部)で測定したところ、いずれの鋼板も表面下1mm位置において硬さのばらつきが最大を示したので、板幅方向の硬さのばらつきは表面下1mm位置で評価した。   Further, the hardness in the plate thickness direction and the hardness in the plate width direction were measured with a Vickers hardness tester. The hardness in the plate width direction was measured at 1 mm below the surface, 1/4 position of the plate thickness t, and 1/2 position of the plate thickness t (plate thickness center portion). Since the variation in hardness showed the maximum at the position, the variation in hardness in the plate width direction was evaluated at a position 1 mm below the surface.

さらに、大入熱溶接(約400kJ/cm)のエレクトロガス溶接(EGW)によって継手を作製した後、板厚方向の表面1mm位置(表面から鋼板内部に1mm位置)と裏面1mm位置(裏面から鋼板内部に1mm位置)について溶接熱影響部のボンド部にノッチを入れたシャルピー試験片を用いて、試験温度−40℃での吸収エネルギー(vE−40℃)(3本平均値)により評価した。溶接熱影響部における島状マルテンサイトの体積分率は、2段エッチング法により島状マルテンサイトを現出したのち、SEM(走査型電子顕微鏡)による倍率:1000〜2000倍の写真5枚をトレースしたうえ、それぞれ画像解析を行い、その平均値を算出することにより求めた。   Furthermore, after producing the joint by electrogas welding (EGW) of high heat input welding (about 400 kJ / cm), the surface 1 mm position in the plate thickness direction (1 mm position from the surface to the inside of the steel plate) and the back surface 1 mm position (from the back surface to the steel plate) Using a Charpy test piece with a notch in the bond portion of the weld heat affected zone, the absorption energy (vE-40 ° C.) at a test temperature of −40 ° C. (average value of three) was evaluated. The volume fraction of island martensite in the weld heat affected zone was obtained by tracing the five photographs with magnification of 1000 to 2000 times by SEM (scanning electron microscope) after the island martensite was revealed by the two-step etching method. In addition, each image analysis was performed, and the average value was calculated.

表3から、本発明例No.1〜8ではいずれも降伏応力が355N/mm以上、引張強さが490N/mm以上、vE−40℃が100J以上、スケール厚さは30μm以下、鋼板のミクロ組織は実質的にフェライトとベイナイト組織で、板厚方向の硬さのばらつきはΔHV50以下、板幅方向の硬さのばらつきはΔHV50以下となっており、鋼板内の材質均一性、母材の強度・靭性に優れることが確認された。 From Table 3, Example No. of the present invention. Both the 1-8 yield stress 355N / mm 2 or more, a tensile strength of 490 N / mm 2 or more, vE-40 ° C. or higher 100 J, the scale thickness is 30μm or less, the microstructure of the steel sheet is substantially a ferrite In the bainite structure, the hardness variation in the sheet thickness direction is ΔHV50 or less, and the hardness variation in the sheet width direction is ΔHV50 or less, confirming that the material uniformity in the steel sheet and the strength and toughness of the base material are excellent. It was done.

また、本発明鋼は、溶接熱影響部(切欠き位置:ボンド部)の吸収エネルギーvE−40℃が50J以上であり、溶接熱影響部靭性にも優れている。特に、本発明例No.5は1段目の冷却前にデスケーリングを噴射流の衝突圧を2MPa、デスケーリング後、4秒で1段目の冷却を行ったので、スケール厚さが4μmで、板厚方向、板幅方向の硬さのばらつきが小さく、材質均一性に特に優れている。   Further, the steel of the present invention has an absorption energy vE-40 ° C. of 50 J or more in the weld heat affected zone (notch position: bond portion), and is excellent in weld heat affected zone toughness. In particular, Invention Example No. 5: Descaling before cooling of the first stage The impact pressure of the jet flow was 2 MPa. After the descaling, the first stage of cooling was performed in 4 seconds, so the scale thickness was 4 μm, the thickness direction, the width The variation in direction hardness is small, and the material uniformity is particularly excellent.

一方、製造条件の少なくとも1つまたは鋼組成が本発明範囲外の比較例であるNo.9〜25は、上記のいずれか1つ以上の特性が本発明例に対して劣っている。No.9〜15は製造条件の少なくとも1つが本発明範囲外、No.16〜25は鋼組成が本発明範囲外の比較例である。   On the other hand, at least one of the manufacturing conditions or the steel composition is a comparative example that is outside the scope of the present invention. Nos. 9 to 25 are inferior to the examples of the present invention in any one or more of the above characteristics. No. In Nos. 9 to 15, at least one of the production conditions is outside the scope of the present invention. 16-25 is a comparative example whose steel composition is outside the scope of the present invention.

Figure 0005910219
Figure 0005910219

Figure 0005910219
Figure 0005910219

Figure 0005910219
Figure 0005910219

Claims (6)

鋼組成が、mass%で、
C:0.030〜0.150%、
Si:0.10%以下、
Mn:1.00〜2.00%、
P:0.030%以下、
S:0.0005〜0.0040%、
Al:0.005〜0.100%、
Ti:0.004〜0.030%、
N:0.0035〜0.0075%、
Ca:0.0005〜0.0030%、
O:0.0040%以下、
Ca、O、Sの各含有量が、下記(1)式を満たし、残部Feおよび不可避的不純物であり、金属組織は、フェライトとベイナイトとの合計の体積分率が95%以上であり、残部として、マルテンサイトやパーライト、島状マルテンサイト、残留オーステナイト等から選ばれる1種または2種以上の合計の体積分率が5%以下である組織であり、板厚方向の硬さのばらつきがビッカース硬さでΔHV50以下、板幅方向の硬さのばらつきがビッカース硬さでΔHV50以下であり、かつ溶接入熱量が300kJ/cmを超える大入熱溶接を施したときのボンド近傍の熱影響部組織において、島状マルテンサイト体積分率が1%以下であることを特徴とする、鋼板内の材質均一性に優れた大入熱溶接用高強度鋼板。
0<(Ca−(0.18+130×Ca)×O)/1.25/S≦0.8・・・(1)
ただし、Ca、O、Sは各成分の含有量(mass%)とする。
Steel composition is mass%,
C: 0.030 to 0.150%,
Si: 0.10% or less,
Mn: 1.00 to 2.00%,
P: 0.030% or less,
S: 0.0005 to 0.0040%,
Al: 0.005 to 0.100%,
Ti: 0.004 to 0.030%,
N: 0.0035 to 0.0075%,
Ca: 0.0005 to 0.0030%,
O: 0.0040% or less,
Each content of Ca, O, and S satisfies the following formula (1), the balance is Fe and unavoidable impurities, the metal structure has a total volume fraction of ferrite and bainite of 95% or more, and the balance Is a structure in which the total volume fraction of one or more selected from martensite, pearlite, island-like martensite, retained austenite, etc. is 5% or less, and the variation in hardness in the thickness direction is Vickers. Heat-affected zone structure near the bond when large heat input welding is performed with a hardness of ΔHV50 or less, variation in hardness in the plate width direction of Vickers hardness of ΔHV50 or less, and a welding heat input exceeding 300 kJ / cm A high strength steel plate for high heat input welding with excellent material uniformity in the steel plate, wherein the island-shaped martensite volume fraction is 1% or less.
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S≦0.8 (1)
However, Ca, O, and S are the contents of each component (mass%).
鋼組成が、更に、mass%で、B:0.0003〜0.0030、V:0.20%以下のうちから選んだ1種または2種を含有することを特徴とする、請求項1に記載の鋼板内の材質均一性に優れた大入熱溶接用高強度鋼板。   The steel composition further comprises one or two selected from B: 0.0003 to 0.0030 and V: 0.20% or less in mass%. A high-strength steel plate for high heat input welding with excellent material uniformity in the steel plate described. 鋼組成が、更に、mass%で、Nb:0.030%以下、Ni:1.00%以下、Cu:1.00%以下、Cr:0.70%以下、Mo:0.70%以下、W:0.05〜0.40%のうちから選んだ1種または2種以上を含有することを特徴とする、請求項1または請求項2に記載の鋼板内の材質均一性に優れた大入熱溶接用高強度鋼板。   Further, the steel composition is mass%, Nb: 0.030% or less, Ni: 1.00% or less, Cu: 1.00% or less, Cr: 0.70% or less, Mo: 0.70% or less, W: One or two or more selected from 0.05 to 0.40% are contained, and the material excellent in material uniformity in the steel sheet according to claim 1 or 2, High strength steel plate for heat input welding. 鋼組成が、更に、mass%で、Mg:0.0005〜0.0050%、Zr:0.001〜0.020%、REM:0.001〜0.020%のうちから選んだ1種または2種以上を含有する請求項1乃至3のいずれか一つに記載の鋼板内の材質均一性に優れた大入熱溶接用高強度鋼板。   The steel composition is further selected by mass%, Mg: 0.0005-0.0050%, Zr: 0.001-0.020%, REM: 0.001-0.020% The high-strength steel sheet for high heat input welding excellent in material uniformity in the steel sheet according to any one of claims 1 to 3, comprising two or more kinds. 請求項1乃至4のいずれか一つに記載の大入熱溶接用高強度鋼板の製造方法であり、鋼を、900℃以上1300℃以下の温度に加熱し、圧延終了温度が鋼板表面温度で700℃以上900℃以下で熱間圧延した後、鋼板表面の温度が700℃以上から鋼板表面での冷却速度が20℃/s以上100℃/s以下で鋼板表面温度が400℃以上600℃以下まで(2)式を満たす条件で1段目の冷却を行い、その後鋼板平均での冷却速度が4℃/s以上8℃/s以下で400℃以下まで2段目の冷却を行うことを特徴とする、鋼板内の材質均一性に優れた大入熱溶接用高強度鋼板の製造方法。
3≦(700−T)/V・・・(2)
T:1段目冷却の鋼板表面冷却停止温度(℃)、V:1段目冷却の鋼板表面での冷却速度(℃/s)
It is a manufacturing method of the high strength steel plate for high heat input welding as described in any one of Claims 1 thru | or 4 , Steel is heated to the temperature of 900 degreeC or more and 1300 degrees C or less, and rolling completion temperature is steel plate surface temperature. After hot rolling at 700 ° C. or more and 900 ° C. or less, the steel sheet surface temperature is 700 ° C. or more and the steel sheet surface cooling rate is 20 ° C./s or more and 100 ° C./s or less, and the steel sheet surface temperature is 400 ° C. or more and 600 ° C. or less. The first stage cooling is performed under the conditions satisfying the expression (2) until the second stage cooling is performed until the average cooling rate of the steel sheet is 4 ° C./s to 8 ° C./s and 400 ° C. or less. The manufacturing method of the high strength steel plate for high heat input welding excellent in the material uniformity in the steel plate.
3 ≦ (700−T) / V (2)
T: Steel sheet surface cooling stop temperature at 1st stage cooling (° C.), V: Cooling rate at the 1st stage cooling steel sheet surface (° C./s)
熱間圧延後、1段目の冷却を行う前に、鋼板表面での噴射流の衝突圧が1MPa以上でデスケーリングを行い、その後5秒以内に前記1段目の冷却を行うことを特徴とする、請求項5記載の鋼板内の材質均一性に優れた大入熱溶接用高強度鋼板の製造方法。   After hot rolling, before performing the first stage cooling, the impact pressure of the jet flow on the steel sheet surface is descaled at 1 MPa or more, and then the first stage cooling is performed within 5 seconds. The manufacturing method of the high strength steel plate for high heat input welding excellent in the material uniformity in the steel plate of Claim 5.
JP2012066442A 2012-03-23 2012-03-23 High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same Active JP5910219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012066442A JP5910219B2 (en) 2012-03-23 2012-03-23 High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012066442A JP5910219B2 (en) 2012-03-23 2012-03-23 High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013194316A JP2013194316A (en) 2013-09-30
JP5910219B2 true JP5910219B2 (en) 2016-04-27

Family

ID=49393622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012066442A Active JP5910219B2 (en) 2012-03-23 2012-03-23 High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same

Country Status (1)

Country Link
JP (1) JP5910219B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10094008B2 (en) * 2013-07-04 2018-10-09 Nippon Steel & Sumitomo Metal Corporation Seamless steel pipe for line pipe used in sour environments
CN104498827A (en) * 2014-12-29 2015-04-08 首钢总公司 355MPa-grade high heat input welding steel and preparation method thereof
WO2016152172A1 (en) * 2015-03-26 2016-09-29 Jfeスチール株式会社 Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
EP3385399A4 (en) * 2015-12-04 2019-05-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed
CN106906414A (en) * 2015-12-22 2017-06-30 宝山钢铁股份有限公司 The steel plate and its manufacture method of a kind of Large Heat Input Welding heat affected area tenacity excellent
CN109609841A (en) * 2018-12-05 2019-04-12 南阳汉冶特钢有限公司 A kind of production method of pressure vessel high-intensitive quenching and tempering alloy-steel plate
JP7243826B2 (en) * 2019-06-17 2023-03-22 日本製鉄株式会社 steel plate
US20220396848A1 (en) * 2019-11-12 2022-12-15 Lg Electronics Inc. Non-oriented electrical steel sheet and manufacturing method therefore
JP7469617B2 (en) 2020-03-17 2024-04-17 日本製鉄株式会社 Electric resistance welded steel pipe for oil wells and its manufacturing method
JP7469616B2 (en) 2020-03-17 2024-04-17 日本製鉄株式会社 Electric resistance welded steel pipe for oil wells and its manufacturing method
JP7410437B2 (en) * 2020-06-17 2024-01-10 日本製鉄株式会社 steel plate
JP7410438B2 (en) * 2020-06-17 2024-01-10 日本製鉄株式会社 steel plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143473B2 (en) * 2007-05-15 2013-02-13 株式会社神戸製鋼所 Manufacturing method of high strength and low yield ratio steel sheet with excellent HAZ toughness
JP5439887B2 (en) * 2008-03-31 2014-03-12 Jfeスチール株式会社 High-strength steel and manufacturing method thereof
JP5146198B2 (en) * 2008-08-22 2013-02-20 Jfeスチール株式会社 High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method
WO2010134220A1 (en) * 2009-05-22 2010-11-25 Jfeスチール株式会社 Steel material for high heat input welding
JP5867381B2 (en) * 2011-12-22 2016-02-24 Jfeスチール株式会社 High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same

Also Published As

Publication number Publication date
JP2013194316A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP5910219B2 (en) High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same
JP5867381B2 (en) High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same
JP5076658B2 (en) Steel material for large heat input welding
JP5162382B2 (en) Low yield ratio high toughness steel plate
KR101386042B1 (en) Steel material for high heat input welding
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP4897126B2 (en) Thick steel plate manufacturing method
JP2012207237A (en) 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF
WO2013089089A1 (en) High-strength extra-thick steel h-beam
JP6451871B2 (en) Steel material for large heat input welding
WO2014175122A1 (en) H-shaped steel and method for producing same
WO2016157863A1 (en) High strength/high toughness steel sheet and method for producing same
JP2005264208A (en) Low yield ratio wide flange beam having excellent earthquake resistance and its production method
JP4878219B2 (en) Steel sheet with excellent HAZ toughness and small reduction in strength due to heat treatment after welding
JP2020172707A (en) H-shaped steel and its manufacturing method
JP2010168644A (en) Thick steel plate excellent in toughness of welding heat-affected zone
JP5966907B2 (en) Steel material for large heat input welding
JP5668668B2 (en) Steel with excellent toughness of weld heat affected zone, welded joint, and method for manufacturing welded joint
JP2006118007A (en) High strength steel having excellent toughness in weld heat affected zone
EP3128024B1 (en) Welded joint
JP6354571B2 (en) Rolled H-section steel and its manufacturing method
JP2013049894A (en) High toughness steel for heavy heat input welding and method for manufacturing the same
JP6477743B2 (en) High-strength ultra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness and method for producing the same
JP5891748B2 (en) High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same
WO2013128650A1 (en) Steel material for high-heat-input welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250