JP2005264208A - Low yield ratio wide flange beam having excellent earthquake resistance and its production method - Google Patents

Low yield ratio wide flange beam having excellent earthquake resistance and its production method Download PDF

Info

Publication number
JP2005264208A
JP2005264208A JP2004076632A JP2004076632A JP2005264208A JP 2005264208 A JP2005264208 A JP 2005264208A JP 2004076632 A JP2004076632 A JP 2004076632A JP 2004076632 A JP2004076632 A JP 2004076632A JP 2005264208 A JP2005264208 A JP 2005264208A
Authority
JP
Japan
Prior art keywords
less
rolled
cooling
flange
section steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004076632A
Other languages
Japanese (ja)
Other versions
JP4329583B2 (en
Inventor
Tatsumi Kimura
達巳 木村
Toshiyuki Hoshino
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35089063&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2005264208(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004076632A priority Critical patent/JP4329583B2/en
Publication of JP2005264208A publication Critical patent/JP2005264208A/en
Application granted granted Critical
Publication of JP4329583B2 publication Critical patent/JP4329583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low yield ratio hot-rolled wide flange beam having excellent earthquake resistance, and to provide its production method. <P>SOLUTION: A steel stock preferably having a composition containing, by mass, 0.01 to 0.20% C, ≤0.6% Si, 0.6 to 1.6% Mn, ≤0.030% P, ≤0.030% S and ≤0.1% Al, is reheated at 1,000 to 1,350°C, and subjected to rolling in which hot rolling finishing temperature is controlled to ≥(Ar<SB>3</SB>transformation point-100°C), so as to produce a wide flange beam. Next, the outside face or inside face of the flange is cooled to a cooling stopping temperature in the range of 20 to 650°C at a mean cooling rate of ≥5°C/s, thereafter, the cooling is stopped, and then it is heated to ≥200°C. Thus, a structure where either surface layer in the inside and outside faces of the flange has a hard layer and the other surface layer has a soft layer, the average grain size of ferrite on the side of the soft layer is 5 to 40 μm, and also, the hard phase is comprised in 20 to 80% by volume ratio on the average value in the sheet thickness direction of the flange can be formed. In this way, the rolled wide flange beam having a high strength of ≥490 MPa by TS while maintaining a low yield ratio of ≤80%, and having excellent earthquake resistance can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、建築構造物に多用されている熱間圧延製H形鋼およびその製造方法に係り、とくに、低降伏比化と耐震性の向上に関する。なお、本発明が対象とする圧延H形鋼は、引張強さが490MPa〜750MPaの高強度低降伏比圧延H形鋼で、内法一定であるJISサイズの圧延H形鋼のほかに、外法一定の圧延H形鋼やウェブ薄肉圧延H形鋼をも含むものとする。   The present invention relates to a hot-rolled H-section steel frequently used for building structures and a method for producing the same, and more particularly to a reduction in yield ratio and improvement in earthquake resistance. The rolled H-section steel to which the present invention is applied is a high-strength, low-yield ratio rolled H-section steel having a tensile strength of 490 MPa to 750 MPa. It also includes the regular rolled H-section steel and web thin rolled H-section steel.

近年の巨大地震による建築構造物の重大被害の発生に鑑み、構造物の更なる安全性向上、耐震性向上が要求されている。   In view of the occurrence of serious damage to building structures due to recent huge earthquakes, further improvements in safety and earthquake resistance of structures are required.

構造部材を塑性化して地震エネルギーを吸収させ、構造物の耐震性を向上させるという観点からは、降伏比の低い鋼材が求められている。また、例えば建築構造物の梁材に適用する鋼材の降伏強さのばらつきが大きい場合には、柱材を必要以上に厚肉化(あるいは高強度化)する必要があり安全性や経済性の観点から不利になる。このため、構造物としての安全性や経済性を高めるという観点から、降伏強さのばらつき範囲を小さくした鋼材が要求されている。   From the viewpoint of plasticizing a structural member to absorb seismic energy and improving the earthquake resistance of the structure, a steel material having a low yield ratio is required. Also, for example, when the variation in the yield strength of steel applied to the beam of a building structure is large, it is necessary to increase the thickness of the column material (or increase the strength) more than necessary. It becomes disadvantageous from the viewpoint. For this reason, from the viewpoint of enhancing safety and economic efficiency as a structure, a steel material having a reduced yield strength variation range is required.

このような状況から、1998年に、降伏強さ(YS)の範囲が120MPa以下とYSのばらつき範囲が狭く、さらに降伏比(YR)が80%以下とYRが低い、狭YS、低YRの建築構造用鋼材が、JIS規格として制定された。   In this situation, in 1998, the yield strength (YS) range was 120 MPa or less and the variation range of YS was narrow, and the yield ratio (YR) was 80% or less, YR was low, narrow YS, low YR. Steel for building structures was established as a JIS standard.

一方、脆性的な破壊が生じるような場合には、上記したような鋼材の弾性能・塑性能を十分発揮することなく建築構造物が倒壊する恐れがある。このため、母材靭性はもちろん溶接部靭性にも優れた鋼材が要求されている。近年の柱−梁の構造物を想定した載荷試験研究から、梁端溶接部も含めて、靭性は70J以上必要であることが明らかになっている。   On the other hand, when brittle fracture occurs, the building structure may collapse without fully exhibiting the elastic performance and plastic performance of the steel material as described above. For this reason, the steel material excellent also in weld part toughness as well as base material toughness is requested | required. From recent loading test studies assuming column-beam structures, it has become clear that toughness is required to be 70 J or higher, including welds at beam ends.

圧延H形鋼は、主として溶接構造物の構造材料、とくに建築構造物の梁材として多用されている。そのため、圧延H形鋼においても、YSのばらつき範囲が狭いこと(狭YS)、YRが低いこと(低YR)、および溶接熱影響部(HAZ)も含めた靭性が優れていることが要求されている。   Rolled H-section steel is mainly used as a structural material for welded structures, particularly as a beam for building structures. Therefore, the rolled H-section steel is also required to have excellent toughness including a narrow variation range of YS (narrow YS), low YR (low YR), and weld heat affected zone (HAZ). ing.

一般的に、HAZについては、酸化物、窒化物あるいは硫化物(あるいはこれらの複合系)などの微細介在物を利用してHAZの結晶粒の微細化を図るとともに、低炭素当量化し、合金元素を選択して添加することによりHAZの靭性向上が図られている。   In general, HAZ uses fine inclusions such as oxides, nitrides and sulfides (or their composites) to refine HAZ crystal grains and lower the carbon equivalent, thereby reducing alloy elements. The toughness of HAZ is improved by selecting and adding.

また、鋼材の強度については、従来から知られている、固溶強化型元素による固溶強化、析出強化型元素の添加による析出強化、硬質相の分散による分散強化などの手法による強化や、制御圧延や制御冷却あるいは焼入れ−焼戻し処理等による、結晶粒微細化、変態などの組織制御による強化、などの強化方法を適宜組合わせて、強度増加が図られてきた。   In addition, the strength of steel materials can be controlled by conventional methods such as solid solution strengthening by solid solution strengthening elements, precipitation strengthening by adding precipitation strengthening elements, dispersion strengthening by dispersing hard phases, and control. Strength has been increased by appropriately combining strengthening methods such as grain refinement and strengthening by microstructure control such as transformation by rolling, controlled cooling or quenching-tempering treatment.

しかし、多様な形状を圧延ままで製造するH形鋼では、熱応力差に起因したフランジ反り、ウエブ波、ねじれ等の変形に対する配慮も必要なため、このような従来技術を組合わせただけでは、上記した要求特性を満足する圧延H形鋼を製造することは容易ではない。   However, in H-section steel manufactured in various shapes as rolled, it is necessary to consider deformation such as flange warpage, web waves and torsion caused by thermal stress differences. It is not easy to produce a rolled H-section steel that satisfies the above required characteristics.

このような問題に対し、例えば、特許文献1には、形鋼の降伏点範囲を保証した耐震性能に優れた降伏点制御圧延形鋼が提案されている。特許文献1に記載された技術は、C、Si、Mn、P、S、N、Alを適正範囲に調整し、S、Ca、Mg、REMの関係式であるΔS量を−0.005〜0.010%範囲内になるようにCa、Mg、REMを添加した溶鋼を鋳造し、凝固温度から900℃間を徐冷して、Al系複酸化物、MnS、Al系複酸化物とMnSとの複合酸化物の総数を20個/mm以下分散させた鋳片とし、該鋳片を加熱し900℃以下で20%以上圧下する熱間圧延で圧延形鋼とするものである。これにより、80%以下の低降伏比と、狭YPで耐ラメラティア性を有する建築用形鋼となるとしている。 For such a problem, for example, Patent Document 1 proposes a yield point controlled rolled shape steel excellent in earthquake resistance that guarantees the yield point range of the shape steel. The technique described in Patent Document 1 adjusts C, Si, Mn, P, S, N, and Al to an appropriate range, and sets the ΔS amount that is a relational expression of S, Ca, Mg, and REM to −0.005 to 0.010%. Cast molten steel to which Ca, Mg, and REM are added so as to be within the range, and gradually cool between 900 ° C from the solidification temperature to composite oxidation of Al-based double oxide, MnS, Al-based double oxide and MnS A slab in which the total number of objects is dispersed at 20 pieces / mm 2 or less is formed, and the slab is heated to form a rolled section steel by hot rolling at 20 ° C. or less at 900 ° C. or less. As a result, it is said that it will be a structural steel having a low yield ratio of 80% or less and a narrow YP and lamellar resistance.

また、特許文献2には、フランジ水冷と制御圧延を利用した、低炭素当量圧延形鋼の製造方法が提案されている。特許文献2に記載された技術は、低炭素当量組成の鋼片を1100〜1300℃に加熱し圧延を開始して、中間圧延工程のリバース圧延のパス間でフランジを表層部の温度で750℃以下まで水冷し、かつ複熱過程でフランジ表層部の温度が低温γ〜α/γ二相共存温度域で圧延する工程を1回以上繰返し、フランジの圧延平均温度が950℃以下で総圧下量で20%以上圧下し、圧延終了後フランジ厚みに応じた冷却速度で冷却し圧延形鋼を得るというものである。   Patent Document 2 proposes a method for producing a low carbon equivalent rolled shape steel using flange water cooling and controlled rolling. In the technique described in Patent Document 2, a steel piece having a low carbon equivalent composition is heated to 1100 to 1300 ° C. to start rolling, and the flange is 750 ° C. at the surface layer temperature between the reverse rolling passes in the intermediate rolling process. Repeat the process of water cooling to the following and rolling in the double-heated process at the flange surface layer temperature in the low temperature γ to α / γ two-phase coexistence temperature range one or more times, and the total rolling reduction when the average rolling temperature of the flange is 950 ° C or less The rolling is reduced by 20% or more and cooled at a cooling rate corresponding to the flange thickness after rolling to obtain a rolled steel.

また、特許文献3には、フランジ内外面およびウェブ上下面の冷却復熱と熱間圧延とを組合わせた、板厚が40mmを超えるH形鋼の製造方法が提案されている。特許文献3に記載された技術は、フランジ内外面およびウェブ上下面の表層部をMs点直上まで冷却し直ちに粗圧延する工程を2回以上繰返し、その後被圧延材の表層部をMs点直上まで冷却し復熱する工程を1回以上実施し、表層温度を750℃以上として仕上圧延を施し、仕上圧延後にさらにMs点直上まで冷却し復熱する工程を1回以上繰り返すというものである。これにより、制御圧延等の複雑な工程を必要とせずに、高強度、高靭性化が可能であるとしている。
特許第2965813号公報 特許第2837056号公報 特許第3241444号公報
Patent Document 3 proposes a method for producing an H-section steel having a plate thickness exceeding 40 mm, which is a combination of cooling recuperation of the inner and outer surfaces of the flange and the upper and lower surfaces of the web and hot rolling. In the technique described in Patent Document 3, the process of cooling the surface layers of the inner and outer surfaces of the flange and the upper and lower surfaces of the web to just above the Ms point and immediately rough rolling is repeated twice or more, and then the surface layer of the material to be rolled is just above the Ms point. The process of cooling and reheating is performed at least once, finish rolling is performed with the surface layer temperature set to 750 ° C. or higher, and the process of cooling to the point just above the Ms point and reheating after the finish rolling is repeated one or more times. Thus, high strength and high toughness can be achieved without requiring a complicated process such as controlled rolling.
Japanese Patent No. 2965813 Japanese Patent No. 2837056 Japanese Patent No. 3241444

しかしながら、上記した従来技術はいずれも、鋼材の板厚方向を均一な組織に制御するという考え方を基本としたものであり、その結果、複雑な鋳造工程を必要とし鋳片の生産能率が低下すること、また圧延中水冷によりフェライト変態が促進されるため高強度が得にくいこと、また必要以上に合金添加を伴い溶接熱影響部(HAZ)靭性を低下させること、あるいは熱処理工程が必要になることによるリードタイムの増大などの問題が依然として残されたままとなっていた。   However, all of the above prior arts are based on the idea of controlling the thickness direction of the steel material to a uniform structure, and as a result, a complicated casting process is required and the production efficiency of the slab is reduced. In addition, it is difficult to obtain high strength because ferrite transformation is promoted by water cooling during rolling, and the heat-affected zone (HAZ) toughness is reduced by adding an alloy more than necessary, or a heat treatment process is required. Problems such as an increase in lead time remained.

本発明は、このような従来技術の問題を有利に解決し、引張強さが490MPa〜750MPaの高強度で、かつ耐震性に優れた低降伏比熱間圧延製H形鋼およびその製造方法を提案することを目的とする。   The present invention advantageously solves the problems of the prior art and proposes a H-shaped steel made of low yield specific hot rolled steel having a high tensile strength of 490 MPa to 750 MPa and excellent earthquake resistance and a method for producing the same. The purpose is to do.

本発明者らは、上記した課題を達成するために、新しい強度制御法について鋭意検討した。その結果、本発明者らは、板厚方向の組織変化を利用することにより、比較的生産性を損なうことなく、降伏比を80%以下に低く維持したまま、H形鋼の強度制御が可能であることを見出した。   In order to achieve the above-described problems, the present inventors diligently studied a new strength control method. As a result, the present inventors can control the strength of the H-section steel by utilizing the structural change in the plate thickness direction while maintaining the yield ratio as low as 80% or less without compromising productivity. I found out.

まず、本発明者らの行なった基礎的実験について説明する。   First, a basic experiment conducted by the present inventors will be described.

表1に示す組成の鋼素材a〜c(板厚:90mm)を用いて、図1に示すようなH形鋼圧延を模擬した熱間圧延実験を行い、板厚:12〜36mmの鋼板とした。鋼素材の圧延加熱温度は1250℃、圧延仕上温度は900℃とした。なお、熱間圧延終了後の冷却は、放冷、表裏面から水冷、あるいは片面より水冷、の3種とした。なお、冷却停止温度は700〜300℃の範囲に変化した。板厚平均での冷却速度は7〜40℃/sであった。   Using steel materials a to c (sheet thickness: 90 mm) having the composition shown in Table 1, a hot rolling experiment simulating H-shaped steel rolling as shown in FIG. did. The rolling heating temperature of the steel material was 1250 ° C, and the rolling finishing temperature was 900 ° C. In addition, the cooling after completion | finish of hot rolling was made into three types, cooling, water cooling from the front and back, or water cooling from one side. In addition, the cooling stop temperature changed to a range of 700 to 300 ° C. The cooling rate at the plate thickness average was 7 to 40 ° C./s.

Figure 2005264208
Figure 2005264208

得られた鋼板から、JIS Z 2201に規定される1号引張試験片を圧延方向を引張方向として採取し、JIS Z 2241の規定に準拠して引張試験を実施し、降伏強さYS、引張強さTSを求めた。得られた結果を図2に、降伏強さYSと引張強さTSの関係で示す。   From the obtained steel sheet, a No. 1 tensile test piece specified in JIS Z 2201 was taken with the rolling direction as the tensile direction, and a tensile test was conducted in accordance with the provisions of JIS Z 2241. Yield strength YS, tensile strength We asked for TS. The obtained result is shown in FIG. 2 by the relationship between the yield strength YS and the tensile strength TS.

片面を水冷した片面冷却材(□印)は、両面を水冷した両面冷却材(△印)に比べ降伏強さYSが低下しており、降伏比YRが放冷材(○印)と同程度の70%程度となっている。このことから、片面水冷により、80%以下の低降伏比を維持したままで高強度化を達成できるということを知見した。   One-sided cooling material (□ mark) with water cooling on one side has lower yield strength YS than double-sided cooling material (△ mark) with water cooling on both sides, and the yield ratio YR is comparable to that of the cooling material (○ mark). 70% of the total. From this, it was found that high strength can be achieved while maintaining a low yield ratio of 80% or less by single-sided water cooling.

つぎに、引張強さと降伏強さの制御因子について検討した。   Next, the control factors of tensile strength and yield strength were examined.

片面を水冷した片面冷却材の圧延方向断面(L方向断面)について、光学顕微鏡(倍率:200倍)により5視野以上、組織を観察し、画像解析装置を用いて板厚方向の組織分布を求めた。水冷側表層には、硬質相であるベイナイト、マルテンサイトを主体とする硬質層が形成されている。組織中のベイナイトおよびマルテンサイト量、すなわち硬質相分率を、板厚方向各位置(表面、1/4t、1/2t、3/4t、裏面)で面積率で測定し、体積率に換算し、得られた各位置の量(体積率)を平均して該鋼板板厚方向の平均硬質相分率(体積%)とした。得られた板厚方向の平均硬質相分率と、引張強さとの関係を図3に示す。図3から、板厚方向の平均硬質相分率が20体積%以上で、おおむね引張強さTS:490MPa以上の高強度を得ることができる。なお、平均硬質相分率が80体積%を超えると、引張強さは上昇するが同時に降伏強さ(耐力)も上昇し、降伏比が高くなり、さらに伸びも低下する。このことから、高強度で80%以下の低降伏比を維持するためには、板厚方向の平均硬質相分率は体積率で20〜80%とすることが良いという知見を得た。   Regarding the cross-section in the rolling direction (L-direction cross section) of the single-sided coolant that is water-cooled on one side, the structure is observed with an optical microscope (magnification: 200 times) over 5 fields of view, and the structure distribution in the plate thickness direction is obtained using an image analyzer. It was. A hard layer mainly composed of bainite and martensite, which are hard phases, is formed on the water-cooled side surface layer. The amount of bainite and martensite in the structure, that is, the hard phase fraction, is measured by area ratio at each position in the plate thickness direction (front surface, 1 / 4t, 1 / 2t, 3 / 4t, back surface) and converted to volume ratio. The amount (volume ratio) of each position obtained was averaged to obtain the average hard phase fraction (volume%) in the steel sheet thickness direction. The relationship between the obtained average hard phase fraction in the thickness direction and the tensile strength is shown in FIG. From FIG. 3, when the average hard phase fraction in the plate thickness direction is 20% by volume or more, a high strength generally having a tensile strength TS: 490 MPa or more can be obtained. When the average hard phase fraction exceeds 80% by volume, the tensile strength increases, but at the same time, the yield strength (yield strength) increases, the yield ratio increases, and the elongation also decreases. From this, in order to maintain a high yield and a low yield ratio of 80% or less, it was found that the average hard phase fraction in the thickness direction is preferably 20 to 80% by volume.

つぎに、片面を水冷した片面冷却材の、非水冷側の表層組織を顕微鏡観察した。非水冷側表層には、軟質相であるフェライトを主体とする軟質層が形成されている。この軟質層側の表面から1〜5mm深さについてフェライト粒の粒径を測定し、降伏強さYSとの関係で整理し、図4に示す。なお、フェライト粒径は、倍率:200倍で5視野以上観察し、各視野での平均粒径を画像解析装置を用いて円相当直径として求め、各視野の平均値をその鋼板の軟質層の平均フェライト粒径とした。図4から、軟質層側のフェライトの平均粒径を5μm以上とすることで、YS:325MPa以上540MPa以下の高強度を得ることができることを知見した。フェライトの平均粒径を40μm以下とすることでYS:325MPa以上5μm以上とすることでYS:540MPa以下が得られる。   Next, the surface layer structure of the non-water-cooled side of the single-sided coolant that was water-cooled on one side was observed with a microscope. A soft layer mainly composed of ferrite, which is a soft phase, is formed on the non-water-cooled side surface layer. The particle size of the ferrite grains is measured at a depth of 1 to 5 mm from the surface on the soft layer side, and arranged in relation to the yield strength YS, and is shown in FIG. The ferrite grain size was observed at 5 magnifications at 200 magnifications, the average grain size in each field was determined as the equivalent circle diameter using an image analyzer, and the average value for each field was determined for the soft layer of the steel sheet. The average ferrite particle size was used. From FIG. 4, it was found that high strength of YS: 325 MPa or more and 540 MPa or less can be obtained by setting the average particle diameter of the ferrite on the soft layer side to 5 μm or more. By setting the average grain size of ferrite to 40 μm or less, YS: 540 MPa or less can be obtained by setting YS: 325 MPa or more and 5 μm or more.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)熱間圧延により製造された圧延H形鋼であって、該圧延H形鋼のフランジ内外面の一方の表層が体積率で50%以上のベイナイトおよび/または焼戻しマルテンサイトを含む硬質層を、他方の表層が体積率で50%以上のフェライトを含む軟質層を有し、前記軟質層側のフェライトの平均粒径が5〜40μmで、かつフランジ板厚方向の平均値で、ベイナイトおよび/または焼戻しマルテンサイトを体積率で20〜80%含む組織を有することを特徴とする耐震性に優れた低降伏比圧延H形鋼。
(2)(1)において、前記組織に加えて、mass%で、C:0.01〜0.20%、 Si:0.6%以下、Mn:0.6〜1.6%、P:0.030%以下、S:0.030%以下、 Al:0.1%以下を含み、残部がFeおよび不可避的不純物からなる組成を有することを特徴とする低降伏比圧延H形鋼。
(3)(2)において、前記組成に加えてさらに、mass%で、Cu:1%以下、Ni:3%以下のうちから選ばれた1種または2種を含有することを特徴とする低降伏比圧延H形鋼。
(4)(2)または(3)において、前記組成に加えてさらに、mass%で、Cr:3%以下、Mo:1%以下、V:0.3%以下、Nb:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有することを特徴とする低降伏比圧延H形鋼。
(5)(2)ないし(4)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ti:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、Zr:0.1%以下、Hf:0.1%以下、REM:0.1%以下のうちから選ばれた1種または2種以上を含有することを特徴とする低降伏比圧延H形鋼。
(6)mass%で、C:0.01〜0.20%、Si:0.6%以下、Mn:0.6〜1.6%、 P:0.030%以下、S:0.030%以下、Al:0.1%以下を含む組成の鋼素材を、1000〜1350℃に再加熱したのち、熱間圧延終了温度を(Ar変態点−100℃)以上とする孔型圧延およびユニバーサル圧延により所定形状のH形鋼にする熱間圧延工程を行い、ついで、フランジ外面またはフランジ内面を5℃/s以上の平均冷却速度で、冷却面の表面温度で20〜650℃の範囲の冷却停止温度まで冷却したのち冷却を停止し、該表面温度で200℃以上の温度まで復熱させる冷却復熱処理を施すことを特徴とする耐震性に優れた低降伏比圧延H形鋼の製造方法。
(7)(6)において、前記組成に加えてさらに、mass%で、Cu:1%以下、Ni:3%以下のうちから選ばれた1種または2種を含有することを特徴とする低降伏比圧延H形鋼の製造方法。
(8)(6)または(7)において、前記組成に加えてさらに、mass%で、Cr:3%以下、Mo:1%以下、V:0.3%以下、Nb:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有することを特徴とする低降伏比圧延H形鋼の製造方法。
(9)(6)ないし(8)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ti:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、Zr:0.1%以下、Hf:0.1%以下、REM:0.1%以下のうちから選ばれた1種または2種以上を含有することを特徴とする低降伏比圧延H形鋼の製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) Rolled H-section steel manufactured by hot rolling, wherein one surface layer of the inner and outer surfaces of the flange of the rolled H-section steel includes bainite and / or tempered martensite having a volume ratio of 50% or more. The other surface layer has a soft layer containing 50% or more of ferrite by volume ratio, the average particle diameter of the ferrite on the soft layer side is 5 to 40 μm, and the average value in the flange thickness direction is bainite and A low yield ratio rolled H-section steel excellent in earthquake resistance characterized by having a structure containing 20 to 80% by volume of tempered martensite.
(2) In (1), in addition to the above structure, in mass%, C: 0.01 to 0.20%, Si: 0.6% or less, Mn: 0.6 to 1.6%, P: 0.030% or less, S: 0.030% or less, Low yield ratio rolled H-section steel having a composition comprising Al: 0.1% or less, the balance being Fe and inevitable impurities.
(3) In (2), in addition to the above-mentioned composition, it is further characterized by containing, in mass%, one or two selected from Cu: 1% or less and Ni: 3% or less Yield ratio rolled H-section steel.
(4) In (2) or (3), in addition to the above-mentioned composition, it is further mass%, Cr: 3% or less, Mo: 1% or less, V: 0.3% or less, Nb: 0.1% or less, B: 0.01 % Yield ratio rolled H-section steel, characterized by containing one or more selected from below.
(5) In any one of (2) to (4), in addition to the above composition, in mass%, Ti: 0.1% or less, Ca: 0.1% or less, Mg: 0.1% or less, Zr: 0.1% or less, A low yield ratio rolled H-section steel containing one or more selected from Hf: 0.1% or less and REM: 0.1% or less.
(6) Steel material having a composition of mass%, including C: 0.01 to 0.20%, Si: 0.6% or less, Mn: 0.6 to 1.6%, P: 0.030% or less, S: 0.030% or less, Al: 0.1% or less Is heated to 1000 to 1350 ° C., and the hot rolling step is performed to make the H-shaped steel of a predetermined shape by hole rolling and universal rolling with the hot rolling end temperature being (Ar 3 transformation point−100 ° C.) or higher. Then, after cooling the outer surface of the flange or the inner surface of the flange at an average cooling rate of 5 ° C./s or more to a cooling stop temperature in the range of 20 to 650 ° C. at the surface temperature of the cooling surface, the cooling is stopped, A method for producing a low yield ratio rolled H-section steel excellent in earthquake resistance, characterized by performing a cooling reheat treatment to reheat to a temperature of 200 ° C. or higher.
(7) In (6), in addition to the above-mentioned composition, it is further characterized by containing, in mass%, one or two selected from Cu: 1% or less and Ni: 3% or less Yield ratio rolled H-section steel manufacturing method.
(8) In (6) or (7), in addition to the above-mentioned composition, it is further mass%, Cr: 3% or less, Mo: 1% or less, V: 0.3% or less, Nb: 0.1% or less, B: 0.01 A method for producing a low yield ratio rolled H-section steel, comprising one or more selected from 1% or less.
(9) In any one of (6) to (8), in addition to the above composition, in mass%, Ti: 0.1% or less, Ca: 0.1% or less, Mg: 0.1% or less, Zr: 0.1% or less, A method for producing a low yield ratio rolled H-section steel comprising one or more selected from Hf: 0.1% or less and REM: 0.1% or less.

本発明によれば、比較的安価な成分系を用いても、高強度でかつ80%以下の低降伏比を有する耐震性に優れた熱間圧延製H形鋼を容易に製造することができ、産業上格段の効果を奏する。また、本発明によれば、構造物の信頼性が格段に向上するという効果もある。   According to the present invention, even when using a relatively inexpensive component system, it is possible to easily produce a hot rolled H-section steel having high strength and having a low yield ratio of 80% or less and excellent earthquake resistance. It has a remarkable industrial effect. Further, according to the present invention, there is an effect that the reliability of the structure is remarkably improved.

まず本発明圧延H形鋼の組織限定理由について説明する。   First, the reason for limiting the structure of the rolled H-section steel of the present invention will be described.

本発明の圧延H形鋼は、フランジ内外面の一方の表層が硬質層を、他方の表層が軟質層を有する組織を有する。なお、ここでいう「硬質層」とは、硬質相であるベイナイトおよび/または焼戻しマルテンサイトを、硬質層全体に対する体積率で50%以上含む層をいうものとする。なお、硬質層には、ベイナイトおよび/または焼戻しマルテンサイト以外に硬質層全体に対する体積率で50%以下のフェライト相、パーライト相を含んでも何ら問題はない。また、「軟質層」とは、軟質相であるフェライトを軟質層全体に対する体積率で50%以上含む層をいうものとする。なお、軟質層には、フェライト以外に、パーライト相、ベイナイト相、焼戻しマルテンサイト相を軟質層全体に対する体積率で50%以下含んでも何ら問題ない。   The rolled H-section steel of the present invention has a structure in which one surface layer of the inner and outer surfaces of the flange has a hard layer and the other surface layer has a soft layer. Here, the “hard layer” refers to a layer containing bainite and / or tempered martensite which are hard phases in a volume ratio of 50% or more with respect to the entire hard layer. In addition to the bainite and / or tempered martensite, there is no problem even if the hard layer contains a ferrite phase and a pearlite phase having a volume ratio of 50% or less with respect to the entire hard layer. The “soft layer” refers to a layer containing 50% or more by volume of the soft phase ferrite with respect to the entire soft layer. In addition to the ferrite, the soft layer may contain a pearlite phase, a bainite phase, and a tempered martensite phase in a volume ratio of 50% or less with respect to the entire soft layer.

フランジの一方の表層を硬質層とし、他方の表層を軟質層とすることにより、図2に示したように、降伏比を80%以下に維持したまま、引張強さ:490MPa以上の高強度を容易に確保できる。   By making one surface layer of the flange a hard layer and the other surface a soft layer, as shown in FIG. 2, the tensile strength: high strength of 490 MPa or more is maintained while maintaining the yield ratio at 80% or less. Easy to secure.

そして、本発明の圧延H形鋼は、フランジが、フランジ板厚方向の平均値で、硬質相であるベイナイトおよび/または焼戻しマルテンサイトを体積率で20〜80%含む組織を有する。フランジ板厚方向のベイナイトおよび/または焼戻しマルテンサイトの平均分率(平均硬質相分率)が、体積率で20%未満では、引張強さが490MPa未満と低くなり、高強度化を達成できなくなる。一方、平均硬質相分率が体積率で80%を超えると、降伏比が80%を超えて高くなり、低降伏比を確保できなくなる。   In the rolled H-section steel of the present invention, the flange has an average value in the thickness direction of the flange plate and has a structure containing 20-80% by volume of bainite and / or tempered martensite which are hard phases. If the average fraction of bainite and / or tempered martensite in the thickness direction of the flange plate (average hard phase fraction) is less than 20% by volume, the tensile strength will be less than 490 MPa, making it impossible to achieve high strength. . On the other hand, if the average hard phase fraction exceeds 80% by volume, the yield ratio exceeds 80%, and a low yield ratio cannot be secured.

また、本発明の圧延H形鋼では、軟質層側に形成されるフェライトを、平均で5〜40μmの粒径を有するフェライトとする。フェライトの平均粒径が5μm未満では、80%以下の低降伏比および延性を確保することが難しくなる。一方、フェライトの平均粒径が40μmを超えると、YSが低下するうえ靭性も劣化する。なお、フェライトの平均粒径の測定は、軟質層内のフェライトについて行なうものとする。   In the rolled H-section steel of the present invention, the ferrite formed on the soft layer side is a ferrite having a particle size of 5 to 40 μm on average. If the average grain size of ferrite is less than 5 μm, it is difficult to ensure a low yield ratio and ductility of 80% or less. On the other hand, when the average particle diameter of ferrite exceeds 40 μm, YS decreases and toughness deteriorates. In addition, the measurement of the average particle diameter of a ferrite shall be performed about the ferrite in a soft layer.

本発明の圧延H形鋼は、前記組織に加えて、mass%で、C:0.01〜0.20%、Si:0.6%以下、Mn:0.6〜1.6%、P:0.030%以下、S:0.030%以下、Al:0.1%以下を含み、あるいはさらにCu:1%以下、Ni:3%以下のうちから選ばれた1種または2種、および/またはCr:3%以下、Mo:1%以下、V:0.3%以下、Nb:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上、および/またはTi:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、Zr:0.1%以下、Hf:0.1%以下、REM:0.1%以下のうちから選ばれた1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる組成を有することが好ましい。   In addition to the above structure, the rolled H-section steel of the present invention is mass%, C: 0.01 to 0.20%, Si: 0.6% or less, Mn: 0.6 to 1.6%, P: 0.030% or less, S: 0.030% or less. Al: 0.1% or less, or Cu: 1% or less, Ni: 1 or 2 selected from 3% or less, and / or Cr: 3% or less, Mo: 1% or less, V : 0.3% or less, Nb: 0.1% or less, B: One or more selected from 0.01% or less, and / or Ti: 0.1% or less, Ca: 0.1% or less, Mg: 0.1% or less, It preferably has a composition comprising one or more selected from Zr: 0.1% or less, Hf: 0.1% or less, and REM: 0.1% or less, with the balance being Fe and inevitable impurities.

次に、組成の限定理由について説明する。以下、とくに断らない限り、mass%は単に%で記す。   Next, the reason for limiting the composition will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.

C:0.01〜0.20%
Cは、圧延H形鋼の強度を増加させる元素であり、所定値以上の強度を確保するために本発明では0.01%以上含有することが好ましい。一方、0.20%を超える含有は、溶接部を硬化させ、特に仮付け溶接部など小入熱溶接部で溶接割れを生じる懸念がある。このため、Cは0.01〜0.20%の範囲に限定することが好ましい。
C: 0.01-0.20%
C is an element that increases the strength of the rolled H-section steel, and is preferably contained in an amount of 0.01% or more in the present invention in order to ensure a strength of a predetermined value or more. On the other hand, when the content exceeds 0.20%, the welded portion is hardened, and there is a concern that a weld crack may occur in a small heat input welded portion such as a tack welded portion. For this reason, C is preferably limited to a range of 0.01 to 0.20%.

Si:0.6%以下
Siは、安価でかつ、鋼中に固溶して強度を上昇させるとともに、溶製段階で脱酸剤として作用する元素であり、このような効果を得るためには0.05%以上含有させることが望ましい。一方、0.6%を超える含有は、靭性を低下させる。このために、Siは0.6%以下に限定することが好ましい。
Si: 0.6% or less
Si is an inexpensive element that dissolves in steel to increase strength and acts as a deoxidizer in the melting stage. To obtain such an effect, 0.05% or more should be contained. desirable. On the other hand, the content exceeding 0.6% lowers the toughness. For this reason, it is preferable to limit Si to 0.6% or less.

Mn:0.6〜1.6%
Mnは、Siと同様に、圧延H形鋼の強度向上に有効に作用する元素であり、本発明では0.6%以上含有させることが好ましい。一方、1.6%を超える含有は、溶接性を低下させる。このため、Mnは0.6〜1.6%の範囲に限定することが好ましい。
Mn: 0.6-1.6%
Mn, like Si, is an element that effectively works to improve the strength of rolled H-section steel, and is preferably contained in an amount of 0.6% or more in the present invention. On the other hand, if the content exceeds 1.6%, weldability decreases. For this reason, it is preferable to limit Mn to the range of 0.6 to 1.6%.

P:0.030%以下、S:0.030%以下
P、Sは、鋼中に不可避的不純物として存在し、靭性や耐焼戻し脆性などに対して悪影響を及ぼすため、極力低減することが望ましい。しかし、P:0.030%以下、S:0.030%以下であれば、それらの悪影響は小さい。このため、Pは0.030%以下、Sは0.030%以下に限定することが好ましい。
P: 0.030% or less, S: 0.030% or less P and S are present as unavoidable impurities in steel and adversely affect toughness and tempering brittleness, so it is desirable to reduce them as much as possible. However, if P: 0.030% or less and S: 0.030% or less, those adverse effects are small. For this reason, it is preferable to limit P to 0.030% or less and S to 0.030% or less.

Al:0.1%以下
Alは、脱酸剤として作用する元素であり、このような効果を得るためには、0.005%以上含有させることが好ましい。一方、0.1%を超える含有は、鋼の清浄性を低下させる。このため、Alは0.1%以下に限定することが好ましい。なお、Siなどの他元素にて脱酸処理を行う場合には、無添加でもよく、この場合には不可避的不純物として、0.005%未満の含有となる。
Al: 0.1% or less
Al is an element that acts as a deoxidizer, and in order to obtain such an effect, 0.005% or more is preferably contained. On the other hand, the content exceeding 0.1% lowers the cleanliness of the steel. For this reason, it is preferable to limit Al to 0.1% or less. In addition, when performing a deoxidation process with other elements, such as Si, you may not add, but in this case, it will contain less than 0.005% as an unavoidable impurity.

上記した基本組成に加えて、必要に応じ、さらにCu:1%以下、Ni:3%以下のうちから選ばれた1種または2種、および/または、Cr:3%以下、Mo:1%以下、V:0.3%以下、Nb:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上、および/または、Ti:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、Zr:0.1%以下、Hf:0.1%以下、REM:0.1%以下のうちから選ばれた1種または2種以上を、選択して含有してもよい。なお、上記した成分以外の残部は、Feおよび不可避的不純物である。   In addition to the above basic composition, if necessary, one or two selected from Cu: 1% or less, Ni: 3% or less, and / or Cr: 3% or less, Mo: 1% Hereinafter, V: 0.3% or less, Nb: 0.1% or less, B: One or more selected from 0.01% or less, and / or Ti: 0.1% or less, Ca: 0.1% or less, Mg: One or more selected from 0.1% or less, Zr: 0.1% or less, Hf: 0.1% or less, and REM: 0.1% or less may be selected and contained. The balance other than the components described above is Fe and inevitable impurities.

Cu:1%以下、Ni:3%以下のうちから選ばれた1種または2種
Cu、Niは、固溶強化元素であり、焼入れ性を向上させることなくH形鋼の強度を上昇させることが可能であり、とくに薄肉フランジH形鋼の高強度化に有効であり、必要に応じ選択して含有できる。含有する場合には、Cu:0.05%以上、Ni:0.05%以上含有することが好ましいが、1%を超えるCuの含有は、圧延時の表面割れを助長し、顕著なCu析出脆化も生じる。また、Niは高価な元素であり、3%以下の含有に限定することが好ましい。
One or two selected from Cu: 1% or less, Ni: 3% or less
Cu and Ni are solid solution strengthening elements that can increase the strength of H-section steel without improving hardenability, and are particularly effective for increasing the strength of thin-wall flange H-section steel. It can be selected depending on the content. If contained, Cu: 0.05% or more, Ni: 0.05% or more is preferable, but inclusion of Cu exceeding 1% promotes surface cracking during rolling and causes significant Cu precipitation embrittlement. . Ni is an expensive element and is preferably limited to 3% or less.

Cr:3%以下、Mo:1%以下、V:0.3%以下、Nb:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上
Cr、Mo、V、Nb、Bはいずれも、主として変態強化元素であり、とくに薄肉フランジH形鋼の場合には、軟質フェライト相の形成を阻害し、また、加速冷却による冷却速度が小さくなる主として厚肉フランジH形鋼の場合には、焼入れ性を向上し、H形鋼の高強度化に寄与するため、H形鋼の強度増加を目的として必要に応じ選択して含有できる。なお、Mo、V、Nbの場合には、一部が冷却後の復熱過程で析出することで特に降伏強さの増加に寄与する。しかし、Crを3%、Moを1%、Vを0.3%、Nbを0.1%、Bを0.01%超える含有は、靭性、溶接性、HAZ靭性を劣化させるため、それぞれ上限とした。
One or more selected from Cr: 3% or less, Mo: 1% or less, V: 0.3% or less, Nb: 0.1% or less, B: 0.01% or less
Cr, Mo, V, Nb, and B are all transformation strengthening elements. In particular, in the case of a thin-walled flange H-shaped steel, the formation of a soft ferrite phase is inhibited, and the cooling rate by accelerated cooling is reduced. In the case of a thick-walled flange H-shaped steel mainly, the hardenability is improved and it contributes to increasing the strength of the H-shaped steel. Therefore, it can be selected and contained as needed for the purpose of increasing the strength of the H-shaped steel. In addition, in the case of Mo, V, and Nb, a part of them precipitates during the recuperation process after cooling, which contributes particularly to an increase in yield strength. However, if Cr exceeds 3%, Mo exceeds 1%, V exceeds 0.3%, Nb exceeds 0.1%, and B exceeds 0.01%, the toughness, weldability, and HAZ toughness are deteriorated.

Ti:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、Zr:0.1%以下、Hf:0.1%以下、REM:0.1%以下のうちから選ばれた1種または2種以上
Ti、Ca、Mg、Zr、Hf、REMはいずれも、溶接熱影響部のオーステナイト粒径を微細化させる有効な元素であり、必要に応じ選択して含有できる。一方、それぞれ0.1%を超える過剰な含有は、清浄度を低下し、靭性や延性を低下させる。このため、Ti:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、Zr:0.1%以下、Hf:0.1%以下、REM:0.1%以下に限定することが好ましい。なお、Ti、Ca、Mg、Zr、Hf、REMは、いずれも強い脱酸元素でもあり、SiやAlに代えて脱酸剤として添加することもできる。
One or more selected from Ti: 0.1% or less, Ca: 0.1% or less, Mg: 0.1% or less, Zr: 0.1% or less, Hf: 0.1% or less, REM: 0.1% or less
Ti, Ca, Mg, Zr, Hf, and REM are all effective elements for refining the austenite grain size of the weld heat affected zone, and can be selected and contained as necessary. On the other hand, an excessive content exceeding 0.1% respectively reduces the cleanliness and reduces toughness and ductility. Therefore, it is preferable to limit to Ti: 0.1% or less, Ca: 0.1% or less, Mg: 0.1% or less, Zr: 0.1% or less, Hf: 0.1% or less, and REM: 0.1% or less. Ti, Ca, Mg, Zr, Hf, and REM are all strong deoxidizing elements, and can be added as a deoxidizing agent instead of Si or Al.

つぎに、本発明の圧延H形鋼の好ましい製造方法について説明する。   Below, the preferable manufacturing method of the rolling H-section steel of this invention is demonstrated.

まず、上記した組成の鋼素材を、1000〜1350℃に再加熱したのち、熱間圧延終了温度が(Ar変態点−100℃)以上の温度とする孔型圧延およびユニバーサル圧延により所定形状のH形鋼にする熱間圧延工程を施す。
なお、鋼素材の製造方法は、本発明ではとくに限定しない。通常の溶製方法、鋳造方法がいずれも好適に適用できるが、鋳造方法は連続鋳造法とすることが経済的に有利となる。
First, after reheating the steel material having the above composition to 1000 to 1350 ° C., the hot rolling finish temperature is set to a temperature equal to or higher than (Ar 3 transformation point−100 ° C.), and a predetermined shape is formed by universal rolling and universal rolling. A hot rolling process for forming H-shaped steel is performed.
In addition, the manufacturing method of a steel raw material is not specifically limited in this invention. Both normal melting methods and casting methods can be suitably applied, but it is economically advantageous to use a continuous casting method as the casting method.

鋼素材は、一旦、変形抵抗の低い均一なオーステナイトに変態させるために1000℃以上に再加熱することが好ましい。一方、鋼素材を、1350℃を超えて再加熱すると、酸化が著しくなり、表面疵やスケールロスが増大する危険性が高くなる。このため、鋼素材の再加熱温度は1000〜1350℃の範囲とすることが好ましい。   The steel material is preferably reheated to 1000 ° C. or higher in order to transform it into uniform austenite with low deformation resistance. On the other hand, if the steel material is reheated above 1350 ° C., the oxidation becomes significant and the risk of increasing surface defects and scale loss increases. For this reason, it is preferable to make the reheating temperature of a steel raw material into the range of 1000-1350 degreeC.

加熱された鋼素材は孔型圧延およびユニバーサル圧延により、所定寸法形状のH形鋼とされる。孔型圧延およびユニバーサル圧延は、熱間圧延終了温度を(Ar変態点−100)℃以上の温度とすることが好ましい。熱間圧延終了温度が(Ar変態点−100)℃未満では、生成するフェライト中に加工歪が導入され、引張強さの増加以上に降伏強さの増加が著しくなり、降伏比が上昇する。このため、熱間圧延終了温度は、(Ar変態点−100)℃以上に限定することが好ましい。なお、より好ましくは、(Ar変態点−30)℃〜950℃の範囲である。なお、Ar変態点は、次(1)式
Ar=910−273C+25Si−74Mn−56Ni−16Cr−9Mo−5Cu−1620Nb ………(1)
を用いて計算するものとする。なお、熱間圧延終了温度は、鋼板表面温度とする。
The heated steel material is made into an H-shaped steel having a predetermined size and shape by hole rolling and universal rolling. In the hole rolling and universal rolling, it is preferable that the hot rolling end temperature is set to a temperature of (Ar 3 transformation point−100) ° C. or higher. When the hot rolling finish temperature is less than (Ar 3 transformation point−100) ° C., work strain is introduced into the formed ferrite, the yield strength increases more than the tensile strength, and the yield ratio increases. . For this reason, it is preferable to limit the hot rolling end temperature to (Ar 3 transformation point−100) ° C. or higher. Incidentally, more preferably in the range of (Ar 3 transformation point -30) ℃ ~950 ℃. The Ar 3 transformation point is expressed by the following formula (1): Ar 3 = 910-273C + 25Si-74Mn-56Ni-16Cr-9Mo-5Cu-1620Nb (1)
It shall be calculated using. The hot rolling end temperature is the steel sheet surface temperature.

ついで、熱間圧延工程を終了したH形鋼に、熱間圧延終了後、直ちにあるいは所望の温度まで空冷したのち、ついで、冷却復熱処理を施す。   Next, after the hot rolling is finished, the H-shaped steel that has finished the hot rolling process is air-cooled immediately or to a desired temperature, and then subjected to a cooling reheat treatment.

冷却復熱処理は、フランジ外面またはフランジ内面を5℃/s以上の平均冷却速度で、該冷却面の表面温度で20〜650℃の範囲の冷却停止温度まで冷却したのち冷却を停止し、該表面温度で200℃以上の温度まで復熱させる処理とすることが好ましい。   In the cooling reheat treatment, the outer surface of the flange or the inner surface of the flange is cooled at an average cooling rate of 5 ° C./s or more to a cooling stop temperature in the range of 20 to 650 ° C. at the surface temperature of the cooling surface. It is preferable that the heat treatment is reheated to a temperature of 200 ° C. or higher.

本発明では、フランジ内外面の内の一方から冷却するのが望ましく、その際、フランジ板内の平均冷却速度で5℃/s以上で冷却することが好ましい。冷却は硬化層深さを得る観点から水冷とすることが好ましい。冷却速度が、5℃/s未満では、フランジの冷却面に硬質層を形成することができなくなる。なお、好ましくは8℃/s以上である。冷却速度は伝熱計算により求めるフランジ板内の平均冷却速度である。   In the present invention, it is desirable to cool from one of the inner and outer surfaces of the flange, and at this time, it is preferable to cool at an average cooling rate in the flange plate of 5 ° C./s or more. The cooling is preferably water cooling from the viewpoint of obtaining the hardened layer depth. When the cooling rate is less than 5 ° C./s, a hard layer cannot be formed on the cooling surface of the flange. In addition, Preferably it is 8 degrees C / s or more. The cooling rate is an average cooling rate in the flange plate obtained by heat transfer calculation.

冷却停止温度は、冷却面の表面温度で20〜650℃の範囲の温度とすることが好ましい。
冷却停止温度が、650℃を超えて高くなると、所望のフランジ板厚方向の平均硬質相分率が確保できず、所望の引張強さを確保できなくなる。一方、冷却停止温度の下限は水温の20℃に限定したが、表面硬さ低減のために復熱による焼戻し効果を考慮して、200℃以上とすることが望ましい。なお、さらに好ましくは250℃以上である。
The cooling stop temperature is preferably a temperature in the range of 20 to 650 ° C. as the surface temperature of the cooling surface.
When the cooling stop temperature exceeds 650 ° C., the desired average hard phase fraction in the flange plate thickness direction cannot be ensured, and the desired tensile strength cannot be ensured. On the other hand, although the lower limit of the cooling stop temperature is limited to 20 ° C. of the water temperature, it is desirable to set it to 200 ° C. or higher in consideration of the tempering effect by recuperation for reducing the surface hardness. More preferably, it is 250 ° C. or higher.

冷却に際しては、冷却停止後、冷却面の表面温度で、200℃以上の温度まで復熱させる冷却とすることが好ましい。復熱温度を200℃以上とするためには、冷却時に250℃以上とすることが好ましい。復熱温度が200℃未満では、冷却面が過度に硬化し、穴あけなどの加工性、延性が低下する。なお、好ましくは、350℃以上である。   In the cooling, it is preferable that the cooling is performed such that after cooling is stopped, the surface temperature of the cooling surface is reheated to a temperature of 200 ° C. or higher. In order to set the recuperation temperature to 200 ° C. or higher, it is preferable to set it to 250 ° C. or higher during cooling. When the recuperation temperature is less than 200 ° C., the cooling surface is excessively cured, and workability such as drilling and ductility are deteriorated. In addition, Preferably, it is 350 degreeC or more.

また、フランジ内外面のうち、上記した冷却を施さない他の面(非冷却面)は、表層に軟質層を形成させるため、放冷のまま、あるいは冷却速度:1℃/s以下の緩冷とすることが好ましい。   In addition, the other surfaces (non-cooled surfaces) that are not subjected to the above-described cooling among the inner and outer surfaces of the flange are left to cool or slowly cooled at a cooling rate of 1 ° C./s or less in order to form a soft layer on the surface layer. It is preferable that

表2に示す組成の溶鋼を転炉で溶製し、連続鋳造法でH形素材となるビームブランク状鋳片(鋼素材)とした。ついで、これら鋼素材を表3に示す加熱温度に再加熱したのち、表3に示す条件の熱間圧延工程を施してH形鋼とし、ついでフランジ内外面に表3に示す条件で冷却復熱処理を施した。なお、一部のH形鋼では、フランジ外面および内面に冷却復熱処理を施し、比較例とした。また、一部のH形鋼では、フランジ内外面に冷却復熱処理を施さず、放冷のままとした。   Molten steel having the composition shown in Table 2 was melted in a converter and used as a beam blank slab (steel material) to be an H-shaped material by a continuous casting method. Next, after reheating these steel materials to the heating temperatures shown in Table 3, they are subjected to a hot rolling process with the conditions shown in Table 3 to form H-shaped steels, and then cooled and reheat-treated under the conditions shown in Table 3 on the inner and outer surfaces of the flanges. Was given. In some H-section steels, cooling outer heat treatment was applied to the outer surface and inner surface of the flange as a comparative example. Further, in some H-section steels, the cooling inner heat treatment was not performed on the inner and outer surfaces of the flange, and it was left to cool.

Figure 2005264208
Figure 2005264208

Figure 2005264208
Figure 2005264208

かくして得られたH形鋼より、JIS Z 2201に規定される1号引張試験片をフランジ幅の1/4の部分より引張方向を圧延方向として採取した。また、JIS Z 2202に規定されるVノッチ試験片をフランジ幅の1/4の部分で、板厚1/4t部より採取した。なお、引張試験は室温で、シャルピー衝撃試験は0℃で実施した。また、ビッカース硬さ計を用いて、荷重10kgの条件でフランジの水冷面側表層部(表面から1mm)の硬さを測定した。   From the H-shaped steel thus obtained, No. 1 tensile test piece defined in JIS Z 2201 was taken from the portion of 1/4 of the flange width as the rolling direction. Further, a V-notch test piece defined in JIS Z 2202 was taken from a 1/4 t part of the plate thickness at a quarter of the flange width. The tensile test was performed at room temperature and the Charpy impact test was performed at 0 ° C. Moreover, the hardness of the surface layer part (1 mm from the surface) of the water cooling surface side of the flange was measured using a Vickers hardness tester under a load of 10 kg.

さらに、フランジの板厚方向断面(L方向断面)について、光学顕微鏡を用いて組織を調査した。観察位置は、表面(外面)、1/4t、1/2t、3/4tおよび裏面(内面)とし、各位置で5視野以上観察し、各位置での硬質相であるベイナイトおよびマルテンサイト(焼戻し)の組織分率を画像解析装置により算出し、各位置での硬質相分率とし、さらに各位置での硬質相分率を平均して、フランジ板厚方向の平均硬質相分率とした。なお、組織観察から、フランジの表層について、硬質層、軟質層の有無を確認し、硬質層、軟質層の組織分率を同様に求めた。   Furthermore, the structure was investigated using the optical microscope about the plate | board thickness direction cross section (L direction cross section) of a flange. The observation position is the front surface (outer surface), 1 / 4t, 1 / 2t, 3 / 4t, and back surface (inner surface). At each position, five or more fields of view are observed, and bainite and martensite (tempering) that are hard phases at each position. ) Was calculated by an image analyzer, and the hard phase fraction at each position was averaged, and the hard phase fraction at each position was averaged to obtain the average hard phase fraction in the flange plate thickness direction. In addition, from the structure observation, the presence or absence of the hard layer and the soft layer was confirmed on the surface layer of the flange, and the tissue fractions of the hard layer and the soft layer were similarly determined.

また、軟質層については、表面から1〜5mmの領域を光学顕微鏡で組織を5視野以上観察し、フェライト粒径を画像解析装置を用いて、円相当直径として測定した。   For the soft layer, the region of 1 to 5 mm from the surface was observed with 5 or more fields of view with an optical microscope, and the ferrite particle size was measured as an equivalent circle diameter using an image analyzer.

また、フランジ部から再現熱サイクル試験片を採取し、入熱35kJ/cm相当の再現熱サイクル(ピーク温度:1400℃、800〜500℃の冷却時間:70s、溶接パス間温度:350℃)を付与したのち、シャルピー衝撃試験片(Vノッチ標準サイズ)を採取し、0℃で試験し、吸収エネルギーを求め、HAZ靭性を評価した。   In addition, a reproducible heat cycle test piece is collected from the flange part, and a reproducible heat cycle equivalent to a heat input of 35 kJ / cm (peak temperature: 1400 ° C, cooling time of 800 to 500 ° C: 70 s, temperature between welding passes: 350 ° C) After application, a Charpy impact test piece (V-notch standard size) was collected, tested at 0 ° C., the absorbed energy was determined, and HAZ toughness was evaluated.

得られた結果を表4に示す。   Table 4 shows the obtained results.

Figure 2005264208
Figure 2005264208

本発明例はいずれも、引張強さ:490MPa以上の高強度を有し、しかも80%以下の低降伏比を有し、しかも母材靭性に優れた高強度低降伏比圧延H形鋼となっている。また、本発明例はいずれも、0℃におけるシャルピー吸収エネルギーが70J以上とHAZ靭性にも優れた圧延H形鋼となっている。一方、本発明の範囲を外れる比較例は、強度が低いか、あるいは降伏比が高く、延性や靭性が低い。   Each of the inventive examples is a high strength, low yield ratio rolled H-section steel having a high tensile strength of 490 MPa or more, a low yield ratio of 80% or less, and excellent base material toughness. ing. In addition, all of the inventive examples are rolled H-section steels having Charpy absorbed energy at 0 ° C. of 70 J or more and excellent HAZ toughness. On the other hand, comparative examples that are outside the scope of the present invention have low strength, high yield ratio, and low ductility and toughness.

基礎的実験における加熱、圧延、冷却条件を模式的に示す説明図である。It is explanatory drawing which shows typically the heating, rolling, and cooling conditions in a basic experiment. 降伏強さYSと引張強さTSの関係を示すグラフである。It is a graph which shows the relationship between yield strength YS and tensile strength TS. 引張強さTSにおよぼす板厚方向の平均硬質相分率の影響を示すグラフである。It is a graph which shows the influence of the average hard phase fraction of the plate | board thickness direction on the tensile strength TS. 降伏強さYSと軟質層フェライトの平均粒径との関係を示すグラフである。It is a graph which shows the relationship between yield strength YS and the average particle diameter of a soft layer ferrite.

Claims (6)

熱間圧延により製造された圧延H形鋼であって、該圧延H形鋼のフランジ内外面の一方の表層が体積率で50%以上のベイナイトおよび/または焼戻しマルテンサイトを含む硬質層を、他方の表層が体積率で50%以上のフェライトを含む軟質層を有し、前記軟質層側のフェライトの平均粒径が5〜40μmで、かつフランジ板厚方向の平均値で、ベイナイトおよび/または焼戻しマルテンサイトを体積率で20〜80%含む組織を有することを特徴とする耐震性に優れた低降伏比圧延H形鋼。   A rolled H-section steel produced by hot rolling, wherein one surface layer of the inner and outer surfaces of the flange of the rolled H-section steel has a hard layer containing bainite and / or tempered martensite having a volume ratio of 50% or more, The surface layer has a soft layer containing ferrite of 50% or more by volume, the ferrite has an average particle diameter of 5 to 40 μm, and an average value in the flange plate thickness direction, bainite and / or tempering A low yield ratio rolled H-section steel excellent in earthquake resistance, characterized by having a structure containing martensite in a volume ratio of 20 to 80%. 前記組織に加えて、mass%で、
C:0.01〜0.20%、 Si:0.6%以下、
Mn:0.6〜1.6%、 P:0.030%以下、
S:0.030%以下、 Al:0.1%以下
を含み、残部がFeおよび不可避的不純物からなる組成を有することを特徴とする請求項1に記載の低降伏比圧延H形鋼。
In addition to the organization, mass%,
C: 0.01-0.20%, Si: 0.6% or less,
Mn: 0.6 to 1.6%, P: 0.030% or less,
2. The low yield ratio rolled H-section steel according to claim 1, comprising: S: 0.030% or less, Al: 0.1% or less, with the balance being composed of Fe and inevitable impurities.
前記組成に加えてさらに、mass%で、Cu:1%以下、Ni:3%以下のうちから選ばれた1種または2種を含有することを特徴とする請求項2に記載の低降伏比圧延H形鋼。   The low yield ratio according to claim 2, further comprising one or two kinds selected from Cu: 1% or less and Ni: 3% or less in mass% in addition to the composition. Rolled H-section steel. 前記組成に加えてさらに、mass%で、Cr:3%以下、Mo:1%以下、V:0.3%以下、Nb:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項2または3に記載の低降伏比圧延H形鋼。   In addition to the above-described composition, mass%, Cr: 3% or less, Mo: 1% or less, V: 0.3% or less, Nb: 0.1% or less, B: 0.01% or less The low yield ratio rolled H-section steel according to claim 2 or 3, characterized by containing seeds or more. 前記組成に加えてさらに、mass%で、Ti:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、
Zr:0.1%以下、Hf:0.1%以下、REM:0.1%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項2ないし4のいずれかに記載の低降伏比圧延H形鋼。
In addition to the above composition, mass: Ti: 0.1% or less, Ca: 0.1% or less, Mg: 0.1% or less,
The low yield according to any one of claims 2 to 4, comprising one or more selected from Zr: 0.1% or less, Hf: 0.1% or less, and REM: 0.1% or less. Specific rolled H-section steel.
mass%で、
C:0.01〜0.20%、 Si:0.6%以下、
Mn:0.6〜1.6%、 P:0.030%以下、
S:0.030%以下、 Al:0.1%以下
を含む組成の鋼素材を、1000〜1350℃に再加熱したのち、熱間圧延終了温度を(Ar変態点−100℃)以上とする孔型圧延およびユニバーサル圧延により所定形状のH形鋼にする熱間圧延工程を行い、ついで、フランジ外面またはフランジ内面を5℃/s以上の平均冷却速度で、冷却面の表面温度で20〜650℃の範囲の冷却停止温度まで冷却したのち冷却を停止し、該表面温度で200℃以上の温度まで復熱させる冷却復熱処理を施すことを特徴とする耐震性に優れた低降伏比圧延H形鋼の製造方法。
mass%
C: 0.01-0.20%, Si: 0.6% or less,
Mn: 0.6 to 1.6%, P: 0.030% or less,
Soil rolling with a composition containing 0.030% or less and Al: 0.1% or less is reheated to 1000-1350 ° C, and hot rolling finish temperature is set to (Ar 3 transformation point-100 ° C) or more. And a hot rolling process to obtain a H-shaped steel with a predetermined shape by universal rolling, and then the surface temperature of the cooling surface is 20 to 650 ° C. at an average cooling rate of 5 ° C./s or more on the flange outer surface or flange inner surface. Of low yield ratio rolled H-section steel with excellent earthquake resistance, which is characterized by performing cooling reheat treatment after cooling to a cooling stop temperature of 1, after cooling is stopped and reheating to a temperature of 200 ° C. or higher at the surface temperature. Method.
JP2004076632A 2004-03-17 2004-03-17 Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof Expired - Lifetime JP4329583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004076632A JP4329583B2 (en) 2004-03-17 2004-03-17 Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004076632A JP4329583B2 (en) 2004-03-17 2004-03-17 Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005264208A true JP2005264208A (en) 2005-09-29
JP4329583B2 JP4329583B2 (en) 2009-09-09

Family

ID=35089063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004076632A Expired - Lifetime JP4329583B2 (en) 2004-03-17 2004-03-17 Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4329583B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101205144B1 (en) 2010-06-28 2012-11-26 현대제철 주식회사 H-steel for building structure and method for producing the same
KR101505281B1 (en) * 2013-04-30 2015-03-24 현대제철 주식회사 Shape steel and method of manufacturing the shape steel
JP2016141834A (en) * 2015-01-30 2016-08-08 新日鐵住金株式会社 High strength ultra thick h-shaped steel excellent in toughness and production method therefor
JP2017071827A (en) * 2015-10-07 2017-04-13 新日鐵住金株式会社 H shaped steel and manufacturing method therefor
JP2017166064A (en) * 2016-03-09 2017-09-21 Jfeスチール株式会社 Non-refining low yield ratio high tensile thick steel sheet, manufacturing method therefor, shaped steel and structure
KR101808440B1 (en) 2016-07-25 2017-12-12 현대제철 주식회사 Steel for inverted angle and method of manufacturing the same
KR101808447B1 (en) 2016-09-20 2018-01-18 현대제철 주식회사 Shape steel and method of manufacturing the same
WO2018117228A1 (en) * 2016-12-21 2018-06-28 新日鐵住金株式会社 H-steel and method for manufacturing same
JP2018123367A (en) * 2017-01-31 2018-08-09 Jfeスチール株式会社 Non-heat-treated low yield ratio high tensile thick steel sheet, manufacturing method therefor and shape steel and structure
US10900099B2 (en) 2016-03-02 2021-01-26 Nippon Steel Corporation Steel H-shape for low temperature service and manufacturing method therefor
JP2021507091A (en) * 2017-12-18 2021-02-22 アルセロールミタル Steel section with a thickness of at least 100 mm and its manufacturing method
WO2024091057A1 (en) * 2022-10-28 2024-05-02 현대제철 주식회사 Steel section and steel section manufacturing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631299B2 (en) * 2004-03-25 2011-02-16 Jfeスチール株式会社 Low yield ratio rolled H-section steel excellent in fire resistance and manufacturing method thereof
US9863022B2 (en) 2011-12-15 2018-01-09 Nippon Steel & Sumitomo Metal Corporation High-strength ultra-thick H-beam steel
US9834931B2 (en) 2013-03-14 2017-12-05 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
KR101804941B1 (en) * 2016-11-11 2017-12-05 동국제강주식회사 Rebar having excellent yield ratio and elongation and manufacturing method thereof
CN110499468A (en) * 2019-09-22 2019-11-26 江苏方圆型钢有限公司 A kind of high-yield strength hot-rolled steel section and its production technology
CN110468337A (en) * 2019-09-23 2019-11-19 包头钢铁(集团)有限责任公司 A kind of low-cost high-strength of boron containing niobium is hot rolled H-shaped and preparation method thereof
CN110468344A (en) * 2019-09-23 2019-11-19 包头钢铁(集团)有限责任公司 A kind of boron low-cost high-strength of vanadium containing niobium is hot rolled H-shaped and preparation method thereof
KR102498134B1 (en) * 2020-12-15 2023-02-08 주식회사 포스코 Ultra-thick steel plate having excellent low-temperature impact toughness and method for manufacturing thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101205144B1 (en) 2010-06-28 2012-11-26 현대제철 주식회사 H-steel for building structure and method for producing the same
KR101505281B1 (en) * 2013-04-30 2015-03-24 현대제철 주식회사 Shape steel and method of manufacturing the shape steel
JP2016141834A (en) * 2015-01-30 2016-08-08 新日鐵住金株式会社 High strength ultra thick h-shaped steel excellent in toughness and production method therefor
JP2017071827A (en) * 2015-10-07 2017-04-13 新日鐵住金株式会社 H shaped steel and manufacturing method therefor
US10900099B2 (en) 2016-03-02 2021-01-26 Nippon Steel Corporation Steel H-shape for low temperature service and manufacturing method therefor
JP2017166064A (en) * 2016-03-09 2017-09-21 Jfeスチール株式会社 Non-refining low yield ratio high tensile thick steel sheet, manufacturing method therefor, shaped steel and structure
KR101808440B1 (en) 2016-07-25 2017-12-12 현대제철 주식회사 Steel for inverted angle and method of manufacturing the same
KR101808447B1 (en) 2016-09-20 2018-01-18 현대제철 주식회사 Shape steel and method of manufacturing the same
JP6468408B2 (en) * 2016-12-21 2019-02-13 新日鐵住金株式会社 H-section steel and its manufacturing method
JPWO2018117228A1 (en) * 2016-12-21 2019-04-04 新日鐵住金株式会社 H-section steel and its manufacturing method
WO2018117228A1 (en) * 2016-12-21 2018-06-28 新日鐵住金株式会社 H-steel and method for manufacturing same
JP2018123367A (en) * 2017-01-31 2018-08-09 Jfeスチール株式会社 Non-heat-treated low yield ratio high tensile thick steel sheet, manufacturing method therefor and shape steel and structure
JP2021507091A (en) * 2017-12-18 2021-02-22 アルセロールミタル Steel section with a thickness of at least 100 mm and its manufacturing method
WO2024091057A1 (en) * 2022-10-28 2024-05-02 현대제철 주식회사 Steel section and steel section manufacturing method

Also Published As

Publication number Publication date
JP4329583B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
JP4329583B2 (en) Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof
JP4874434B1 (en) Thick steel plate manufacturing method
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP5928374B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same
JP5910400B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same
JP6725020B2 (en) Valve plate and method for manufacturing valve plate
WO2013089089A1 (en) High-strength extra-thick steel h-beam
WO2008126944A1 (en) Steel material having excellent high-temperature strength and toughness, and method for production thereof
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2010229453A (en) High strength thick steel plate having excellent toughness to one layer large heat input welding affected zone and method of manufacturing the same
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP5842359B2 (en) Non-tempered low yield ratio high tensile steel sheet and method for producing the same
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4571915B2 (en) Refractory thick steel plate and manufacturing method thereof
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP6354571B2 (en) Rolled H-section steel and its manufacturing method
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP4631299B2 (en) Low yield ratio rolled H-section steel excellent in fire resistance and manufacturing method thereof
KR20230041060A (en) Thick steel plate and its manufacturing method
JP2017186594A (en) H-shaped steel for low temperature and manufacturing method therefor
JP6327186B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4329583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term