JPS61157628A - Manufacture of hot coil for high-toughness sour-resistant steel pipe - Google Patents

Manufacture of hot coil for high-toughness sour-resistant steel pipe

Info

Publication number
JPS61157628A
JPS61157628A JP27429684A JP27429684A JPS61157628A JP S61157628 A JPS61157628 A JP S61157628A JP 27429684 A JP27429684 A JP 27429684A JP 27429684 A JP27429684 A JP 27429684A JP S61157628 A JPS61157628 A JP S61157628A
Authority
JP
Japan
Prior art keywords
hot
temperature
toughness
sour
hic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27429684A
Other languages
Japanese (ja)
Other versions
JPH0359124B2 (en
Inventor
Akira Ito
昭 伊藤
Kazuomi Toyoda
豊田 和臣
Takaharu Konno
今野 敬治
Takehiro Hoshino
武弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27429684A priority Critical patent/JPS61157628A/en
Publication of JPS61157628A publication Critical patent/JPS61157628A/en
Publication of JPH0359124B2 publication Critical patent/JPH0359124B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a hot coil for a high-toughness sour-resistant steel pipe by subjecting a continuously cast slab having a specified composition contg. C, Si, Mn, Al, P, S, Ca, etc. to rolling-down, hot working, cooling and coiling under specified conditions. CONSTITUTION:A continuously cast slab consisting of 0.05-0.12% C, 0.10-0.40% Si, 0.5-1.20% Mn, 0.005-0.10% Al, <=0.006% P, <=0.0009% S, 0.0020-0.0060% Ca, one or more among <=0.60% Ni, <=0.60% Cu, <=1.00% Cr, <=0.60% Mo, <=0.10% Nb, <=0.10% V, <=0.10% Zr and <=0.10% Ti, and the balance Fe with impurities is rolled down at <=950 deg.C and >=50% draft, hot worked at 720-820 deg.C finishing temp., cooled at 5-30 deg.C/sec average cooling rate, and coiled at 400-600 deg.C to obtain a hot coil for a steel pipe having superior resistance to hydrogen induced cracking and superior toughness at low temp. in a cold and sour environment.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ラインパイプ用として使用されるホノFコ
イルに関し、特に寒冷地でしかも硫化水素や二酸化炭素
を含む湿潤環境(以下サワー環境という)において使用
されるものの、耐水素誘起割れ性及び低温靭性全署しく
向上させようとするものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a hono-F coil used for line pipes, particularly in a cold region and in a humid environment containing hydrogen sulfide and carbon dioxide (hereinafter referred to as a sour environment). The aim is to improve hydrogen-induced cracking resistance and low-temperature toughness.

(従来の技術) サワー環境において使用されるラインパイプ等の鋼材に
は、水素誘起割れ(以後HICという)と称する割れが
発生し、漏洩やバースト事故の原因となることが知られ
ている。HICの発生機構は、サワー環境下で起る鋼材
表面の腐食によって生じた原子状の水素が鋼材中に侵入
し、鋼材中のMnSや酸化物系クラスター状介在物のよ
うな層状な広がりを持つ介在物のまわりに集積して、割
れが住じるものと考えられている。
(Prior Art) It is known that cracks called hydrogen-induced cracking (hereinafter referred to as HIC) occur in steel materials such as line pipes used in sour environments, which can cause leakage and burst accidents. The mechanism of HIC generation is that atomic hydrogen generated by corrosion of the steel surface in a sour environment penetrates into the steel material and forms a layered structure such as MnS or oxide-based cluster inclusions in the steel material. It is thought that cracks accumulate around inclusions and live there.

介在物?起点に発生したHICは、鋼材中の成分、組織
、硬さ等の不均質な部分に沿って伝播、成長する。この
不均質部分は、特に鋳片の最終凝固部、つまり均等冷却
で凝固した連鋳鋳片の中心与 部に相吟する位R(以下中心偏析帯という)に発生しや
すい。この位置は、MnSのような介在物と中心偏析帯
という不均質部分が共存するため、最もH:(4−発生
しやすい。さらに近年では、天然資源の枯渇化から、さ
らに硫化水素や炭酸ガスの含有量の多いガス田の開発や
、寒冷地での資源開発が増加していることから、耐HI
C性及び低温靭性の両特性を有する鋼板の要求が高まっ
ている。
An inclusion? HIC generated at the starting point propagates and grows along parts of the steel material that are heterogeneous in composition, structure, hardness, etc. This inhomogeneous portion is particularly likely to occur in the final solidified part of the slab, that is, in the region R (hereinafter referred to as the central segregation zone) that corresponds to the central portion of the continuous cast slab solidified by uniform cooling. This position is most likely to generate H:(4-) because inclusions such as MnS and a heterogeneous central segregation zone coexist.Moreover, in recent years, due to the depletion of natural resources, hydrogen sulfide and carbon dioxide gas Due to the increase in the development of gas fields with a high content of
There is an increasing demand for steel sheets that have both carbon properties and low-temperature toughness.

以上のような耐Hr c6g42製造するために、従来
(1)鋼材表面の腐食全抑制するか、あるいは、表面に
安定被膜全形成する元素であるCu 、 Ni等を添加
して腐食に伴う鋼中への侵入水素全低減させる方法で、
例えば、特公昭54−38572号公報に示されている
方法。(2)S含有量の低減、まだはCa、REM等の
添加により、MnSi減少、あるいは有害度の小さい球
状介在物に形態制御し、HICの発生を抑制する方法で
、例えば、特公昭57−16184号公報、特公昭57
−14747号公報に示されているCa添加法。(3)
C、Mn 、 P等の含有量全低減し、あるいは鋳片全
均熱拡散処理して、中心偏析帯の濃縮した成分全稀釈し
、HICの伝播、成長全抑制する方法で、例えば、特開
昭5’7−104653号公報、特開昭58−2212
60号公報、特開昭58−221261号公報、特公昭
55−49129号公報に示されている方法。
In order to manufacture HR c6g42 as described above, conventional methods (1) completely suppress corrosion on the steel surface, or add Cu, Ni, etc., which are elements that form a stable film on the surface, to reduce corrosion in the steel. A method that completely reduces hydrogen intrusion into
For example, the method disclosed in Japanese Patent Publication No. 54-38572. (2) By reducing the S content and adding Ca, REM, etc., MnSi is reduced or the morphology is controlled to less harmful spherical inclusions to suppress the occurrence of HIC. Publication No. 16184, Special Publication No. 1983
- Ca addition method shown in 14747 publication. (3)
The content of C, Mn, P, etc. is completely reduced, or the entire slab is soaked and diffused to completely dilute the concentrated components of the central segregation zone, thereby completely suppressing the propagation and growth of HIC. Publication No. 5'7-104653, Japanese Unexamined Patent Publication No. 58-2212
60, Japanese Patent Application Laid-Open No. 58-221261, and Japanese Patent Publication No. 55-49129.

(4)適切な熱延方法により鋼材の組織や硬さを均一化
し、HICの伝播、成長全抑制する方法で、例えば特開
昭57−47827号公報に示されている方法がある。
(4) A method of uniformizing the structure and hardness of the steel material using an appropriate hot rolling method to completely suppress the propagation and growth of HIC, such as the method disclosed in Japanese Patent Laid-Open No. 57-47827.

(発明が解決しようとする問題点) 石油、天然ガス用ラインパイプでは、定期的に行われる
内部清掃の際に、内部を通す器具(ビグ)によってパイ
プ内面に傷を生じることがある。従ってCu 、 Ni
等によりパイプ内面に安定した腐食被膜全形成させても
、この傷の部分では被膜がはがれてしまい、新たな局部
腐食が発生するため、水素の侵入全完全に防止すること
は不可能である。
(Problems to be Solved by the Invention) In line pipes for petroleum and natural gas, during periodic internal cleaning, the inner surface of the pipe may be damaged by the instrument (vig) that passes through the pipe. Therefore, Cu, Ni
Even if a stable corrosion film is completely formed on the inner surface of the pipe by such methods, the film will peel off at the damaged areas and new local corrosion will occur, so it is impossible to completely prevent hydrogen intrusion.

そのため、従来技術の(2)〜(4)で述べたHICの
発生起点の減少及び伝播、成長の抑制が必要となる。
Therefore, it is necessary to reduce the origin of HIC, and to suppress its propagation and growth, as described in (2) to (4) of the prior art.

)IICの発生起点としては、圧延によって伸延するM
nSが最も有害であり、MnS全完全に消滅させること
ができれば、HICは、はとんど発生しないと考えられ
る。しかし、工業的には、溶鋼のS’i0.0O10%
以下として、Ca f添加しても溶鋼の凝固過程では成
分の濃縮が起こり、中心偏析部のような最終凝固位置で
は、MnとSのa縮によるM n Sの析出は避けられ
ず、HICの発生起点を完全に消滅することはできない
) The origin of IIC is M that is stretched by rolling.
nS is the most harmful, and if all MnS could be completely eliminated, HIC would hardly occur. However, industrially, molten steel S'i0.0O10%
As shown below, even if Ca f is added, concentration of components occurs during the solidification process of molten steel, and at the final solidification position such as the central segregation zone, precipitation of MnS due to a-contraction of Mn and S is unavoidable, resulting in HIC. It is not possible to completely eliminate the point of origin.

従って、HICの伝播、成長の抑制が最も重要な問題で
あるが、特開昭58−221260号公報、特開昭58
−221261号公報で述べられているMn量の上限規
制だけでは、HICの伝播、成長の経路となる異常組織
の発生は避けられない。
Therefore, the most important issue is to suppress the propagation and growth of HIC.
The upper limit regulation of the amount of Mn described in Publication No. 221261 alone cannot avoid the generation of abnormal tissues that serve as a route for the propagation and growth of HIC.

また特開昭57−104653号公報のように、C≦0
.05%とすると、現地溶接での溶接金属の高温割れを
起こしやすい。また、スラブを均熱加熱して)(ICの
伝播、成長を抑制させるためには、特公昭55−.49
129号公報に示されているように、1300tZ’で
30分〜10時間、1150?Z”で5時間から150
時間というように、極めて高温、または、長時間の均熱
拡散が必要であり、製造コスト、さらには省エネルギー
の観点から問題である。
Also, as in Japanese Patent Application Laid-Open No. 57-104653, C≦0
.. If it is set to 0.05%, hot cracking of the weld metal during on-site welding is likely to occur. In addition, in order to suppress the propagation and growth of IC by soaking and heating the slab,
As shown in Publication No. 129, 1150? for 30 minutes to 10 hours at 1300tZ'. Z” from 5 hours to 150
In terms of time, extremely high temperature or long-time soaking is required, which is problematic from the viewpoint of manufacturing cost and energy saving.

従って特開昭57−47827号公報に示されているよ
うに、圧延によって組織制御する方法が有効であるが、
熱間加工終了温度が870C以上では、低温での高靭性
を得ることができない。またホットコイルと厚板全比較
すると、ホットコイルは連続圧延プロセスで大圧下を行
うだめ、HICの発生原因となる伸延介在物及びHIC
の伝播、成長経路となる層状組織を形成しやすい。
Therefore, as shown in Japanese Patent Application Laid-Open No. 57-47827, a method of controlling the structure by rolling is effective, but
If the hot working end temperature is 870C or higher, high toughness at low temperatures cannot be obtained. In addition, when comparing hot coils and thick plates, it is found that hot coils require a large reduction in the continuous rolling process, and are therefore prone to distraction inclusions that cause HIC.
It is easy to form a layered structure that serves as a propagation and growth route.

またホットコイルは、厚板の制御冷却にはない巻取工程
が存在するため、厚板の制御冷却材に比べ、水冷停止後
の冷却速度が著しく小さい。そのだめ、C,P等の粒界
偏析の増加による粒界脆化及び析出物の粗大化等が起こ
りやすく、これらは耐HIC性全劣化させる原因゛とな
る。従って、ただ単に、厚板での制御冷却技術の適用だ
けでは、ホットコイルの材質全向上させることはできな
い。
Furthermore, since hot coils require a winding process that is not present in controlled cooling of thick plates, the cooling rate after water cooling is stopped is significantly lower than that of controlled coolant for thick plates. As a result, grain boundary embrittlement and coarsening of precipitates are likely to occur due to increased grain boundary segregation of C, P, etc., which causes a total deterioration of HIC resistance. Therefore, it is not possible to completely improve the material quality of hot coils simply by applying controlled cooling technology to thick plates.

以上より、本発明により解決しようとする問題点は、ホ
ットコイル特有の問題全解決し、従来の技術では得られ
ていない耐HIC性と低温靭性の両特性を同時に発揮す
るホントコイルを得ようとすることにある。
From the above, the problem to be solved by the present invention is to solve all the problems peculiar to hot coils and to obtain a real coil that simultaneously exhibits both HIC resistance and low-temperature toughness, which have not been obtained with conventional technology. It's about doing.

(問題を解決するだめの手段) 本発明の要旨は、C:0.05〜0.12%、Sl:0
.10〜0.40%、 Mn : 0.5〜1.20%
、 AA : 0.005〜0.10%、P≦0.00
6%、S≦0.’0009 % 、 Ca:0.002
0〜0.0060係、さらにNi≦0.60%。
(Means to solve the problem) The gist of the present invention is that C: 0.05 to 0.12%, Sl: 0
.. 10-0.40%, Mn: 0.5-1.20%
, AA: 0.005-0.10%, P≦0.00
6%, S≦0. '0009%, Ca:0.002
0 to 0.0060, and Ni≦0.60%.

Cu≦0.60%、Cr≦1.00%、 Mo≦0.6
0%。
Cu≦0.60%, Cr≦1.00%, Mo≦0.6
0%.

NbS2.10%、■≦0.10%、 Zr≦0.10
%。
NbS2.10%, ■≦0.10%, Zr≦0.10
%.

TiS2.10%のうち1種または2種以上金言み、残
部は鉄及び不純物より成る連鋳製スラブヲ950C以下
で50%以上の圧下全行い、熱間加工を、720〜82
0Cの範囲で終了し、引き続いて平均冷却速度5〜30
 ℃ /secで冷却した後、400〜600Cの範囲
で巻取ること及びc:o、os〜0.12%、 Si 
: 0.10〜0.40%、 Mn : 0.5〜1.
20チ、 AA : 0.005〜0,10%、P≦0
.010%、S≦0.0009%、 Ca : 0.0
020〜0.0060%、さらにNi≦0.60%、 
Cu≦0.60%、Cr:≦100%。
A continuous cast slab consisting of one or more types of TiS2.10%, the remainder being iron and impurities, is fully reduced by 50% or more at 950C or less, and hot worked at 720~820℃.
0C, followed by an average cooling rate of 5-30
After cooling at ℃/sec, winding in the range of 400-600C and c:o, os~0.12%, Si
: 0.10-0.40%, Mn: 0.5-1.
20chi, AA: 0.005-0.10%, P≦0
.. 010%, S≦0.0009%, Ca: 0.0
020 to 0.0060%, further Ni≦0.60%,
Cu≦0.60%, Cr:≦100%.

Mo : ≦0.60%、NbS2.10%、■≦0.
10%、Zr:≦0.lO%、T1:60.10%のう
ち1種または2種以上を含み、残部は鉄及び不純物より
成るスラブ11200C以下のオーステナイト域で、断
面減少率20%以上の熱間加工全施し、その後スラブの
中心温度を1100〜1250Cで30分以上、2時間
未満保定した後、9500以下で50チ以上の圧下全行
い、熱間加工を720〜820Cの範囲で終了し、引き
続いて、平均冷却速度5〜30℃/secで冷却した後
、400〜600Cの範囲で巻取ることを特徴とする高
靭性耐サワー鋼管用ホットコイルの製造方法である。
Mo: ≦0.60%, NbS2.10%, ■≦0.
10%, Zr:≦0. The slab contains one or more of lO%, T1: 60.10%, and the remainder is iron and impurities.The slab is an austenite region of 11200C or less, and is fully hot worked with a cross-section reduction rate of 20% or more, and then the slab After holding the center temperature at 1100-1250C for 30 minutes or more but less than 2 hours, complete reduction of 50 inches or more at 9500C or less, finishing hot working in the range of 720-820C, and then cooling at an average cooling rate of 5 This is a method for producing a hot coil for high toughness and sour-resistant steel pipe, which is characterized by cooling at ~30°C/sec and then winding at a temperature in the range of 400 to 600C.

次に本発明の成分及び圧延条件の限定理由について述べ
る。
Next, the reasons for limiting the components and rolling conditions of the present invention will be described.

Cは強度元素として重要な元素であるが、0.12%全
超えると靭性を劣化させ°、0.05%未満では必要な
強度を確保することができないだけでなく、現地溶接で
の高温割れが発生しやすくなるため、0.05〜0.1
2%としだ。
C is an important element as a strength element, but if it exceeds 0.12%, it will deteriorate toughness, and if it is less than 0.05%, it will not only be impossible to secure the necessary strength, but also cause hot cracking during on-site welding. 0.05 to 0.1 because
2%.

% Siは脱酸材として添加するもので、0.1以上でない
と脱酸の効果がなく、0.4%を超えると靭性全劣化さ
せるため、0.10〜0.40%とした。
%Si is added as a deoxidizing agent, and if it is not 0.1% or more, there is no deoxidizing effect, and if it exceeds 0.4%, the toughness will be completely degraded, so it was set to 0.10 to 0.40%.

Mnは脱酸剤としても必要であるが、Cと同様に強度元
素として重要な元素であり、0.5%未満では必要な強
度を確保することができず、1.20%金超えると、耐
HIC性全劣化させるため0.5〜1.20%とした。
Mn is also necessary as a deoxidizing agent, but like C, it is an important element as a strength element, and if it is less than 0.5%, the required strength cannot be secured, and if it exceeds 1.20% gold, The content was set at 0.5 to 1.20% in order to completely deteriorate HIC resistance.

Mは脱酸上必要であり、結晶粒の粗大化防止の効果もあ
る。0.005%未満では脱酸の効果がなく、0.10
%金超すと、靭性を劣化させるため、0.005〜0.
10%とした。
M is necessary for deoxidation and also has the effect of preventing coarsening of crystal grains. If it is less than 0.005%, there is no deoxidizing effect;
If it exceeds 0.005 to 0.0% gold, the toughness will deteriorate.
It was set at 10%.

発明者らの研究によればHICはS≦0.0010チの
鋼では、圧延の熱間加工終了温度の低下に伴って悪化す
るという熱間加工終了温度依存性が見られ、特に靭性の
向上が大きい820C以下でその傾向が大きいが、S≦
0.0009%の鋼では、上記の傾向が全く見られなく
なることを発見した。
According to the research conducted by the inventors, in steels with S≦0.0010, HIC is dependent on the end temperature of hot working, which worsens as the end temperature of rolling hot working decreases, and in particular, it is found that HIC is dependent on the end temperature of hot working, and is particularly important for improving toughness. This tendency is greater below 820C, where S≦
It has been discovered that the above-mentioned tendency is no longer observed in 0.0009% steel.

そこでS≦0.0009%とした。Therefore, S≦0.0009% was set.

後述する冷却速度及び巻取温度による組織制御を行って
も、偏析が大きい場合には、偏析部が硬化し、HICが
伝播、成長する。しかし、組織制御を行い、かつ溶鋼の
P含有量’2p≦0.006%とすると、pH4,0未
満のきびしいサワー環境で、)frcの伝播、成長全防
止できることを見出した。
Even if the structure is controlled by the cooling rate and coiling temperature, which will be described later, if segregation is large, the segregated portion will harden and HIC will propagate and grow. However, we have found that by controlling the structure and setting the P content of molten steel to '2p≦0.006%, it is possible to completely prevent the propagation and growth of ) frc in a harsh sour environment with a pH of less than 4.0.

さらに、連鋳製スラブe1200C以下のオーステナイ
ト域で、断面減少率20%以上の熱間加工を行うことに
より、Pの拡散係数が増加するため、1100−125
Orで30分以上2時間未満という比較的低温短時間の
均熱でもP偏析の拡散効果が得られるため、この工程金
加えることにより、Pの上限’i0.010%まで引き
上げられることを見出した。
Furthermore, in the austenite region of the continuous cast slab e1200C or less, hot working with a cross-section reduction rate of 20% or more increases the P diffusion coefficient.
It was found that the diffusion effect of P segregation can be obtained even by soaking at a relatively low temperature for a short time of 30 minutes or more but less than 2 hours in Or, and by adding gold to this process, the upper limit of P can be raised to 0.010%. .

Caは、M203t”形態制御して大型化し、MnS全
球状無害化するために加えるが、0.0020%以下で
はその効果がなく、0.0060%を超えると、Ca系
のクラスター状介在物金形成し耐HIC性を劣化させる
ため、0.0020−0.0060%とした。Niは耐
食性の向上、強度の増加、靭性の向上に有効であるが、
0.6%金超えると局部腐食が増大するため、50.6
%とした。Cuは、耐食性の向上、強度の増加に有効で
あるが、0.6%を超えると、圧延欠陥を生じやすいた
め、50.6%とした。C[は、耐HIC性及び・靭性
を劣化させずに強度を増加させることができるが、1.
00%を超えると靭性全劣化させるため、51.00%
とした。Moは焼き入れ性、強度の向上に効果があるが
、0.601e超えると靭性の劣化金まねくので、50
.60%とした。Nb 、 V及びZrは、M。
Ca is added to control the M203t" form and increase its size, making MnS completely harmless. However, if it is less than 0.0020%, it has no effect, and if it exceeds 0.0060%, Ca-based cluster-like inclusions are formed. The Ni content was set at 0.0020-0.0060% to prevent formation and deterioration of HIC resistance.Ni is effective in improving corrosion resistance, strength, and toughness;
If it exceeds 0.6% gold, local corrosion will increase, so 50.6% gold will increase.
%. Cu is effective in improving corrosion resistance and increasing strength, but if it exceeds 0.6%, rolling defects are likely to occur, so it was set at 50.6%. C [can increase strength without deteriorating HIC resistance and toughness, but 1.
If it exceeds 00%, the toughness will completely deteriorate, so 51.00%
And so. Mo is effective in improving hardenability and strength, but if it exceeds 0.601e, it will lead to deterioration of toughness.
.. It was set at 60%. Nb, V and Zr are M.

と同様な効果があるが、0.10%を超えると靭性の劣
化をまねくため50.10%としだ。
However, if it exceeds 0.10%, the toughness deteriorates, so it is set at 50.10%.

Tiは、溶接熱影響部の靭性向上に効果があるが、0.
10%を超えると逆に靭性全劣化させるだめ、50.1
0%とした。
Ti is effective in improving the toughness of the weld heat affected zone, but 0.
If it exceeds 10%, the toughness will deteriorate completely, 50.1
It was set to 0%.

本発明は950C以下の圧下率:250%とするが、5
0%以上抱ることによって靭性が向上するので、50%
以上とした。最終熱間加工温度は720〜820Cとす
るが、S≦0.0009%とすれば、HICの最終熱間
加工温度依存性がなくなるため、低温・靭性の得られる
720〜820Cの範囲とした。
In the present invention, the rolling reduction ratio is 250% below 950C, but 5
Toughness improves by holding it more than 0%, so 50%
That's all. The final hot working temperature is 720 to 820C, but if S≦0.0009%, the dependence of HIC on the final hot working temperature is eliminated.

平均冷却速度は5〜30 C/ secとする。平均冷
却速度が5tl’/sec未満ではフェライトパーライ
トの2相分離が進むため、中心偏析部でフェライトパー
ライトのバンド状組織が形成されやすく、30C/ s
ec超では硬化したベイナイト状組織が形成されやすく
、耐1(IC性が劣化するため、5〜30C/ sec
とした。
The average cooling rate is 5 to 30 C/sec. When the average cooling rate is less than 5 tl'/sec, two-phase separation of ferrite pearlite progresses, and a band-like structure of ferrite pearlite is likely to be formed in the central segregation area, resulting in a cooling rate of 30 C/s.
If it exceeds ec, a hardened bainitic structure is likely to be formed, and the resistance to 1 (IC property deteriorates, so the
And so.

巻取温度は400〜600Cとする。ホットコイルは巻
取工程があるため、厚板と比べて水冷停止後の冷却速度
が極端に遅い。そのた、め、A[1+変態点以上の温度
で巻取ると、フェライトとパーライトの2相分離が進み
、フェライト・パーライトのバンド状組織が形成される
。特に中心偏析帯ではこの傾向が著しいため、耐HIC
性が劣化する。従って巻取温度の上限はArL)変態の
完了している600Cとした。さらに、巻取温度が40
0C未満の領域では、平均冷却速度が30℃/sec超
の場合と同様に、硬化したベイナイト状組織を形成しや
すく耐HIC性が劣化する。以上より巻取温度は400
〜600Cとした。
The winding temperature is 400 to 600C. Because hot coils require a winding process, the cooling rate after water cooling is stopped is extremely slow compared to thick plates. Therefore, when the material is wound at a temperature equal to or higher than the A[1+ transformation point, the two-phase separation of ferrite and pearlite progresses, and a band-like structure of ferrite and pearlite is formed. This tendency is particularly remarkable in the central segregation zone, so HIC resistance
Sexuality deteriorates. Therefore, the upper limit of the winding temperature was set at 600C, at which point the ArL) transformation was completed. Furthermore, the winding temperature is 40
In the region below 0 C, a hardened bainitic structure is likely to be formed and HIC resistance deteriorates, as in the case where the average cooling rate exceeds 30 C/sec. From the above, the winding temperature is 400
~600C.

(作用) 発明者らはpH4,0未満の厳しいサワー環境でS≧0
.0010%の鋼に発生するHICは、圧延の熱間加工
終了温度の低下に伴って増加するという熱間加工終了温
度依存性が有り、特に低温靭性の向上が大きい820C
以下の温度範囲でその傾向が著しいが、S≦0.000
9%の鋼では、上記の傾向が全く見られないことを発見
した。
(Function) The inventors found that S≧0 in a harsh sour environment with a pH of less than 4.0.
.. HIC that occurs in 0.0010% steel is dependent on the hot working end temperature, increasing as the hot working end temperature of rolling decreases, and 820C, which has a particularly large improvement in low temperature toughness, has a dependency on the hot working end temperature.
This tendency is remarkable in the following temperature ranges, but S≦0.000
It has been found that for 9% steel, the above trend is not observed at all.

この発見により、950C以下で50チ以上の圧下全行
い、720〜820Cの温度で熱間加工を終了すること
により、耐HIC性を損なわずに低温靭性全得ることを
可能にした。しかしS≦0.0009%としても、連鋳
製スラブの中心偏析部では、MnSの析出が避けられな
い部分もあり、このような場所ではHICが発生する。
This discovery has made it possible to obtain full low-temperature toughness without impairing HIC resistance by carrying out a full reduction of 50 inches or more at a temperature below 950C and completing hot working at a temperature of 720 to 820C. However, even if S≦0.0009%, there are parts where MnS precipitation is unavoidable in the central segregation part of the continuously cast slab, and HIC occurs in such places.

このようなHIC全なくすためには、P≦0.006チ
とすることによりPの偏析を軽減させ、かつ熱間加工終
了後引き続いて冷却速度5〜30 U / secで冷
却し、巻取温度400〜600Cで巻取って、中心偏析
部の組織k HI Cが伝播、成長しない組織ニコント
ロールすることによって初めて抑制できることを発見し
た。
In order to completely eliminate such HIC, the segregation of P is reduced by setting P≦0.006, and after the completion of hot working, cooling is continued at a cooling rate of 5 to 30 U/sec, and the coiling temperature is lowered. It was discovered that the structure of the center segregated part can be suppressed only by winding at 400 to 600 C and controlling the structure so that it does not propagate or grow.

さらに、0.006%くP≦0.010%でも、スラブ
全1200C以下のオーステナイト域で、断面減少率2
0%以上の熱間加工金施して拡散起点全作り込み、その
後スラブの中心温度i1100r以上1250C未満で
、30分以上2時間未満保定し、不可避的に生成した偏
析全拡散して消滅又は軽減させた後、最終熱間加工を行
い、引き続いて冷却速度5〜30 ℃/secで冷却し
、巻取温度400〜600Cで巻取ることにより、HI
C全防止できる。
Furthermore, even if 0.006% and P≦0.010%, the area reduction rate is 2 in the austenite region of 1200C or less in the entire slab.
0% or more hot working to create all the diffusion starting points, and then maintain the slab center temperature i1100r or more and less than 1250C for 30 minutes or more and less than 2 hours to completely diffuse and eliminate or reduce the unavoidably generated segregation. After that, final hot working is performed, followed by cooling at a cooling rate of 5 to 30°C/sec and winding at a winding temperature of 400 to 600°C.
C. Can be completely prevented.

以上のように、本発明は、pH4,0未満のきびしいサ
ワー環境でのIttHIC性と、低温靭性の両特性がす
ぐれたホットコイルの製造全可能としたものである。
As described above, the present invention makes it possible to manufacture a hot coil that has both excellent IttHIC properties and low-temperature toughness in a harsh sour environment with a pH of less than 4.0.

(実施例) 発明者らは、耐HIC性に及ぼすS、P及び圧延条件の
影響全問らかにするだめ、S及びP含有量を変えた鋼を
用い、実験を行った。試料はすべて連続鋳造法により鋳
造し、Caは粒状合金?タンデイツ/ユに連続添加する
方法により行った。
(Example) In order to fully investigate the effects of S, P and rolling conditions on HIC resistance, the inventors conducted experiments using steels with varying S and P contents. All samples were cast using the continuous casting method, and Ca was a granular alloy. It was carried out by a method of continuous addition to tandates/yu.

次に、この様に製造したスラブをホットミルにて圧延し
、ホットコイルとして得た板を用いて、耐HIC性評価
試験を行なった。耐HIC性評価試験は、いわゆるBP
試験法に準じた方法で行った。すなわち、試料’1NA
CE液(0,5%酢酸−5チ塩化す) IJウム溶液に
、H2Sを飽和させた溶液でpHは約3.8)中に96
時間浸漬した。
Next, the slab manufactured in this manner was rolled in a hot mill, and a HIC resistance evaluation test was conducted using a plate obtained as a hot coil. The HIC resistance evaluation test is the so-called BP
The test was conducted in accordance with the test method. That is, sample '1NA
CE solution (0.5% acetic acid-pentachloride) 96% in an IJium solution saturated with H2S (pH approximately 3.8)
Soaked for an hour.

HIC発生の有無は、浸漬を完了した試験片をUSTで
探傷することにより、試片表面に対する欠陥の割合(以
下CARという)で評価した。
The presence or absence of HIC generation was evaluated by the ratio of defects to the surface of the specimen (hereinafter referred to as CAR) by inspecting the specimen after immersion using UST.

表1〜9に実施例金子す。Examples Kaneko are shown in Tables 1 to 9.

表2に示すように、本発明に従う鋼材は、いずれもすぐ
れた耐HIC性及び低温靭性を示すが、P>0.006
%のC,D、E及びS≧o、ooio%のFは、耐HI
C性が劣る。また、表3〜6に示すように、熱間加工終
了温度≧720C1平均冷却速度5〜30 C/ se
c %巻取温度400〜600Cの領域ではすぐれた耐
HIC性を示す。
As shown in Table 2, all the steel materials according to the present invention exhibit excellent HIC resistance and low temperature toughness, but P>0.006
% C, D, E and S≧o, ooio% F are HI resistance
Poor C properties. In addition, as shown in Tables 3 to 6, hot working end temperature ≧720 C1 average cooling rate 5 to 30 C/se
c % Exhibits excellent HIC resistance in the range of winding temperatures of 400 to 600C.

(発明の効果) 以上述べたように、本発明により、pH4,0未満のき
びしいサワー環境での耐HIC性と、低温・靭性の両特
性にすぐれたホットコイルが製造でき、寒冷地のサワー
環境でHICの発生及び低温脆性破壊によるバースト事
故が発生しないラインパイプの製造が可能である。
(Effects of the Invention) As described above, according to the present invention, it is possible to manufacture a hot coil that has excellent HIC resistance in a harsh sour environment with a pH of less than 4.0, and has excellent low temperature and toughness characteristics, and can be used in a sour environment in a cold region. It is possible to manufacture line pipes that do not cause HIC or burst accidents due to low-temperature brittle fracture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、耐HIC性に及ぼす熱間加工終了温度の影響
の図表、第2図は、靭性に及ぼす熱間加工終了温度の影
響の図表、第3図は1、耐HIC性に及ぼすP含有量の
影響の図表、第4図は1tHIC性に及ぼす平均冷却速
度の影響の図表、第5図は耐HIC性に及ぼす巻取温度
の影響の図表、第図ば、耐J−11C性に及ぼす巻取後
のコイル長さ中央部の平均冷却速度の影響の図表金示す
。 区  (%)WD Oフ 鰹 0     10     20      JO句乎
均冷#壇友(’℃/sec、 ) 第5図 巷取温a (°c) 手続補正書(方式) %式% 1、事件の表示 昭和59年特許願第274296号 2、発明の名称 高靭性耐サワー鋼管用ホットコイル の製造方法 3、補正をする者 事件との関係 出願人 住所 東京都千代田区大手町二丁目6番3号名称  (
665)新日本製鉄株式会社代表者  武 1) 豊 4、代理人 住所 東京都中央区日本橋3丁目3番3号4、図面の簡
単な説明
Figure 1 is a graph showing the effect of hot working end temperature on HIC resistance, Figure 2 is a graph showing the effect of hot working ending temperature on toughness, and Figure 3 is 1. P on HIC resistance. Figure 4 is a graph of the influence of content, Figure 4 is a graph of the influence of average cooling rate on 1tHIC resistance, Figure 5 is a graph of the influence of coiling temperature on HIC resistance, and Figure 4 is a graph of the influence of coiling temperature on HIC resistance. The figure shows the influence of the average cooling rate at the center of the length of the coil after winding. Ward (%) WD O fu bonito 0 10 20 JO Kuyu uniform cold #danyou ('℃/sec, ) Figure 5 Tori temperature a (°c) Procedural amendment (method) % formula % 1. Indication Patent Application No. 274296 of 1982 2, Name of the invention Method for manufacturing hot coils for high toughness and sour resistant steel pipes 3, Relationship with the amended case Applicant address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (
665) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4, Agent Address 3-3-3-4 Nihonbashi, Chuo-ku, Tokyo, Brief explanation of the drawings

Claims (1)

【特許請求の範囲】 1、C:0.05〜0.12%、Si:0.10〜0.
40%、Mn:0.5〜1.20%、Al:0.005
〜0.10%、P≦0.006%、S≦0.0009%
、 Ca:0.0020〜0.0060%、さらにNi≦0
.60%、Cu:0.60%、Cr≦1.00%、 Mo≦0.60%、Nb≦0.10%、 V≦0.10%、Zr≦0.10%、 Ti≦0.10%のうち1種または2種以上を含み、残
部は鉄及び不純物より成る連鋳製スラブを950℃以下
で50%以上の圧下を行い、熱間加工を720〜820
℃の範囲で終了し、引き続いて、平均冷却速度5〜30
℃/secで冷却した後、400〜600℃の範囲で巻
取ることを特徴とする高靭性耐サワー鋼管用ホットコイ
ルの製造方法。 2、C:0.05〜0.12%、Si:0.10〜0.
40%、Mn:0.5〜1.20%、Al:0.005
〜0.10%、P≦0.010%、S≦0.0009%
、 Ca:0.0020〜0.0060%、さらにNi≦0
.60%、Cu≦0.60%、Cr:≦1.00%、 Mo:≦0.60%、Nb≦0.10%、 V≦0.10%、Zr:≦0.10%、 Ti:≦0.10%のうち1種または2種以上を含み、
残部は鉄及び不純物より成るスラブを1200℃以下の
オーステナイト域で断面減少率20%以上の熱間加工を
施し、その後スラブの中心温度を1100〜1250℃
で30分以上、2時間未満保定した後、950℃以下で
50%以上の圧下を行い、熱間加工を720〜820℃
の範囲で終了し、引き続いて、平均冷却速度5〜30℃
/secで冷却した後、400〜600℃の範囲で巻取
ることを特徴とする高靭性耐サワー鋼管用ホットコイル
の製造方法。
[Claims] 1. C: 0.05-0.12%, Si: 0.10-0.
40%, Mn: 0.5-1.20%, Al: 0.005
~0.10%, P≦0.006%, S≦0.0009%
, Ca: 0.0020-0.0060%, and Ni≦0
.. 60%, Cu: 0.60%, Cr≦1.00%, Mo≦0.60%, Nb≦0.10%, V≦0.10%, Zr≦0.10%, Ti≦0.10 Continuously cast slabs containing one or more of the following, with the remainder being iron and impurities, are rolled down to 50% or more at 950°C or below, and hot worked to a temperature of 720 to 820°C.
℃ range, followed by an average cooling rate of 5-30℃
A method for producing a hot coil for high toughness and sour-resistant steel pipes, which comprises cooling at a rate of 0.degree. C./sec and then winding at a temperature in the range of 400 to 600.degree. 2, C: 0.05-0.12%, Si: 0.10-0.
40%, Mn: 0.5-1.20%, Al: 0.005
~0.10%, P≦0.010%, S≦0.0009%
, Ca: 0.0020-0.0060%, and Ni≦0
.. 60%, Cu≦0.60%, Cr:≦1.00%, Mo:≦0.60%, Nb≦0.10%, V≦0.10%, Zr:≦0.10%, Ti: Contains one or more of ≦0.10%,
The remaining part consists of iron and impurities, and the slab is hot-worked in the austenite region below 1200°C with a cross-section reduction rate of 20% or more, and then the center temperature of the slab is reduced to 1100-1250°C.
After holding for 30 minutes or more but less than 2 hours at
, followed by an average cooling rate of 5-30°C
A method for producing a hot coil for a high toughness and sour-resistant steel pipe, which comprises cooling the coil at a temperature of 400 to 600° C. after cooling the coil at a temperature of 400 to 600° C.
JP27429684A 1984-12-28 1984-12-28 Manufacture of hot coil for high-toughness sour-resistant steel pipe Granted JPS61157628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27429684A JPS61157628A (en) 1984-12-28 1984-12-28 Manufacture of hot coil for high-toughness sour-resistant steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27429684A JPS61157628A (en) 1984-12-28 1984-12-28 Manufacture of hot coil for high-toughness sour-resistant steel pipe

Publications (2)

Publication Number Publication Date
JPS61157628A true JPS61157628A (en) 1986-07-17
JPH0359124B2 JPH0359124B2 (en) 1991-09-09

Family

ID=17539666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27429684A Granted JPS61157628A (en) 1984-12-28 1984-12-28 Manufacture of hot coil for high-toughness sour-resistant steel pipe

Country Status (1)

Country Link
JP (1) JPS61157628A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851052A (en) * 1987-04-24 1989-07-25 Nippon Steel Corpopration Method of producing steel plate with good low-temperature toughness
EP1533392A1 (en) * 2002-09-04 2005-05-25 JFE Steel Corporation Steel product for high heat input welding and method for production thereof
EP1568792A1 (en) * 2004-02-24 2005-08-31 JFE Steel Corporation Hot-rolled steel sheet for high-strength electric-resistance welded pipe and method for manufacturing the same
KR100544419B1 (en) * 2000-12-20 2006-01-24 주식회사 포스코 A METHOD FOR MANUFACTURING HOT ROLLED STEEL SHEET OF TENSILE STRENGTH 80kg/? GRADE WITH EXCELLENT WEATHER RESISTANCE AND LOW TEMPERATURE TOUGHNESS
US7959745B2 (en) * 2001-07-13 2011-06-14 Jfe Steel Corporation High-strength steel pipe of API X65 grade or higher

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149423A (en) * 1981-03-10 1982-09-16 Sumitomo Metal Ind Ltd Manufacture of thick high-tensile steel plate having excellent low-temperature matting property
JPS581014A (en) * 1981-06-26 1983-01-06 Nippon Kokan Kk <Nkk> Production of hot coil having high hydrogen induced cracking resistance
JPS591632A (en) * 1982-06-28 1984-01-07 Sumitomo Metal Ind Ltd Manufacture of hot-rolled high-tension steel sheet with superior workability
JPS6134116A (en) * 1984-07-24 1986-02-18 Sumitomo Metal Ind Ltd Manufacture of high toughness hot rolled coil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149423A (en) * 1981-03-10 1982-09-16 Sumitomo Metal Ind Ltd Manufacture of thick high-tensile steel plate having excellent low-temperature matting property
JPS581014A (en) * 1981-06-26 1983-01-06 Nippon Kokan Kk <Nkk> Production of hot coil having high hydrogen induced cracking resistance
JPS591632A (en) * 1982-06-28 1984-01-07 Sumitomo Metal Ind Ltd Manufacture of hot-rolled high-tension steel sheet with superior workability
JPS6134116A (en) * 1984-07-24 1986-02-18 Sumitomo Metal Ind Ltd Manufacture of high toughness hot rolled coil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851052A (en) * 1987-04-24 1989-07-25 Nippon Steel Corpopration Method of producing steel plate with good low-temperature toughness
KR100544419B1 (en) * 2000-12-20 2006-01-24 주식회사 포스코 A METHOD FOR MANUFACTURING HOT ROLLED STEEL SHEET OF TENSILE STRENGTH 80kg/? GRADE WITH EXCELLENT WEATHER RESISTANCE AND LOW TEMPERATURE TOUGHNESS
US7959745B2 (en) * 2001-07-13 2011-06-14 Jfe Steel Corporation High-strength steel pipe of API X65 grade or higher
EP1533392A1 (en) * 2002-09-04 2005-05-25 JFE Steel Corporation Steel product for high heat input welding and method for production thereof
EP1533392A4 (en) * 2002-09-04 2005-12-07 Jfe Steel Corp Steel product for high heat input welding and method for production thereof
EP1568792A1 (en) * 2004-02-24 2005-08-31 JFE Steel Corporation Hot-rolled steel sheet for high-strength electric-resistance welded pipe and method for manufacturing the same
CN100354436C (en) * 2004-02-24 2007-12-12 杰富意钢铁株式会社 Hot-rolled steel sheet for high-strength electric-resistancewelded pipe having sour-gas resistance and excellent weld toughness, and method for manufacturing the same
US7879287B2 (en) 2004-02-24 2011-02-01 Jfe Steel Corporation Hot-rolled steel sheet for high-strength electric-resistance welded pipe having sour-gas resistance and excellent weld toughness, and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0359124B2 (en) 1991-09-09

Similar Documents

Publication Publication Date Title
KR950008377B1 (en) Producing a weldable, ferrtic stainless steel strip
JPS601929B2 (en) Manufacturing method of strong steel
JPH07173536A (en) Production of steel sheet for high strength line pipe excellent in sour resistance
JPS581012A (en) Production of homogeneous steel
KR101758481B1 (en) Steel sheet for pipe having excellent corrosion resistance and low-temperature toughness, and method for manufacturing the same
JPS631369B2 (en)
JPS6145697B2 (en)
JPS61157628A (en) Manufacture of hot coil for high-toughness sour-resistant steel pipe
JPH06179910A (en) Production of steel plate excellent in hydrogen induced cracking resistance
JPH08283906A (en) High tensile strength steel plate for fitting material, excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance
JPH07268467A (en) Production of hot coil for steel tube having high toughness and sour resistance
JPH06136440A (en) Production of high strength steel sheet excellent in sour resistance
JPS62274049A (en) Continuously-cast steel for resistance welded tube excellent in sour resistance and toughness at low temperature
JPH09324217A (en) Manufacture of high strength steel for line pipe, excellent in hic resistance
JPS61221326A (en) Production of steel material having excellent resistance to sulfide corrosion cracking
US20230026210A1 (en) Steel material having excellent sulfide stress corrosion cracking resistance and method of manufacturing same
KR100345704B1 (en) A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC
JPH07292414A (en) Production of thin high strength steel plate having superior toughness at low temperature and sour resistance
JPH06256842A (en) Production of light-gaged high-strength steel sheet having excellent sour resistance
JPH0730391B2 (en) Method for manufacturing high strength hot coil materials with excellent hydrogen sulfide resistance and toughness
JPH09263831A (en) Production of extra thick high strength bent pipe excellent in toughness at low temperature
JPS6268694A (en) Production of heat-treated steel pipe
JPS6196030A (en) Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking
KR890002611B1 (en) Process for manufacturing of low alloy-high tension steel
JPH0625739A (en) Manufacture of sour resistant steel sheet having excellent low temperature toughness