JP2001164334A - Steel for structure purpose excellent in corrosion resistance and corrosion fatigue resistance and producing method therefor - Google Patents

Steel for structure purpose excellent in corrosion resistance and corrosion fatigue resistance and producing method therefor

Info

Publication number
JP2001164334A
JP2001164334A JP34508799A JP34508799A JP2001164334A JP 2001164334 A JP2001164334 A JP 2001164334A JP 34508799 A JP34508799 A JP 34508799A JP 34508799 A JP34508799 A JP 34508799A JP 2001164334 A JP2001164334 A JP 2001164334A
Authority
JP
Japan
Prior art keywords
steel
ferrite
corrosion
corrosion resistance
ceq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34508799A
Other languages
Japanese (ja)
Other versions
JP4291480B2 (en
Inventor
Tadashi Ishikawa
忠 石川
Toshihiko Koseki
敏彦 小関
Tomohiko Hata
知彦 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34508799A priority Critical patent/JP4291480B2/en
Publication of JP2001164334A publication Critical patent/JP2001164334A/en
Application granted granted Critical
Publication of JP4291480B2 publication Critical patent/JP4291480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the corrosion resistance of the steel while securing its weldability without depending on alloy elements effective for corrosion resistance and to remarkably improve the corrosion resistance in the case the above alloy elements are added. SOLUTION: As to this steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance, the crystal boundaries and crystal sub-boundaries are provided with a cementitic phase of <=0.5 μm, moreover, ferrite occupies by >=95%, also, the hardness H of the ferritic structure satisfies a prescribed equation, and the intensity ratio of the (100) plate in the texture parallel to the rolling face is >=1.5, and in the method for producing the same, a steel stock having specified components is heated to the Ac3 point or more to enter C into solid solution, in this state, before or in the process of hot working, the surface layer region of the steel sheet is rapidly cooled at a cooling rate of >=3 deg.C/set to a temperature by which the ferritic fractional ratio reaches >=50%, and after that, the surface layer region is recuperated, hot rolling is stated or restarted from the temperature of (the Ac1 point-150 deg.C) or more and is finished in the temperature range of (the Ac1 point+50 deg.C) to the Ac3 Point, and successively, the surface layer region is cooled without being recuperated to the Ac3 point or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高張力棒鋼・線材・
機械構造用鋼、又は造船、建築、橋梁・橋脚、タンク、
圧力容器、海洋・港湾構造物、及び化学プラント等の大
型鋼構造物向け溶接構造用鋼等に適用される耐食性と耐
腐食疲労特性に優れた優れた構造用鋼及びその製造方法
に関する。
TECHNICAL FIELD The present invention relates to a high-strength steel bar, wire rod,
Steel for machine structural use, or shipbuilding, construction, bridges / piers, tanks,
The present invention relates to a structural steel excellent in corrosion resistance and corrosion fatigue resistance applied to a welded structural steel and the like for a large steel structure such as a pressure vessel, an marine / port structure, and a chemical plant, and a method for producing the same.

【0002】[0002]

【従来の技術】腐食は単独で、あるいは、疲労破壊、不
安定破壊、脆性破壊の起点となって、鋼構造物の重大損
傷を引き起こす。腐食及び腐食を起点とする損傷事例は
鋼構造物全体の損傷事例の大きな割合を占めるため、そ
の改善は極めて重要である。
BACKGROUND OF THE INVENTION Corrosion, alone or as a starting point for fatigue, unstable and brittle fractures, causes severe damage to steel structures. Corrosion and damage cases originating from corrosion account for a large proportion of the damage cases of the entire steel structure, and therefore its improvement is extremely important.

【0003】鋼構造物の使用環境は幅広いが、特に腐
食、腐食疲労が問題となるのは、海水環境はじめとする
塩素あるいは塩化物を含む水環境である。これに対し
て、例えば日本鉄鋼協会第159回西山記念講座(19
96)p.123にまとめられているように、従来、マ
リーナースチールはじめ、Cu、Ni、Cr、Pなどの
合金成分を添加・増量し耐海水性を高めた鋼材がこれま
で開発されてきた。更に、鋼の耐食性は、鋼中の合金成
分によって決まり、鋼の組織への依存性はないというの
が、これまでの知見であった。従って鋼に耐食性を付与
するためには前述のような合金元素の添加が必要となる
が、それによって、溶接用構造用鋼(以下単に構造用鋼
と称す)としてコスト上昇すると共に、多量の合金元素
の含有により、構造用鋼として必要な溶接性や加工性が
低下する問題があった。
[0003] The use environment of steel structures is wide, but corrosion and corrosion fatigue are particularly problematic in seawater environments and other water environments containing chlorine or chloride. On the other hand, for example, the 159th Nishiyama Memorial Lecture by the Iron and Steel Institute of Japan (19
96) p. As summarized in No. 123, heretofore, steel materials having improved seawater resistance by adding and increasing alloy components such as Cu, Ni, Cr, and P, including Mariner steel, have been developed. Further, it has been found that the corrosion resistance of steel is determined by the alloy composition in the steel and does not depend on the structure of the steel. Therefore, in order to impart corrosion resistance to steel, it is necessary to add alloying elements as described above, but this increases the cost as a structural steel for welding (hereinafter simply referred to as structural steel) and increases the amount of alloy. There was a problem that the weldability and workability required for structural steel were reduced due to the inclusion of the element.

【0004】[0004]

【発明が解決しようとする課題】このような背景から、
本発明の課題は、鋼材組織を制御することによって、構
造用鋼の耐食性、特に塩素あるいは塩化物を含む水環境
での耐食性を向上させることにある。即ち、従来の様に
耐食性に有効な合金元素に頼ることなく、溶接性を確保
しながら、耐食性を向上し、また、前記合金元素を加え
た場合には、その耐食性を大幅に向上させることを課題
とする。
From such a background,
An object of the present invention is to improve the corrosion resistance of structural steel, particularly in a water environment containing chlorine or chloride, by controlling the structure of the steel material. That is, it is possible to improve the corrosion resistance while securing the weldability without relying on the alloy element effective for the corrosion resistance as in the related art, and to greatly improve the corrosion resistance when the alloy element is added. Make it an issue.

【0005】[0005]

【課題を解決するための手段】本発明は前記課題を解決
するためになされたものであり、その要旨は以下に示す
通りである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and the gist thereof is as follows.

【0006】(1) 重量%で、C:0.04〜0.2
5%、Si:0.01〜1.0%、Mn:0.3〜2.
0%、S:0.01%以下の成分を有し、残部鉄及び不
可避的不純物から成る鋼又は鋼板で、該鋼の表層部又は
鋼板の表・裏層部からそれぞれで鋼の径又は鋼板の厚さ
の5%以上の表層領域において、結晶粒界及び/又は結
晶亜粒界に0.5μm以下のセメンタイト相を有すると
共にフェライトが95%以上を占め、且つ、そのフェラ
イト組織の硬さHが、下記(1)式を満足し、更に、圧
延面に平行な集合組織の(100)面強度比が1.5以
上を有することを特徴とする耐食性と耐腐食疲労特性に
優れた構造用鋼。 H≦200[Ceq%]+20+(9[Ceq%]+3.7)/√(d) ・ ・ ・ (1) 但し、[Ceq%]=C%+Si%/24+Mn%/6
であり、このC%、Si%、Mn%はそれぞれC、S
i、Mnの重量%であり、更に、dはフェライトの平均
円相当粒径である。
(1) C: 0.04 to 0.2% by weight
5%, Si: 0.01-1.0%, Mn: 0.3-2.
0%, S: a steel or steel sheet having a component of 0.01% or less, the balance being iron and unavoidable impurities, and the diameter or steel sheet of the steel from the surface layer of the steel or from the front and back layers of the steel sheet, respectively. Has a cementite phase of 0.5 μm or less at the grain boundaries and / or sub-grain boundaries in a surface layer region of 5% or more of the thickness of ferrite, and 95% or more of ferrite, and has a hardness H of the ferrite structure. Is characterized by satisfying the following formula (1), and further having a (100) plane strength ratio of a texture parallel to the rolled surface of 1.5 or more, for a structure excellent in corrosion resistance and corrosion fatigue resistance. steel. H ≦ 200 [Ceq%] + 20+ (9 [Ceq%] + 3.7) / √ (d) (1) where [Ceq%] = C% + Si% / 24 + Mn% / 6
Where C%, Si% and Mn% are C and S, respectively.
i is the weight% of Mn, and d is the average equivalent circle diameter of ferrite.

【0007】(2) 重量%で、更に、Al:0.00
5〜0.6%の成分を含有し、且つ、Nb:0.005
〜0.1%、Ti:0.005〜0.05%、Ta:
0.005〜0.05%の1種又は2種以上を含有する
ことを特徴とする上記(1)項記載の耐食性と耐腐食疲
労特性に優れた構造用鋼。
(2) Al: 0.00% by weight
Contains 5 to 0.6% of component, and Nb: 0.005
0.1%, Ti: 0.005 to 0.05%, Ta:
Structural steel excellent in corrosion resistance and corrosion fatigue resistance according to the above (1), characterized by containing one or more kinds of 0.005 to 0.05%.

【0008】(3) 重量%で、更に、Cu:0.05
〜1.0%、Ni:0.1〜2.0%、Cr:0.03
〜3.0%、Mo:0.05〜1.0%、V:0.01
〜0.4%、B:0.0002〜0.002%、P:
0.15%以下、Ca:0.0001〜0.02%、M
g:0.0001〜0.02%、REM:0.001%
〜0.2%の1種又は2種以上を含有し、且つ、フェラ
イト組織の硬さHが、下記(2)式を満足することを特
徴とする上記(1)項又は(2)項記載の耐食性と耐腐
食疲労特性に優れた構造用鋼。 H≦200[Ceq%]+20+(9[Ceq%]+3.7)/√(d) ・ ・ ・ (2) 但し、[Ceq%]=C%+Si%/24+Mn%/6
+(Cu%+Ni%)/15であり、このC%、Si
%、Mn%、Cu%、Ni%はそれぞれC、Si、M
n、Cu、Niの重量%で、更に、dはフェライトの平
均円相当粒径である。
(3) Cu: 0.05% by weight
1.0%, Ni: 0.1 to 2.0%, Cr: 0.03
3.0%, Mo: 0.05-1.0%, V: 0.01
~ 0.4%, B: 0.0002-0.002%, P:
0.15% or less, Ca: 0.0001 to 0.02%, M
g: 0.0001-0.02%, REM: 0.001%
(1) or (2), wherein the ferrite structure has a hardness H satisfying the following formula (2): Structural steel with excellent corrosion resistance and corrosion fatigue resistance. H ≦ 200 [Ceq%] + 20+ (9 [Ceq%] + 3.7) / √ (d) (2) where [Ceq%] = C% + Si% / 24 + Mn% / 6
+ (Cu% + Ni%) / 15, where C%, Si
%, Mn%, Cu%, and Ni% are C, Si, and M, respectively.
The weight percent of n, Cu, and Ni, and d is the average equivalent circle diameter of ferrite.

【0009】(4) 重量%で、C:0.04〜0.2
5%、Si:0.01〜1.0%、Mn:0.3〜2.
0%、S:0.01%以下の成分を有し、残部鉄及び不
可避的不純物から成る、鋼又は鋼板の素材をAc3点以
上に加熱してCを固溶させた状態で、熱間加工の前又は
途中でその時点における表層からそれぞれで鋼の径又は
鋼板の厚さの5%以上の表層領域を3℃/秒以上の冷却
速度でフェライト分率が50%以上となる温度まで急冷
した後に、該表層領域を復熱させる過程において(Ac
1点−150℃)以上の温度から熱間加工を開始又は再
開して、(Ac1点+50℃)〜Ac3点の温度範囲で熱
間加工を終了し、引き続いて前記表層領域をAc3点以
上に復熱させることなく冷却して、該表層領域におい
て、結晶粒界及び/又は結晶亜粒界に0.5μm以下の
セメンタイト相を有すると共にフェライトが95%以上
を占め、且つ、そのフェライト組織の硬さHが、下記
(3)式を満足し、更に、圧延面に平行な集合組織の
(100)面強度比が1.5以上を有することを特徴と
する耐食性と耐腐食疲労特性に優れた構造用鋼の製造方
法。 H≦200[Ceq%]+20+(9[Ceq%]+3.7)/√(d) ・ ・ ・ (3) 但し、[Ceq%]=C%+Si%/24+Mn%/6
であり、このC%、Si%、Mn%はそれぞれC、S
i、Mnの重量%であり、更に、dはフェライトの平均
円相当粒径である。
(4) C: 0.04 to 0.2% by weight
5%, Si: 0.01-1.0%, Mn: 0.3-2.
0%, S: A steel or a steel plate material having a component of 0.01% or less, the balance being iron and unavoidable impurities, heated to three or more Ac to form a solid solution with C, and Before or during processing, the surface layer area of 5% or more of the steel diameter or steel sheet thickness from the surface layer at that time is rapidly cooled at a cooling rate of 3 ° C / sec or more to a temperature at which the ferrite fraction becomes 50% or more. Then, in the process of reheating the surface layer region, (Ac
By hot working start or resume from one point -150 ° C.) or higher temperatures, (Ac 1 point + 50 ° C.) hot working ends in the temperature range of to Ac 3 point, Ac 3 the surface layer region subsequently Cooling is performed without reheating to a temperature of more than a point. In the surface layer region, a cementite phase having a grain size of 0.5 μm or less is present at a grain boundary and / or a sub-grain boundary, and ferrite occupies 95% or more. The hardness H of the structure satisfies the following expression (3), and further, the (100) plane strength ratio of the texture parallel to the rolled surface has a strength of 1.5 or more. Method for producing structural steel with excellent properties. H ≦ 200 [Ceq%] + 20+ (9 [Ceq%] + 3.7) / √ (d) (3) where [Ceq%] = C% + Si% / 24 + Mn% / 6
Where C%, Si% and Mn% are C and S, respectively.
i is the weight% of Mn, and d is the average equivalent circle diameter of ferrite.

【0010】(5) 重量%で、更に、Al:0.00
5〜0.6%の成分を含有し、且つ、Nb:0.005
〜0.1%、Ti:0.005〜0.05%、Ta:
0.005〜0.05%の1種又は2種以上を含有する
ことを特徴とする上記(4)項記載の耐食性と耐腐食疲
労特性に優れた構造用鋼の製造方法。
(5) Al: 0.00% by weight
Contains 5 to 0.6% of component, and Nb: 0.005
0.1%, Ti: 0.005 to 0.05%, Ta:
The method for producing a structural steel having excellent corrosion resistance and corrosion fatigue resistance according to the above item (4), comprising one or more of 0.005 to 0.05%.

【0011】(6) 熱間加工の終了後、引き続いて前
記表層領域をAc3点以上に復熱させることなく、冷却
速度が5℃/秒以上で加速冷却又は直接焼き入れするこ
とを特徴とする上記(4)項又は(5)項に記載の耐食
性と耐腐食疲労特性に優れた構造用鋼の製造方法。
(6) After the completion of hot working, accelerated cooling or direct quenching is performed at a cooling rate of 5 ° C./sec or more without successively reheating the surface layer to three or more Ac points. The method for producing a structural steel having excellent corrosion resistance and corrosion fatigue resistance described in the above item (4) or (5).

【0012】(7) 前記加速冷却又は直接焼き入れ終
了後に引き続いて、焼戻しすることを特徴とする上記
(6)項記載の耐食性に優れた構造用鋼の製造方法。
(7) The method for producing a structural steel having excellent corrosion resistance according to the above (6), wherein tempering is performed subsequently after the completion of the accelerated cooling or direct quenching.

【0013】(8) 重量%で、更に、Cu:0.05
〜1.0%、Ni:0.1〜2.0%、Cr:0.03
〜3.0%、Mo:0.05〜1.0%、V:0.01
〜0.4%、B:0.0002〜0.002%、P:
0.15%以下、Ca:0.0001〜0.02%、M
g:0.0001〜0.02%、REM:0.001%
〜0.2%の1種又は2種以上を含有し、且つ、フェラ
イト組織の硬さHが、下記(4)式を満足することを特
徴とする上記(4)項〜(7)項のいずれかに記載の耐
食性と耐腐食疲労特性に優れた構造用鋼の製造方法。 H≦200[Ceq%]+20+(9[Ceq%]+3.7)/√(d) ・ ・ ・ (4) 但し、[Ceq%]=C%+Si%/24+Mn%/6
+(Cu%+Ni%)/15であり、このC%,Si
%、Mn%、Cu%、Ni%はそれぞれC、Si、M
n、Cu、Niの重量%であり、更に、dはフェライト
の平均円相当粒径である。
(8) By weight%, Cu: 0.05
1.0%, Ni: 0.1 to 2.0%, Cr: 0.03
3.0%, Mo: 0.05-1.0%, V: 0.01
~ 0.4%, B: 0.0002-0.002%, P:
0.15% or less, Ca: 0.0001 to 0.02%, M
g: 0.0001-0.02%, REM: 0.001%
The ferrite structure according to any one of the above (4) to (7), wherein the ferrite structure contains at least one kind or two or more kinds and the hardness H of the ferrite structure satisfies the following expression (4). A method for producing a structural steel excellent in corrosion resistance and corrosion fatigue resistance according to any of the above. H ≦ 200 [Ceq%] + 20+ (9 [Ceq%] + 3.7) / √ (d) (4) where [Ceq%] = C% + Si% / 24 + Mn% / 6
+ (Cu% + Ni%) / 15.
%, Mn%, Cu%, and Ni% are C, Si, and M, respectively.
n is the weight percent of Cu and Ni, and d is the average equivalent circle diameter of ferrite.

【0014】[0014]

【発明の実施の形態】本発明者は種々の鋼の塩素を含む
水環境、湿潤環境、乾湿繰り返し環境での耐食性を詳細
に検討した結果、鋼組織において、転位密度の低いフェ
ライトを主体とし、集合組織の(100)面強度比を
1.5以上で、且つ、フェライト結晶粒界及び/又は結
晶亜粒界に0.5μm以下のセメンタイト相又はセメン
タイト相とNb、Ti、Taの1種又は2種以上の炭窒
化物相を析出させることで鋼の耐食性が大きく向上する
ことを見出した。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of detailed examination of the corrosion resistance of various steels in a water environment containing chlorine, in a wet environment, and in a wet / wet repeated environment, the present inventors have found that the steel structure is mainly composed of ferrite having a low dislocation density. A cementite phase or a cementite phase having a (100) plane strength ratio of not less than 1.5 and a ferrite grain boundary and / or sub-grain boundary of 0.5 μm or less and one of Nb, Ti, and Ta or It has been found that the corrosion resistance of steel is greatly improved by precipitating two or more carbonitride phases.

【0015】このフェライトの転位密度が低いと耐食性
が向上する機構は明確ではないが、転位密度の高い組織
の方が、転位による歪みエネルギーが大きいため、腐食
反応の際にも活性化するのではないかと推察される。
The mechanism by which the ferrite has a low dislocation density to improve the corrosion resistance is not clear, but a structure having a high dislocation density has a higher strain energy due to the dislocation, and is therefore activated even during a corrosion reaction. It is presumed that there is not.

【0016】フェライトは比較的転位密度の低い組織で
はあるが、加工フェライト等、転位密度の高い組織も存
在するため、フェライト組織で、且つ転位密度の低いこ
とを必要条件としなければならない。
Ferrite has a structure with a relatively low dislocation density, but since there is also a structure with a high dislocation density, such as a processed ferrite, it is necessary to have a ferrite structure and a low dislocation density.

【0017】このため、先ず、フェライト内部の転位密
度を評価する必要がある。この転位密度を定量的に測定
すことは極めて難しい。
For this reason, first, it is necessary to evaluate the dislocation density inside the ferrite. It is extremely difficult to quantitatively measure the dislocation density.

【0018】そこで、粒界の特性により、粒径と降伏応
力の関係が変化することを利用して、フェライト内部の
転位密度の大小関係を評価する方法がある。これは、オ
ーステナイト/フェライト変態により生成した通常のフ
ェライト組織では、フェライト粒界によって定義される
粒径と硬さの間には一定の関係があり、ホールペッチの
関係とも関連づけることが出来る。しかしながら、フェ
ライト内部の転位密度が高くなると、粒径と硬さの関係
が変化してくる。この実験事実に着目し、フェライト内
部の転位密度を評価した。これには、先ず、結晶粒径を
測定する必要がある。本発明では、通常のオーステナイ
ト/フェライト変態による粒界だけでなく、加工再結晶
による粒界も対象とするので、通常のナイタール腐食に
よる粒界現出では不十分である。そこで、加工組織でも
明瞭な粒界を現出させるためには、蓚酸水溶液、過酸化
水素水、硫酸水溶液を主体とする腐食液であるマーシャ
ル試薬が適していることを知見し、本試薬により腐食さ
せて現出させた結晶粒径を測定した。
Therefore, there is a method of evaluating the relationship between the dislocation densities inside ferrite by utilizing the fact that the relationship between the grain size and the yield stress changes depending on the characteristics of the grain boundaries. This means that in a normal ferrite structure formed by austenite / ferrite transformation, there is a certain relationship between the grain size defined by the ferrite grain boundaries and hardness, and can be related to the Hall-Petch relationship. However, as the dislocation density inside the ferrite increases, the relationship between grain size and hardness changes. Focusing on this experimental fact, the dislocation density inside ferrite was evaluated. For this, first, it is necessary to measure the crystal grain size. In the present invention, not only the grain boundaries due to the normal austenite / ferrite transformation but also the grain boundaries due to the work recrystallization are targeted, so that the appearance of the grain boundaries due to the normal nital corrosion is insufficient. Therefore, in order to make clear grain boundaries appear even in the processed structure, we found that Marshall's reagent, which is a corrosive solution mainly composed of oxalic acid aqueous solution, hydrogen peroxide aqueous solution, and sulfuric acid aqueous solution, was suitable. Then, the crystal grain size that appeared was measured.

【0019】このような評価方法を用いることにより、
転位密度の低い組織におけるフェライトの硬さHと各成
分、結晶粒径dの間で、下記式の関係が成立することの
知見を得た。
By using such an evaluation method,
It has been found that the relationship represented by the following formula is established between the hardness H of ferrite and the respective components and the crystal grain size d in a structure having a low dislocation density.

【0020】H≦200[Ceq%]+20+(9[C
eq%]+3.7)/√(d) 但し、[Ceq%]=C%+Si%/24+Mn%/6
+(Cu%+Ni%)/15であり、このC%、Si
%、Mn%、C%、Ni%はそれぞれC、Si、Mn、
Cu、Niの重量%である。
H ≦ 200 [Ceq%] + 20+ (9 [C
eq%] + 3.7) / √ (d) where [Ceq%] = C% + Si% / 24 + Mn% / 6
+ (Cu% + Ni%) / 15.
%, Mn%, C%, and Ni% are C, Si, Mn,
It is the weight percentage of Cu and Ni.

【0021】この式は、転位密度の状態を示す指標であ
り、化学成分(Ceq)と結晶粒径dにより決定される
指標である。この粒径dの測定は通常のナイタール腐食
による組織現出でよいが、転位密度が高い組織では組織
現出が不鮮明であるので、マーシャル試薬による粒界現
出の方が適切である。その現出方法を以下に示す。
This equation is an index indicating the state of the dislocation density, and is an index determined by the chemical component (Ceq) and the crystal grain size d. The measurement of the particle size d may be performed by the appearance of a structure due to normal nital corrosion, but the appearance of the structure is not clear in a structure having a high dislocation density, so that the appearance of a grain boundary by a Marshall reagent is more appropriate. The appearance method is described below.

【0022】前記マーシャル試薬は、蓚酸水溶液、過酸
化水素水、硫酸液7mlを主体とする腐食液であり、通
常、8%蓚酸水溶液50ml、過酸化水素水50ml、
50%硫酸液7mlから成るが、粒界をより現出しやす
くするため、8%蓚酸水溶液50ml、過酸化水素水5
0ml、50%硫酸液14ml、エチルアルコール1m
lから成る改良型マーシャル試薬を用いた。試料を先ず
5%塩酸液に3〜4秒浸漬の後、水洗、乾燥させ、改良
マーシャル試薬を用いて、室温にて3〜5秒腐食させ、
水洗、乾燥させることにより、粒界を現出させるもので
ある。この腐食方法は、代表例であり、腐食液の成分を
多少変化させても粒界の観察は行い難くなるものの、観
察しようとする粒界は腐食現出するので、本発明の範囲
にはいるものである。
The Marshall reagent is a corrosive solution mainly composed of an aqueous solution of oxalic acid, aqueous hydrogen peroxide and 7 ml of sulfuric acid. Usually, 50 ml of an 8% aqueous oxalic acid solution, 50 ml of aqueous hydrogen peroxide,
It consists of 7 ml of 50% sulfuric acid solution, but 50 ml of 8% oxalic acid aqueous solution and 5 ml of hydrogen peroxide solution
0ml, 50% sulfuric acid solution 14ml, ethyl alcohol 1m
An improved Marshall reagent consisting of 1 was used. The sample was first immersed in a 5% hydrochloric acid solution for 3 to 4 seconds, washed with water, dried, and corroded at room temperature for 3 to 5 seconds using the improved Marshall reagent.
The grain boundaries are revealed by washing with water and drying. This corrosion method is a typical example, and although it is difficult to observe the grain boundary even if the composition of the etchant is slightly changed, the grain boundary to be observed appears to corrode, and thus falls within the scope of the present invention. Things.

【0023】更に、フェライト結晶粒界及び/又は結晶
亜粒界に0.5μm以下のセメンタイト又は、セメンタ
イトとNb、Ti、Taの1種又は2種以上の炭窒化物
相を析出させるためには、C又はC及びNb、Ti、T
aの1種又は2種以上を含有する鋼又は鋼板の素材(例
えばビレット、スラブ)をAc3点以上に加熱して、C
又はCとNb、Ti、Taの1種又は2種以上を固溶さ
せた状態で、制御圧延等の熱間加工の前又は途中でフェ
ライト分率が50%以上となる温度まで急冷して、C又
はCとNb、Ti、Taの1種又は2種以上を過飽和に
固溶させ、そして、その後の復熱過程において熱間加工
を開始又は再開してAc3点以下で熱間加工を終了し、
引き続いてAc3点以上に復熱させないで冷却すること
がェライトを主体とし、且つ、圧延面に平行な集合組織
の(100)面強度比が1.5以上を有する組織を効果
的に確保する上で不可欠であることが判明した。
Further, in order to precipitate cementite of 0.5 μm or less or one or more carbonitride phases of Nb, Ti and Ta at the ferrite grain boundary and / or sub-grain boundary, , C or C and Nb, Ti, T
A material (eg, billet, slab) containing steel or steel containing one or more of a is heated to three or more Ac points,
Alternatively, in a state where one or two or more of C and Nb, Ti, and Ta are dissolved, before or during hot working such as controlled rolling, the temperature is rapidly cooled to a temperature at which the ferrite fraction becomes 50% or more. One or two or more of C or C and Nb, Ti, or Ta are dissolved in supersaturation, and hot working is started or restarted in the subsequent recuperation process, and hot working is completed at an Ac point of 3 or less. And
Subsequently, cooling without reheating to three or more Ac points is mainly made of elite, and a texture having a (100) plane strength ratio of a texture parallel to the rolling surface of 1.5 or more is effectively secured. Turned out to be essential.

【0024】以下に本発明で成分を規定した理由を詳細
に説明する。
Hereinafter, the reasons for defining the components in the present invention will be described in detail.

【0025】Cは本発明では過飽和固溶状態から0.5
μm以下にフェライト結晶粒界又は結晶亜粒界に析出さ
せたセメンタイトによって超微細粒フェライトをピンニ
ングする必須元素であり安価に強度を向上するのに最も
有効な元素であるが、0.25%を超えると低温靱性を
阻害する。更に、鋼又は鋼板の表層領域においてもパー
ライト分率が10%を超え、0.04%未満ではピンニ
ングに必要なセメンタイト量が不足するために、0.0
4〜0.25%に限定する。尚、溶接用の構造用鋼の場
合には0.2%を超えると溶接性(溶接部靱性)が劣化
するために0.04〜0.2%にするのが好ましい。
C is 0.5% from the supersaturated solid solution state in the present invention.
It is an essential element for pinning ultra-fine grain ferrite by cementite precipitated at the ferrite grain boundary or sub-grain boundary below μm and is the most effective element to improve strength at low cost, but 0.25% If it exceeds, low temperature toughness is impaired. Further, even in the surface layer region of steel or steel plate, the pearlite fraction exceeds 10%, and if it is less than 0.04%, the amount of cementite necessary for pinning becomes insufficient.
Limited to 4-0.25%. In the case of structural steel for welding, if it exceeds 0.2%, the weldability (weld part toughness) deteriorates, so it is preferable to set the content to 0.04 to 0.2%.

【0026】Siは強度向上元素として有効であり安価
な溶鋼の脱酸元素としても有用であるが、1.0%を超
えると溶接性が劣化し、0.01%未満では脱酸効果が
不十分でTiやAl等の高価な脱酸元素を多用する必要
があるために、0.01〜1.0%に限定する。
Si is effective as a strength improving element and is also useful as an inexpensive deoxidizing element for molten steel. However, if it exceeds 1.0%, the weldability deteriorates, and if it is less than 0.01%, the deoxidizing effect is not sufficient. Since it is necessary to use a large amount of expensive deoxidizing elements such as Ti and Al, the content is limited to 0.01 to 1.0%.

【0027】Mnは強度を向上するに必要な元素であ
り、その必要性から0.3%以上として、2.0%超の
添加は母材靱性・溶接性を阻害すると共にAr3変態点
を低下させる結果、二相域圧延等の熱間圧延をを困難に
するために0.3〜2.0%に限定した。
Mn is an element necessary for improving the strength. From the necessity, Mn is set to 0.3% or more, and if added over 2.0%, the base material toughness and weldability are inhibited and the Ar 3 transformation point is reduced. As a result of reduction, the content is limited to 0.3 to 2.0% in order to make hot rolling such as two-phase rolling difficult.

【0028】Sは耐食性、靭性の観点から0.01%以
下に限定した。MnSが塩素あるいは塩化物を含む水環
境で溶解し、選択的な腐食起点となることはよく知られ
ており、その観点から、Sは出来るだけ低いほど好まし
い。
S is limited to 0.01% or less from the viewpoint of corrosion resistance and toughness. It is well known that MnS dissolves in an aqueous environment containing chlorine or chloride and becomes a selective corrosion starting point, and from that viewpoint, the lower the S, the better.

【0029】Nbは加工熱処理(TMCP)鋼において
Tiと共に最も有用な元素であり、NbC又はNb
(C,N)(Carbo−nitride)として鋼材
の再加熱時のγ粒成長の抑制・制御圧延時の未再結晶域
温度域の拡大・圧延時の変形帯における析出強化・大入
熱溶接時の溶接熱影響部(HAZ)におけるHAZ軟化
の防止の効果が一般的に知られている。更に、本発明者
の仔細な検討から超微細析出させたセメンタイトの熱的
な安定性及びフェライト粒の成長抑制効果が著しく増加
することを知見した。従って、0.005%未満では過
飽和固溶状態から0.5μm以下にフェライト結晶粒界
又は結晶亜粒界に析出させるNbC又はNb(C,N)
量が不足すると共に0.5μm以下に析出させたセメン
タイトの熱的な安定性も不足して、0.1%以上では溶
接性を損なうために0.005〜0.1%に限定する。
Nb is the most useful element together with Ti in thermomechanical processing (TMCP) steel, and NbC or Nb
As (C, N) (Carbo-nitride), suppression of γ-grain growth during reheating of steel material, expansion of non-recrystallization temperature range during controlled rolling, precipitation strengthening in deformation zone during rolling, large heat input welding The effect of preventing HAZ softening in the heat affected zone (HAZ) is generally known. Further, from the detailed studies by the present inventors, it has been found that the thermal stability of the ultrafine precipitated cementite and the effect of suppressing the growth of ferrite grains are remarkably increased. Therefore, if the content is less than 0.005%, NbC or Nb (C, N) precipitated from a supersaturated solid solution state to a ferrite grain boundary or a sub-grain boundary to 0.5 μm or less.
The amount is insufficient and the thermal stability of cementite precipitated to 0.5 μm or less is also insufficient. If it is 0.1% or more, the weldability is impaired, so that the content is limited to 0.005 to 0.1%.

【0030】TiもまたTMCP鋼においてNbと共に
最も有用な元素であり、TiC又はTi(C,N)とし
て鋼材の再加熱時のγ粒成長の抑制・制御圧延時の未再
結晶域温度域の拡大・圧延時の析出強化・大入熱溶接時
のHAZ靭性の向上を図れることが一般的に知られてい
る。更に、本発明者の仔細な検討からNbと同様に超微
細析出させたセメンタイトの熱的な安定性及びフェライ
ト粒の成長抑制効果が改善することを見出した。従っ
て、0.005%未満では過飽和固溶状態から0.5μ
m以下にフェライト結晶粒界又は結晶亜粒界に析出させ
るTiC又はTiCN量が不足すると共に0.5μm以
下に析出させたセメンタイトの熱的な安定性も不足し
て、0.05%以上では溶接性を損なうために、0.0
05〜0.05%に限定する。
Ti is also the most useful element together with Nb in the TMCP steel. As TiC or Ti (C, N), the suppression of γ-grain growth during reheating of the steel material and the temperature in the unrecrystallized region during controlled rolling are controlled. It is generally known that precipitation strengthening during expansion / rolling and HAZ toughness during large heat input welding can be improved. Furthermore, from the detailed examination of the present inventor, it has been found that, similarly to Nb, the thermal stability of the ultrafine precipitated cementite and the effect of suppressing the growth of ferrite grains are improved. Therefore, if the content is less than 0.005%, the supersaturated solid solution state becomes 0.5 μm.
m or less, the amount of TiC or TiCN precipitated at the ferrite grain boundary or sub-grain boundary is insufficient, and the thermal stability of cementite precipitated at 0.5 μm or less is insufficient. 0.0 in order to impair
Limited to 05-0.05%.

【0031】TaはTaC又はTa(C,N)として鋼
材の再加熱時のγ粒成長の抑制・大入熱時のHAZ靱性
向上の効果が知られているが、高価なためにそれ程一般
的に使われてはいない。然し、本発明者の仔細な検討か
らNb・Tiと同様に超微細析出させたセメンタイトの
熱的な安定性及びフェライト粒の成長抑制効果が改善す
ることを見出した。従って、0.005%未満では過飽
和固溶状態から0.5μm以下にフェライト結晶粒界又
は結晶亜粒界に析出させるTaC又はTaCN量が不足
すると共に0.5μm以下に析出させたセメンタイトの
熱的な安定性も不足して、0.05%以上では溶接性を
損なうために、0.005〜0.05%に限定する。
Ta is known as TaC or Ta (C, N) to suppress the growth of γ grains during reheating of steel and to improve the HAZ toughness during large heat input. Not used for However, the inventor's detailed studies have found that, similarly to Nb.Ti, the thermal stability and the effect of suppressing the growth of ferrite grains of ultrafine precipitated cementite are improved. Therefore, if the content is less than 0.005%, the amount of TaC or TaCN precipitated at the ferrite crystal grain boundary or sub-grain boundary from the supersaturated solid solution state to 0.5 μm or less becomes insufficient, and the thermal behavior of cementite precipitated to 0.5 μm or less becomes insufficient. The stability is also insufficient. If the content is 0.05% or more, the weldability is impaired, so the content is limited to 0.005 to 0.05%.

【0032】AlはSi同様に脱酸上必要な元素であ
り、本発明の技術思想からTi・Ta又はNbを微量添
加する時にはその酸化を防止するのにSi単独の脱酸で
は不十分なために0.005%以上添加が必要である。
更に本発明者はAlの添加が本発明鋼の耐食性に対して
も有効であることを知見した。但し0.6%以上の過度
の添加はHAZ靭性を損なうために、0.005〜0.
6%に限定した。
Al is an element necessary for deoxidation like Si, and from the technical idea of the present invention, when a small amount of Ti.Ta or Nb is added, deoxidation of Si alone is insufficient to prevent its oxidation. Must be added in an amount of 0.005% or more.
Furthermore, the present inventors have found that the addition of Al is also effective for the corrosion resistance of the steel of the present invention. However, an excessive addition of 0.6% or more impairs HAZ toughness, so that 0.005 to 0.5% is added.
Limited to 6%.

【0033】以上が本発明が対象とする鋼の基本成分で
あるが、更に、母材強度の向上や低温靱性・溶接性の改
善を目的とした低炭素等量化のために、要求される品質
特性又は鋼材の大きさ・鋼板厚に応じてCuを0.05
〜1.0%、Niを0.1〜2.0%、Crを0.03
〜3.0%、Moを0.05〜1.0%、Vを0.01
〜0.4%、Bを0.0002〜0.002%の範囲で
添加することが強度・低温靱性・溶接性を向上する観点
から好ましく、しかも、この添加により本発明の効果は
何ら損なわれることはない。また、Cu、Ni、Crは
従来から、海水など塩素あるいは塩化物を含む水環境で
鋼の耐食性を向上させる元素として知られているが、こ
れら元素を含有する鋼に本発明を適用することにより、
さらなる耐食性の向上が図られる。更に、これら元素と
併せてP添加も耐食性に有効であり、本発明においても
添加することが好ましい。但し、0.15%を超える添
加は、靭性、溶接性を著しく低下させることから、0.
15%以下とする。
The above are the basic components of the steel targeted by the present invention. Furthermore, the quality required for the low carbon equivalent for the purpose of improving the base material strength and the low temperature toughness and weldability is further improved. 0.05% Cu depending on properties or steel material size / steel plate thickness
~ 1.0%, Ni 0.1 ~ 2.0%, Cr 0.03%
To 3.0%, Mo to 0.05 to 1.0%, V to 0.01
It is preferable to add B in the range of 0.0002 to 0.002% from the viewpoint of improving the strength, low-temperature toughness, and weldability, and the effect of the present invention is impaired by this addition. Never. In addition, Cu, Ni, and Cr are conventionally known as elements that improve the corrosion resistance of steel in an aqueous environment containing chlorine or chloride such as seawater, but by applying the present invention to steel containing these elements. ,
Further improvement in corrosion resistance is achieved. Further, addition of P together with these elements is also effective for corrosion resistance, and it is preferable to add P also in the present invention. However, if the addition exceeds 0.15%, the toughness and weldability are remarkably reduced.
15% or less.

【0034】更に、前述のように塩素あるいは塩化物を
含む水環境ではMnSは腐食の起点として有害であり、
これを低減するために、鋼中硫化物の形態・分散制御の
観点からCaを0.0001〜0.02%、Mgを0.
0001〜0.02%、REMを0.001%〜0.2
%の範囲で添加することが本発明効果と重畳して有効で
ある。
Further, as described above, in an aqueous environment containing chlorine or chloride, MnS is harmful as a starting point of corrosion,
In order to reduce this, from the viewpoint of controlling the morphology and dispersion of sulfide in steel, 0.0001 to 0.02% of Ca and 0.1% of Mg are used.
0001-0.02%, REM 0.001% -0.2
% Is effective in overlapping with the effect of the present invention.

【0035】次に、本発明の技術思想である結晶組織を
規定する理由について述べる。
Next, the reason for defining the crystal structure which is the technical idea of the present invention will be described.

【0036】ベイナイトを含むフェライト・パーライト
鋼ではフェライト組織が主体となっても耐食性は必ずし
も改善しない。本発明者の仔細な調査により、フェライ
ト粒が加工を受けて転位密度が高い状態にある場合に
は、腐食環境下で腐食反応が活発化し、塩素あるいは塩
化物を含む水環境での腐食孔が発生する頻度が高く、且
つ腐食深さが大きいことが判明した。更に、微細なセメ
ンタイト相を有するフェライト組織の分率を95%以上
にすると、耐食性は特段に向上することも知見した。
In the ferrite-pearlite steel containing bainite, the corrosion resistance is not always improved even if the ferrite structure is mainly contained. According to a detailed investigation by the present inventors, when the ferrite grains are processed and have a high dislocation density, the corrosion reaction is activated in a corrosive environment, and the corrosive pores in a water environment containing chlorine or chloride are formed. It was found that the frequency of occurrence was high and the corrosion depth was large. Further, it has been found that when the fraction of the ferrite structure having a fine cementite phase is 95% or more, the corrosion resistance is particularly improved.

【0037】一方、単に微細なセメンタイト又は炭窒化
物相から構成される組織だけでは、平均粒径3μm以下
のフェライト若しくはベイナイトを主体とする組織を安
定して得ることが出来ず、フェライト結晶粒の成長抑制
が必要不可欠であることも見い出した。即ち、フェライ
ト結晶粒界又は結晶亜粒界に0.5μm以下のセメンタ
イトを析出させることによって初めてフェライト若しく
はベイナイトをピーニングして、その成長を効果的に抑
制出来る。
On the other hand, only a structure composed of fine cementite or carbonitride phase cannot stably obtain a structure mainly composed of ferrite or bainite having an average grain size of 3 μm or less, and the ferrite crystal grains have a small size. They also found that controlling growth was essential. That is, ferrite or bainite can be peened for the first time by depositing cementite of 0.5 μm or less at the ferrite crystal grain boundary or crystal sub-grain boundary, and the growth thereof can be effectively suppressed.

【0038】また、0.5μm以下のNb、Ti、Ta
の炭窒化物をフェライト結晶粒界又は結晶亜粒界に析出
させると、セメンタイトと同様のピーニング効果が認め
られると共に、更にフェライト結晶粒界又は結晶亜粒界
に超微細に析出させたセメンタイト自体の熱的な安定性
が増すことも分かった。
In addition, Nb, Ti, Ta of 0.5 μm or less
When the carbonitride is precipitated at the ferrite grain boundaries or sub-grain boundaries, the same peening effect as cementite is observed, and furthermore, the cementite itself that is ultra-finely precipitated at the ferrite grain boundaries or sub-grain boundaries It has also been found that thermal stability increases.

【0039】次に、耐腐食疲労は発生した腐食ピットか
ら疲労亀裂が進展するものであり、この耐腐食疲労特性
を良好にするには、発生する腐食ピットの大きさを小
さく抑制することが必要である。これには、腐食ピット
の原因の一つであるフェライト相以外のセメンタイト相
又は炭化物相である第二相組織を0.5μm以下に微細
化することがポイントである。更に、前記腐食ピット
から疲労亀裂として成長することを抑制することが重要
であり、この疲労亀裂の板厚方向への進展を阻止するに
は、圧延面に平行な面での(100)面集合組織を強化
することが効果的であり、顕著な効果を得るためには
(100)面強度比を1.5以上にすることが必要であ
る。
Next, in the corrosion fatigue resistance, a fatigue crack propagates from the generated corrosion pit. To improve the corrosion fatigue resistance, it is necessary to reduce the size of the generated corrosion pit. It is. The point is that the second phase structure that is a cementite phase or a carbide phase other than the ferrite phase, which is one of the causes of the corrosion pit, is refined to 0.5 μm or less. Further, it is important to suppress the growth of fatigue cracks from the corrosion pits. In order to prevent the fatigue cracks from propagating in the thickness direction, the (100) plane set in a plane parallel to the rolling plane is required. It is effective to strengthen the tissue, and in order to obtain a remarkable effect, it is necessary to make the (100) plane intensity ratio 1.5 or more.

【0040】他方、超細粒組織の割合が鋼又は鋼板の表
層領域、即ち、鋼の径又は鋼板の厚さの5%未満では、
長時間側の耐食性にばらつきがみられ顕著に改善しない
ために5%以上に限定した。超細粒組織の占める割合が
大きいほど耐食性が向上して好ましく、その上限は特に
規定しないが、過度の増加は製造コストの上昇につなが
るため30%迄が好ましい。
On the other hand, when the proportion of the ultrafine grain structure is less than 5% of the surface area of the steel or the steel sheet, that is, less than 5% of the diameter of the steel or the thickness of the steel sheet,
Since the corrosion resistance on the long-term side varied and was not significantly improved, the content was limited to 5% or more. The higher the proportion of the ultrafine grain structure, the better the corrosion resistance. The upper limit is not particularly defined. However, an excessive increase leads to an increase in the production cost, so that it is preferably up to 30%.

【0041】次に、本発明で鋼又は鋼板の裏層領域にお
ける前記組織を実現する製造方法を規定する理由につい
て述べる。
Next, the reason for defining the manufacturing method for realizing the above structure in the back layer region of steel or steel sheet in the present invention will be described.

【0042】鋼の素材又は鋼を再加熱時においてC及び
CとNb、Ti、Taの1種又は2種以上を固溶させる
加熱温度はAc3点以上に限定される。Nb、Ti、T
aの1種又は2種以上を充分に固溶させる加熱温度とし
ては1000℃以上が好ましく、加熱時におけるγ粒の
粗大化を防止するためには加熱温度を1200℃以下と
することが好ましい。鋼又は鋼板の表層領域において、
フェライト結晶粒界及び/又は結晶亜粒界に0.5μm
以下のセメンタイト及びセメンタイトとはNb、Ti、
Taの1種又は2種以上の炭窒化物を析出させるには、
C又はCとNb、Ti、Taの1種又は2種以上を鋼中
に固溶させた状態で、表層領域を3℃/秒以上の冷却速
度で冷却することによってC、Nb、Ti、Taを鋼中
に過飽和に固溶せしめたる後に、冷却によっても温度低
下の少ない鋼中の中心部の顕熱を利用して復熱させる過
程で超微細に析出させるものである。
When the steel material or the steel is reheated, the heating temperature at which C and one or more of Nb, Ti and Ta are dissolved in C and C is limited to three or more Ac. Nb, Ti, T
The heating temperature at which one or more of a is sufficiently dissolved is preferably 1000 ° C. or higher, and the heating temperature is preferably 1200 ° C. or lower in order to prevent coarsening of γ grains during heating. In the surface area of steel or steel sheet,
0.5 μm at ferrite grain boundaries and / or sub-grain boundaries
The following cementite and cementite are Nb, Ti,
In order to deposit one or more carbonitrides of Ta,
C, Nb, Ti, and Ta are cooled by cooling the surface layer region at a cooling rate of 3 ° C./second or more in a state where one or two or more of C or C and Nb, Ti, and Ta are dissolved in steel. Is super-saturated in steel, and is super-finely precipitated in the process of recovering heat by utilizing the sensible heat of the central portion in the steel, which has a small decrease in temperature even by cooling.

【0043】鋼又は鋼板の裏層領域において、転位密度
の低いフェライトを主体とする組織(平均粒径3μm以
下のフェライト又はベイナイトを主体とする組織)とな
すには、鋼又は鋼の素材をAc3点以上に加熱してから
熱間加工の前又は途中で表層領域を3℃/秒以上の冷却
速度でフェライト分率が50%以上となる温度まで急冷
した後に、この冷却によっても温度低下の少ない鋼の中
心部の顕熱を利用して復熱させる過程で、(Ac1点−
150℃)以上の温度から熱間加工を開始又は再開し
て、(Ac1点+50℃)〜Ac3点の範囲で熱間加工を
終了することによってフェライトの回復・再結晶を惹起
せしめて超微細粒化し、且つ、Ac3点以上に復熱する
ことなく冷却すると共にフェライト結晶粒界及び/又は
結晶亜粒界に析出させた0.5μm以下のセメンタイト
及び/又はNb、Ti、Taの1種又は2種以上の炭窒
化物によるピンニング効果を効果的に活用して超微細粒
組織の成長を防止するものである。
In order to form a structure mainly composed of ferrite having a low dislocation density (structure mainly composed of ferrite or bainite having an average grain size of 3 μm or less) in the back layer region of steel or steel sheet, the steel or steel material is made of Ac. After heating to 3 points or more, before or during hot working, the surface layer is rapidly cooled at a cooling rate of 3 ° C./sec or more to a temperature at which the ferrite fraction becomes 50% or more. In the process of recovering heat using the sensible heat in the central part of the steel, (Ac 1 point-
The hot working is started or restarted from a temperature of 150 ° C. or higher, and the hot working is completed in the range of (Ac 1 point + 50 ° C.) to Ac 3 points, thereby causing the recovery and recrystallization of ferrite to be performed. One of the cementite of 0.5 μm or less and / or Nb, Ti, Ta precipitated at the ferrite crystal grain boundary and / or the crystal sub-grain boundary while cooling without refining into fine grains and reheating to three or more Ac points. The purpose is to effectively utilize the pinning effect of one or more carbonitrides to prevent the growth of an ultrafine grain structure.

【0044】更に、一次加工後に前記表層領域をAr3
点以下に冷却した後に、鋼内部に顕熱による復熱時に二
次加工を実施すると、鋼の中心部までは未再結晶温度域
での熱間加工となって、鋼の低温靱性は著しく向上す
る。
Further, after the primary processing, the surface layer is made of Ar 3
After cooling to below the point, when secondary processing is performed during sensible heat recovery inside the steel, hot working in the non-recrystallization temperature range up to the center of the steel significantly improves the low temperature toughness of the steel I do.

【0045】この熱間加工としては圧延・押し出し・引
き抜き等の一般的なを対象とする。また、鋼の素材寸法
が大きくて加熱温度が1170℃以上の場合や、低温靱
性の要求が厳しい場合には鋼又は鋼板の表層領域を冷却
する前の初期γ粒を細かくしておくために、Nb、T
i、Taの添加及び制御圧延等の熱間加工を行うことが
好ましい。更に、鋼の加熱に引き続く冷却前に熱間加工
を行わない場合には鋼の初期γ粒を細かくしておくため
に低温加熱及びNb、Ti、Taの添加又は初期γ粒の
細かな熱間加工半製品の使用が好ましい。
The hot working is intended for general processes such as rolling, extrusion, and drawing. Further, when the material size of the steel is large and the heating temperature is 1170 ° C. or higher, or when the requirement of low-temperature toughness is severe, in order to make the initial γ grains before cooling the surface region of the steel or the steel sheet fine, Nb, T
It is preferable to perform hot working such as addition of i and Ta and controlled rolling. Further, when hot working is not performed before cooling subsequent to heating the steel, low temperature heating and addition of Nb, Ti, Ta or fine hot γ The use of semi-finished products is preferred.

【0046】鋼又は鋼板の表層領域を超微細化した後
に、鋼又は鋼板中心部の顕熱によってAc3点以上に復
熱すると該表層領域を超微細化した効果が損なわれるば
かりでなく、フェライト結晶粒界又は結晶亜粒界に微細
析出させたセメンタイトがγに再固溶してピンニング効
果が失われてしまう。従って、表層領域がAc3点以上
に復熱することのないようにすることが必要であり、圧
延中の温度を監視しつつ、必要に応じてAc3点以上に
復熱しないように、圧延後、冷却しても差し支えない。
After the surface region of the steel or steel plate is ultra-fine, if the temperature of the central portion of the steel or steel plate is restored to three or more Ac by sensible heat, not only the effect of the ultra-fine surface region but also the effect of ferrite is lost. Cementite finely precipitated at the crystal grain boundaries or sub-grain boundaries re-dissolves in γ to lose the pinning effect. Therefore, it is necessary to prevent the surface layer from reheating to more than the Ac 3 point, and to monitor the temperature during rolling, and to reduce the temperature to the Ac 3 point or more, if necessary, while monitoring the temperature during rolling. Later, it can be cooled.

【0047】また、鋼又は鋼板を高強度化するために
は、要求強度レベルに応じて添加成分を調整すると共
に、熱間加工の終了後に引き続いてAc3点以上に復熱
させることなく5℃/秒以上の冷却速度でTMCP設備
による加速冷却又はDQ設備による直接焼き入れを実施
すればよい。
Further, in order to increase the strength of the steel or steel sheet, request with intensity level adjusting additive component according to, 5 ° C. without recuperation to the Ac 3 point or more subsequent after completion of hot working Accelerated cooling by the TMCP facility or direct quenching by the DQ facility may be performed at a cooling rate of / sec or more.

【0048】加速冷却又は直接焼き入れに引き続いて、
鋼又は鋼板を焼戻しするには通常の熱処理設備による焼
戻しを行う。尚、TMCP設備による加速冷却やDQ設
備による直接焼き入れの場合には加速冷却又は直接焼き
入れ時の水冷を途中停止するオートテンパーで代替して
も構わない。
Following accelerated cooling or direct quenching,
In order to temper the steel or the steel sheet, tempering is performed by a usual heat treatment equipment. In the case of accelerated cooling by the TMCP facility or direct quenching by the DQ facility, an auto-temper which stops the cooling at the time of accelerated cooling or direct quenching may be used.

【0049】[0049]

【実施例】本発明の実施例を表1〜表3を参照しつつ説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to Tables 1 to 3.

【0050】先ず、表1は鋼の成分を示すものであり、
鋼A〜鋼Eが本発明例であり、鋼FはC、Sが本発明の
範囲外となる比較例である。
First, Table 1 shows the components of steel.
Steels A to E are examples of the present invention, and steel F is a comparative example in which C and S fall outside the scope of the present invention.

【0051】[0051]

【表1】 [Table 1]

【0052】次に、表2は鋼板の製造条件を示すもので
あり、表3に製造した鋼板表層領域の組織及び特性を示
す。表3中の鋼A−1、鋼B−1、鋼C−1、鋼D−
1、鋼E−1が本発明例であり、鋼A−2、鋼A−3、
鋼B−2、鋼C−2、鋼D−2、鋼E−2、鋼F−1が
比較例である。
Next, Table 2 shows the manufacturing conditions of the steel sheet, and Table 3 shows the structure and characteristics of the surface layer region of the manufactured steel sheet. Steel A-1, Steel B-1, Steel C-1, and Steel D in Table 3
1, steel E-1 is an example of the present invention, steel A-2, steel A-3,
Steel B-2, steel C-2, steel D-2, steel E-2, and steel F-1 are comparative examples.

【0053】[0053]

【表2】 [Table 2]

【0054】また、表3に示した鋼板の耐食性評価結果
の評価法は、塩水散布暴露試験及び海水浸漬試験を行っ
たものである。この塩水散布暴露試験は鋼板表層から採
取した150mm長×50mm幅×5mm厚さの試験片
を屋外暴露し、5%NaCl水溶液を一日一回噴霧器に
て試験面に散布して、試験面の腐食の発生に伴う板厚
減、重量減を測定するものである。暴露期間は3ヶ月と
6ヶ月、それぞれの期間で各鋼種別に3試験片ずつ供試
した。また、海水浸漬試験は海水相当の3.5%NaC
lの50℃の水溶液に150mm長×50mm幅×5m
m厚さの試験片を浸漬し、腐食の発生に伴う板厚減、重
量減を測定するものである。浸漬期間は1ヶ月と3ヶ
月、それぞれの期間で各鋼種別に3試験片ずつ供試し
た。そして、表3の結果はいずれの試験も3試験片の平
均値である。
Further, the evaluation method of the corrosion resistance evaluation results of the steel sheet shown in Table 3 is based on a salt water spray exposure test and a seawater immersion test. In this salt water spray exposure test, a 150 mm long × 50 mm wide × 5 mm thick test piece collected from the surface of a steel sheet was exposed outdoors, and a 5% NaCl aqueous solution was sprayed once a day on a test surface with a sprayer, and the test surface was sprayed. It measures the thickness loss and weight loss associated with the occurrence of corrosion. The exposure period was 3 months and 6 months, and three specimens were provided for each steel type in each period. The seawater immersion test was performed using 3.5% NaC equivalent to seawater.
l 50mm aqueous solution 150mm length x 50mm width x 5m
A test piece having a thickness of m is immersed in the test piece to measure the thickness loss and weight loss associated with the occurrence of corrosion. The immersion period was one month and three months, and three specimens were provided for each steel type in each period. And the result of Table 3 is an average value of three test pieces in each test.

【0055】更に、表3に示す耐腐食疲労性評価結果の
評価法は、全厚平板の引張試験片(平滑、応力集中係数
Kt=1.1、板厚部分はポリマーでシールして鋼板表
面からの疲労亀裂発生を評価)を用いて、25℃のAS
TMの規定の人工海水中で片振り引張りで0.1Hzで
繰返応力を付加したものである。そして、種々の応力範
囲で試験を行い、応力破断線図(S−Nf曲線)を測定
した。そして、腐食疲労強度の指標として、Nf=5×
105での疲労強度を引張強度で除した。
Further, the evaluation method of the corrosion fatigue resistance evaluation results shown in Table 3 is based on a tensile test piece of a flat plate (smooth, stress concentration coefficient Kt = 1.1, a plate thickness portion sealed with a polymer, and a steel plate surface (Assess fatigue crack initiation from steel) at 25 ° C
A repetitive stress is applied at 0.1 Hz by pulsating tension in artificial seawater specified by TM. Then, tests were performed in various stress ranges, and stress rupture diagrams (S-Nf curves) were measured. And, as an index of the corrosion fatigue strength, Nf = 5 ×
The fatigue strength at 10 5 divided by the tensile strength.

【0056】また、表3のフェライト硬さHvは10k
gのビッカース硬度計を用いて測定し、結晶粒径は前述
のマーシャル試薬により組織を現出させ、顕微鏡、画像
解析装置を利用して測定した。
The ferrite hardness Hv in Table 3 is 10 k
g was measured using a Vickers hardness tester, and the crystal grain size was measured using a microscope and an image analyzer by exposing the tissue with the aforementioned Marshall reagent.

【0057】[0057]

【表3】 [Table 3]

【0058】前記比較例の鋼A−2、鋼A−3は鋼板表
層領域の途中冷却で、その冷却速度が本発明の範囲より
遅かったため、鋼板表層領域がAc3点以上に復熱しな
かったにもかかわらず析出セメンタイト寸法が粗大化し
てしまった例である。鋼B−2、E−2は途中冷却で本
発明の範囲内での冷却速度はあったが、途中冷却時間が
短くフェライト分率が50%以上となる表層領域の厚さ
が鋼板の5%未満と小さかった例である。鋼C−2及び
鋼D−2は、それぞれ途中冷却を実施しなかったため、
表層領域にフェライト層の形成がなかった例であり、鋼
F−1は本発明例の鋼C−1と概ね同じ製造条件である
が、その主要な成分であるC、Sが本発明の範囲から外
れた例である。
[0058] Steel A-2 of the comparative example, in the steel A-3 the middle cooling of the steel sheet surface layer region, since the cooling rate was slower than the scope of the present invention, the steel sheet surface layer region is not recuperation in the Ac 3 point or more Nevertheless, this is an example in which the size of the precipitated cementite is coarsened. The steels B-2 and E-2 had a cooling rate within the range of the present invention due to intermediate cooling, however, the cooling time was short, and the thickness of the surface region where the ferrite fraction was 50% or more was 5% of the steel sheet. It is an example that was smaller than less. Since steel C-2 and steel D-2 did not carry out cooling on the way, respectively.
This is an example in which a ferrite layer was not formed in the surface layer region, and steel F-1 has almost the same manufacturing conditions as steel C-1 of the present invention, but its main components C and S are within the scope of the present invention. This is an example that deviates from the above.

【0059】この結果から、A、B、C、D、Eいずれ
の鋼板においても、本発明例の方が、表層領域の組織の
状態が本発明条件を満足する結果、同一組成の比較例と
比べて暴露試験、浸漬試験とも明らかに耐食性に優れ、
更に、耐腐食疲労性も優れている。
From these results, it can be seen that in any of the steel sheets A, B, C, D and E, the present invention example satisfies the conditions of the present invention in the structure of the surface layer region. In comparison, both the exposure test and the immersion test clearly have excellent corrosion resistance,
Furthermore, corrosion fatigue resistance is also excellent.

【0060】例えば、本発明例のA−1鋼においては、
比較例のA−2鋼と比べて表層領域のフェライト分率、
析出物とも本発明の条件を満足しており、それに伴い腐
食減量とも半分以下に改善され、腐食疲労強度も絶対値
で約1.5倍であり、引張強度で除しても、約1.68
倍と大幅に改善されている。更に、比較例の鋼A−2は
Ac3点以上に復熱したことによって微細化したα粒が
γに逆変態すると共に超微細析出したセメンタイトもγ
に再固溶する結果、表層領域のα粒・セメンタイトも粗
大化すると共にフェライト分率が90%以下になったも
のである。それに対応して、鋼板表面に発生した腐食ピ
ットは鋼A−1より鋼A−2の方が大きく、且つ深く、
腐食疲労性も劣ていることが判る。
For example, in the A-1 steel of the present invention,
Ferrite fraction in the surface layer region as compared with the A-2 steel of the comparative example,
Both the precipitates satisfy the conditions of the present invention, and accordingly the corrosion loss is reduced to less than half, the corrosion fatigue strength is about 1.5 times in absolute value, and even when divided by the tensile strength, about 1. 68
The times have been greatly improved. Further, in the steel A-2 of the comparative example, the α grains refined by reheating to the Ac 3 point or more are reverse transformed into γ, and the cementite precipitated ultra-finely is also γ.
As a result, the α grains and cementite in the surface layer became coarse, and the ferrite fraction became 90% or less. Correspondingly, the corrosion pits generated on the steel sheet surface were larger and deeper in steel A-2 than in steel A-1,
It turns out that corrosion fatigue resistance is also inferior.

【0061】また、Nb、Ti、Taを添加した鋼B−
1、C−1ではフェライト結晶粒界及び結晶亜粒界にセ
メンタイト又は炭窒化物が極めて微細に析出してフェラ
イト若しくは一部ベイナイトの成長を効果的に抑制する
結果、本発明例である鋼A−1に比較して、炭素等量が
大きくなっているにもかかわらずフェライト分率の確保
が安定し、腐食ピットも更に微細化し、腐食減量の点、
腐食疲労強度の点でも一段と優れる。一方、比較例の鋼
B−2は仕上圧延前の途中冷却条件が不十分で細粒層の
厚さが5%未満と本発明の条件を満足しないために、表
層領域でのフェライト分率は充分に確保出来ているもの
のフェライト硬さ、析出物寸法、(100)面強度が本
発明条件を満足出来ず耐食性、腐食疲労強度は本発明例
よりも大きく劣っている。鋼C−2は途中冷却を実施し
なかったため、本発明例よりも耐食性、腐食疲労強度が
劣っている。同様の傾向は、鋼D−1とD−2、鋼E−
1とE−2の間にも認められた。
Further, steel B- containing Nb, Ti, and Ta
In C-1, cementite or carbonitride precipitates extremely finely at ferrite grain boundaries and crystal sub-grain boundaries to effectively suppress the growth of ferrite or part of bainite. Compared with -1, the ferrite fraction is ensured in spite of the fact that the carbon equivalent is large, the corrosion pits are further refined, and the corrosion weight loss is reduced.
It is much better in terms of corrosion fatigue strength. On the other hand, the steel B-2 of the comparative example had insufficient cooling conditions before finish rolling and the thickness of the fine grain layer was less than 5%, which did not satisfy the conditions of the present invention. Although sufficiently secured, the ferrite hardness, precipitate size, and (100) plane strength cannot satisfy the conditions of the present invention, and the corrosion resistance and corrosion fatigue strength are significantly inferior to those of the examples of the present invention. Since steel C-2 was not cooled in the middle, corrosion resistance and corrosion fatigue strength were inferior to those of the examples of the present invention. A similar tendency is found in steels D-1 and D-2, steel E-
Also observed between 1 and E-2.

【0062】また、本発明例同志、例えば鋼A−1と鋼
B−1〜鋼E−1を比較すると、鋼材成分にCu、N
i、Cr及びCa、REM、Mgを添加した方が絶対的
なレベル比較では耐食性に優れている。このことは、こ
れら添加元素の耐食性への効果(従来知見)と本発明が
重畳出来ることを示している。本発明により、通常の構
造用鋼の耐食性を向上出来るばかりでなく、更に従来の
耐食構造用鋼の耐食性も大幅に向上出来る。
Further, when the steels of the present invention are compared with each other, for example, steel A-1 and steel B-1 to steel E-1, Cu, N
Addition of i, Cr and Ca, REM, and Mg is superior in corrosion resistance in absolute level comparison. This indicates that the effect of these additional elements on corrosion resistance (conventional findings) can be superimposed on the present invention. According to the present invention, not only can the corrosion resistance of ordinary structural steel be improved, but also the corrosion resistance of conventional corrosion-resistant structural steel can be significantly improved.

【0063】最後に、本発明例の鋼EA−2と概ね製造
条件が同じでありながら、C、Sが本発明例の高め側に
外れている比較例の鋼EF−1はフェライト分率、フェ
ライト硬さは本発明の条件を満足しているが、パーラー
ト分率が高く、且つ高Sの結果、耐食性が本発明例より
も劣っている。
Lastly, the steel EF-1 of the comparative example in which C and S are deviated to the higher side of the example of the present invention, while the production conditions are substantially the same as the steel EA-2 of the example of the present invention, the ferrite fraction and The ferrite hardness satisfies the conditions of the present invention, but as a result of a high perlate fraction and a high S, the corrosion resistance is inferior to the examples of the present invention.

【0064】[0064]

【発明の効果】本発明は鋼又は鋼板の表層領域を転位密
度の低いフェライト組織を主体として構成させ、しか
も、(100)面強度比を1.5以上とすることによっ
て、化学成分面だけでなく、鋼材組織の点からも、海水
等塩化物を含む水環境での構造用鋼又は溶接用構造用鋼
の耐食性と耐腐食疲労強度特性を向上することが可能と
なり、機械部品又は鋼構造物の寿命を延長することが出
来るものである。更に、Cu、Ni等の高価な元素の多
量の添加をしなくても本発明により耐食性の向上が可能
となり、産業界が享受可能な経済的利益は多大なものが
あると思料される。更に、本発明鋼の優れた機械的性質
と相まって、本発明は、腐食を起点とする腐食疲労、S
CCに対しても抵抗力の高い鋼材のベースとなるもので
ある。
According to the present invention, the surface region of steel or steel sheet is constituted mainly by a ferrite structure having a low dislocation density, and the (100) plane strength ratio is set to 1.5 or more, so that only the surface of the chemical component is obtained. In addition, from the viewpoint of steel structure, it is possible to improve the corrosion resistance and corrosion fatigue strength characteristics of structural steel or structural steel for welding in a water environment containing chlorides such as seawater, and to improve mechanical parts or steel structures. Can prolong the life of the device. Furthermore, the present invention can improve the corrosion resistance without adding a large amount of expensive elements such as Cu and Ni, and it is considered that there is a great economic benefit that can be enjoyed by the industry. Furthermore, coupled with the excellent mechanical properties of the steel of the invention, the invention provides a corrosion-based corrosion fatigue, S
It is a base for steel materials with high resistance to CC.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は(フェライト硬さ/(1)式の値)と腐
食量の関係を示す図である。
FIG. 1 is a diagram showing the relationship between (ferrite hardness / value of equation (1)) and the amount of corrosion.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秦 知彦 大分市大字西ノ州1番地 新日本製鐵株式 会社大分製鐵所内 Fターム(参考) 4K032 AA00 AA01 AA02 AA04 AA05 AA08 AA11 AA12 AA14 AA16 AA19 AA22 AA23 AA24 AA27 AA29 AA31 AA33 AA35 AA36 AA40 BA01 BA02 CA02 CB02 CC03 CC04 CD02 CD03  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tomohiko Hata Oita-shi, Nishi-no-state 1 Nippon Steel Corporation Oita Works F-term (reference) 4K032 AA00 AA01 AA02 AA04 AA05 AA08 AA11 AA12 AA14 AA16 AA19 AA22 AA23 AA24 AA27 AA29 AA31 AA33 AA35 AA36 AA40 BA01 BA02 CA02 CB02 CC03 CC04 CD02 CD03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.04〜0.25%、
Si:0.01〜1.0%、Mn:0.3〜2.0%、
S:0.01%以下の成分を有し、残部鉄及び不可避的
不純物から成る鋼又は鋼板で、該鋼の表層部又は鋼板の
表・裏層部からそれぞれで鋼の径又は鋼板の厚さの5%
以上の表層領域において、結晶粒界及び/又は結晶亜粒
界に0.5μm以下のセメンタイト相を有すると共にフ
ェライトが95%以上を占め、且つ、そのフェライト組
織の硬さHが、下記(1)式を満足し、更に、圧延面に
平行な集合組織の(100)面強度比が1.5以上を有
することを特徴とする耐食性と耐腐食疲労特性に優れた
構造用鋼。 H≦200[Ceq%]+20+(9[Ceq%]+3.7)/√(d) ・ ・ ・ (1) 但し、[Ceq%]=C%+Si%/24+Mn%/6
であり、このC%、Si%、Mn%はそれぞれC、S
i、Mnの重量%であり、更に、dはフェライトの平均
円相当粒径である。
(1) C: 0.04 to 0.25% by weight,
Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%,
S: Steel or steel sheet having a content of 0.01% or less, the balance being iron and unavoidable impurities. The diameter of the steel or the thickness of the steel sheet from the surface layer portion of the steel or from the front and back layers of the steel plate, respectively. 5% of
In the above-mentioned surface layer region, a cementite phase having a grain size of 0.5 μm or less is present at a grain boundary and / or a sub-grain boundary, ferrite accounts for 95% or more, and the hardness H of the ferrite structure is expressed by the following (1) A structural steel excellent in corrosion resistance and corrosion fatigue resistance, which satisfies the formula and further has a (100) plane strength ratio of a texture parallel to the rolled surface of 1.5 or more. H ≦ 200 [Ceq%] + 20+ (9 [Ceq%] + 3.7) / √ (d) (1) where [Ceq%] = C% + Si% / 24 + Mn% / 6
Where C%, Si% and Mn% are C and S, respectively.
i is the weight% of Mn, and d is the average equivalent circle diameter of ferrite.
【請求項2】 重量%で、更に、Al:0.005〜
0.6%の成分を含有し、且つ、Nb:0.005〜
0.1%、Ti:0.005〜0.05%、Ta:0.
005〜0.05%の1種又は2種以上を含有すること
を特徴とする請求項1記載の耐食性と耐腐食疲労特性に
優れた構造用鋼。
2. In% by weight, further, Al: 0.005 to
Contains 0.6% of component, and Nb: 0.005 to
0.1%, Ti: 0.005 to 0.05%, Ta: 0.
The structural steel according to claim 1, which contains one or more of 005 to 0.05%.
【請求項3】 重量%で、更に、Cu:0.05〜1.
0%、Ni:0.1〜2.0%、Cr:0.03〜3.
0%、Mo:0.05〜1.0%、V:0.01〜0.
4%、B:0.0002〜0.002%、P:0.15
%以下、Ca:0.0001〜0.02%、Mg:0.
0001〜0.02%、REM:0.001%〜0.2
%の1種又は2種以上を含有し、且つ、フェライト組織
の硬さHが、下記(2)式を満足することを特徴とする
請求項1又は2記載の耐食性と耐腐食疲労特性に優れた
構造用鋼。 H≦200[Ceq%]+20+(9[Ceq%]+3.7)/√(d) ・ ・ ・ (2) 但し、[Ceq%]=C%+Si%/24+Mn%/6
+(Cu%+Ni%)/15であり、このC%、Si
%、Mn%、Cu%、Ni%はそれぞれC、Si、M
n、Cu、Niの重量%で、更に、dはフェライトの平
均円相当粒径である。
3. The composition according to claim 1, wherein the content of Cu is 0.05 to 1.
0%, Ni: 0.1 to 2.0%, Cr: 0.03 to 3.
0%, Mo: 0.05-1.0%, V: 0.01-0.
4%, B: 0.0002-0.002%, P: 0.15
% Or less, Ca: 0.0001 to 0.02%, Mg: 0.1%.
0001-0.02%, REM: 0.001% -0.2
% Or more, and the hardness H of the ferrite structure satisfies the following formula (2): excellent in corrosion resistance and corrosion fatigue resistance characteristics according to claim 1 or 2. Structural steel. H ≦ 200 [Ceq%] + 20+ (9 [Ceq%] + 3.7) / √ (d) (2) where [Ceq%] = C% + Si% / 24 + Mn% / 6
+ (Cu% + Ni%) / 15, where C%, Si
%, Mn%, Cu%, and Ni% are C, Si, and M, respectively.
The weight percent of n, Cu, and Ni, and d is the average equivalent circle diameter of ferrite.
【請求項4】 重量%で、C:0.04〜0.25%、
Si:0.01〜1.0%、Mn:0.3〜2.0%、
S:0.01%以下の成分を有し、残部鉄及び不可避的
不純物からなる、鋼又は鋼板の素材をAc3点以上に加
熱してCを固溶させた状態で、熱間加工の前又は途中で
その時点における表層からそれぞれで鋼の径又は鋼板の
厚さの5%以上の表層領域を3℃/秒以上の冷却速度で
フェライト分率が50%以上となる温度まで急冷した後
に、該表層領域を復熱させる過程において(Ac1点−
150℃)以上の温度から熱間加工を開始又は再開し
て、(Ac1点+50℃)〜Ac3点の温度範囲で熱間加
工を終了し、引き続いて前記表層領域をAc3点以上に
復熱させることなく冷却して、該表層領域において、結
晶粒界及び/又は結晶亜粒界に0.5μm以下のセメン
タイト相を有すると共にフェライトが95%以上を占
め、且つ、そのフェライト組織の硬さHが、下記(3)
式を満足し、更に、圧延面に平行な集合組織の(10
0)面強度比が1.5以上を有することを特徴とする耐
食性と耐腐食疲労特性に優れた構造用鋼の製造方法。 H≦200[Ceq%]+20+(9[Ceq%]+3.7)/√(d) ・ ・ ・ (3) 但し、[Ceq%]=C%+Si%/24+Mn%/6
であり、このC%、Si%、Mn%はそれぞれC、S
i、Mnの重量%であり、更に、dはフェライトの平均
円相当粒径である。
4. C: 0.04 to 0.25% by weight,
Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%,
S: A steel or steel plate material having a content of 0.01% or less, the balance being iron and unavoidable impurities, heated to three or more Ac and solid-dissolved C before hot working. Or, after quenching the surface layer region of 5% or more of the diameter of the steel or the thickness of the steel plate from the surface layer at that time to a temperature at which the ferrite fraction becomes 50% or more at a cooling rate of 3 ° C / sec or more, In the process of reheating the surface layer, (Ac 1 point-
0.99 ° C.) or higher starting hot working from the temperature of the or resumed, (Ac 1 point + 50 ° C.) hot working ends in the temperature range of to Ac 3 point, the surface area following the Ac 3 point or more By cooling without recuperation, in the surface layer region, a cementite phase having a grain size of 0.5 μm or less is present at a grain boundary and / or a sub-grain boundary, ferrite accounts for 95% or more, and the hardening of the ferrite structure. H is the following (3)
Which satisfies the formula, and the texture (10
0) A method for producing a structural steel excellent in corrosion resistance and corrosion fatigue resistance, wherein the surface strength ratio is 1.5 or more. H ≦ 200 [Ceq%] + 20+ (9 [Ceq%] + 3.7) / √ (d) (3) where [Ceq%] = C% + Si% / 24 + Mn% / 6
Where C%, Si% and Mn% are C and S, respectively.
i is the weight% of Mn, and d is the average equivalent circle diameter of ferrite.
【請求項5】 重量%で、更に、Al:0.005〜
0.6%の成分を含有し、且つ、Nb:0.005〜
0.1%、Ti:0.005〜0.05%、Ta:0.
005〜0.05%の1種又は2種以上を含有すること
を特徴とする請求項4記載の耐食性と耐腐食疲労特性に
優れた構造用鋼の製造方法。
5. The method according to claim 1, further comprising:
Contains 0.6% of component, and Nb: 0.005 to
0.1%, Ti: 0.005 to 0.05%, Ta: 0.
The method for producing a structural steel having excellent corrosion resistance and corrosion fatigue resistance according to claim 4, characterized in that the steel contains one or more of 005 to 0.05%.
【請求項6】 熱間加工の終了後、引き続いて前記表層
領域をAc3点以上に復熱させることなく、冷却速度が
5℃/秒以上で加速冷却又は直接焼き入れすることを特
徴とする請求項4又は5に記載の耐食性と耐腐食疲労特
性に優れた構造用鋼の製造方法。
6. The method according to claim 6, wherein after the hot working is completed, accelerated cooling or direct quenching is performed at a cooling rate of 5 ° C./sec or more without successively reheating the surface layer to three or more Ac points. A method for producing a structural steel having excellent corrosion resistance and corrosion fatigue resistance according to claim 4 or 5.
【請求項7】 前記加速冷却又は直接焼き入れ終了後に
引き続いて、焼戻しすることを特徴とする請求項6記載
の耐食性に優れた構造用鋼の製造方法。
7. The method for producing a structural steel having excellent corrosion resistance according to claim 6, wherein tempering is performed subsequently after the completion of the accelerated cooling or the direct quenching.
【請求項8】 重量%で、更に、Cu:0.05〜1.
0%、Ni:0.1〜2.0%、Cr:0.03〜3.
0%、Mo:0.05〜1.0%、V:0.01〜0.
4%、B:0.0002〜0.002%、P:0.15
%以下、Ca:0.0001〜0.02%、Mg:0.
0001〜0.02%、REM:0.001%〜0.2
%の1種又は2種以上を含有し、且つ、フェライト組織
の硬さHが、下記(4)式を満足することを特徴とする
請求項4〜7のいずれかに記載の耐食性と耐腐食疲労特
性に優れた構造用鋼の製造方法。 H≦200[Ceq%]+20+(9[Ceq%]+3.7)/√(d) ・ ・ ・ (4) 但し、[Ceq%]=C%+Si%/24+Mn%/6
+(Cu%+Ni%)/15であり、このC%,Si
%、Mn%、Cu%、Ni%はそれぞれC、Si、M
n、Cu、Niの重量%であり、更に、dはフェライト
の平均円相当粒径である。
8. The composition according to claim 1, wherein the content of Cu is 0.05 to 1.
0%, Ni: 0.1 to 2.0%, Cr: 0.03 to 3.
0%, Mo: 0.05-1.0%, V: 0.01-0.
4%, B: 0.0002-0.002%, P: 0.15
% Or less, Ca: 0.0001 to 0.02%, Mg: 0.1%.
0001-0.02%, REM: 0.001% -0.2
%, And the hardness H of the ferrite structure satisfies the following formula (4): Corrosion resistance and corrosion resistance according to any one of claims 4 to 7. A method for producing structural steel with excellent fatigue properties. H ≦ 200 [Ceq%] + 20+ (9 [Ceq%] + 3.7) / √ (d) (4) where [Ceq%] = C% + Si% / 24 + Mn% / 6
+ (Cu% + Ni%) / 15.
%, Mn%, Cu%, and Ni% are C, Si, and M, respectively.
n is the weight percent of Cu and Ni, and d is the average equivalent circle diameter of ferrite.
JP34508799A 1999-12-03 1999-12-03 Structural steel with excellent corrosion resistance and corrosion fatigue resistance Expired - Fee Related JP4291480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34508799A JP4291480B2 (en) 1999-12-03 1999-12-03 Structural steel with excellent corrosion resistance and corrosion fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34508799A JP4291480B2 (en) 1999-12-03 1999-12-03 Structural steel with excellent corrosion resistance and corrosion fatigue resistance

Publications (2)

Publication Number Publication Date
JP2001164334A true JP2001164334A (en) 2001-06-19
JP4291480B2 JP4291480B2 (en) 2009-07-08

Family

ID=18374205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34508799A Expired - Fee Related JP4291480B2 (en) 1999-12-03 1999-12-03 Structural steel with excellent corrosion resistance and corrosion fatigue resistance

Country Status (1)

Country Link
JP (1) JP4291480B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197761A (en) * 2006-01-25 2007-08-09 Kobe Steel Ltd Marine steel with excellent corrosion resistance and brittle crack arrest behavior
JP2007197760A (en) * 2006-01-25 2007-08-09 Kobe Steel Ltd Marine steel with excellent corrosion resistance and brittle fracture occurrence characteristic
JP2011241462A (en) * 2010-05-20 2011-12-01 Kobe Steel Ltd Steel sheet excellent in fatigue crack propagation suppressing characteristic and toughness
JP2013136829A (en) * 2011-11-30 2013-07-11 Jfe Steel Corp Steel material with excellent crashworthiness and manufacturing process therefor
CN103898405A (en) * 2014-03-20 2014-07-02 济钢集团有限公司 780Mpa-grade molybdenum-boron high-strength structural steel plate and manufacturing method thereof
CN105132805A (en) * 2015-09-15 2015-12-09 攀钢集团攀枝花钢铁研究院有限公司 Vanadium-containing steel for welding structure and preparation method of vanadium-containing steel for welding structure
CN105886943A (en) * 2016-06-27 2016-08-24 肥西县碧涛建材有限公司 Constructional steel and production process
CN105886907A (en) * 2016-06-30 2016-08-24 合肥慧林建材有限公司 Structural steel and production process thereof
CN107532263A (en) * 2015-04-22 2018-01-02 新日铁住金株式会社 The manufacture method of hot rolled steel plate, steel and hot rolled steel plate
WO2018040859A1 (en) * 2016-08-31 2018-03-08 南京钢铁股份有限公司 Large-thickness q960e ultra-high strength steel production method
CN111394653A (en) * 2020-04-17 2020-07-10 南京钢铁股份有限公司 420MPa low-carbon easy-welding marine structural steel plate and manufacturing method thereof
CN113528957A (en) * 2021-06-30 2021-10-22 武汉钢铁有限公司 High-strength container steel with excellent fatigue and corrosion resistance and manufacturing method thereof
CN113667888A (en) * 2021-07-14 2021-11-19 武汉钢铁有限公司 690 MPa-grade low-silicon corrosion-resistant bridge steel and preparation method thereof
CN114438409A (en) * 2022-01-07 2022-05-06 日照钢铁控股集团有限公司 Seawater corrosion resistant high-strength steel and preparation process thereof
CN115081321A (en) * 2022-06-15 2022-09-20 天津大学 Corrosion fatigue life prediction method, system and equipment for marine welding structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108396228B (en) * 2018-05-15 2020-05-19 马钢(集团)控股有限公司 High-weather-resistant hot-rolled H-shaped steel with yield strength of 450MPa and heat treatment process thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197761A (en) * 2006-01-25 2007-08-09 Kobe Steel Ltd Marine steel with excellent corrosion resistance and brittle crack arrest behavior
JP2007197760A (en) * 2006-01-25 2007-08-09 Kobe Steel Ltd Marine steel with excellent corrosion resistance and brittle fracture occurrence characteristic
JP4579837B2 (en) * 2006-01-25 2010-11-10 株式会社神戸製鋼所 Marine steel with excellent corrosion resistance and brittle fracture characteristics
JP4579838B2 (en) * 2006-01-25 2010-11-10 株式会社神戸製鋼所 Marine steel with excellent corrosion resistance and brittle crack stopping properties
JP2011241462A (en) * 2010-05-20 2011-12-01 Kobe Steel Ltd Steel sheet excellent in fatigue crack propagation suppressing characteristic and toughness
JP2013136829A (en) * 2011-11-30 2013-07-11 Jfe Steel Corp Steel material with excellent crashworthiness and manufacturing process therefor
EP2787098A4 (en) * 2011-11-30 2015-11-18 Jfe Steel Corp Steel material with excellent crashworthiness and manufacturing process therefor
CN103898405A (en) * 2014-03-20 2014-07-02 济钢集团有限公司 780Mpa-grade molybdenum-boron high-strength structural steel plate and manufacturing method thereof
CN107532263B (en) * 2015-04-22 2019-11-22 日本制铁株式会社 The manufacturing method of hot rolled steel plate, steel and hot rolled steel plate
CN107532263A (en) * 2015-04-22 2018-01-02 新日铁住金株式会社 The manufacture method of hot rolled steel plate, steel and hot rolled steel plate
US10718040B2 (en) 2015-04-22 2020-07-21 Nippon Steel Corporation Hot-rolled steel sheet, steel material, and method for producing hot-rolled steel sheet
EP3260570A4 (en) * 2015-04-22 2018-09-05 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet, steel member, and method for manufacturing hot-rolled steel sheet
CN105132805A (en) * 2015-09-15 2015-12-09 攀钢集团攀枝花钢铁研究院有限公司 Vanadium-containing steel for welding structure and preparation method of vanadium-containing steel for welding structure
CN105132805B (en) * 2015-09-15 2017-03-15 攀钢集团攀枝花钢铁研究院有限公司 A kind of steel for welded structures containing vanadium and preparation method thereof
CN105886943A (en) * 2016-06-27 2016-08-24 肥西县碧涛建材有限公司 Constructional steel and production process
CN105886907A (en) * 2016-06-30 2016-08-24 合肥慧林建材有限公司 Structural steel and production process thereof
WO2018040859A1 (en) * 2016-08-31 2018-03-08 南京钢铁股份有限公司 Large-thickness q960e ultra-high strength steel production method
CN111394653A (en) * 2020-04-17 2020-07-10 南京钢铁股份有限公司 420MPa low-carbon easy-welding marine structural steel plate and manufacturing method thereof
CN113528957A (en) * 2021-06-30 2021-10-22 武汉钢铁有限公司 High-strength container steel with excellent fatigue and corrosion resistance and manufacturing method thereof
CN113667888A (en) * 2021-07-14 2021-11-19 武汉钢铁有限公司 690 MPa-grade low-silicon corrosion-resistant bridge steel and preparation method thereof
CN114438409A (en) * 2022-01-07 2022-05-06 日照钢铁控股集团有限公司 Seawater corrosion resistant high-strength steel and preparation process thereof
CN115081321A (en) * 2022-06-15 2022-09-20 天津大学 Corrosion fatigue life prediction method, system and equipment for marine welding structure

Also Published As

Publication number Publication date
JP4291480B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP4897125B2 (en) High-strength steel sheet and its manufacturing method
JP5245259B2 (en) High strength steel sheet with excellent ductility and method for producing the same
JP3704306B2 (en) Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same
KR20170107070A (en) A steel plate having high crack-controllability and a manufacturing method thereof
JP4291480B2 (en) Structural steel with excellent corrosion resistance and corrosion fatigue resistance
JP5195413B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and toughness anisotropy and method for producing the same
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
KR20120121811A (en) High strength steel sheet and method of manufacturing the steel sheet
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP4506434B2 (en) High strength steel plate with excellent rigidity and method for producing the same
JP2013014812A (en) Steel material for very low temperature use having excellent ctod property after strain application, and method for manufacturing the same
JP4802450B2 (en) Thick hot-rolled steel sheet with excellent HIC resistance and manufacturing method thereof
JPH0453929B2 (en)
JP4374196B2 (en) High-strength steel sheet having fine structure excellent in workability, plating property and toughness, and method for producing the same
JPWO2020148948A1 (en) High-strength galvanized steel sheet and its manufacturing method
JP2000319752A (en) Steel for structural purpose excellent in corrosion resistance and its production
JP2000160245A (en) Production of high strength steel excellent in hic resistance
JPH04325657A (en) High strength hot rolled steel sheet excellent in stretch-flanging property and its manufacture
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP3961341B2 (en) Manufacturing method of high strength duplex stainless steel sheet for welded structures
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
WO2019064459A1 (en) High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JP2001020035A (en) Steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance and its production
JP4082288B2 (en) Mo-containing austenitic stainless steel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

R151 Written notification of patent or utility model registration

Ref document number: 4291480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees