JPS634047A - High-tensile steel for oil well excellent in sulfide cracking resistance - Google Patents

High-tensile steel for oil well excellent in sulfide cracking resistance

Info

Publication number
JPS634047A
JPS634047A JP14591586A JP14591586A JPS634047A JP S634047 A JPS634047 A JP S634047A JP 14591586 A JP14591586 A JP 14591586A JP 14591586 A JP14591586 A JP 14591586A JP S634047 A JPS634047 A JP S634047A
Authority
JP
Japan
Prior art keywords
less
steel
ssc resistance
content
oil well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14591586A
Other languages
Japanese (ja)
Inventor
Teruo Kaneko
金子 輝雄
Akio Ikeda
昭夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14591586A priority Critical patent/JPS634047A/en
Publication of JPS634047A publication Critical patent/JPS634047A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-tensile steel for oil well excellent in sulfide cracking resistance by specifying a composition consisting of C, Si, Mn, Cr, Mo, Ti, Al, B, Zr, Hf, Nb, V, and Fe and by properly limiting the amounts of inevitable- impurity elements. CONSTITUTION:The high-tensile steel for oil well excellent in sulfide cracking resistance has a composition which consists of, by weight, 0.15-0.45% C, 0.1-0.8% Si, 0.2-0.8% Mn, 0.2-<1.0% Cr, 0.1-0.8% Mo, 0.001-<0.010% Ti, 0.005-0.060% Al, 0.0001-0.0030% B, 0.01-0.15% Zr and/or 0.001-0.150% Hf, 0.01-0.15% Nb and/or 0.01-0.15% V, and the balance essentially Fe and further containing, if necessary, one or more kinds among 0.001-0.010% Ca and 0.001-0.030% rare earth elements and in which amounts of P, S, Cu, Ni, N, and O among inevitable impurities are limited to <=0.01%, <=0.005%, <=0.15%, <=0.05%, <=0.0150%, and <=0.0050%, respectively and, moreover, it is free from deterioration due to plastic deformation.

Description

【発明の詳細な説明】 く産業上の利用分野〉 この発明は、湿潤な硫化水素を含んだ所謂”サワー環境
”下で引き起こされる硫化物割れ(以下SSCと略称す
る)に対して高い抵抗性を示し、特にサワー環境で使用
される油井用鋼として好適な高張力鋼に関するものであ
る。
[Detailed Description of the Invention] Industrial Application Fields The present invention provides high resistance to sulfide cracking (hereinafter abbreviated as SSC) caused in a so-called "sour environment" containing moist hydrogen sulfide. The present invention relates to high-strength steel suitable as oil well steel particularly used in sour environments.

SSCは、サワー環境下で鋼材に応力が作用して生じる
一種の環境脆化現象で、例えば油井管にこれが起きると
、場合によっては油井の放棄にまで至る大きな経済的損
失を余儀側(される上、有毒ガスの漏洩等により重大事
故につながる危険も大きい。このため、サワー油井やサ
ワーガス井で用いられる鋼材には、まず第一に優れた耐
SSC性が必要とされている。
SSC is a type of environmental embrittlement phenomenon that occurs when stress is applied to steel materials in a sour environment. For example, when this happens to oil country tubular goods, it can lead to large economic losses that may even lead to the abandonment of oil wells. Moreover, there is a great risk of serious accidents due to leakage of toxic gas, etc. Therefore, first of all, steel materials used in sour oil wells and sour gas wells are required to have excellent SSC resistance.

一方、井戸の設計に当っては、鋼材の自重による引つ張
り応力や使用するリグの能力を考慮する必要があり、こ
のためには鋼材の軽量化、即ち真張力化が要求されるこ
とになり、近年の深井戸開発はこの要求を益々切実なも
のとしている。
On the other hand, when designing a well, it is necessary to consider the tensile stress due to the steel's own weight and the capacity of the rig used, and for this purpose, it is necessary to reduce the weight of the steel, that is, to increase its true tension. The recent development of deep wells has made this demand even more urgent.

ところが、−般に鋼材の強度と耐SSC性とは互いに両
立し難い特性であるため、これまで地層深部のサワー油
井やサワーガス井の開発は大きな制約を受けていた。
However, since the strength and SSC resistance of steel materials are generally incompatible with each other, the development of sour oil wells and sour gas wells in deep geological formations has been severely constrained.

〈従来技術とその問題点〉 ところで、従来、鋼材の耐SSC性に影響を及ぼす冶金
学的因子の解明にも多大な努力が払われて来ており、次
に示すような事項が一最的に知られていた。即ち、 ta)  鋼の耐SSC特性は材料強度が高くなるほど
劣化し、逆に材料強度が低くなるほど向上するが、ロッ
クウェル硬さのCスケールで20〜22(抗張力で77
〜79 kgf/mi”)以下の材料では一般にSSC
は生じ難い。
<Prior art and its problems> By the way, great efforts have been made to elucidate the metallurgical factors that affect the SSC resistance of steel materials, and the following points are the most important. was known to. That is, ta) The SSC resistance of steel deteriorates as the material strength increases, and conversely improves as the material strength decreases;
~79 kgf/mi”) are generally SSC
is unlikely to occur.

(bl  同一強度レベルで比較した場合、鋼材組織と
して“焼戻しマルテンサイト組織”を有する材料が最も
耐SSC性が良好であり、これはm織の均質性が高いこ
とによるものである。また、鋼材をこのような組織とす
れば、比較的少量の合金元素の添加で高強度が得られる
利点もある。
(bl) When compared at the same strength level, materials with a "tempered martensitic structure" as the steel structure have the best SSC resistance, and this is due to the high homogeneity of the m-weave. If it has such a structure, it has the advantage that high strength can be obtained with the addition of a relatively small amount of alloying elements.

そして、焼入れ・焼戻し処理で鋼材組織を均質化するに
は、まず完全に焼きを入れて組織をマルテンサイト化す
る必要があり、そのためにはC1Si、 Mn−、Cr
s Mo及びBの添加が有効である。
In order to homogenize the steel structure through quenching and tempering, it is first necessary to completely quench the structure to make it martensitic.
s Addition of Mo and B is effective.

(C)  焼戻し温度は、Acl変態点を越えない範囲
で高温はど耐SSC性同上に有利であり、これは転位等
の内部歪の減少と炭化物の球状化によると考えられる。
(C) A high temperature tempering temperature within a range that does not exceed the ACl transformation point is advantageous for SSC resistance, and this is thought to be due to the reduction of internal strains such as dislocations and the spheroidization of carbides.

(d)  −1’fflに結晶粒が細かいほど鋼材の耐
SSC性は向上するので、Nb等の添加や、急速加熱焼
入れ等の熱処理による細粒化が耐SSC性の改善に有効
である。
(d) The finer the crystal grains to -1'ffl, the better the SSC resistance of the steel material, so adding Nb or the like or making the grains finer by heat treatment such as rapid heating quenching is effective in improving the SSC resistance.

(e)  !Pal材中の不純物元素に関しては、介在
物や粒界偏析の増大により耐SSC性を劣化させる場合
が多く、特にPやSは低い方が良い。
(e)! Regarding impurity elements in the Pal material, SSC resistance is often deteriorated due to increase in inclusions and grain boundary segregation, and in particular, the lower the content of P and S, the better.

以上のように、耐SSC性と冶金学的因子との関係は十
分とは言えないまでも定性的にはかなり明らかとなって
きており、API(米国石油協会)において、これらを
考慮したサワー環境用油井管の規格化が“C−90グレ
ード(降伏強度: 63.3〜73.8kgf/mm2
)”の強度レベルのものについてまでなされるに至って
いる。
As described above, the relationship between SSC resistance and metallurgical factors has become qualitatively clear, although it cannot be said to be complete, and the API (American Petroleum Institute) has established a sour environment The standardization of oil country tubular goods for commercial use is “C-90 grade” (yield strength: 63.3 to 73.8 kgf/mm2).
)” strength level has even been developed.

しかしながら、銅材の冶金学的因子と酎SSCとの間の
関係がある程度解明されたとは言っても、SSC対策を
完璧ならしめるほど十分に的を得た知見は得られておら
ず、その後の研究は、(a′)腐食環境や応力条件が厳
しくなると低強度鋼であうでもSSCを生じることが明
らかとなり、上述したrssc防止のための強度上限の
基準」は、サワー環境での使用に際しての単に−般的な
材料選択の目安に過ぎないもので、耐SSC性改善の指
針を与えるものではない、 (b゛)焼戻しマルテンサイト組織を有する鋼材が良好
な耐SSC性を示すとは言っても、高強度鋼の場合には
、単に焼戻しマルテンサイト組織とするだけでは必ずし
も実用的に十分な1tssc性を付与出来ない。また焼
入れ性の改善は均質な焼戻しマルテンサイト′lJi織
を得て良好な耐SSC性を実現するために有効な手段で
あり、C%Sl、in、Crs Mo及びBの添加によ
って焼入れ性を改善することはこれまでの油井用鋼にも
利用されてきた手段ではあるが、前記元素はその添加量
によっては耐SSC性を劣化させる場合が多く、焼入れ
性の改善と耐SSC性の向上とを両立させることは実際
上極めて困難である、 (C′)焼戻し温度を高(すると耐SSC性が向上する
とは言っても、高温で焼戻すことは材料強度を低下させ
ることになり、高温焼戻しで如何に必要な強度を確保す
るかは実際上極めて困難な問題である。このため各種の
固溶元素や炭化物形成元素を添加することが考えられる
が、耐SSC性を確保する上で必要な元素9種類や添加
量についての明確な知見はない、 (d′)結晶粒の微細化は確かに耐SSC性向上に有効
ではあるか、これは鋼材の耐SSC性改善の必要条件で
はあっても十分条件ではない、(C′)不純物元素であ
るpJ?)sの低減も鋼材の耐SSC性改善の必要条件
ではあっても十分条件ではない、 ことを明らかとし、強度グレードが規格化されたものよ
りも更に高くなると従来の知見に基づくのみでは十分な
耐SSC性が安定して達成できないことを示唆するとと
もに、更なる研究は、既に規格化されたグレードのもの
であっても局部的な塑性変形を受けると耐SSC性が大
幅に劣化して実用に耐えない場合があることをも明らか
にしたのである。
However, even though the relationship between the metallurgical factors of copper materials and SSC has been elucidated to some extent, sufficient targeted knowledge has not been obtained to perfect SSC countermeasures. Research has shown that (a') SSC occurs even in low-strength steels when corrosive environments and stress conditions become severe; - It is only a guideline for general material selection and does not provide guidelines for improving SSC resistance. (b゛) Even though steel materials with a tempered martensitic structure exhibit good SSC resistance, In the case of high-strength steel, simply forming a tempered martensitic structure does not necessarily give a practically sufficient 1tssc property. In addition, improving the hardenability is an effective means to obtain a homogeneous tempered martensitic 'lJi texture and achieve good SSC resistance, and the addition of C%Sl, in, Crs Mo and B improves the hardenability. Although this is a method that has been used in conventional oil well steels, the above elements often deteriorate SSC resistance depending on the amount added, and it is difficult to improve hardenability and SSC resistance. (C') High tempering temperature (Although it improves SSC resistance, tempering at high temperature reduces material strength; How to secure the necessary strength is an extremely difficult problem in practice.For this reason, it is possible to add various solid solution elements and carbide-forming elements, but the elements necessary to ensure SSC resistance (d') Is grain refinement certainly effective in improving SSC resistance?Although this is a necessary condition for improving the SSC resistance of steel materials, there is no clear knowledge regarding the types and amounts added. It was clarified that (C') reduction of pJ?)s, which is an impurity element, is a necessary condition for improving the SSC resistance of steel materials, but it is not a sufficient condition, and strength grades were standardized. If the SSC resistance becomes even higher than that of the standard, it suggests that sufficient SSC resistance cannot be stably achieved based on conventional knowledge, and further research is needed to improve the local stability even with already standardized grades. They also found that plastic deformation significantly deteriorates SSC resistance and may not be suitable for practical use.

例えば、油井管では、冷間変形を避けるため細心の注意
を払って製造し、かつ取り扱ったとしても、油井現場に
おいてこれを継手で接続する際などではある程度の局部
的塑性変形は避は難いものである。従って、これらを考
慮するとサワー用途には塑性変形に対して耐SSC性の
劣化の小さい鋼が必要になるが、従来の鋼ではこの劣化
が大きく、しかも高強度になるほど塑性変形の影響を受
は易いと言う問題を回避できなかった。
For example, even if oil country tubular goods are manufactured and handled with the utmost care to avoid cold deformation, some degree of local plastic deformation is unavoidable when connecting them with joints at oil well sites. It is. Therefore, taking these into consideration, a steel with low deterioration in SSC resistance due to plastic deformation is required for sour applications, but with conventional steel, this deterioration is large, and the higher the strength, the less affected by plastic deformation. I couldn't avoid the easy problem.

〈問題点を解決するための手段〉 本発明者等は、上述のような観点から、優れた耐SSC
性と高強度とを兼ね備え、しかも塑性変形による耐SS
C性の劣化を伴うことのない高張力油井用鋼を捷供すべ
く更なる研究を重ねた結果、以下に示される如き知見が
得られたのである。
<Means for solving the problem> From the above-mentioned viewpoint, the present inventors have developed an excellent SSC-resistant
It has both high strength and high strength, and also has SS resistance due to plastic deformation.
As a result of further research aimed at producing high-strength oil well steel without deterioration of carbon properties, the following findings were obtained.

i)油井用鋼においては、所望強度と焼入れ性を確保す
るため所定量のC,Si、 Mn、 Cr及び4oの添
加は不可欠である上、l5sc性向上のために均質性の
高い焼戻しマルテンサイトを主体とした組織が必要であ
るが、塑性変形による耐SSC性の劣化は焼戻し組織中
の炭化物分布に大きく左右されるものであり、前記強度
確保成分であるSi、Mn、 Cr及びMoはこの炭化
物分布を不均一にしがちであるので、それらの含有量は
総合的に十分な調整を行う必要があること。
i) In oil well steel, it is essential to add a certain amount of C, Si, Mn, Cr and 4O to ensure desired strength and hardenability, and highly homogeneous tempered martensite is required to improve l5sc properties. However, the deterioration of SSC resistance due to plastic deformation is largely influenced by the carbide distribution in the tempered structure, and the strength-ensuring components Si, Mn, Cr, and Mo are Since carbide distribution tends to be uneven, it is necessary to comprehensively and sufficiently adjust their content.

ii )つまり、鋼材内部歪の減少と炭化物を球状化し
て靭性を改善するためには、油井用鋼材の焼戻しはでき
るだけ高温で行う必要があるが、従来の油井用鋼では高
温焼戻しにより旧オーステナイト粒界の炭化物が粗大化
する傾向にあり、塑性変形を受けるとその近傍に歪が集
中して耐SSC性の大幅な劣化が引き起こされるもので
あること。
ii) In other words, in order to reduce the internal strain of the steel and make carbides spheroidal to improve toughness, oil well steel must be tempered at as high a temperature as possible, but in conventional oil well steel, high temperature tempering reduces prior austenite grains. The carbides in the area tend to become coarse, and when subjected to plastic deformation, strain concentrates in the vicinity, causing a significant deterioration of SSC resistance.

しかも、上記炭化物の粗大化傾向には、n中のSi、M
n、 Cr及びMo量が大きな影響を与えており、これ
らの含有量が多くなると粗大炭化物の形成傾向も強くな
ること。
Moreover, the coarsening tendency of the carbides is caused by Si, M in n.
The amounts of n, Cr, and Mo have a large influence, and as their contents increase, the tendency to form coarse carbides becomes stronger.

iii )従って、高温焼戻しを行ったとしても、旧オ
ーステナイト粒界の炭化物の粗大化を抑えれば塑性変形
による耐SSC性の劣化が極力抑制されるものであり、
そのためには前記Si、 Mn、 Cr及びMoの含有
量を制限するのが有効であること、iv)ところで、S
i、 Mn、 Cr及び恥の含有量を1jill躍する
と鋼材に所望の強度、焼入れ性を確保出来なくなる恐れ
があるが、これに適量のBと極く微量のTiを添加する
とともに、Zr又はHfを含有させると、Bによる焼入
れ性改善効果が加味されて前記懸念が緩和される上、微
量のTiの粒界炭化物粗大化防止作用と、Zr又はHf
が微細な窒化物を形成して粒界炭化物の粗大化を防止す
る作用とが相乗的な影響を及ぼすこととなるのでSi、
 Mn、 Cr及びMoの含有量制限も幾分緩和され、
強度や焼入れ性に対する実際上の不都合は無くなること
iii) Therefore, even if high-temperature tempering is performed, if the coarsening of carbides at prior austenite grain boundaries is suppressed, the deterioration of SSC resistance due to plastic deformation can be suppressed as much as possible.
For this purpose, it is effective to limit the contents of Si, Mn, Cr and Mo; iv) By the way, S
If the content of i, Mn, Cr, and chromium is increased by 1 jill, there is a risk that the desired strength and hardenability of the steel material cannot be secured, but by adding an appropriate amount of B and a very small amount of Ti, Zr or Hf When B is contained, the above-mentioned concerns are alleviated by taking into account the hardenability improving effect of B, and also the effect of a small amount of Ti to prevent grain boundary carbide coarsening, and the addition of Zr or Hf.
Si has a synergistic effect with the action of forming fine nitrides and preventing coarsening of grain boundary carbides.
The restrictions on the content of Mn, Cr and Mo are also somewhat relaxed,
Practical disadvantages regarding strength and hardenability are eliminated.

■)更に、不可避不純物中のSやPは勿論のことNIX
N、0及びCuも鋼材の耐SSC性に悪影響を及ぼすの
で、前述した対策に加え、上記不純物元素の含有量をも
総合規制すると局部的塑性変形の有無に関わらず鋼材の
耐SSC性は一段と改善され、実際上十分に満足できる
強度と耐SSC性とを備えた油井用鋼材が得られること
■) Furthermore, not only S and P in the inevitable impurities, but also NIX
Since N, O, and Cu also have a negative effect on the SSC resistance of steel materials, in addition to the measures mentioned above, if the content of the above impurity elements is also comprehensively controlled, the SSC resistance of steel materials will be further improved regardless of the presence or absence of local plastic deformation. An object of the present invention is to obtain a steel material for oil wells having improved strength and SSC resistance that are sufficiently satisfactory in practice.

vi)その上、上記対策を施した油井用口材にCa又は
希土類元素(REM)の所定量を添加すると、鋼中の硫
化物系介在物の形状が球状化されることによる耐SSC
性改善効果も加味され、耐SSC性が一層優れた油井用
鋼材が得られること。
vi) Furthermore, when a predetermined amount of Ca or rare earth element (REM) is added to the oil well mouth material that has taken the above measures, the shape of the sulfide-based inclusions in the steel becomes spheroidal, resulting in improved SSC resistance.
It is possible to obtain a steel material for oil wells with even better SSC resistance, taking into account the effect of improving the properties of steel.

この発明は、上記知見に基づいてなされたものであり、 油井用鋼を、 C:0.15〜0.45%(以下、成分割合を表す%は
重量割合とする)、 Si : 0.1〜0.8%、Mn : 0.2〜0.
8%、Cr : 0.2%以上1.0%未満、Mo :
 0.1〜0.8%、 Ti : 0.001%以上0.010%未満、A l
 : 0.005〜0.060%、B : 0.000
1〜0.0030%を含み、更に Zr : 0.01〜0.15%、 Hf : 0.001〜0.150% の1種以上と、 Nb : 0.01〜0.15%、 V : 0.01〜0.15% のうちの1種以上とを含有するか、或いは更にCa :
 0.001〜0.010%、希土類元素: 0.00
1〜0.030%の1種以上をも含有するとともに残部
が実質的にFeから成り、かつ不可避不純物として規制
されるP 、、 S % Cu、 Ni−N及びOの含
有量がそれぞれP : 0.01%以下、 S : 0
.005%以下、Cu : 0.15%未満、 Ni 
: 0.05%以下、N : 0.0150%以下、O
: 0.0050%以下を満足している如くに構成する
ことによって、焼戻し温度や局部的な塑性変形に格別な
影響を受けることなく優れた耐SSC性と高強度とを発
揮せしめ得るようにした点、 に特徴を有するものである。
This invention was made based on the above knowledge, and oil well steel is made of: C: 0.15 to 0.45% (hereinafter, % representing the component ratio is a weight ratio), Si: 0.1 ~0.8%, Mn: 0.2~0.
8%, Cr: 0.2% or more and less than 1.0%, Mo:
0.1 to 0.8%, Ti: 0.001% or more and less than 0.010%, Al
: 0.005-0.060%, B: 0.000
1 to 0.0030%, and further one or more of Zr: 0.01 to 0.15%, Hf: 0.001 to 0.150%, Nb: 0.01 to 0.15%, V: 0.01 to 0.15%, or further contains Ca:
0.001-0.010%, rare earth elements: 0.00
1 to 0.030% of one or more types, the balance is substantially composed of Fe, and the content of Cu, Ni-N and O, which is regulated as an unavoidable impurity, is P: 0.01% or less, S: 0
.. 0.005% or less, Cu: less than 0.15%, Ni
: 0.05% or less, N: 0.0150% or less, O
: By configuring it so that it satisfies 0.0050% or less, it is possible to exhibit excellent SSC resistance and high strength without being particularly affected by tempering temperature or local plastic deformation. It has the following characteristics.

次いで、この発明において鋼の成分割合を前記の如くに
数値限定した理由を説明する。
Next, the reason why the component ratio of steel is numerically limited as described above in this invention will be explained.

a)C C成分には、鋼に油井用鋼として必要な強度を付与する
とともに焼入れ性を向上させる作用があるが、その含有
量が0.15%未満では前記作用に所望の効果が得られ
ず、−方、0.45%を越えて含有させると靭性に悪影
響がでて(る上、焼入れ時に焼き割れを生じ易くなるこ
とから、C含有量は0.15〜0.45%と定めた。但
し、より安定な性能を確保し、かつ製造が容易であると
の観点からは、C含有量を0.25〜0.35%に調整
することが好ましい。
a) C The C component has the effect of imparting the necessary strength to steel as oil well steel and improving hardenability, but if its content is less than 0.15%, the desired effect cannot be obtained. On the other hand, if the C content exceeds 0.45%, the toughness will be adversely affected (not only that, but it will also be more likely to cause quench cracking during quenching. Therefore, the C content is set at 0.15 to 0.45%. However, from the viewpoint of ensuring more stable performance and ease of manufacture, it is preferable to adjust the C content to 0.25 to 0.35%.

b)Si Si成分は鋼の脱酸剤としても焼入れ性向上元素として
も必要なものであるが、その含有量が0.1%未満では
所望の脱酸効果並びに焼入れ性向上効果を得ることがで
きず、−方、0゜8%を越えて含有させると結晶粒の粗
粒化を招いて耐SSC性や靭性を劣化することから、S
i含有量は0.1〜0.8%と定めた。但し、好ましく
は、Si含有量は0.15%以上に調整するのが良い。
b) Si The Si component is necessary as both a deoxidizing agent and a hardenability improving element for steel, but if its content is less than 0.1%, it is difficult to obtain the desired deoxidizing effect and hardenability improving effect. On the other hand, if it is contained in excess of 0.8%, the crystal grains will become coarser and the SSC resistance and toughness will deteriorate.
The i content was determined to be 0.1 to 0.8%. However, preferably, the Si content is adjusted to 0.15% or more.

c)Mn Mn成分は主として強度と焼入れ性を高めるために添加
されるものであり、その含有量が0.2%未満では所望
の効果が確保できない。−方、0.8%を越えてMnを
含有せしめると鋼中で偏析して局部的に硬化組織を生じ
、耐SSC性を劣化させるため、Mn含有量は0.2〜
0.8%と定めた。
c) Mn The Mn component is added mainly to improve strength and hardenability, and if its content is less than 0.2%, the desired effect cannot be ensured. - On the other hand, if Mn is contained in an amount exceeding 0.8%, it will segregate in the steel and cause a locally hardened structure, deteriorating the SSC resistance.
It was set at 0.8%.

d)Cr Cr成分にも強度と焼入れ性を商める作用があるが、そ
の含有量が0.2%未満では前記作用に所望の効果が得
られず、−方、1.0%以上を含有させると、高温焼戻
しを施した場合結晶粒界に粗大な炭化物が形成されて耐
SSC性が劣化することから、Cr含有量は0.2%以
上1.0%未満と定めた。
d) Cr The Cr component also has the effect of improving strength and hardenability, but if its content is less than 0.2%, the desired effect cannot be obtained; If Cr is contained, coarse carbides are formed at grain boundaries when high-temperature tempering is performed, resulting in deterioration of SSC resistance. Therefore, the Cr content was set at 0.2% or more and less than 1.0%.

e)M。e) M.

Moも強度と焼入れ性を向上させるために添加するもの
で、特に高温焼戻しによって必要な強度を確保するため
に欠かせないものであるが、その含有量が0.1%未満
では所望の効果を得ることができず、−方、0.8%を
越えて含有させると粗大炭化物が形成されて耐SSC性
の劣化を招くので、io含有量は0.1〜0.8%と定
めた。
Mo is also added to improve strength and hardenability, and is indispensable to ensure the necessary strength especially during high-temperature tempering, but if its content is less than 0.1%, the desired effect will not be achieved. On the other hand, if the content exceeds 0.8%, coarse carbides are formed and the SSC resistance deteriorates, so the io content was set at 0.1 to 0.8%.

f)Ti Ti成分は、極く微量の添加と言う条件下において始め
て粒界炭化物の粗大化を防止し耐SSC性を向上せしめ
る効果を発揮するが、その含有量が0.001%未満で
は所望の効果を得ることができず、−方、0.010%
以上含有させると粗大でかつ安定なTiNが形成されて
逆に耐SSC性を劣化するようになることから、Ti含
有量は0.001以上0.010%未満と定めた。
f) Ti The Ti component exhibits the effect of preventing coarsening of grain boundary carbides and improving SSC resistance only when added in an extremely small amount, but if the content is less than 0.001%, the desired effect is not achieved. Cannot obtain the effect of -, 0.010%
If the Ti content exceeds this amount, coarse and stable TiN will be formed and the SSC resistance will deteriorate, so the Ti content was set at 0.001% or more and less than 0.010%.

g)AI へ!成分は鋼の脱酸と細粒化のため添加されるものであ
るが、その含有量がo、oos%未満では所望の効果を
得ることができず、−方、0.060%を越えて含有せ
しめると酸化物系の非金属介在物が増加して耐SSC性
が劣化することから、A!含有量は0.005〜0.0
60%と定めた。
g) To AI! The component is added to deoxidize the steel and make the grain finer, but if the content is less than 0.00%, the desired effect cannot be obtained; A! Content is 0.005-0.0
It was set at 60%.

h)B B成分には微量添加で鋼の焼入れ性を顕著に改善する作
用があり、この発明の鋼の場合には焼入れ性向上に有効
なSi、 Mns Cr及びMoの添加量が耐SSC性
の点から制限されるため、これらに変わって所望の焼入
れ性を確保する上で不可欠なものである。しかし、その
含有量が0.001%未満では上記作用に所望の効果が
得られず、−方、0.0030%を越えて含有させると
結晶粒界に粗大な炭化物が形成されて耐SCC性と靭性
が劣化することから、S含有量は0.001〜0.00
30%と定めた。
h) B The B component has the effect of significantly improving the hardenability of steel when added in small amounts, and in the case of the steel of this invention, the amounts of Si, Mns, Cr, and Mo added, which are effective in improving the hardenability, improve SSC resistance. Therefore, it is essential to secure the desired hardenability instead of these. However, if the content is less than 0.001%, the desired effect cannot be obtained in the above action, and on the other hand, if the content exceeds 0.0030%, coarse carbides are formed at grain boundaries, resulting in poor SCC resistance. The S content is 0.001 to 0.00 because the toughness deteriorates.
It was set at 30%.

i ) Zr、及びHf これらの成分には、微細な窒化物を形成して粒界炭化物
の粗大化を防ぐことにより耐SSC性を向上させる作用
を発揮するので、それぞれ′単独で或いは両者を複合し
て添加されるものであるが、その含有量がZrの場合に
は0.01%未満になると、そしてIfの場合にはo、
ooi%未満になると前記作用に所望の効果が得られず
、−方、Zr及びHfとも0.15%を越えて含有させ
てもそれ以上の耐SSC性改善効果が達せられないばか
りか、逆に靭性劣化を招(ことから、Zr含有量は0.
01〜0.15%と、)If含有量は0.001〜0.
150%とそれぞれ定めた。
i) Zr and Hf These components form fine nitrides and prevent coarsening of grain boundary carbides, thereby improving SSC resistance. However, if the content is less than 0.01% in the case of Zr, and in the case of If, o,
If the amount is less than 0.00%, the desired effect cannot be obtained, and even if both Zr and Hf are contained in amounts exceeding 0.15%, not only will no further SSC resistance improvement effect be achieved, but the opposite effect will occur. leads to toughness deterioration (therefore, Zr content is 0.
01-0.15%, and ) If content is 0.001-0.001%.
Each was set at 150%.

j)Nb、及び■ これらの成分には、いずれも鋼組織の微細化と強度向上
作用があるのでそれぞれ単独で又は2種を複合して添加
されるものであるが、いずれの成分も0.01%未満で
は前記作用に所望の効果が得ろれず、−方、それぞれ0
.15%を越えて含有させると靭性の劣化を招くことか
ら、Nb及び■含有量はそれぞれ0.01〜0.15%
と定めた。
j) Nb, and ■ These components all have the effect of refining the steel structure and improving strength, so they are added either singly or in combination of two types, but none of these components is 0. If it is less than 0.01%, the desired effect cannot be obtained;
.. If the content exceeds 15%, the toughness deteriorates, so the Nb and ■ contents are each 0.01 to 0.15%.
It was determined that

k) P Pは鋼の結晶粒界に偏析して耐SSC性を劣化させる傾
向を示す不純物元素であるが、その含有量が0.015
%以下であれば実際上格別な問題を生じないことから、
P含有量は0.015%以下と定めた。
k) P P is an impurity element that tends to segregate at the grain boundaries of steel and deteriorate SSC resistance, but if its content is 0.015
% or less, no particular problem will arise in practice, so
The P content was determined to be 0.015% or less.

1) S Sは硫化物系介在物を増加して鋼の耐SSC性を劣化さ
せる不純物元素であるが、その含有量が0.015%以
下であれば上記不都合を容認できることから、S含有量
は0.015%以下と定めた。
1) S S is an impurity element that increases sulfide-based inclusions and deteriorates the SSC resistance of steel, but if the content is 0.015% or less, the above disadvantages can be tolerated, so the S content was set at 0.015% or less.

m)(:u Cuは鋼の圧延加熱時に粒界を脆化させる不純物元素で
あるが、その含有量が0.15%未満であれば実際上液
不都合を容認できることから、Cu含有屋は0.15%
未満と定めた。
m) (:u Cu is an impurity element that embrittles the grain boundaries during rolling heating of steel, but if its content is less than 0.15%, liquid problems can actually be tolerated, so Cu content is 0. .15%
It is set as less than

n)Ni Niはサワー環境下での孔食発生を助長して耐SSC性
を劣化させる不純物元素であるが、その含有量が0.0
5%以下であれば実際上の不都合を容認できることから
、Ni含有量は0.05%以下と限定した。
n) Ni Ni is an impurity element that promotes pitting corrosion in sour environments and deteriorates SSC resistance, but if its content is 0.0
Since practical inconveniences can be tolerated if it is 5% or less, the Ni content is limited to 0.05% or less.

0)N 鋼中に不純物元素であるNが多量に含まれると粗大窒化
物の増加を招いて耐SSC性を劣化させるが、その含有
量が0.0150%までは許容限度を越えた不都合を引
き起こすことがないので、N含有量は0.0150%以
下と定めた。
0) N If a large amount of N, an impurity element, is contained in steel, coarse nitrides will increase and the SSC resistance will deteriorate, but if the content is up to 0.0150%, problems exceeding the allowable limit will occur. The N content was set at 0.0150% or less since this would not cause any damage.

p)0 鋼中に不純物元素であるOが多量に含まれると酸化物系
介在物が増加して耐SSC性を劣化させるが、その含有
量が0.0050%までは許容限度を越えた不都合を引
き起こすことがないので、O含有量は0.0050%以
下と定めた。
p) 0 If a large amount of O, an impurity element, is contained in steel, oxide inclusions will increase and the SSC resistance will deteriorate, but if the content is up to 0.0050%, the inconvenience exceeds the permissible limit. The O content was set at 0.0050% or less to avoid causing the above.

q)Ca、及び希土類元素(REM) これらの成分は、いずれも硫化物系介在物の形状を球状
化して鋼の耐SSC性を改善する作用を有しているので
必要に応じて1種以上含有せしめられるものであるが、
いずれもo、ooi%未満では前記作用に所望の効果が
得られず、−方、Caの場合には0.010%を越えて
、また希土類元素の場合には0.030%を越えて含有
させると、いずれの場合も鋼中の介在物が増加して逆に
耐SSC性や靭性を劣化させるようになることから、C
a含有量は0.001〜0.010%と、そして希土類
元素は0.001〜0.030%とそれぞれ定めた。
q) Ca and rare earth elements (REM) Each of these components has the effect of spheroidizing the shape of sulfide inclusions and improving the SSC resistance of steel, so one or more of these components may be used as necessary. Although it can be contained,
In either case, if the content is less than o or ooi%, the desired effect cannot be obtained. In either case, inclusions in the steel increase and conversely deteriorate SSC resistance and toughness.
The a content was determined to be 0.001 to 0.010%, and the rare earth element was determined to be 0.001 to 0.030%.

鋼を以上のような構成とすることにより、局部的な組成
変形を受けても耐SSC性劣化の極めて小さい、即ちサ
ワー環境での耐久性や実用上の取り扱い性が非常に良好
な高張力油井側柵を得ることができるが、このような効
果は、咳鋼中にそれぞれ0.5%以下のTa、Sn、S
b、AS% Te−、Bi、5esZns Pbs M
g、Y及びCoの1種以上が含まれていても何ら損なわ
れることがない。また、焼戻しマルテンサイトの前身で
ある旧オーステナイト粒の粒径が大きいと焼戻し後の鋼
材の粒界炭化物が粗大化して耐SSC性の劣化を招く傾
向があり、そのため旧オーステナイト粒の平均粒径を1
6μmに調整することが好ましい。
By configuring the steel as described above, it is possible to create a high-tensile oil well with very little deterioration in SSC resistance even when subjected to local compositional deformation, which means that it has very good durability in sour environments and practical handling. Although side rails can be obtained, such an effect is limited by the addition of less than 0.5% of Ta, Sn, and S in the cough steel.
b, AS% Te-, Bi, 5esZns Pbs M
Even if one or more of g, Y, and Co are included, no damage will occur. Furthermore, if the grain size of the prior austenite grains, which is the predecessor of tempered martensite, is large, the grain boundary carbides in the steel material after tempering tend to become coarse and cause deterioration of SSC resistance. 1
It is preferable to adjust the thickness to 6 μm.

次に、この発明を実施例により比較例と対比しながら説
明する。
Next, the present invention will be explained using examples and comparing with comparative examples.

〈実施例〉 まず、150kgの高周波炉で第1表に示される如き成
分組成の泪を溶製後、熱間圧延によって121識厚の板
材を製造した。続いて、これを880℃或いは930℃
に加熱して1時間保持した後水中に焼入れし、更に64
0〜720℃で30分の焼戻し処理を施して“焼戻しマ
ルテンサイトを主体とした組織”を有する鋼材とした。
<Example> First, a sheet material having a composition shown in Table 1 was melted in a 150 kg high frequency furnace, and then a plate material having a thickness of 121 mm was produced by hot rolling. Next, heat this to 880℃ or 930℃
After heating for 1 hour and quenching in water,
A steel material having a "structure mainly composed of tempered martensite" was obtained by subjecting it to a tempering treatment at 0 to 720°C for 30 minutes.

このようにして得られた鋼材に関して旧オーステナイト
の結晶粒径、強度及び耐SSC性を調査し、その結果を
第2表に示した。
Regarding the steel materials thus obtained, the crystal grain size, strength, and SSC resistance of prior austenite were investigated, and the results are shown in Table 2.

耐SSC性は、第1図に示されるような“シェルタイブ
試験”と呼ばれる一種の3点曲げ応力付加試験を行って
SSCの発生する限界付加応力を求め、その値で評価し
た。この試験法は、第2図に示されるような長手方向中
央部にキリ孔を設け2表 11〜Lソ亜UにJ4ん41はソ5す℃鳩さ入れ−Cゐ
る。
The SSC resistance was evaluated by performing a type of three-point bending stress adding test called a "shell tie test" as shown in FIG. 1 to determine the critical added stress at which SSC occurs. In this test method, a drill hole is provided in the center in the longitudinal direction as shown in FIG.

た試験片1を使用するものであり、中央部の小孔部分が
応力集中により塑性変形するため、実用上の耐SSC性
が評価できるものである。なお、試験液としては硫化水
素を飽和した0、5%酢酸溶液(20℃)が使用され、
浸漬時間は500時間であった。
The test specimen 1 used here is one in which the small pores in the center are plastically deformed due to stress concentration, so that practical SSC resistance can be evaluated. The test solution used was a 0.5% acetic acid solution (20°C) saturated with hydrogen sulfide.
The immersion time was 500 hours.

第2表に示される結果からも明らかなように、本発明の
条件を満足する鋼はいずれも貰い強度と優れた耐SSC
性とを兼備しているのに対して、成分組成や旧オーステ
ナイト粒の粒径が本発明で規定する条件から外れている
鋼では十分な耐SSC性を示さないことが分かる。
As is clear from the results shown in Table 2, all steels that satisfy the conditions of the present invention have excellent strength and SSC resistance.
However, it can be seen that steels in which the composition and the particle size of prior austenite grains deviate from the conditions specified in the present invention do not exhibit sufficient SSC resistance.

上述のように、この発明によれば、高い強度を有する上
、優れた耐SSC性をも安定して発揮する高張力鋼を比
較的コスト安く実現することができ、サワー環境下で使
用される油井部材の性能を一段と向上することが可能と
なるなど、産業上極めて有用な効果がもたらされるので
ある。
As described above, according to the present invention, it is possible to produce high-strength steel that not only has high strength but also stably exhibits excellent SSC resistance at a relatively low cost, and is suitable for use in sour environments. This brings about extremely useful effects industrially, such as making it possible to further improve the performance of oil well components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、シェルタイブ試験における試験片の支持状態
を示す概略模式図、 第2図は、シェルタイブ試験の試験片形状を示しており
、第2図(a)はその正面図、第2図(′b)は側面図
である。 図面において、 1・・・試験片、     2・・・ガラス丸棒、3・
・・応力付加ボルト。
Figure 1 is a schematic diagram showing the supporting state of the test piece in the shell-type test, and Figure 2 shows the shape of the test piece in the shell-type test. 'b) is a side view. In the drawings, 1... test piece, 2... glass round bar, 3...
...Stressed bolt.

Claims (2)

【特許請求の範囲】[Claims] (1)重量割合にて、 C:0.15〜0.45%、Si:0.1〜0.8%、 Mn:0.2〜0.8%、Cr:0.2%以上1.0%
未満、 Mo:0.1〜0.8%、 Ti:0.001以上0.010%未満、 Al:0.005〜0.060%、 B:0.0001〜0.0030% を含み、更に Zr:0.01〜0.15%、 Hf:0.001〜0.150% の1種以上、並びに Nb:0.01〜0.15%、 V:0.01〜0.15% のうちの1種以上をも含有するとともに残部が実質的に
Feから成り、かつ不可避不純物として規制されるP、
S、Cu、Ni、N及びOの含有量がそれぞれ P:0.01%以下、S:0.005%以下、 Cu:0.15%未満、Ni:0.05%以下、 N:0.0150%以下、O:0.0050%以下 を満足していることを特徴とする、耐硫化物割れ性に優
れた高張力油井用鋼。
(1) Weight percentage: C: 0.15-0.45%, Si: 0.1-0.8%, Mn: 0.2-0.8%, Cr: 0.2% or more1. 0%
Mo: 0.1 to 0.8%, Ti: 0.001 or more and less than 0.010%, Al: 0.005 to 0.060%, B: 0.0001 to 0.0030%, and further One or more of Zr: 0.01-0.15%, Hf: 0.001-0.150%, and Nb: 0.01-0.15%, V: 0.01-0.15%. P, which also contains one or more types of P, the remainder of which is substantially composed of Fe, and which is regulated as an unavoidable impurity;
The contents of S, Cu, Ni, N and O are P: 0.01% or less, S: 0.005% or less, Cu: less than 0.15%, Ni: 0.05% or less, N: 0. A high tensile oil well steel having excellent sulfide cracking resistance, which satisfies O: 0.0150% or less and O: 0.0050% or less.
(2)重量割合にて、 C:0.15〜0.45%、Si:0.1〜0.8%、 Mn:0.2〜0.8%、Cr:0.2%以上1.0%
未満、 Mo:0.1〜0.8%、 Ti:0.001%以上〜0.010%未満、 Al:0.005〜0.060%、 B:0.0001〜0.0030% を含み、更に Zr:0.01〜0.15%、 Hr:0.001〜0.150% の1種以上と、 Nb:0.01〜0.15%、 V:0.01〜0.15% のうちの1種以上、並びに Ca:0.001〜0.010%、 希土類元素:0.001〜0.030% の1種以上をも含有するとともに残部が実質的にFeか
ら成り、かつ不可避不純物として規制されるP、S、C
u、Ni、N及びOの含有量がそれぞれ P:0.01%以下、S:0.005%以下、 Cu:0.15%未満、Ni:0.05%以下、 N:0.0150%以下、O:0.0050%以下 を満足していることを特徴とする、耐硫化物割れ性に優
れた高張力油井用鋼。
(2) Weight percentage: C: 0.15-0.45%, Si: 0.1-0.8%, Mn: 0.2-0.8%, Cr: 0.2% or more1. 0%
Mo: 0.1 to 0.8%, Ti: 0.001% to less than 0.010%, Al: 0.005 to 0.060%, B: 0.0001 to 0.0030%. , and further one or more of Zr: 0.01-0.15%, Hr: 0.001-0.150%, Nb: 0.01-0.15%, V: 0.01-0.15% and one or more of Ca: 0.001 to 0.010%, rare earth elements: 0.001 to 0.030%, and the remainder substantially consists of Fe, and unavoidable P, S, and C regulated as impurities
The contents of u, Ni, N and O are respectively P: 0.01% or less, S: 0.005% or less, Cu: less than 0.15%, Ni: 0.05% or less, N: 0.0150% Hereinafter, a high tensile oil well steel having excellent sulfide cracking resistance is characterized by satisfying an O content of 0.0050% or less.
JP14591586A 1986-06-20 1986-06-20 High-tensile steel for oil well excellent in sulfide cracking resistance Pending JPS634047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14591586A JPS634047A (en) 1986-06-20 1986-06-20 High-tensile steel for oil well excellent in sulfide cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14591586A JPS634047A (en) 1986-06-20 1986-06-20 High-tensile steel for oil well excellent in sulfide cracking resistance

Publications (1)

Publication Number Publication Date
JPS634047A true JPS634047A (en) 1988-01-09

Family

ID=15396015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14591586A Pending JPS634047A (en) 1986-06-20 1986-06-20 High-tensile steel for oil well excellent in sulfide cracking resistance

Country Status (1)

Country Link
JP (1) JPS634047A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
US8328960B2 (en) 2007-11-19 2012-12-11 Tenaris Connections Limited High strength bainitic steel for OCTG applications
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
CN103820713A (en) * 2014-02-21 2014-05-28 内蒙古包钢钢联股份有限公司 High-strength and high-toughness H2S corrosion resistant oil tube and making method thereof
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
WO2016059763A1 (en) * 2014-10-17 2016-04-21 新日鐵住金株式会社 Low alloy steel pipe for oil wells
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131914A (en) * 1976-04-28 1977-11-05 Nippon Steel Corp Low alloy high tensile steel for oil contaomer
JPS56112440A (en) * 1980-02-06 1981-09-04 Nippon Kokan Kk <Nkk> Steel for pipeline with superior sulfide stress corrosion crack resistance
JPS5974221A (en) * 1982-10-19 1984-04-26 Kawasaki Steel Corp Production of high strength seamless steel pipe
JPS59123716A (en) * 1982-12-28 1984-07-17 Sumitomo Metal Ind Ltd Production of steel pipe for oil well having excellent resistance to sulfide cracking
JPS6052521A (en) * 1983-08-31 1985-03-25 Sumitomo Metal Ind Ltd Manufacture of steel having superior resistance to sulfide cracking

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131914A (en) * 1976-04-28 1977-11-05 Nippon Steel Corp Low alloy high tensile steel for oil contaomer
JPS56112440A (en) * 1980-02-06 1981-09-04 Nippon Kokan Kk <Nkk> Steel for pipeline with superior sulfide stress corrosion crack resistance
JPS5974221A (en) * 1982-10-19 1984-04-26 Kawasaki Steel Corp Production of high strength seamless steel pipe
JPS59123716A (en) * 1982-12-28 1984-07-17 Sumitomo Metal Ind Ltd Production of steel pipe for oil well having excellent resistance to sulfide cracking
JPS6052521A (en) * 1983-08-31 1985-03-25 Sumitomo Metal Ind Ltd Manufacture of steel having superior resistance to sulfide cracking

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
US8328958B2 (en) 2007-07-06 2012-12-11 Tenaris Connections Limited Steels for sour service environments
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
US8328960B2 (en) 2007-11-19 2012-12-11 Tenaris Connections Limited High strength bainitic steel for OCTG applications
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US10378075B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378074B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
CN103820713B (en) * 2014-02-21 2016-08-17 内蒙古包钢钢联股份有限公司 The anti-H of high-intensity high-tenacity2the preparation method of S corrosion oil pipe
CN103820713A (en) * 2014-02-21 2014-05-28 内蒙古包钢钢联股份有限公司 High-strength and high-toughness H2S corrosion resistant oil tube and making method thereof
JPWO2016059763A1 (en) * 2014-10-17 2017-04-27 新日鐵住金株式会社 Low alloy oil well steel pipe
WO2016059763A1 (en) * 2014-10-17 2016-04-21 新日鐵住金株式会社 Low alloy steel pipe for oil wells
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing

Similar Documents

Publication Publication Date Title
EP1954847B1 (en) High-strength steel for seamless, weldable steel pipes
US4464209A (en) Clad steel pipe excellent in corrosion resistance and low-temperature toughness and method for manufacturing same
US4138278A (en) Method for producing a steel sheet having remarkably excellent toughness at low temperatures
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
JPS634047A (en) High-tensile steel for oil well excellent in sulfide cracking resistance
JPS61270355A (en) High strength steel excelling in resistance to delayed fracture
JPS62253720A (en) Production of low-alloy high-tension oil-well steel having excellent resistance to sulfide stress corrosion cracking
JPS63230851A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPS634046A (en) High-tensile steel for oil well excellent in resistance to sulfide cracking
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPH01259124A (en) Manufacture of high-strength oil well tube excellent in corrosion resistance
EP0798394A1 (en) Martensitic steel for line pipe having excellent corrosion resistance and weldability
JP3290247B2 (en) Method for manufacturing high tensile strength and high toughness bent pipe with excellent corrosion resistance
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JPH08283906A (en) High tensile strength steel plate for fitting material, excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPS5896853A (en) High mn steel for extra-low temperature use with superior corrosion resistance and machinability
JPS6164815A (en) Manufacture of high strength steel excellent in delay breakdown resistance
JPS647138B2 (en)
KR102289524B1 (en) Method for preparing high-toughness nickel steel and control method for magnetization thereof
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JPH03236420A (en) Production of steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JPS61104054A (en) High-strength and high-toughness welded clad steel pipe for line pipe