JPS5974221A - Production of high strength seamless steel pipe - Google Patents

Production of high strength seamless steel pipe

Info

Publication number
JPS5974221A
JPS5974221A JP18346882A JP18346882A JPS5974221A JP S5974221 A JPS5974221 A JP S5974221A JP 18346882 A JP18346882 A JP 18346882A JP 18346882 A JP18346882 A JP 18346882A JP S5974221 A JPS5974221 A JP S5974221A
Authority
JP
Japan
Prior art keywords
corrosion cracking
stress corrosion
sulfide stress
steel
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18346882A
Other languages
Japanese (ja)
Other versions
JPH0225969B2 (en
Inventor
Kuniaki Motoda
元田 邦昭
Sadao Hasuno
貞夫 蓮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18346882A priority Critical patent/JPS5974221A/en
Publication of JPS5974221A publication Critical patent/JPS5974221A/en
Publication of JPH0225969B2 publication Critical patent/JPH0225969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Abstract

PURPOSE:To produce a titled steel pipe which has excellent resistance to sulfide stress corrosion cracking and excellent toughness at low temp. and permits production of a blank material by continuous casting also by hot working and hardening a steel having a limited compsn. then holding the same under specific conditions and subjecting the steel to a tempering treatment. CONSTITUTION:A blank material for a seamless steel pipe having the compsn. contg., by weight %, 0.1-0.5% C, 0.1-0.3% Si, 0.2-0.8% Mn, 1.0-4.0% Cr, 0.005-0.1% Al, <=0.005% P, <=0.005% S, <=0.004% N, 0.2-1.0% Mo, 0.01-0.1% Nb, and 0.005-0.1% (Zr+Ti), and further contg. >=1 kinds of <=0.1 V and <=0.005% B if necessary, is subjected to the following treatment: The above- mentioned blank material is hot worked and is held for the time tau shown by the equation tau>=t/25.4 (tau; holding time at the tempering temp. in hr, t; the wall thickness of the pipe in mm.) according to the wall thickness (t) of the pipe in a temp. range of >=620 deg.C-<=AC1 during the tempering treatment in succession to hardening. The excellent resistance to sulfide stress corrosion cracking is provided at 70-120kgf/mm.<2> yield strength or 0.6% yield strength is thus obtd. tau=(1/25.4)t

Description

【発明の詳細な説明】 この発明は、高強度継目無鋼管の製造方法に関し、とく
にサワー化傾向の下に深井戸化の著しい1、。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high-strength seamless steel pipes, and in particular, to a method for manufacturing high-strength seamless steel pipes, the trend is particularly toward deep wells due to the tendency toward souring.

油井管または類似の用途で、硫化物応力腐食割れ発生の
危険を少くとも’IOン/m−のように高い降伏強さの
下に有効に回避することについての開発成果を、あらた
に提案しようとするものである。
We would like to propose a new development result that effectively avoids the risk of sulfide stress corrosion cracking in oil country tubular goods or similar applications at a yield strength as high as at least 'IOm/m-. That is.

上記したような深井戸化かっサワー化する傾向に対して
は一般に耐硫化物応力腐食割れ性カ\強さの上昇と共に
劣化するので両者の1tfね合いから現在の所降伏強す
64〜74 kgf / mm2級の(3r −M。
In response to the above-mentioned tendency of deep wells and sour wells, the sulfide stress corrosion cracking resistance generally deteriorates as the strength increases, so the current yield strength is 64 to 74 kgf due to the 1 tf balance between the two. / mm2 class (3r -M.

系QjA カ、もつとも優れたものとされている。The system QjA is considered to be excellent.

最近特開昭58−78917号公報により、従来の6f
Ikyf/m−級Or −Mo鋼に比しOr、Moを増
量し、かつVを多量添加して耐硫化物応力腐食割れ性の
改善を図った75〜nokgf/篤−級の鋼が開発され
たが、MO,Vなどの高価な元素を多量に含むため高価
につき、また多量のVを含むため連続鋳造による素材の
熱間加工中に割れが発生しやすい。
Recently, according to Japanese Patent Application Laid-Open No. 58-78917, the conventional 6
Compared to Ikyf/m-grade Or-Mo steel, 75~nokgf/At-grade steel has been developed with increased amounts of Or and Mo and the addition of a large amount of V to improve sulfide stress corrosion cracking resistance. However, since it contains a large amount of expensive elements such as MO and V, it is expensive, and since it contains a large amount of V, cracks are likely to occur during hot working of the material by continuous casting.

また特開昭57−19822号、F17−19828号
両公報にて耐硫化物応力腐食割れの優れたLa添加鋼が
提案されたが、この鋼の降伏強さは最も高くても+11
 o kgf/鰭2程度であって従来鋼に比して強度の
改善は事実上はとんど見られない。
In addition, La-added steel with excellent resistance to sulfide stress corrosion cracking was proposed in both Japanese Patent Application Laid-Open No. 57-19822 and F17-19828, but the yield strength of this steel was at most +11
0 kgf/2 fins, and there is virtually no improvement in strength compared to conventional steel.

さらに特開昭57−15622号公報にはP。Further, in Japanese Patent Application Laid-Open No. 57-15622, P.

Sを低減した高強度油井用鋼が開示されているが。A high-strength oil well steel with reduced S content has been disclosed.

その強度値は明確にされていないにしても実施例からみ
ると91〜98に9f/ff1−の降伏強さにのぼるほ
ど、かなり高強度化されているとは云えこの鋼はアルカ
リ性環境のしかもH2Sは微量しか含まない場合にのみ
しか耐応力腐食割れ性は保証されていない。
Although its strength value has not been clarified, from the examples it can be said that the strength is quite high, reaching a yield strength of 91 to 98 9f/ff1-, but this steel is produced in an alkaline environment. Stress corrosion cracking resistance is guaranteed only when only a trace amount of H2S is contained.

加えて上掲の名調はいずれも低温靭性について考慮され
てはいない。もちろん稼動中の油井における油井管は、
井戸の中が一般に高温であるため、直接的には低温靭性
を必要としないが、峡近の新油田は寒冷地に位置する場
合も多く、この場合は搬送中、ス゛ドック中に事故を起
す可能性もあるので、この点看過されてはならない。
In addition, none of the above-mentioned masterpieces takes into account low-temperature toughness. Of course, oil country tubular goods in operating oil wells are
Since the temperature inside the well is generally high, low-temperature toughness is not directly required, but new oil fields in the vicinity are often located in cold regions, and in this case, accidents may occur during transportation or docking. This point should not be overlooked, as it also has a sexual nature.

この発明は先行技術の上記問題点について、上掲したよ
うに高価な元素を多量に含まず連続萌造にも適した安価
な成分系であって、しかも耐硫化物応力IK食割れ性と
共に低温靭性にも優れた高強度継目無鋼管を提供するこ
とを目的とした開発成果である。
The present invention solves the above-mentioned problems of the prior art by providing an inexpensive composition system that does not contain large amounts of expensive elements and is suitable for continuous eruption, as well as sulfide stress IK corrosion resistance and low temperature corrosion resistance. This is the result of development aimed at providing high-strength seamless steel pipes with excellent toughness.

発明者らは、この目的に関し。For this purpose, the inventors.

(1〕  降伏強さ7 Q kgf’ 7fa−以上の
鋼の硫化物応力腐食割れについてはとくに粒界割れが起
点となること (2)P、SおよびNの低減により、とくに粒界割れ型
硫化物応力腐食割れ感受性が低下すること、(3)焼戻
保持時間が長いほど耐硫化物応力腐食割れ性が良いこと の以下にのべる実験上の知見を踏まえて、この発明によ
る適合を導いたものである。
(1) Intergranular cracking is the starting point for sulfide stress corrosion cracking in steels with a yield strength of 7 Q kgf' 7fa- or more. (2) Reduction of P, S, and N can cause intergranular cracking, especially sulfide stress corrosion cracking. The suitability of this invention was derived based on the following experimental findings that (3) the longer the tempering retention time, the better the resistance to sulfide stress corrosion cracking. It is.

一般にり胃の硫化物応力腐食割れの破面形態は粒界割れ
、凝へき開、ディンプルなどざまざまな形態様相を示し
一定でないが発明者らは種々の強度の鋼の破°面を詳細
に検討した結果、強度が高くなるに従ってとくに粒界割
れが重要となり、ことに降伏強さが701ayf/ 關
2級以上の含Or@では殆んど粒界割れが破壊の起点と
なっていることを見い出した。
In general, the fracture surface morphology of sulfide stress corrosion cracking in the periphery is not constant, showing a variety of morphology such as intergranular cracking, coagulation cleavage, and dimples, but the inventors have examined the fracture surfaces of steels of various strengths in detail. As a result, we found that intergranular cracking becomes particularly important as the strength increases, and that intergranular cracking is the starting point for most fractures in Or@-containing steels with a yield strength of 701ayf/2 or higher. Ta.

さらにこのような鋼の耐硫化物応力腐食割れ性および低
温靭性は焼戻脆性と深い関係があり−PSおよびNの低
減に加えてMOとZrおよびまたはT1の適電添加によ
り著しく向上すること−またNt)を添加するとNt)
はP化物を形成してPの粒界への偏析を一段と防ぎこれ
もまた有効なこと、加えてかかる効果は、とくに焼戻保
持時間が長い程、より良く発揮されることを見出した。
Furthermore, the sulfide stress corrosion cracking resistance and low-temperature toughness of such steels are closely related to tempering embrittlement, and can be significantly improved by reducing PS and N as well as adding MO, Zr, and/or T1 appropriately. Also, if Nt) is added, Nt)
found that the formation of P oxides further prevents the segregation of P at grain boundaries, which is also effective, and that this effect is particularly better exhibited as the tempering retention time is longer.

以上の知見に基いて発明者らは、高強度でかつ耐硫化物
腐食割れ性、低温靭性ともに優れ連続鋳造による素材製
造も可能な継目無鋼管の製造方法を次のように確立した
ものである。
Based on the above knowledge, the inventors have established a method for manufacturing seamless steel pipes that has high strength, excellent sulfide corrosion cracking resistance, and low-temperature toughness and can also be manufactured by continuous casting as follows. .

この発明はOn 0.1〜0.5重量係(以下単に係で
示す)、 Si : 0.1〜0.84、In s 0
.2〜0.81、 Or : 1.0〜4.04を含み
、A/ : 0.005〜0.1 mであって、Pおよ
びSともに0.005チ以下。
This invention has a weight ratio of On 0.1 to 0.5 (hereinafter simply referred to as ratio), Si: 0.1 to 0.84, and Ins 0.
.. 2 to 0.81, Or: 1.0 to 4.04, A/: 0.005 to 0.1 m, and both P and S are 0.005 inches or less.

そしてN : 0.0041以下にそれぞれ低減しがっ
Mcij O,1〜1.01ならびにNb : 0.0
1NO,11を、Zrおよび/まt= ハTi : o
、On5〜o、1 % (!: トもニ、。
and Nb: 0.0041 or less, respectively. Mcij O,1~1.01 and Nb: 0.0
1NO, 11, Zr and /mat= HaTi: o
, On5~o, 1% (!: Tomo ni,.

必要によってはざらにV : 0.11以下およびB:
0.0054以下のうち少くとも1種もあわせ含有する
成分組成になる継目無鋼管素材に熱間加工を施したあと
・調質処理する際に、焼入れに引続く焼戻し処理中、6
10℃以上AC1点以下の温度範囲で、管の肉厚tに応
じ少くともτ(焼戻し温度下保持時間、hr)=−↓−
×(管の肉厚、鰭)で与25.4 えられる保持時間τにわたらせて、降伏強さまたは0.
6係耐カフ0〜] 20 kgf/−において、すぐれ
た耐硫化物応力腐食割れ性と、低温靭性とを兼備させを
ことからなる高強度継目無鋼管の製造方法を提案するも
のである。
If necessary, V: 0.11 or less and B:
0.0054 or less, during the tempering treatment subsequent to quenching, after hot working and tempering treatment of a seamless steel pipe material having a composition containing at least one of the following:
In the temperature range from 10°C to AC1 point, at least τ (holding time at tempering temperature, hr) = -↓- depending on the wall thickness t of the tube.
x (tube thickness, fin) over a holding time τ given by 25.4 yield strength or 0.
The present invention proposes a method for producing a high-strength seamless steel pipe that has both excellent sulfide stress corrosion cracking resistance and low-temperature toughness at 20 kgf/-.

まずこの発明において各添加元素の成分割合を限定した
理由を説明する。
First, the reason why the proportions of each additive element are limited in this invention will be explained.

0 : 0.1〜0.r)優 Cは0.1係を下まわると焼入れ性が損われ。0: 0.1-0. r) Excellent When C is less than 0.1, hardenability is impaired.

0.5憾を超えると焼割れの発生がみられるので0.1
〜0.5憾の範囲とした。
If it exceeds 0.5, quench cracking will occur, so 0.1
The range was 0.5 to 0.5.

Si : 0.I NO,84 Siは鋼の脱酸と強度増加の目的で0.】俤以上必要で
あるが、0.8係を超えると靭性を劣化させるので0.
1〜0.8係の範囲とした。
Si: 0. I NO, 84 Si is used to deoxidize steel and increase its strength. ] or more is required, but if it exceeds 0.8, the toughness will deteriorate, so 0.
The range was 1 to 0.8.

M n : 0.2〜0.8 ’4 Inは0.2係以上の添加により強度と靭性を向上させ
、脱酸にも有効であるが0.8係をこえるとP、Sなど
の偏析を招き、耐硫化物応力腐食割れ性を劣化させるの
で0.2〜0.8係の範囲とした。
Mn: 0.2 to 0.8 '4 In improves strength and toughness by adding a modulus of 0.2 or more, and is also effective in deoxidizing, but if it exceeds a modulus of 0.8, segregation of P, S, etc. Since this causes deterioration of sulfide stress corrosion cracking resistance, the ratio is set to be in the range of 0.2 to 0.8.

Or : 1.0〜4.0係 Orは耐食性1強度、焼戻し抵抗性を高めるのに1.0
噂以上必要であるが、4.01を超えると靭性を劣化さ
せるので1.0〜4.0係の範囲とした。
Or: 1.0 to 4.0 Or is 1 strength for corrosion resistance, 1.0 for increasing tempering resistance
Although it is more necessary than rumored, if it exceeds 4.01, the toughness deteriorates, so it was set in the range of 1.0 to 4.0.

A/ : 0.0015〜0.11 Aノは脱酸に寄与するばかりでなくNと化合してNの粒
界への偏析を防いで耐硫化物応力腐食割れ性を向上させ
るのに0.0LIFi 1以上必要であるが、0.11
を超えるとその効果は飽和し靭性の劣化を招くので0.
005〜0.1 ’1の範囲とした。
A/: 0.0015 to 0.11 A not only contributes to deoxidation but also combines with N to prevent N from segregating into grain boundaries and improves sulfide stress corrosion cracking resistance. 0LIFi 1 or more is required, but 0.11
If it exceeds 0.0, the effect will be saturated and the toughness will deteriorate.
The range was 0.005 to 0.1'1.

P、S≦0.005係およびN≦0.0(14チこれら
の不純物元素は粒界へ偏析して鋼の粒界強度を低下させ
・とくに降伏強さ79 kgf / mn2 以上の鋼
における粒界割れ型の硫化物腐食割れに悪影響を及すの
でこれを防止するためには可及的に少くするのが望まし
く、この発明に従いMOならびにNbと、 Zrおよび
/またはT1を添加して、不純物元素の固定を図った場
合においても、目的とする強度、耐硫化物応力腐食割れ
性および低温靭性を得るためには、上限をP、Sはとも
に0.005 憾Nは0.004”]とする必要がある
P, S ≦ 0.005 and N ≦ 0.0 (14 Since it has an adverse effect on interfacial cracking type sulfide corrosion cracking, it is desirable to reduce it as much as possible in order to prevent this.According to the present invention, MO and Nb, and Zr and/or T1 are added to reduce the impurity content. Even when fixing the elements, in order to obtain the desired strength, sulfide stress corrosion cracking resistance, and low-temperature toughness, the upper limits should be 0.005 for both P and S and 0.004 for N. There is a need to.

No : 0.2〜1.0係 MOは耐食性、強度、焼戻し抵抗性を高め、Pの粒界偏
析を防いで耐硫化物応力腐食割れ性を向上させるのに0
.21以上必要であるが、1.0噂を超えて多1に含有
すると靭性を劣化させ、かつ高価となるので0.2〜1
.01の範囲とした。
No: MO of 0.2 to 1.0 increases corrosion resistance, strength, and tempering resistance, prevents grain boundary segregation of P, and improves sulfide stress corrosion cracking resistance.
.. 21 or more is necessary, but if the content exceeds 1.0, the toughness deteriorates and it becomes expensive, so it is 0.2 to 1.
.. The range was 01.

Nb : 0.01〜0.1憾 NbはすでにのべたOrおよびMoを含有する鋼に添加
すると、焼もどし後の鋼の組織において炭化物を微細に
して粒内に均一に分散させること、またPを固定して粒
界への偏析を妨げることが相撲って耐硫化物応力腐食割
れ性を向上させるのに役立ちそのために0.1俤以上必
要であり、 0.11を超えると靭性を劣化させ、かつ
連続鋳造による素材製造時割れ発生の原因となるので0
.O2N2.1係の範囲とする。
Nb: 0.01-0.1 When Nb is added to the steel containing Or and Mo, it makes the carbides fine in the structure of the steel after tempering and disperses them uniformly within the grains. Fixing and preventing segregation to the grain boundaries helps improve sulfide stress corrosion cracking resistance, and for this purpose, 0.1 or more is required; if it exceeds 0.11, the toughness deteriorates. , and cause cracks to occur during material production by continuous casting.
.. The range is O2N2.1.

zrおよび/またはTi : 0.005〜0.14こ
れらの元素は、Nとの親和力がもつとも強く、これを固
定して粒界への偏析を防ぎ、耐硫化物応力腐食割れ性を
向上させる作用効果を同じくするので、 Ti * Z
rの各々の単独添加でも同時添加でもよく、上記の効果
を導くためには、それらの合計量で0.no5(+以上
必要であり、一方0.1憾を超えると靭性を劣化させる
ので0.0051〜0.1係の範囲とする。
zr and/or Ti: 0.005 to 0.14 These elements have a strong affinity for N, and have the effect of fixing it, preventing segregation to grain boundaries, and improving sulfide stress corrosion cracking resistance. Since the effect is the same, Ti * Z
Each of r may be added singly or simultaneously, and in order to bring about the above effect, the total amount of r should be 0. No. 5 (+ or more is required; on the other hand, if it exceeds 0.1, the toughness deteriorates, so it should be in the range of 0.0051 to 0.1.

上記のような限定組成の鋼を継目無鋼管として熱間加工
後、焼入れ、焼戻し処理をおこなう。焼入条件は限定し
ないが、好ましくは90チ以上がマルテンサイト組織に
なることが好ましい。
Steel having a limited composition as described above is hot worked into a seamless steel tube, and then quenched and tempered. Although the quenching conditions are not limited, it is preferable that 90 or more pieces have a martensitic structure.

ついで620°以上、 A01以下の温度で・管の肉厚
を間に応じて次式で示す7時間にわたり保持して焼もど
し処理を行う〇 τ〉□ −15,4 620℃以上の温度と上式による保持時間は、オーステ
ナイト粒界への不純物の偏析を防き゛かつ球状炭化物を
均一微細に析出させて、必要な強度。
Then, at a temperature of 620° or more and A01 or less, the tube wall thickness is maintained for 7 hours according to the following formula depending on the time, and a tempering treatment is performed. The holding time according to the formula is to prevent the segregation of impurities to the austenite grain boundaries and to uniformly and finely precipitate the spherical carbides to achieve the necessary strength.

靭性と耐硫化物応力腐食割れ性を得るために必要である
。AC3点をこえるとオーステナイトが生じ常温に冷却
した時にこれが焼戻しを受けないマルテンサイトとなり
、耐硫化物応力腐食割れ性を著しく劣化させる。
Necessary to obtain toughness and resistance to sulfide stress corrosion cracking. When the AC point exceeds 3, austenite is formed, which becomes martensite which does not undergo tempering when cooled to room temperature, and the resistance to sulfide stress corrosion cracking is significantly deteriorated.

上記の如くして優れた低温靭性と耐硫化物応力腐食割れ
性を有する高強度継目無鋼管が得られるが、さらに高強
度、焼入れ性の補助、焼もどし抵抗性の付加および靭性
向上などの目的に応じて必要によりV、Hの1種または
2種をVはo、ol S以上、Bは0.011051以
上で添加することによって。
As described above, a high-strength seamless steel pipe with excellent low-temperature toughness and sulfide stress corrosion cracking resistance can be obtained. Depending on the situation, one or two of V and H may be added in an amount of 0, ol or more for V and 0.011051 or more for B.

この発明の効果をさらに向上させることができる。The effects of this invention can be further improved.

しかし過剰に添加するといずれも鋼の靭性を劣化させ、
また連続鋳造により素材を製造する場合には割れ発生の
原因となるのでその上限はVは0.14勉Bは0.00
54とする。
However, when added in excess, both deteriorate the toughness of the steel.
Also, when manufacturing materials by continuous casting, the upper limit is 0.14 for V and 0.00 for B, as this can cause cracks.
54.

この発明において鋼管の降伏強さまたは0.6係耐力を
、70kgf/−から1!90沖fl/Gt−の範囲に
限定したのは、70に9f/IIl+12未満の場合は
硫化物応力腐食割れは主に凝へき開またはディンプル状
の破面を呈し1粒界値面となることはまれであり、その
割れ機構が異なるために、このようにP、SおよびNの
量の限定とこれらの粒界への偏析を妨げるMo 、 N
b t ZrおよびまたはT1の添加と焼もどし温度お
よび保持時間の規定をしても格段の意味がないからであ
り、また1s o Jcgf屓では耐硫化物応力腐食割
れ性が1掲対策の下でなお著しく劣化する。
In this invention, the yield strength or 0.6 yield strength of the steel pipe is limited to the range from 70 kgf/- to 1!90 fl/Gt- because if it is less than 70 to 9 f/IIl+12, sulfide stress corrosion will occur. mainly exhibits a fracture surface in the form of coagulation cleavage or dimples, and rarely has a single grain boundary value surface. Because the cracking mechanisms are different, it is necessary to limit the amounts of P, S, and N and to Mo, N that prevents segregation into the field
This is because there is no particular meaning in adding Zr and/or T1 and specifying the tempering temperature and holding time; However, it deteriorates significantly.

次にこの発明の実施側について述べる0表】に継目無鋼
管の成分と管の肉厚、焼戻し条件と焼戻し後の降伏強さ
YS、引張り強さTS%耐硫化物応力JA食割れ性、シ
ャルピー試験で求めたyTrsを比較例と対比して示す
Next, the implementation side of this invention is described in Table 0. Composition of seamless steel pipe, pipe wall thickness, tempering conditions, yield strength after tempering YS, tensile strength TS% sulfide stress JA corrosion cracking resistance, Charpy yTrs determined in the test is shown in comparison with a comparative example.

耐硫化物応力腐食割れ性は丸棒引張り型の試験片を用い
てNAOE液(0,54酢酸、5俤食塩添加飽和硫化水
素水)中で降伏強さの75憾の応力を負荷して試験した
Sulfide stress corrosion cracking resistance was tested using a round rod tensile test piece in NAOE solution (saturated hydrogen sulfide water with 0.54 acetic acid and 5 tbsp of sodium chloride added) by applying a stress of 75 times the yield strength. did.

表1中の○印は上記の試験で30日間破断しなかったも
のを、X印は破断したものを示す。表1の記号1〜4は
この発明による鋼管であり、いずれも良好な耐硫化物応
力腐食割れ性と良好な低温靭性を示している。記号5,
6の鋼管の、成分組成はこの発明の範囲にあるが記号5
は焼もどし温度が、記号6は保持時間が各々この発明の
範囲からはずれているため耐硫化物応力腐食割れ性、低
温靭性ともに劣っている。記号7はP2記号8はS、記
号9 ハN 、記号10はT1、Zr 、記号】1はM
Oそして記号12はNbがそれぞれこの発明の成分範囲
からはずれているため、この発明の範囲の焼もどし処理
を行っても、優れた耐硫化物応力腐食割れ性と低温靭性
を得ることはできない0以上のべたようにしてこの発明
は油井用鋼管においてまたはその類似の使途で耐硫化物
応力腐食割れ性を、高強度と低温靭性にあわせ要求され
るたとえばラインパイプ、化学プラント用鋼管、鋼板な
どに適用して、従来比類のない顕著な効果をもたらすこ
とができる。
In Table 1, the ○ marks indicate those that did not break in the above test for 30 days, and the X marks indicate those that did. Symbols 1 to 4 in Table 1 are steel pipes according to the present invention, and all of them exhibit good sulfide stress corrosion cracking resistance and good low-temperature toughness. symbol 5,
Although the composition of the steel pipe No. 6 is within the scope of this invention, it is designated as No. 5.
Since the tempering temperature for the sample No. 6 and the holding time for the No. 6 sample are outside the range of the present invention, both the sulfide stress corrosion cracking resistance and the low temperature toughness are poor. Symbol 7 is P2 Symbol 8 is S, Symbol 9 is HaN, Symbol 10 is T1, Zr, Symbol ]1 is M
O and symbol 12 indicate that Nb is outside the component range of this invention, so even if the tempering treatment is performed within the range of this invention, excellent sulfide stress corrosion cracking resistance and low temperature toughness cannot be obtained. As described above, the present invention improves sulfide stress corrosion cracking resistance in steel pipes for oil wells or similar uses, such as line pipes, steel pipes for chemical plants, steel plates, etc. that require high strength and low-temperature toughness. When applied, it can bring about remarkable effects that are unparalleled heretofore.

特許出願人 川崎製鉄株式会社Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 1、  e : o、1〜0.5車量係、Si : 0
.1〜0.3川歇係、Mn : 0.2〜(1,8車量
係、Or : 1.0〜41.0寅吋壬を含み、kl 
: 0.005〜0.1重in: 4であって、Pおよ
びSともに0.005重量重量下、そしてN : (1
,004重量重量下にそれぞれ低減し、かつMo : 
(1゜2〜1.0車量係ならびニNb:0.旧〜0.1
重量係を、Zrおよび/またはTiの合計量0.0(1
5〜0.1重晴係とともに、必要によっては、ざらにV
 : 0.1重量係以下およびB : 0.005重!
4以下のうち少くとも1種もあわせ含有する成分組成に
なる継目無m’を素材に熱間加工を施したあと―質処理
する際に、焼入れに引続く焼戻し処理中、620℃以上
AOI点以下の温度範囲で、管の肉厚tに応じ少くとも
下記式で与えられる保持時間τにわたらせて、降伏強さ
または0.6係耐カフ 0〜] 2 Q kgf / 
tnynE ニおイテ、スフれた耐硫化物応力腐食割れ
性と、低温靭性と1を兼備させることを特徴とする高強
度継目無鋼管の製造方法。 記 τ= −1 25,4 式中τ:焼戻し温度下保持時間(hr)t=管の肉厚 
     (mm )
[Claims] 1, e: o, 1 to 0.5 vehicle volume ratio, Si: 0
.. 1 to 0.3 river, Mn: 0.2 to (1,8 vehicle volume, Or: 1.0 to 41.0, including kl
: 0.005 to 0.1 weight in: 4, both P and S are below 0.005 weight, and N: (1
,004 respectively, and Mo:
(1゜2~1.0 vehicle volume and Nb: 0. old ~ 0.1
The weight coefficient is calculated by setting the total amount of Zr and/or Ti to 0.0 (1
Along with 5-0.1 Shigeharu, if necessary, Zaraani V
: 0.1 weight or less and B: 0.005 weight!
After hot working a seamless m' material that has a component composition that also contains at least one of the following: In the following temperature range, over at least the holding time τ given by the following formula according to the wall thickness t of the tube, the yield strength or 0.6 coefficient cuff resistance 0~] 2 Q kgf /
tnynE A method for manufacturing a high-strength seamless steel pipe characterized by having both sulfide stress corrosion cracking resistance and low-temperature toughness. τ = −1 25,4 In the formula, τ: Holding time at tempering temperature (hr) t = Tube wall thickness
(mm)
JP18346882A 1982-10-19 1982-10-19 Production of high strength seamless steel pipe Granted JPS5974221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18346882A JPS5974221A (en) 1982-10-19 1982-10-19 Production of high strength seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18346882A JPS5974221A (en) 1982-10-19 1982-10-19 Production of high strength seamless steel pipe

Publications (2)

Publication Number Publication Date
JPS5974221A true JPS5974221A (en) 1984-04-26
JPH0225969B2 JPH0225969B2 (en) 1990-06-06

Family

ID=16136315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18346882A Granted JPS5974221A (en) 1982-10-19 1982-10-19 Production of high strength seamless steel pipe

Country Status (1)

Country Link
JP (1) JPS5974221A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272351A (en) * 1985-05-29 1986-12-02 Kawasaki Steel Corp Steel pipe for oil well having high toughness as well as high strength
WO1986007096A1 (en) * 1985-05-23 1986-12-04 Kawasaki Steel Corporation Process for producing high-strength seamless steel pipes excellent in sulfide stress corrosion cracking resistance
JPS62253720A (en) * 1986-04-25 1987-11-05 Nippon Steel Corp Production of low-alloy high-tension oil-well steel having excellent resistance to sulfide stress corrosion cracking
JPS634047A (en) * 1986-06-20 1988-01-09 Sumitomo Metal Ind Ltd High-tensile steel for oil well excellent in sulfide cracking resistance
JP2006307245A (en) * 2005-04-26 2006-11-09 Jfe Steel Kk METHOD FOR HEAT-TREATING SEAMLESS STEEL PIPE MADE FROM Ti-ADDED LOW CARBON STEEL

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986007096A1 (en) * 1985-05-23 1986-12-04 Kawasaki Steel Corporation Process for producing high-strength seamless steel pipes excellent in sulfide stress corrosion cracking resistance
JPS61272351A (en) * 1985-05-29 1986-12-02 Kawasaki Steel Corp Steel pipe for oil well having high toughness as well as high strength
JPS62253720A (en) * 1986-04-25 1987-11-05 Nippon Steel Corp Production of low-alloy high-tension oil-well steel having excellent resistance to sulfide stress corrosion cracking
JPS634047A (en) * 1986-06-20 1988-01-09 Sumitomo Metal Ind Ltd High-tensile steel for oil well excellent in sulfide cracking resistance
JP2006307245A (en) * 2005-04-26 2006-11-09 Jfe Steel Kk METHOD FOR HEAT-TREATING SEAMLESS STEEL PIPE MADE FROM Ti-ADDED LOW CARBON STEEL

Also Published As

Publication number Publication date
JPH0225969B2 (en) 1990-06-06

Similar Documents

Publication Publication Date Title
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
JPS6354765B2 (en)
JPH10503809A (en) Martensitic stainless steel with sulfide stress cracking resistance with excellent hot workability
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPS60174822A (en) Manufacture of thick-walled seamless steel pipe of high strength
EP0224591B1 (en) Process for producing high-strength seamless steel pipes excellent in sulfide stress corrosion cracking resistance
JP3539250B2 (en) 655 Nmm-2 class low C high Cr alloy oil country tubular good with high stress corrosion cracking resistance and method of manufacturing the same
JPS5974221A (en) Production of high strength seamless steel pipe
JP2000160300A (en) 655 Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH CORROSION RESISTANCE, AND ITS MANUFACTURE
JPH0643626B2 (en) Martensitic stainless steel for oil country tubular goods
JPH05156409A (en) High-strength martensite stainless steel having excellent sea water resistance and production thereof
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JPS6216250B2 (en)
JPS5920423A (en) Production of 80kgf/mm2 class seamless steel pipe having excellent low temperature toughness
JPS6240345A (en) High tension steel pipe for oil well having superior delayed fracture resistance
JP2730090B2 (en) High yield ratio martensitic stainless steel
JPH11310823A (en) Manufacture of martensitic stainless steel tube excellent in toughness at low temperature
JP3099155B2 (en) High strength martensitic stainless steel with excellent weldability and its manufacturing method
JPS6254060A (en) High-strength steel pipe for oil well excellent in resistance to delayed fracture
JP2727865B2 (en) Manufacturing method of high strength and high corrosion resistance seamless steel pipe
JPS6358892B2 (en)
JP2752505B2 (en) High strength low alloy oil well steel with excellent low temperature toughness and sulfide stress corrosion cracking resistance
JP2541389B2 (en) Method of manufacturing low yield ratio high strength steel
JPS62149814A (en) Production of low-carbon high-strength seamless steel pipe by direct hardening method
KR890002612B1 (en) Process for manufacturing steel of structure having a good tungsten