JP2727865B2 - Manufacturing method of high strength and high corrosion resistance seamless steel pipe - Google Patents

Manufacturing method of high strength and high corrosion resistance seamless steel pipe

Info

Publication number
JP2727865B2
JP2727865B2 JP11408192A JP11408192A JP2727865B2 JP 2727865 B2 JP2727865 B2 JP 2727865B2 JP 11408192 A JP11408192 A JP 11408192A JP 11408192 A JP11408192 A JP 11408192A JP 2727865 B2 JP2727865 B2 JP 2727865B2
Authority
JP
Japan
Prior art keywords
steel pipe
strength
corrosion resistance
quenching
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11408192A
Other languages
Japanese (ja)
Other versions
JPH05287380A (en
Inventor
哲哉 越川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11408192A priority Critical patent/JP2727865B2/en
Publication of JPH05287380A publication Critical patent/JPH05287380A/en
Application granted granted Critical
Publication of JP2727865B2 publication Critical patent/JP2727865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、高強度で高耐食性に
優れた油井管等としての使用に適した高強度高耐食性継
目無鋼管を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high-strength, high-corrosion-resistant seamless steel pipe suitable for use as an oil country tubular good having high strength and high corrosion resistance.

【0002】[0002]

【従来の技術】オイルショック以降は、石油、天然ガス
の需要が増加し、世界各国で油田、ガス田の開発が進め
られてきたが、それに伴って採掘し易い鉱床の数が減少
し、最近では採掘の困難な深く、しかも産出物中に湿潤
な硫化水素や二酸化炭素の含まれる腐食性雰囲気の油
井、ガス井の割合が多くなってきている。深い油井、ガ
ス井においては、数千mの長い油井管、ガス井管(以下
油井管という)を吊下げる形になり、地上付近の油井管
に大荷重がかかるため高い強度が要求される。また、硫
化水素や炭酸ガスなどの腐食性環境下では、耐食性、特
に耐硫化物応力腐食割れ性(以下耐SSCC性という)
に優れた油井管が要求される。このため、油井、ガス井
の掘削および採油、採ガスなどの油井管として使用する
継目無鋼管は、高強度でしかも高耐食性に対する要求が
従来にも増して厳しくなってきている。
2. Description of the Related Art Since the oil crisis, demand for oil and natural gas has increased, and oil and gas fields have been developed around the world. The proportion of oil wells and gas wells in corrosive atmospheres that are difficult to dig deep and that contain wet hydrogen sulfide and carbon dioxide in their products is increasing. In a deep oil well or a gas well, a long oil well pipe or a gas well pipe (hereinafter, referred to as an oil well pipe) having a length of several thousand meters is suspended, and a large load is applied to an oil well pipe near the ground, so that high strength is required. In a corrosive environment such as hydrogen sulfide and carbon dioxide, corrosion resistance, especially sulfide stress corrosion cracking resistance (hereinafter referred to as SSCC resistance)
An oil well tube with excellent performance is required. For this reason, seamless steel pipes used as oil well pipes for drilling of oil wells and gas wells, oil extraction, gas extraction, and the like have been required to have higher strength and higher corrosion resistance than ever before.

【0003】従来から油井管の強度設計は、降伏応力
(YS)によって行われるのが普通であり、耐食性に影
響を及ぼす硬度は、引張り強度(TS)と等価であるこ
とから、高強度高耐食性油井管製造のポイントとして
は、高降伏応力(YS)、低引張り強度(TS)、すな
わち高降伏比(YR=YS/TS)化が挙げられる。高
降伏比化を達成するには、従来からC−Si−Mn−C
r鋼にMoを添加し、焼入れ性の良好な材料を使用する
方法、焼入れ焼戻しを繰返すことによって組織を細粒化
する方法、抽伸等の冷間加工を施し組織を細粒化する方
法の単独または組合わせが採用されていた。
Conventionally, strength design of oil country tubular goods is usually performed by yield stress (YS), and the hardness affecting corrosion resistance is equivalent to tensile strength (TS). The points of oil well pipe production include high yield stress (YS) and low tensile strength (TS), that is, high yield ratio (YR = YS / TS). To achieve a high yield ratio, conventionally, C-Si-Mn-C
r A method of adding Mo to steel and using a material having good quenchability, a method of refining the structure by repeating quenching and tempering, and a method of refining the structure by performing cold working such as drawing. Or a combination was employed.

【0004】前記耐SSCC性の評価法としては、シェ
ル試験法、NACE試験法(定荷重法)、SSRT法
(低歪速度引張り試験法)の3種類が知られている。こ
れらはいずれも同じ傾向を示すが、厳しさはシェル試験
法が最大である。シェル試験法は、厚さ1.7mm、幅
4.5mmの試験片の長さ方向中央部に直径0.7mm
の孔を2個穿孔し、この部分に3点曲げで応力を付加し
た状態で、室温、0.5%CH3COOH、1気圧、H2
S飽和の環境下に200〜500時間保持して、割れ限
界応力をSc値(耐食性指数)で評価するものである。
このSc値とロックウエル硬さHRCとの間には、図7
に示す関係が存在し、Sc値を上げるには硬度HRCを
低下させる必要があり、強度が低下する。
As the SSCC resistance evaluation method, there are known three types: a shell test method, a NACE test method (constant load method), and an SSRT method (low strain rate tensile test method). These all show the same tendency, but the severity is greatest in the shell test method. In the shell test method, a test piece having a thickness of 1.7 mm and a width of 4.5 mm was 0.7 mm in diameter at the center in the longitudinal direction.
In a state where room temperature, 0.5% CH 3 COOH, 1 atm, H 2
Crack limit stress is evaluated by Sc value (corrosion resistance index) by keeping in an environment of S saturation for 200 to 500 hours.
FIG. 7 shows the relationship between the Sc value and the Rockwell hardness HRC.
The following relationship exists, and in order to increase the Sc value, it is necessary to decrease the hardness HRC, and the strength decreases.

【0005】上記従来のC−Si−Mn−Cr鋼にMo
を添加する方法と、焼入れ焼戻しを繰返すことによって
組織を細粒化する方法を組合わせれば、強度が0.2%
耐力で100ksi(70kgf/mm2)級、110
ksi(77kgf/mm2)級の継目無鋼管の量産が
可能であるが、より安定した耐食性を得るため、または
より高い耐食性を得る場合は、C−Si−Mn−Cr鋼
へのMoの添加と、抽伸等の冷間加工を施し組織を細粒
化する方法を組合わせる必要があり、その分コストが増
加して高価なものとなり、工業製品として成立しない。
[0005] The conventional C-Si-Mn-Cr steel is Mo
Is combined with the method of refining the structure by repeating quenching and tempering, the strength is 0.2%.
100 ksi (70 kgf / mm 2 ) class, yield strength 110
Although ksi (77 kgf / mm 2 ) -class seamless steel pipes can be mass-produced, Mo is added to C-Si-Mn-Cr steel in order to obtain more stable corrosion resistance or to obtain higher corrosion resistance. In addition, it is necessary to combine a method of performing cold working such as drawing to refine the structure, and the cost increases accordingly, resulting in an expensive product and cannot be realized as an industrial product.

【0006】この対策としては、重量%でC:0.15
〜0.45%、Si:0.1〜1%、Mn:0.3〜
1.8%、Sol.Al:0.01%以下、Ti:0.
005〜0.1%とZr:0.01〜0.2%の1種ま
たは2種、N:{0.002+[Ti(%)+Zr
(%)]/8}%以下、AlN:0.005%以下を含
み、残部が実質的にFeからなる低合金鋼管に対し、8
80〜980℃から焼入れを行った後、600〜730
℃で焼戻しを行うと共に、600〜730℃の温度域に
おいて塑性加工を全歪量が1〜20%となるよう1回ま
たは複数回行い、しかる後に800〜950℃からの焼
入れと600〜730℃での焼戻しを行う方法(特開平
1−283322号公報)等が提案されている。
As a countermeasure against this, C: 0.15% by weight.
~ 0.45%, Si: 0.1 ~ 1%, Mn: 0.3 ~
1.8%, Sol. Al: 0.01% or less, Ti: 0.
One or two kinds of 005 to 0.1% and Zr: 0.01 to 0.2%, N: {0.002+ [Ti (%) + Zr
(%)] / 8% or less, AlN: 0.005% or less, with the balance being 8% with respect to the low alloy steel pipe substantially made of Fe.
After quenching from 80 to 980 ° C, 600 to 730
And tempering at 800 to 950 ° C., and one or more times of plastic working in a temperature range of 600 to 730 ° C. so that the total strain amount is 1 to 20%, followed by quenching from 800 to 950 ° C. and 600 to 730 ° C. (Japanese Unexamined Patent Publication No. 1-283322) has been proposed.

【0007】[0007]

【発明が解決しようとする課題】上記特開平1−283
322号公報に開示の方法は、油井管の2回焼入れに軽
度の温間塑性加工を導入し、焼入れで得たマルテンサイ
トに対し、軽度の温間塑性加工を加えることによってフ
ェライトの再結晶が促進され、2回目の焼入れにおける
再結晶粒の粗大化を防止することによって、2回焼入れ
のみでは得られない細粒晶を得ることによって110k
si(77kgf/mm2)級以上の強度とこれに要求
される耐SSCC性を確保するもので、焼入れしたの
ち、軽度の温間塑性加工を加え、再度焼入れ焼戻しが必
須であり、操作が繁雑となる欠点を有している。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 1-283 is disclosed.
No. 322 discloses a method in which mild warm plastic working is introduced into twice quenching of an oil country tubular good and ferrite recrystallization is performed by applying mild warm plastic working to martensite obtained by quenching. 110 k by obtaining fine-grained crystals that are promoted and prevent coarsening of recrystallized grains in the second quench, thereby obtaining fine grains that cannot be obtained by the second quench alone.
Si (77 kgf / mm 2 ) or higher strength and SSCC resistance required for it are secured. After quenching, mild warm plastic working is required, and quenching and tempering are required again, which is complicated. Has the disadvantage that

【0008】この発明の目的は、焼入れ焼戻しを行った
継目無鋼管に対し、特定温度域での温間加工によって腐
食性雰囲気に晒される鋼管内外周面の硬度を残留歪を減
少させて低減させ、耐食性向上できる高強度高耐食性
継目無鋼管の製造方法を提供することにある。
An object of this invention is to seamless steel tube subjected to quenching and tempering, the hardness of the steel pipe in the outer peripheral surface that is exposed to by the warm working Rot <br/> corrosion atmosphere at a specific temperature range residual strain Reduced
Reduced by small is to provide a method of producing a high strength and high corrosion resistance seamless steel pipes that can improve corrosion resistance.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく種々試験研究を重ねた。その結果、焼入れ
焼戻しを行った鋼管に対し、特定温度域での温間加工
よって肉厚内外面近傍に軽度の塑性歪を加えると
温で塑性加工を付与すれば加工硬化をもたらすものが、
逆に組織変化を生ずることなく、特定温度域での温間加
工故に材料に残っていた製管時の内外面近傍の残留歪が
減少し、腐食性雰囲気に晒される鋼管内外周面の硬度が
低下して耐食性が向上し、高強度高耐食性継目無鋼管が
得られるという従来の常識では考えられない効果が得ら
れることを究明し、この発明に到達した。
Means for Solving the Problems The present inventors have conducted various tests and studies to achieve the above object. As a result, when to steel pipe was quenched and tempered, Ru added warm mild plastic strain <br/> Thus the inner and outer surface vicinity of the wall thickness in the processing of a particular temperature range, low
What gives work hardening if plastic working is given at temperature,
Conversely, warming in a specific temperature range without causing structural changes
The residual strain near the inner and outer surfaces during pipe production that remained in the material due to the construction
The hardness of the inner and outer peripheral surfaces of the steel pipe exposed to corrosive atmosphere decreases, the corrosion resistance improves, and an effect that cannot be considered with the conventional common sense that a high strength and high corrosion resistance seamless steel pipe can be obtained is obtained.
And reached this invention.

【0010】すなわちこの発明は、C≦0.30%、S
i:0.05〜1.00%、Mn:0.30〜1.20
%、S≦0.03%、Cr:0.50〜1.50%、M
o:0.10〜2.00%、Ni≦0.50%、Cu≦
0.10%を含有し、残部がFeおよび不可避的不純物
からなる鋼管に対し、焼入れ焼戻し後、400〜750
でかつ最終焼戻し温度以下の温間で鋼管に断面塑性率
10〜90%の塑性歪を加えるのである。
That is, according to the present invention, C ≦ 0.30%, S
i: 0.05 to 1.00%, Mn: 0.30 to 1.20
%, S ≦ 0.03%, Cr: 0.50 to 1.50%, M
o: 0.10 to 2.00%, Ni ≦ 0.50%, Cu ≦
After quenching and tempering a steel pipe containing 0.10%, with the balance being Fe and unavoidable impurities,
A plastic strain having a cross-sectional plasticity of 10 to 90% is applied to the steel pipe at a temperature of not more than the final tempering temperature .

【0011】[0011]

【作用】この発明における鋼管の化学成分、焼入れ焼戻
し後の温間加工における温度ならびに断面塑性率の限定
理由について詳述する。Cは強度靭性を確保するうえで
必要不可欠な元素であるが、多すぎると高温焼入れにお
ける焼割れが発生するため上限を0.30%とした。S
iは脱酸元素としておよび強度確保のため必要である
が、0.05%未満では脱酸が十分でなく、1%を超え
ると靭性、表面性状を損なうため、0.05〜1.00
%とした。Mnは脱酸および強度確保のため必要な元素
であるが、0.30%未満では脱酸が十分でなく、1.
20%を超えると鋼の清浄性を損なうため、0.30〜
1.20%とした。Sは鋼の清浄性を損ない靭性、延性
を劣化させるので、その上限を0.03%とした。Cr
は焼入れ性および耐食性能を確保するのに必要な元素で
あるが、0.50%未満ではその効果が十分でなく、
1.50%を超えると焼入れ性が一層向上するが、靭性
が低下するので、0.50〜1.50%とした。Moは
焼入れ性の改善に不可欠な元素であるが、0.10%未
満ではその効果が十分でなく、2.00%を超えると焼
割れが発生するので、0.10〜2.00%とした。C
uは多すぎると孔食等の耐食性劣化、高温で赤熱脆性を
生じるため、上限を0.10%とした。Niは耐食性能
向上に有効な元素であるが、多すぎると孔食等の耐食性
劣化を生じるため、上限を0.50%とした。
The reasons for limiting the chemical composition of the steel pipe, the temperature in the warm working after quenching and tempering, and the sectional plastic modulus in the present invention will be described in detail. C is an indispensable element for securing the strength toughness, but if it is too much, quenching cracks will occur during high-temperature quenching, so the upper limit was made 0.30%. S
i is necessary as a deoxidizing element and for securing strength, but if it is less than 0.05%, deoxidation is not sufficient, and if it exceeds 1%, toughness and surface properties are impaired.
%. Mn is an element necessary for deoxidation and securing strength, but if it is less than 0.30%, deoxidation is not sufficient, and
If it exceeds 20%, the cleanliness of the steel is impaired.
1.20%. Since S impairs the cleanliness of the steel and deteriorates the toughness and ductility, the upper limit is set to 0.03%. Cr
Is an element necessary for ensuring quenchability and corrosion resistance, but if less than 0.50%, the effect is not sufficient,
When the content exceeds 1.50%, the hardenability is further improved, but the toughness is reduced. Therefore, the content is set to 0.50 to 1.50%. Mo is an indispensable element for improving hardenability, but if its content is less than 0.10%, its effect is not sufficient, and if it exceeds 2.00%, quenching cracks occur. did. C
If u is too large, deterioration of corrosion resistance such as pitting corrosion and red-hot embrittlement at high temperatures occur, so the upper limit was made 0.10%. Ni is an element effective for improving the corrosion resistance, but if it is too much, corrosion resistance such as pitting corrosion is deteriorated. Therefore, the upper limit is set to 0.50%.

【0012】温間加工における温度を400〜750℃
でかつ最終焼戻し温度以下としたのは、400℃未満に
低下すると加工軟化せず、逆に硬化し、750℃以下で
も最終焼戻し温度を超えると、鋼管全体が焼鈍されて軟
化してしまい、所定の強度が得られないため、400〜
750℃でかつ最終焼戻し温度以下とした。温間加工
おける断面塑性率を10〜90%としたのは、10%未
満では弾性域を超えて歪がかけられず、90%以上を与
えるにはかなり大きなクラッシュ量、オフセット量を与
えなければならず、鋼管の変形および作業的な面で有効
でない。
The temperature in the warm working is 400 to 750 ° C.
The reason why the temperature is set to be equal to or lower than the final tempering temperature is that when the temperature is lowered to less than 400 ° C., the material is not softened, but is hardened at the same time.
Above the final tempering temperature , the entire steel pipe is annealed and softened.
And the desired strength cannot be obtained.
The temperature was 750 ° C. and lower than the final tempering temperature . The section plasticity in warm working was set to 10 to 90% because if it is less than 10%, the strain is not applied beyond the elastic range, and if it is 90% or more, the crush amount and the offset amount are considerably large. Which is not effective in terms of deformation and workability of the steel pipe .

【0013】この発明における鋼管の焼入れ焼戻しは、
焼入れ焼戻しによりマルテンサイト組織化し、降伏応力
YSが90〜125ksi、引張り強度TSが100〜
140ksi、JIS Z 2245に規定のロックウ
エル硬さ試験方法による硬度HRC30以下となるよ
う、1回ないしは複数回実施する。このようにして得ら
れた焼入れ焼戻し後の鋼管は、400〜750℃でかつ
最終焼戻し温度以下の温間加工によって、断面塑性率1
0〜90%の塑性歪を施すから、組織変化や肉厚中央部
の強度を低下させることなく、腐食性雰囲気に接する鋼
管内外周面の硬度が低下し、耐SSCC性に代表される
耐食性が向上するのである。その理由は、明らかではな
いが、前記特定温度域での温間加工により付与された塑
性歪によって、鋼管内外面部に残っていた製管時の残留
歪が減少し、残留歪に起因する硬化が低減して鋼管内外
周面の硬度が低下するもの考えられる。この発明におけ
る塑性歪の付与は、加工時の温度における降伏応力より
やや大きい適切な応力がかかるよう、図2に示すとお
り、矯正機の中央ロールオフセット量(O)および図3
に示すロール開度(K)(クラッシュ量)を設定するこ
とによって、塑性変形量を制御するのである。なお、図
4はオフセットによる塑性変形域δ0を、図5はクラッ
シュによる塑性変形域δcを示すもので、このときの断
面塑性率ξ0、ξcはそれぞれ管直径dと管肉厚tを用い
ると、ξ0=δ0/d、ξc=δc/tで表される。図6
はオフセット、クラッシュ量と断面塑性率ξ0、ξcの
関係の一例を示すグラフである。
[0013] The quenching and tempering of the steel pipe in the present invention comprises:
Martensite structure by quenching and tempering, yield stress YS is 90-125 ksi, tensile strength TS is 100-
The test is performed once or more than once so that the hardness becomes 140 or less and the hardness HRC is 30 or less according to the Rockwell hardness test method specified in JIS Z 2245. The quenched and tempered steel pipe thus obtained is at 400 to 750 ° C and
The cross-section plasticity is 1 by warm working below the final tempering temperature.
Since the plastic strain of 0 to 90% is applied, the hardness of the inner and outer peripheral surfaces of the steel pipe in contact with the corrosive atmosphere is reduced without reducing the structure and the strength of the central part of the wall thickness, and the corrosion resistance represented by SSCC resistance is reduced. It will improve. The reason is not clear
However, the plasticity given by the warm working in the specific temperature range
Residue during pipe production that remained on the inner and outer surfaces of steel pipe due to sexual strain
Distortion is reduced, and hardening caused by residual strain is reduced.
It is considered that the hardness of the peripheral surface decreases. As shown in FIG. 2, the plastic strain in the present invention is applied so that an appropriate stress slightly larger than the yield stress at the working temperature is applied.
The plastic deformation amount is controlled by setting the roll opening (K) (crash amount) shown in FIG. 4 shows the plastic deformation region δ 0 due to the offset, and FIG. 5 shows the plastic deformation region δc due to the crush. At this time, the section plasticity 塑0 and ξ c are the pipe diameter d and the pipe wall thickness t, respectively. When used, ξ 0 = δ 0 / d and ξ c = δc / t. FIG.
Is a graph showing an example of the relationship between the offset, the amount of crush and the section plasticity ξ 0 , ξc.

【0014】[0014]

【実施例】【Example】

実施例1 C:0.27%、Si:0.16%、Mn:0.46
%、S:0.001%、Cr:0.98%、Mo:0.
70%、Ni:0.02%、Cu:0.02%を含有す
る外径244.5mm、肉厚15.11mm、長さ12
mの鋼管に対し、920℃で5分、1回目の焼入れを行
ったのち、600℃で30分の焼戻しを行い、引続き8
90℃で5分、2回目の焼入れを行ったのち、690℃
で30分の焼戻しを行った。そして640〜660℃の
温度で対向6ロール式の図1に示す傾斜ロール式矯正機
によりクラッシュおよびオフセット加工で断面塑性率5
0〜60%で塑性加工を実施した。なお、図1中の1は
継目無鋼管、2は矯正ロールを示す。製造された鋼管の
降伏応力、引張り強度、外周部、肉厚中央、内周部のロ
ックウエル硬さおよびSc値を測定した。また、比較の
ため、従来法としてし温間矯正機にてクラッシュまたは
オフセット加工を実施しない以外は同一条件で焼入れ焼
戻しを行って得た鋼管について、同様の測定を実施し
た。その結果を表1に示す。
Example 1 C: 0.27%, Si: 0.16%, Mn: 0.46
%, S: 0.001%, Cr: 0.98%, Mo: 0.
Outer diameter 244.5 mm, wall thickness 15.11 mm, length 12 containing 70%, Ni: 0.02%, Cu: 0.02%
m, quenched at 920 ° C. for 5 minutes, tempered at 600 ° C. for 30 minutes, and subsequently
After a second quenching at 90 ° C. for 5 minutes, 690 ° C.
For 30 minutes. Then, at a temperature of 640 to 660 ° C., a cross-section plasticity ratio of 5 was obtained by crushing and offset processing using an inclined 6-roll type straightening machine shown in FIG.
Plastic working was performed at 0 to 60%. In addition, 1 in FIG. 1 shows a seamless steel pipe, 2 shows a straightening roll. The yield stress, tensile strength, Rockwell hardness and Sc value of the outer peripheral portion, the thickness center, and the inner peripheral portion of the manufactured steel pipe were measured. For comparison, the same measurement was performed on a steel pipe obtained by quenching and tempering under the same conditions except that crash or offset processing was not performed by a warm straightener as a conventional method. Table 1 shows the results.

【0015】[0015]

【表1】 [Table 1]

【0016】表1に示すとおり、従来法においては、鋼
管の肉厚方向に硬度を均一に揃えるような焼戻しおよび
温間加工条件にしていたので、高強度にするとそれに伴
い硬度も上昇し、耐食性、特に耐SSCC性に悪影響を
及ぼしたが、本発明法においては、強度が同等で腐食性
雰囲気に接触する鋼管内外表層面のみ硬度を下げること
ができ、耐SSCC性を示すSc値を、大幅に向上させ
ることができる。
As shown in Table 1, in the conventional method, the tempering and warm working conditions were such that the hardness was uniform in the thickness direction of the steel pipe. Therefore, when the strength was increased, the hardness also increased and the corrosion resistance was increased. In particular, this method had an adverse effect on the SSCC resistance. However, in the method of the present invention, the hardness can be reduced only on the inner and outer surface layers of the steel pipe in contact with the corrosive atmosphere with the same strength, and the Sc value showing the SSCC resistance is significantly increased. Can be improved.

【0017】実施例2 表2にa〜eで示す本発明対象鋼と、同表にf〜hで示
す本発明対象外の鋼とからなる外径244.5mm、肉
厚11.99mmの熱間加工管に対し、表3に示すとお
り、1回目の焼入れ焼戻しを行ったのち、2回目の焼入
れ焼戻しを行い、ついで640〜660℃の温度で対向
6ロール式の傾斜ロール式矯正機によりクラッシュまた
はオフセット加工で塑性加工を行った。また、比較のた
めにさらに通常の2回焼入れ焼戻しも行った。製造され
た各鋼管の降伏応力、引張り強度、内外周部、肉厚中央
部のロックウエル硬さおよびSc値を測定した。その結
果を表4に示す。
Example 2 Heat having an outer diameter of 244.5 mm and a wall thickness of 11.99 mm comprising steels of the present invention indicated by a to e in Table 2 and steels not indicated by the present invention indicated by f to h in the same table. As shown in Table 3, the first quenching and tempering was performed on the cold-worked pipe, and then the second quenching and tempering was performed. Then, the pipe was crashed at a temperature of 640 to 660 ° C. by an inclined 6-roll type straightening machine. Alternatively, plastic working was performed by offset processing. Further, for comparison, normal quenching and tempering were further performed twice. The yield stress, tensile strength, Rockwell hardness and Sc value of the inner and outer peripheral portions and the central portion of the thickness of each manufactured steel pipe were measured. Table 4 shows the results.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【表4】 [Table 4]

【0021】表4に示すとおり、本発明法では鋼管の内
外周部硬度は、中央部に比較して2〜3低下し、これに
伴って外周部および内周部のSc値が1〜2向上してい
る。これに対し比較例では、強度が高いもののSc値が
低いか、強度、硬度、Sc値のいずれかが劣っている。
As shown in Table 4, according to the method of the present invention, the hardness of the inner and outer peripheral portions of the steel pipe is reduced by 2 to 3 as compared with the central portion, and accordingly, the Sc values of the outer and inner peripheral portions become 1 to 2. Has improved. On the other hand, in the comparative example, the strength is high but the Sc value is low, or one of the strength, hardness and Sc value is inferior.

【0022】[0022]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、腐食性雰囲気に接触する鋼管の内外表層のみ塑性歪
を付与して硬度を下げることによって、Sc値を上昇さ
せ、高強度と高耐食性の双方を満足させ、冷間抽伸等に
よることなく高強度高耐食性油井管を量産することが可
能となり、製造設備、製造能率および製造コストの面で
著しく有利となり、高グレードの油井管を低コストで工
業的に製造することができる。
As described above, according to the method of the present invention, the Sc value is increased by imparting plastic strain to only the inner and outer surface layers of the steel pipe in contact with the corrosive atmosphere, thereby increasing the Sc value and increasing the strength and strength. It is possible to mass-produce high-strength, high-corrosion-resistant oil well pipes without satisfying both corrosion resistance and cold drawing, etc., which is extremely advantageous in terms of production equipment, production efficiency and production cost, and reduces the use of high-grade oil well pipes. It can be manufactured industrially at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で使用した傾斜ロール式矯正機の概念図
である。
FIG. 1 is a conceptual diagram of an inclined roll straightener used in an embodiment.

【図2】オフセット量の説明図である。FIG. 2 is an explanatory diagram of an offset amount.

【図3】クラッシュ量の説明図である。FIG. 3 is an explanatory diagram of a crash amount.

【図4】オフセットによる塑性変形域δ0を示す概念図
である。
FIG. 4 is a conceptual diagram showing a plastic deformation region δ 0 due to offset.

【図5】クラッシュによる塑性変形域δcを示す概念図
である。
FIG. 5 is a conceptual diagram showing a plastic deformation region δc due to a crash.

【図6】オフセット、クラッシュ量と断面塑性率ξ0
ξcと塑性変形域δ0、δcの変化の一例を示すグラフ
である。
FIG. 6 shows offset, crush amount and section plasticity 断面0 ,
It is a graph which shows an example of change of (DELTA) c and plastic deformation area (delta) 0 , (delta) c.

【図7】Sc値とロックウエル硬さHRCとの関係を示
すグラフである。
FIG. 7 is a graph showing the relationship between the Sc value and the Rockwell hardness HRC.

【符号の説明】[Explanation of symbols]

1 継目無鋼管 2 矯正ロール 1 Seamless steel pipe 2 Straightening roll

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C≦0.30%、Si:0.05〜1.
00%、Mn:0.30〜1.20%、S≦0.03
%、Cr:0.50〜1.50%、Mo:0.10〜
2.00%、Ni≦0.50%、Cu≦0.10%を含
有し、残部がFeおよび不可避的不純物からなる鋼管に
対し、焼入れ焼戻し後、400〜750℃で、かつ最終
焼戻し温度以下の温間で鋼管に断面塑性率10〜90%
の塑性歪を加えることを特徴とする高強度高耐食性継目
無鋼管の製造方法。
1. C ≦ 0.30%, Si: 0.05-1.
00%, Mn: 0.30 to 1.20%, S ≦ 0.03
%, Cr: 0.50 to 1.50%, Mo: 0.10 to
A steel pipe containing 2.00%, Ni ≦ 0.50%, Cu ≦ 0.10%, and the balance being Fe and unavoidable impurities, after quenching and tempering, at 400 to 750 ° C. and final
Sectional plasticity of 10 to 90% for steel pipes at temperatures below tempering temperature
A method for producing a high-strength, high-corrosion-resistant seamless steel pipe, characterized by applying plastic strain.
JP11408192A 1992-04-06 1992-04-06 Manufacturing method of high strength and high corrosion resistance seamless steel pipe Expired - Fee Related JP2727865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11408192A JP2727865B2 (en) 1992-04-06 1992-04-06 Manufacturing method of high strength and high corrosion resistance seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11408192A JP2727865B2 (en) 1992-04-06 1992-04-06 Manufacturing method of high strength and high corrosion resistance seamless steel pipe

Publications (2)

Publication Number Publication Date
JPH05287380A JPH05287380A (en) 1993-11-02
JP2727865B2 true JP2727865B2 (en) 1998-03-18

Family

ID=14628595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11408192A Expired - Fee Related JP2727865B2 (en) 1992-04-06 1992-04-06 Manufacturing method of high strength and high corrosion resistance seamless steel pipe

Country Status (1)

Country Link
JP (1) JP2727865B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129879A (en) 2011-12-22 2013-07-04 Jfe Steel Corp High-strength seamless steel tube for oil well with superior sulfide stress cracking resistance, and method for producing the same
JP6287363B2 (en) * 2014-03-06 2018-03-07 新日鐵住金株式会社 Hollow material with excellent fatigue characteristics and method for producing the same

Also Published As

Publication number Publication date
JPH05287380A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
AU2006225855B2 (en) Steel for oil well pipe having excellent sulfide stress cracking resistance and method for manufacturing seamless steel pipe for oil well
JP4305681B2 (en) Seamless steel pipe manufacturing method
US7083686B2 (en) Steel product for oil country tubular good
JP2682332B2 (en) Method for producing high strength corrosion resistant steel pipe
JP4254909B2 (en) Oil well pipe for pipe expansion in a well and its manufacturing method
JPH0967624A (en) Production of high strength oil well steel pipe excellent in sscc resistance
US6562153B1 (en) Strain-induced type martensitic steel having high hardness and having high fatigue strength
JP6680142B2 (en) High-strength seamless oil country tubular good and method for manufacturing the same
JPH04231414A (en) Production of highly corrosion resistant oil well pipe
JPH09249935A (en) High strength steel material excellent in sulfide stress cracking resistance and its production
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
EP3330398B1 (en) Steel pipe for line pipe and method for manufacturing same
JP2861024B2 (en) Martensitic stainless steel for oil well and its production method
JP7200627B2 (en) High-strength bolt steel and its manufacturing method
JP2727865B2 (en) Manufacturing method of high strength and high corrosion resistance seamless steel pipe
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPS648686B2 (en)
JP3921808B2 (en) High-strength martensitic stainless steel pipe with excellent low-temperature toughness and manufacturing method thereof
JPH0925518A (en) Production of seamless steel tube with high strength and high corrosion resistance
JP3938738B2 (en) High chromium steel having high toughness and method for producing the same
JP3921809B2 (en) Method for producing martensitic stainless steel pipe with excellent low temperature toughness
JPH09202921A (en) Production of wire for cold forging
JPS5920423A (en) Production of 80kgf/mm2 class seamless steel pipe having excellent low temperature toughness
JP2002060909A (en) High strength martensitic stainless steel pipe for oil well excellent in balance of strength-toughness and its production method
JP2979604B2 (en) Manufacturing method of martensitic stainless steel seamless tube

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20091212

LAPS Cancellation because of no payment of annual fees