JPS6240345A - High tension steel pipe for oil well having superior delayed fracture resistance - Google Patents

High tension steel pipe for oil well having superior delayed fracture resistance

Info

Publication number
JPS6240345A
JPS6240345A JP17685185A JP17685185A JPS6240345A JP S6240345 A JPS6240345 A JP S6240345A JP 17685185 A JP17685185 A JP 17685185A JP 17685185 A JP17685185 A JP 17685185A JP S6240345 A JPS6240345 A JP S6240345A
Authority
JP
Japan
Prior art keywords
delayed fracture
fracture resistance
oil well
steel pipe
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17685185A
Other languages
Japanese (ja)
Inventor
Keisuke Hattori
服部 圭助
Kazuhiro Kanero
加根魯 和宏
Yukihiko Ebihara
海老原 行彦
Yasuo Ono
小野 泰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP17685185A priority Critical patent/JPS6240345A/en
Publication of JPS6240345A publication Critical patent/JPS6240345A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high tension steel pipe for an oil well having superior delayed fracture resistance by using a low-alloy steel contg. specified amounts of Cr, Mo, V and Nb as a material for a steel pipe for an oil well. CONSTITUTION:A low-alloy steel contg., by weight, 0.10-0.25% C, 0.15-1.0% Si, 0.3-1.5% Mn, 0.5-5.0% Cr, 0.5-3.0% Mo, 0.05-1.2% V and 0.005-0.10% Al and having 0.5-1.5 as value for X represented by formula I is used as a material for a steel pipe for an oil well. The low-alloy steel may further contain 0.01-0.5% Nb. At this time, the steel has 0.5-1.5 as valve for X represented by formula II. The low-alloy steel may further contain 0.1-1.5% Cu, 0.005-0.040% Ti, 0.1-1.5% Ni and 0.0003-0.0030% B. At this time, the steel has 0.5-1.5 as value for X represented by two formulae III. A high strength steel pipe for an oil well having superior delayed fracture resistance can be manufactured.

Description

【発明の詳細な説明】 「発明の目的」 本発明は耐遅れ破壊特性の優れた筒張力油井用鋼管の創
案に係り、150 Kai (105,5に9f/d 
)を越える降伏強さを有し、しかも劇遅れ破壊特性が従
来鋼より優れた高強度油井用鋼管を提供しようとするも
のである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention The present invention relates to the creation of a tubular tension oil well steel pipe with excellent delayed fracture resistance.
The present invention aims to provide a high-strength steel pipe for oil wells that has a yield strength exceeding 100% and has significantly delayed fracture properties superior to conventional steels.

産業上の利用分野 降伏強さの高い高張力油井用鋼管。Industrial applications High-tensile oil well steel pipe with high yield strength.

従来の技術 油井管においては降伏強さが150Kml(1055に
4f層)以上、および170Ksi (119,5−/
−)以上を有するものが要求され、それぞれV−150
又はU −170のように称されている。
Conventional oil country tubular goods have a yield strength of 150 Kml (4f layer on 1055) or more, and 170 Ksi (119,5-/
-) or above are required, each with V-150
Or it is called as U-170.

ところでこのような高強度油井用鋼管は、焼入焼戻し処
理によって製造され、又その耐遅れ破壊特性を向上する
ためには高温焼戻しを行うことが有効である。
By the way, such high-strength oil well steel pipes are manufactured by quenching and tempering, and high-temperature tempering is effective in improving their delayed fracture resistance.

発明が解決しようとする問題点 ところが上記のような従来のものにおいてその高強度を
得るためには焼戻し温度を低(することが必要であり、
このような高強度を得べく焼戻し温度を低くしたもめは
耐遅れ破W&特性においては劣ったものとならざるを侍
ない。
Problems to be Solved by the Invention However, in order to obtain high strength in the conventional products as described above, it is necessary to lower the tempering temperature.
If the tempering temperature is lowered in order to obtain such high strength, the delayed fracture resistance W& characteristics will inevitably be inferior.

「発明の構成」 問題点を解決するための手段 1、  C: 0.10〜0.25wt%、  st:
 0.15〜1.0wt%。
"Structure of the invention" Means for solving the problem 1, C: 0.10-0.25wt%, st:
0.15-1.0wt%.

Myr : 0.3〜1.5wt%、   Cr : 
0.5〜5.0wt%。
Myr: 0.3-1.5wt%, Cr:
0.5-5.0wt%.

Mo: 0.5〜3.(hwtチ、   V : 0.
05〜1.2wt%。
Mo: 0.5-3. (hwtchi, V: 0.
05-1.2wt%.

、u : o、oos〜0.10wt%を含有し、残部
がFeおよび不可避的不純物から成り、しかも、 (M ’(駆Ti3 ” ■(%)X 、 ) /c(
’rXなる式におけるXが0.5≦X≦1.5を満足す
ることを特徴とする耐遅れ破壊特注の後れた高張力油井
用鋼管。
, u: o, oos ~ 0.10 wt%, the remainder consists of Fe and unavoidable impurities, and (M'(drive Ti3'' ■(%)X, )/c(
A high-tensile steel pipe for oil wells that is custom-made for delayed fracture resistance, characterized in that X in the formula 'rX satisfies 0.5≦X≦1.5.

2、   C:  0.10〜0.25wt%、  S
i :  0.15〜1.0wt%。
2. C: 0.10-0.25wt%, S
i: 0.15 to 1.0 wt%.

kh :  0.3〜1.5wt%、     Cr:
  0.5〜5.0wt%。
kh: 0.3-1.5wt%, Cr:
0.5-5.0wt%.

MO:  0.5〜3.0wt%、     V  :
  0.05〜1.2wt%。
MO: 0.5-3.0wt%, V:
0.05-1.2wt%.

At :  0.005〜0.10wtチを含有すると
共に、 Nb: 0.01〜0.1wt% を含有し、浅部がFeおよび不可避的不純物から成り、
しかも、 (M+)(#×1/16+Nb(%)x土+’IC’l
l ”)/c(%5Xなる弐におけるXが0.5≦X≦
1.5  を満足することを特徴とする耐遅れ破壊特性
の優れた高張力油井用鋼管。
Contains At: 0.005 to 0.10 wt%, Nb: 0.01 to 0.1 wt%, the shallow part consists of Fe and inevitable impurities,
Moreover, (M+) (# x 1/16 + Nb (%) x soil + 'IC'l
l ”)/c(%5X, where X is 0.5≦X≦
1.5 A high-tensile oil well steel pipe with excellent delayed fracture resistance.

3、  C: 0.10〜0.25wt%、  jf;
4 : 0.15〜1.0wt To−Mpg : 0
.3〜1.5wt%、   Cr : 0.5〜5.0
wt fb −Mo: 0.5〜3.0wt %、  
 V : 0.05〜1.2wt%。
3. C: 0.10-0.25wt%, jf;
4: 0.15-1.0wt To-Mpg: 0
.. 3-1.5wt%, Cr: 0.5-5.0
wtfb-Mo: 0.5-3.0wt%,
V: 0.05-1.2wt%.

AI : 0.005〜0.10wtチを含有すると共
に、 Cu: 0.1〜1.5wt%、   n : 0.0
05間、040wt%。
AI: Contains 0.005 to 0.10 wt%, Cu: 0.1 to 1.5 wt%, n: 0.0
Between 05 and 040 wt%.

Nt:o、1〜1.5wt%、   B : 0.00
0&−01)030wt%Nb: 0.01〜0.lw
t%。
Nt: o, 1 to 1.5 wt%, B: 0.00
0&-01)030wt%Nb: 0.01~0. lw
t%.

の何れか1種又は2a以上を含有し、残部がFeおよび
不可避的不純物から成り、しかも(M噸x−L+v(郷
−L)xq(かX・・・・・・・・・工(Mo(%)X
 −+Nb(%)X −+V(%)X ”)/C(%9
=X・・−・・■なる各式におけるXが0.5≦X≦1
.5を満足することを特徴とする耐遅れ破壊特性の侵れ
た高張力油井用m管。
or 2a or more, the remainder consists of Fe and unavoidable impurities, and (Mx-L+v(Go-L)xq(kaX...... Engineering) (%)X
−+Nb(%)X −+V(%)X”)/C(%9
=X・・・・■X in each formula is 0.5≦X≦1
.. A high-tension oil well m-tube with delayed fracture resistance that satisfies condition 5.

作用 wt%(以下単にチという)で、c : o、to%以
上をき有させることによって強度性を得しめ、&を0.
15%以上、Mnを0.3%以上含有させることにより
脱酸を図り、又このSiを1.0%以下、勤を1.5%
以下、■を1.2%以下、Mを0,10−以下とするこ
とによって靭性劣化を口近する。   □Crを0.5
%以上、Moを0.51以上富有させることによって焼
入性を向上し、又焼戻し温度を上昇させる。
Strength is obtained by having c: o, to% or more in the action wt% (hereinafter simply referred to as "chi"), and & is 0.
Deoxidation is achieved by containing 15% or more of Mn and 0.3% or more of Mn, and 1.0% or less of Si and 1.5% of Mn.
Hereinafter, the deterioration of toughness is suppressed by setting ■ to 1.2% or less and M to 0.10- or less. □Cr 0.5
By increasing Mo content to 0.51% or more, the hardenability is improved and the tempering temperature is increased.

Moを3.0チ以)、■を0.05%U上含有させるこ
とによって鮒遅れ破壊特性を良好ならしめろO Nbは0.01%以上の含有でオーステナイト粒の細粒
化と靭性向上を図り、焼戻し時にNb  炭化物を析出
させて耐遅れ破産特性を改善する。
Good delayed fracture properties can be achieved by containing Mo (3.0% or more) and 0.05% U (U).Nb (0.01% or more) makes austenite grains finer and improves toughness. In order to improve the delayed bankruptcy resistance, Nb carbide is precipitated during tempering.

01%以下とすることにより靭性劣化をなからしめる。By setting the content to 0.01% or less, deterioration of toughness is completely avoided.

Cu:’0.1斉以上、Ni : 1.5%以下含有さ
せることによって耐遅れ破壊性を良好にし、前記Ni 
: 0.1%以下、n : 0.0051以上、B :
 0.0003%以上の含有によって焼入性を向上する
By containing Cu: 0.1% or more and Ni: 1.5% or less, delayed fracture resistance is improved, and the Ni
: 0.1% or less, n: 0.0051 or more, B:
Hardenability is improved by containing 0.0003% or more.

更に、 (MO(%) ×” ■(鋤×l −t )/C@)=
X ”==・” 1なる各式におけるXが0.5≦X≦
1.5を満足することにより前記した耐遅れ破壊特性を
向上し、しかも靭性%゛化をなからしめろ。
Furthermore, (MO(%) ×” ■(plow×l −t )/C@)=
X “==・” X in each equation of 1 is 0.5≦X≦
By satisfying the condition 1.5, the delayed fracture resistance described above should be improved and the toughness % should be improved.

実施例 上記したような本発明について更に説明すると、本発明
者等は耐遅れ破壊特性に漬れ、しかも高強度をもった油
井管用材料を得ることについて研究を重ねた結果、鋼の
化学成分を調整し、しかも高温焼戻しを竹うことによっ
て耐遅れ破壊!特性に有害とされているセメンタイト(
#m3C)を著しく低減することが可能であって、それ
らの結果として従来鋼よりも優れた特性が得られること
を見出した。
EXAMPLE To further explain the present invention as described above, the present inventors have conducted repeated research into obtaining a material for oil country tubular goods that has delayed fracture resistance and high strength, and as a result, the chemical composition of steel has been improved. Adjustment and high-temperature tempering make it resistant to delayed fracture! Cementite, which is considered to be harmful to its properties (
It has been found that it is possible to significantly reduce #m3C), and as a result, properties superior to conventional steels can be obtained.

即ち前記したような本発明において各元素についての成
分組成範囲を限定した坤由は以下の通りである。
That is, the reason for limiting the composition range of each element in the present invention as described above is as follows.

Cは、強度C同上に有効であって、このためにはwtチ
(以下単に−という)で、0.10%以上含有させるこ
とが必要であるが、0.25%を越えて含有されたもC
は焼入れ時に焼削れを発生する可能性があり、これを上
限とする。なおCが0.10%以下では焼入れ性に!、
5いても者しい低下を来すことになる。
C is effective in increasing the strength C, and for this purpose it is necessary to contain it at 0.10% or more in wt (hereinafter simply referred to as -); Also C
There is a possibility that quenching may occur during hardening, so this is the upper limit. In addition, if C is less than 0.10%, hardenability will deteriorate! ,
Even if it is 5, there will be a significant decline.

Siは、鍋の脱酸目的において0.15%以上含有させ
ることが必要である。然し1.0%以上も含有したもの
は靭性および延性において劣ったものとなるので、これ
を上限とすべきである。
It is necessary to contain 0.15% or more of Si for the purpose of deoxidizing the pot. However, if the content is 1.0% or more, the toughness and ductility will be poor, so this should be the upper limit.

Mnは、脱酸剤として有効であり、又焼入性を向上させ
る元素であって、0.3%以下ではこれらの効果が確保
されない。一方1.5 %を越えて含有したものは靭性
を劣化するので、これを上限と1−る。
Mn is an element that is effective as a deoxidizing agent and improves hardenability, and these effects are not ensured if the amount is less than 0.3%. On the other hand, if the content exceeds 1.5%, the toughness deteriorates, so this is set as the upper limit.

Crは、焼入性を向上させる元素であって、又焼戻し温
度を上昇させることに有効であって、0.5%以下では
それらの効果が不光分である。
Cr is an element that improves hardenability and is effective in increasing the tempering temperature, and if it is 0.5% or less, these effects are insignificant.

しかし5.0%を越えるとその効果が飽和し、経済的に
不利となるからこれを上限とする。
However, if the content exceeds 5.0%, the effect becomes saturated and becomes economically disadvantageous, so this is set as the upper limit.

Moは、焼入性を向上させる元素であり、又焼戻し温度
を上昇させることに有効であると共にIJsC蛍を低減
させることに有効な元素であって、0、5%以丁ではそ
れらの効果が不充分である。
Mo is an element that improves hardenability, is effective in increasing the tempering temperature, and is effective in reducing IJsC, and these effects are reduced at 0.5% or less. It is insufficient.

ところが3.0%以上含有さ4すると焼戻し時にM。However, if the content is 3.0% or more, M during tempering.

炭化物を析出させ、耐遅れ破壊特性に有害となるのでこ
れを上限とする。
This is set as the upper limit because carbides are precipitated and this is harmful to delayed fracture resistance.

■は、焼戻し温度を上昇させろことに有効であつ1、又
焼戻し時にU炭化物を析出させ、耐遅れ破壊特性に有害
とされるh g C量を低減させることにも有効な元素
であって、0.05%以下ではこれらの効果を適切に得
ることができない。
(2) is an element that is effective in increasing the tempering temperature (1) and is also effective in reducing the amount of h g C that is harmful to delayed fracture resistance by precipitating U carbides during tempering, If it is less than 0.05%, these effects cannot be obtained appropriately.

然し1.2チな超えて含有すると靭性を劣化することと
なり、これを上限とする。
However, if the content exceeds 1.2 inches, the toughness will deteriorate, so this is set as the upper limit.

Mは、脱酸剤として不可欠的であり、又焼入温度でのオ
ーステナイト粒の細粒化に有効であって、これらの効果
を得るには少くともo、oo s−以上含有することが
必要である。しかし0.100チを越えて含有したもの
は靭性の劣化をもたらすのでこれを上限とすべきである
M is essential as a deoxidizing agent and is effective in refining austenite grains at the quenching temperature, and in order to obtain these effects, it is necessary to contain at least o, oo s- or more. It is. However, if the content exceeds 0.100 h, the toughness deteriorates, so this should be the upper limit.

Nbは、焼入温度で加熱時のオーステナイト粒細粒化に
有効であり、又適量を添加することにより靭性が向上す
ると共に焼戻し時にNb炭化物を析出させ耐遅れ破壊特
性に有害とされるh3C量を低減させることに有効であ
って、このためには0.014以上含有させることが必
要である。然しこのNbを0.1%を超えて含有させる
と靭性が劣化するので、これを上限とすべきである。
Nb is effective in refining austenite grains during heating at the quenching temperature, and addition of an appropriate amount improves toughness and reduces the amount of h3C that precipitates Nb carbides during tempering, which is harmful to delayed fracture resistance. It is effective in reducing the amount of carbon, and for this purpose, it is necessary to contain 0.014 or more. However, if Nb is contained in excess of 0.1%, the toughness will deteriorate, so this should be the upper limit.

Cuは、耐遅れ破壊特性および耐食性の向上に有効であ
るが、その効果は0.14未満では不充分である。又1
.5%を超えると上記した耐遅れ破壊性に及ぼす効果が
飽和し、経済的でないので1.5 %以下とすべきであ
る。
Cu is effective in improving delayed fracture resistance and corrosion resistance, but the effect is insufficient if it is less than 0.14. Again 1
.. If it exceeds 5%, the above-mentioned effect on delayed fracture resistance is saturated and it is not economical, so it should be kept at 1.5% or less.

Niは、焼入性を向上させる元素であり、又靭性を向上
させる元素でもある。その効果は0.1チ未満では小さ
く、一方1.5%を超えると耐遅れ破壊特性に悪影響が
出て来るのでこれを上限とした。
Ni is an element that improves hardenability and also improves toughness. The effect is small if it is less than 0.1%, and on the other hand, if it exceeds 1.5%, the delayed fracture resistance will be adversely affected, so this was set as the upper limit.

nは、鋼中のNと結合してBNの生成を防止し、焼入性
の向上に効果がある固溶Bを確保する゛ことに有効な元
素であって、その効果はo、oosチ以下では不充分で
ある。然し0.040%を超えると飽和するのでこれを
上限とする。
n is an element that is effective in securing solid solution B that combines with N in steel to prevent the formation of BN and is effective in improving hardenability. The following is insufficient. However, if it exceeds 0.040%, it will become saturated, so this is set as the upper limit.

Bは、0.0003%以上の添加で焼入性が向上する。Hardenability improves when B is added in an amount of 0.0003% or more.

しかし0.0030%を超えて添加させてもその効果が
飽和するのでこれを上限とすべきである。
However, even if added in excess of 0.0030%, the effect will be saturated, so this should be the upper limit.

更に本発明においてはMo%VおよびCの間に次の1式
又はπ式で、 (Mo(@x−+v(%)x  )/C(%)=X−・
−n(Mo(%)x −+Nb(駆ま+M%)X ” 
)/C<%SX−・・nそのXの値が0.5〜1.5の
範囲内となることが必要である。即ちこれは焼入れ後の
マルテンサイト相を600℃以上Ae1点以下の温度で
焼戻しする場合にMo、V又はM o * V + N
 bの炭化物を多く析出させてCを固定することによっ
てA3((n析出量を減少させ、耐遅れ破壊特性を向上
させるために必要な条件であって、前記I%■式におけ
るXが0.5未満の場合でも#*3C量は減少するが、
耐遅れ破壊特性の向上は小さい。父上記入π式における
Xの値が1.5を超えるならば靭性劣化を来すこととな
る。
Furthermore, in the present invention, between Mo%V and C, the following formula or π formula is used: (Mo(@x-+v(%)x)/C(%)=X-・
−n(Mo(%)x −+Nb(drive+M%)X”
)/C<%SX-...n It is necessary that the value of X falls within the range of 0.5 to 1.5. That is, when tempering the martensitic phase after quenching at a temperature of 600°C or higher and lower than Ae1 point, Mo, V or Mo * V + N
By precipitating a large amount of carbide b and fixing C, A3 ((n) is a necessary condition to reduce the precipitation amount and improve delayed fracture resistance, and X in the above I% ■ formula is 0. #*3C amount decreases even if it is less than 5, but
The improvement in delayed fracture resistance is small. If the value of X in the π equation entered by the father exceeds 1.5, toughness will deteriorate.

なお具体的な製造に当っては上記範囲内の化学成分組成
を有する鋼を900℃以上の温度から焼入れすることが
好ましい。即ち均一なマルテンサイト相を得るためには
、充分均一なオーステナイト相を臨界冷却速度以上の冷
却速度で冷却することが適切で、900℃以上の温度は
充分均一なオーステナイト相を有効に得るために実質的
に必要である。
In addition, in specific manufacturing, it is preferable that steel having a chemical composition within the above range be quenched at a temperature of 900° C. or higher. In other words, in order to obtain a uniform martensite phase, it is appropriate to cool a sufficiently uniform austenite phase at a cooling rate higher than the critical cooling rate, and a temperature of 900°C or higher is necessary to effectively obtain a sufficiently uniform austenite phase. It is practically necessary.

又焼入れ後は、600℃以上、Act点以下の温度で焼
戻しを行うが、この温度範囲はMo+VsNb の炭化
物を析出させ、hsCの析出量を低減するために好まし
い範囲であって、600℃以下の焼戻し温度ではF1s
c’Mの減少幅は小さいことになる。
After hardening, tempering is performed at a temperature of 600°C or higher and lower than the Act point. This temperature range is a preferable range for precipitating Mo+VsNb carbides and reducing the amount of hsC precipitation. F1s at tempering temperature
The amount of decrease in c'M is small.

本発明によるものの具体的な製造例について説明すると
、以下の如くである。
A specific manufacturing example of the product according to the present invention will be described below.

即ち次の第1表には本発明者等が用いた本発明例および
比較例についての鋼化学成分を示す。
That is, Table 1 below shows the chemical compositions of the steels of the present invention examples and comparative examples used by the present inventors.

又これらの鋼に対する熱処理条件と試験片の降伏強さお
よび引張強さについて夫々測定した結果および前記した
I、II式におけるXの値を要約して示すと次の第2表
に示す通りであるが、遅れ破壊試験は片持梁式の試験機
を使用し、試験片1は第1図に示すように10 X 1
5 X 150震のものを用い、上列中央に深さ3■の
疲労クラック2を圧延方向および圧延面に直交する方向
に導入した。
In addition, the heat treatment conditions for these steels, the results of measuring the yield strength and tensile strength of the test pieces, and the values of X in the above formulas I and II are summarized in Table 2 below. However, the delayed fracture test uses a cantilever type testing machine, and the test piece 1 is 10 x 1 as shown in Figure 1.
A fatigue crack 2 with a depth of 3 cm was introduced in the center of the upper row in the rolling direction and in a direction perpendicular to the rolling surface using a 5×150 earthquake.

又試験方法の仔細は試験機を用いて試験片1の疲労クラ
ック2が開口する方向に曲げモーメントを負荷すること
によって疲労クラックにおけるに+値を260 Kff
/*jとし、試験環境中に保持して破断時間を測定した
。試験環境は30℃の35%Na(J水溶液(pHが略
7)とし、最大保持時間は500時間とした。
The details of the test method are as follows: Using a testing machine, a bending moment is applied in the direction in which the fatigue crack 2 of the test piece 1 opens, and the + value of the fatigue crack is increased to 260 Kff.
/*j, and was kept in a test environment and the rupture time was measured. The test environment was a 35% Na (J aqueous solution (pH approximately 7) at 30°C, and the maximum holding time was 500 hours.

このような遅れ破断試験の結果得られた破断時間および
降伏強さと破断時間の関係は第2図に示す通りである。
The rupture time and the relationship between yield strength and rupture time obtained as a result of such a delayed rupture test are shown in FIG.

即ち第2図から明かなように本発明によるものは500
時間の保持後においても遅れ破壊が発生せず、比較例に
よるものよりも著しく良好な耐遅れ破壊特性を示す。
That is, as is clear from FIG. 2, the device according to the present invention is 500
Delayed fracture does not occur even after holding for a long time, and exhibits significantly better delayed fracture resistance than that of the comparative example.

つまり比較−のA、Bは、SN0M439鋼、比較鋼C
,DはそれぞれS 0M435鋼、S 0M430鋼で
あって、これらは機械構造用に広く採用されている鋼で
あるが、化学成分が本発明外であると共に瀦戻し温度な
どにおいても上記したような好ましい範囲とは異り、本
発明例と比較するならば耐破s特性において劣ることは
明かである。
In other words, comparison A and B are SN0M439 steel and comparison steel C.
, D are S 0M435 steel and S 0M430 steel, respectively, and these are steels that are widely used for mechanical structures, but their chemical composition is outside the scope of the present invention, and their recirculating temperatures are similar to those mentioned above. Unlike the preferred range, it is clear that the fracture resistance is inferior when compared with the examples of the present invention.

又比較鋼ESF、G、Hは化学成分、焼戻し温度とも本
発明範囲外にあり、その耐遅れ破壊特性は劣っている。
Furthermore, the chemical composition and tempering temperature of comparative steels ESF, G, and H are outside the range of the present invention, and their delayed fracture resistance is inferior.

鋼Iは化学成分は本発明範囲内にあるが、焼戻し温度が
低いためFa3Cの減少幅が小さく、耐遅れ破壊特性が
劣る例であり、@JはCが低いためV−150の規格以
上の強度が得られない例である。
Steel I has a chemical composition within the range of the present invention, but because the tempering temperature is low, the decrease in Fa3C is small and the delayed fracture resistance is poor. @J has a low C content and therefore exceeds the standard of V-150. This is an example where strength cannot be obtained.

以上のように本発明範囲内に化学成分を調整し、しかも
本発明で規定する過当な熱処理を行うことにより良好な
耐遅れ破壊特性を有する高張就油井用釧管を的確に製造
することが可能となる。
As described above, by adjusting the chemical components within the range of the present invention and also performing the excessive heat treatment specified by the present invention, it is possible to accurately manufacture a high tension oil well well tube with good delayed fracture resistance. becomes.

「発明の効果」 以上説明したような本発明によるときは油井用鋼管とし
て好ましい高強度性を贈保しながら、しかも優れた耐遅
れ破壊特性を適切に具備した鋼管を製造することができ
るものであって、工業的にその効果の大きい発明である
"Effects of the Invention" According to the present invention as explained above, it is possible to manufacture a steel pipe that has appropriate high strength and excellent delayed fracture resistance as a steel pipe for oil wells. This is an invention with great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであって、第1図
は遅れ破壊試験片の形状についての説明図、第2図は3
0℃、35%Nact水溶液環境での遅れ破壊試験結果
を本発明材と比較材について要約して示した図表である
The drawings show the technical content of the present invention, and FIG. 1 is an explanatory diagram of the shape of a delayed fracture test piece, and FIG.
It is a chart summarizing the results of a delayed fracture test in a 35% Nact aqueous solution environment at 0° C. for the inventive material and the comparative material.

Claims (1)

【特許請求の範囲】 1、C:0.10〜0.25wt%、Si:0.15〜
1.0wt%、Mn:0.3〜1.5wt%、Cr:0
.5〜5.0wt%、Mo:0.5〜3.0wt%、V
:0.05〜1.2wt%、Al:0.005〜0.1
0wt% を含有し、残部がFeおよび不可避的不純物から成り、
しかも、 {Mo(%)×1/16+V(%)×3/17}/C(
%)=Xなる式におけるXが0.5≦X≦1.5を満足
することを特徴とする耐遅れ破壊特性の優れた高張力油
井用鋼管。 2、C:0.10〜0.25wt%、Si:0.15〜
1.0wt%、Mn:0.3〜1.5wt%、Cr:0
.5〜5.0wt%、Mo:0.5〜3.0wt%、V
:0.05〜1.2wt%、Al:0.005〜0.1
0wt% を含有すると共に、 Nb:0.01〜0.1wt% を含有し、残部がFeおよび不可避的不純物から成り、
しかも、 {Mo(%)×1/16+Nb(%)×4/31+V(
%)×3/17}/C(%)=Xなる式におけるXが0
.5≦X≦1.5を満足することを特徴とする耐遅れ破
壊特性の優れた高張力油井用鋼管。 3、C:0.10〜0.25wt%、Si:0.15〜
1.0wt%、Mn:0.3〜1.5wt%、Cr:0
.5〜5.0wt%、Mo:0.5〜3.0wt%、V
:0.05〜1.2wt%、Al:0.005〜0.1
0wt% を含有すると共に、 Cu:0.1〜1.5wt%、Ti:0.005〜0.
040wt%、Ni:0.1〜1.5wt%、B:0.
0003〜0.0030wt%Nb:0.01〜0.1
wt%、 の何れか1種又は2種以上を含有し、残部がFeおよび
不可避的不純物から成り、しかも{Mo(%)×1/1
6+V(%)×3/17}/C(%)=X・・・ I {
Mo(%)×1/16+Nb(%)×4/31+V(%
)×3/17}/C(%)=X・・・IIなる各式におけ
るXが0.5≦X≦1.5を満足することを特徴とする
耐遅れ破壊特性の優れた高張力油井用鋼管。
[Claims] 1. C: 0.10-0.25wt%, Si: 0.15-0.15wt%
1.0wt%, Mn: 0.3-1.5wt%, Cr: 0
.. 5 to 5.0 wt%, Mo: 0.5 to 3.0 wt%, V
:0.05~1.2wt%, Al:0.005~0.1
0 wt%, the remainder consisting of Fe and unavoidable impurities,
Moreover, {Mo(%)×1/16+V(%)×3/17}/C(
%) = 2, C: 0.10~0.25wt%, Si: 0.15~
1.0wt%, Mn: 0.3-1.5wt%, Cr: 0
.. 5 to 5.0 wt%, Mo: 0.5 to 3.0 wt%, V
:0.05~1.2wt%, Al:0.005~0.1
0 wt%, and Nb: 0.01 to 0.1 wt%, with the remainder consisting of Fe and inevitable impurities,
Moreover, {Mo(%)×1/16+Nb(%)×4/31+V(
%)×3/17}/C(%)=X, where X is 0
.. A high-tensile oil well steel pipe with excellent delayed fracture resistance, characterized by satisfying 5≦X≦1.5. 3, C: 0.10~0.25wt%, Si: 0.15~
1.0wt%, Mn: 0.3-1.5wt%, Cr: 0
.. 5 to 5.0 wt%, Mo: 0.5 to 3.0 wt%, V
:0.05~1.2wt%, Al:0.005~0.1
Cu: 0.1 to 1.5 wt%, Ti: 0.005 to 0.0 wt%.
040 wt%, Ni: 0.1 to 1.5 wt%, B: 0.
0003~0.0030wt%Nb:0.01~0.1
wt%, and the remainder consists of Fe and unavoidable impurities, and {Mo(%)×1/1
6+V(%)×3/17}/C(%)=X... I {
Mo (%) × 1/16 + Nb (%) × 4/31 + V (%
)×3/17}/C(%)=X...II A high-tension oil well with excellent delayed fracture resistance characteristics, characterized in that steel pipes.
JP17685185A 1985-08-13 1985-08-13 High tension steel pipe for oil well having superior delayed fracture resistance Pending JPS6240345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17685185A JPS6240345A (en) 1985-08-13 1985-08-13 High tension steel pipe for oil well having superior delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17685185A JPS6240345A (en) 1985-08-13 1985-08-13 High tension steel pipe for oil well having superior delayed fracture resistance

Publications (1)

Publication Number Publication Date
JPS6240345A true JPS6240345A (en) 1987-02-21

Family

ID=16020940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17685185A Pending JPS6240345A (en) 1985-08-13 1985-08-13 High tension steel pipe for oil well having superior delayed fracture resistance

Country Status (1)

Country Link
JP (1) JPS6240345A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007678A1 (en) * 2005-07-08 2007-01-18 Sumitomo Metal Industries, Ltd. Low-alloy steel for oil well tube having excellent sulfide stress cracking resistance
WO2008123422A1 (en) * 2007-03-30 2008-10-16 Sumitomo Metal Industries, Ltd. Low-alloy steel, seamless steel pipe for oil well, and process for producing seamless steel pipe
WO2015190377A1 (en) * 2014-06-09 2015-12-17 新日鐵住金株式会社 Low alloy steel pipe for oil well
EP3418411A4 (en) * 2016-02-19 2019-08-21 Nippon Steel Corporation Steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007678A1 (en) * 2005-07-08 2007-01-18 Sumitomo Metal Industries, Ltd. Low-alloy steel for oil well tube having excellent sulfide stress cracking resistance
US7670547B2 (en) 2005-07-08 2010-03-02 Sumitomo Metal Industries, Ltd. Low alloy steel for oil country tubular goods having high sulfide stress cracking resistance
WO2008123422A1 (en) * 2007-03-30 2008-10-16 Sumitomo Metal Industries, Ltd. Low-alloy steel, seamless steel pipe for oil well, and process for producing seamless steel pipe
EA012256B1 (en) * 2007-03-30 2009-08-28 Сумитомо Метал Индастриз, Лтд. Low-alloy steel, seamless steel pipe for oil well and process for producing seamless steel pipe
EP2133442A1 (en) * 2007-03-30 2009-12-16 Sumitomo Metal Industries, Ltd. Low-alloy steel, seamless steel pipe for oil well, and process for producing seamless steel pipe
EP2133442A4 (en) * 2007-03-30 2010-04-28 Sumitomo Metal Ind Low-alloy steel, seamless steel pipe for oil well, and process for producing seamless steel pipe
WO2015190377A1 (en) * 2014-06-09 2015-12-17 新日鐵住金株式会社 Low alloy steel pipe for oil well
JPWO2015190377A1 (en) * 2014-06-09 2017-04-20 新日鐵住金株式会社 Low alloy oil well steel pipe
EP3418411A4 (en) * 2016-02-19 2019-08-21 Nippon Steel Corporation Steel

Similar Documents

Publication Publication Date Title
US8617462B2 (en) Steel for oil well pipe excellent in sulfide stress cracking resistance
JP2682332B2 (en) Method for producing high strength corrosion resistant steel pipe
RU2763722C1 (en) SULPHUR-RESISTANT PIPE FOR A PETROLEUM BOREHOLE ATTRIBUTED TO THE KILOPOUND/INCH2 (862 MPa) STEEL STRENGTH CLASS, AND METHOD FOR MANUFACTURE THEREOF
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPH01259124A (en) Manufacture of high-strength oil well tube excellent in corrosion resistance
JPS61238917A (en) Manufacture of low alloy tempered high tensile seamless steel pipe
JP2861024B2 (en) Martensitic stainless steel for oil well and its production method
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP3342501B2 (en) High strength and high toughness stainless steel and method for producing the same
JPH02236223A (en) Production of high strength steel excellent in delayed fracture characteristic
JPS625986B2 (en)
JPS6240345A (en) High tension steel pipe for oil well having superior delayed fracture resistance
JPS619519A (en) Manufacture of high strength steel superior in sulfide corrosion cracking resistance
JPS6164815A (en) Manufacture of high strength steel excellent in delay breakdown resistance
JP2768062B2 (en) Manufacturing method of high strength tough steel
JPS5819438A (en) Production of steel pipe having high strength and high toughness
JPS58224116A (en) Production of seamless steel pipe having excellent resistance to sulfide stress corrosion cracking
JPH06264189A (en) High strength and high toughness stainless steel excellent in low temperature impact characteristic and its production
JPS6254062A (en) Low c-cr-mo steel used under damp steam
JPS5974221A (en) Production of high strength seamless steel pipe
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPS609825A (en) Production of tough and hard steel
JPS61147812A (en) Production of high strength steel superior in delayed breaking characteristic
JP2672430B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance