JPH07110970B2 - Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking - Google Patents

Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking

Info

Publication number
JPH07110970B2
JPH07110970B2 JP33044587A JP33044587A JPH07110970B2 JP H07110970 B2 JPH07110970 B2 JP H07110970B2 JP 33044587 A JP33044587 A JP 33044587A JP 33044587 A JP33044587 A JP 33044587A JP H07110970 B2 JPH07110970 B2 JP H07110970B2
Authority
JP
Japan
Prior art keywords
less
steel
corrosion cracking
stress corrosion
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33044587A
Other languages
Japanese (ja)
Other versions
JPH01172516A (en
Inventor
亘史 野村
洋之 小川
明彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33044587A priority Critical patent/JPH07110970B2/en
Publication of JPH01172516A publication Critical patent/JPH01172516A/en
Publication of JPH07110970B2 publication Critical patent/JPH07110970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は降伏強度が、135ksi(94.5kg/mm2)程度以下の
エネルギー分野で使用される鋼、特に応力腐食割れを起
こさずしかも耐CO2腐食性に優れた鋼材の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a steel used in the energy field having a yield strength of about 135 ksi (94.5 kg / mm 2 ) or less, particularly, it does not cause stress corrosion cracking and is resistant to CO. 2 The present invention relates to a method for manufacturing a steel material having excellent corrosiveness.

(従来の技術) 天然ガス開発用のラインパイプとして一般に炭素鋼、低
合金鋼のものが用いられているが、近年開発が進むにつ
れて炭酸ガスを多く含む天然ガスに対しては上記鋼は耐
食性が十分とは言えなくなってきている。このためこの
種の天然ガス用の鋼として耐食性が良好なステンレス鋼
の使用が検討されている。例えばAISI410鋼や420鋼に代
表される13%Crを含むマルテンサイト系ステンレス鋼が
炭酸ガスに対する耐食性が良好である。このマルテンサ
イト系ステンレス鋼は通常焼入れ焼戻し処理(QT)にて
製造されているがQT条件によって強度が自由に変えられ
る比較的優れた鋼種と言うことが出来る。
(Prior Art) Generally, carbon steel or low alloy steel is used as a line pipe for natural gas development. However, with the progress of development in recent years, the above steel has a corrosion resistance against natural gas containing a large amount of carbon dioxide gas. It is not enough. For this reason, the use of stainless steel, which has good corrosion resistance, as a steel for this type of natural gas has been studied. For example, martensitic stainless steel containing 13% Cr represented by AISI 410 steel and 420 steel has good corrosion resistance to carbon dioxide. This martensitic stainless steel is usually manufactured by quenching and tempering (QT), but it can be said that it is a relatively excellent steel type whose strength can be freely changed depending on the QT conditions.

しかしながらこのステンレス鋼の最大の弱点は応力腐食
割れを起すことである。
However, the greatest weakness of this stainless steel is that it causes stress corrosion cracking.

この原因は製造方法がQTなので焼戻しマルテンサイトの
構造からくるものでこの焼戻しマルテンサイトの応力腐
食割れ感受性が降伏点に比例して強くなるためと考えら
れる。これらの対策として本発明者らは、例えば特開昭
60−197821号公報に、応力腐食割れ抵抗の優れたCr系ス
テンレス鋼油井管の熱処理方法を開示している。そこで
は焼入の冷却速度制御と焼戻し温度の最適な組合せによ
る組織制御で耐応力腐食割れ性の改善が可能であること
が述べられている。しかしながら、この方法では熱処理
を焼入れと焼戻しの二工程で行なわねばならず、コスト
の低減を図る必要があった。
It is considered that this is because the manufacturing method is QT, which is caused by the structure of tempered martensite and the susceptibility of tempered martensite to stress corrosion cracking increases in proportion to the yield point. As a countermeasure against these problems, the present inventors have proposed, for example, Japanese Patent Laid-Open No.
Japanese Unexamined Patent Publication No. 60-197821 discloses a heat treatment method for Cr-based stainless steel oil country tubular goods having excellent resistance to stress corrosion cracking. It is described therein that it is possible to improve the stress corrosion cracking resistance by controlling the structure by an optimal combination of quenching cooling rate control and tempering temperature. However, in this method, the heat treatment has to be performed in two steps of quenching and tempering, and it is necessary to reduce the cost.

(発明が解決しようとする問題点) 本発明は以上の様な実状から検討を重ねた結果から得ら
れるもので、上記フェライト系ステンレス鋼の成分を基
本成分とし、この成分中Cr,C,N三元素の相互の添加量を
規制し、圧延圧下率を一定範囲内で加工して圧延後のγ
粒を細粒化させた鋼を1回の焼戻し処理により低コスト
で作業性良く、針状フェライト組織をうることにより、
この鋼の優れた耐食性をそのまま受け継いでしかも優れ
た応力腐食割れ抵抗を付与しうる鋼を提供することを目
的とする。
(Problems to be Solved by the Invention) The present invention is obtained as a result of repeated studies based on the above-mentioned actual conditions. The above-mentioned ferritic stainless steel is used as a basic component, and Cr, C, N The mutual addition amount of the three elements is regulated, the rolling reduction is processed within a certain range, and the γ
By tempering steel with fine grained particles once at a low cost and with good workability, by obtaining an acicular ferrite structure,
An object of the present invention is to provide a steel that can inherit the excellent corrosion resistance of this steel as it is and can impart excellent stress corrosion cracking resistance.

(問題点を解決するための手段) 本発明は上述の問題点を有利に解決したものであり、そ
の要旨とするところは 重量%で C:0.15%以下 Si:0.1〜0.5% Mn:0.2〜1.0% Cr:9〜16.0% P:0.02%以下 S:0.02%以下 Al:0.01〜0.05% N:0.01〜0.25% を含有し、またはこれらと共に更に Ni:0.2〜2.5% Mo:0.2〜1.5% V:0.02〜1.5% Ti:0.001〜0.2% Nb:0.02〜1.5% を1種または2種以上含み、残部鉄及び不可避不純物か
ら成り、且つCr%≧10×C(%)+30×N(%)+8を
満足させる組成の鋼を加熱温度950℃〜1250℃に加熱
後、仕上温度750℃以上で加工率60%〜95%の範囲で熱
間加工し、加工後室温まで空冷以上の冷却速度で冷却
し、その後400℃〜750℃未満の温度で15分〜60分焼戻し
処理を行ない、針状フェライト組織を面積率で80%以上
となすことを特徴とする耐応力腐食割れ性の優れた針状
フェライトステンレス鋼の製造方法にある。
(Means for Solving Problems) The present invention advantageously solves the above problems, and the gist of the present invention is C: 0.15% or less by weight% Si: 0.1-0.5% Mn: 0.2- 1.0% Cr: 9 to 16.0% P: 0.02% or less S: 0.02% or less Al: 0.01 to 0.05% N: 0.01 to 0.25%, or together with these Ni: 0.2 to 2.5% Mo: 0.2 to 1.5% V: 0.02 to 1.5% Ti: 0.001 to 0.2% Nb: 0.02 to 1.5% One or more types, balance iron and unavoidable impurities, Cr% ≧ 10 × C (%) + 30 × N (% ) After heating steel with a composition satisfying +8 to a heating temperature of 950 ° C to 1250 ° C, hot working is performed at a finishing temperature of 750 ° C or higher at a processing rate of 60% to 95%, and after processing it is cooled to room temperature by air cooling or higher. And then tempered at a temperature of 400 ° C to less than 750 ° C for 15 minutes to 60 minutes to form an acicular ferrite structure with an area ratio of 80% or more, which is excellent in stress corrosion cracking resistance. Acicular It is in the method of manufacturing ferritic stainless steel.

以下本発明を詳細に説明する。The present invention will be described in detail below.

(作 用) 高強度で耐硫化物応力腐食割れ性を得るには組織を極微
細かつ均一にすることが有効であり、これは適切な化学
成分の添加と熱間加工条件の制御とその後の焼戻し条件
の制御より80%以上の針状フェライト組織となすことで
達成される。
(Working) In order to obtain high strength and sulfide stress corrosion cracking resistance, it is effective to make the structure extremely fine and uniform. This is because the addition of appropriate chemical components and the control of hot working conditions and subsequent It can be achieved by controlling the tempering conditions to obtain a needle-like ferrite structure of 80% or more.

本発明者らは熱間加工ならびに焼戻し処理で得られる組
織と硫化物応力腐食割れ性の関係を研究した結果、針状
フェライト組織が従来法による焼戻しマルテンサイト組
織より耐硫化物応力腐食割れ性が優れていることを見出
した。
The present inventors have studied the relationship between the structure and the sulfide stress corrosion cracking property obtained by hot working and tempering treatment, the acicular ferrite structure is more resistant to sulfide stress corrosion cracking than the conventional tempered martensitic structure. I found it to be excellent.

すなわち本発明は耐硫化物応力腐食割れ性に有効な針状
フェライト組織を得るに必要な合金添加と熱間加工条件
および焼戻し条件を組み合せたことを骨子とする高強度
耐応力腐食割れ鋼にある。
That is, the present invention is a high-strength stress corrosion cracking-resistant steel, which has as its essence a combination of the alloy addition necessary for obtaining an acicular ferrite structure effective for sulfide stress corrosion cracking resistance, hot working conditions and tempering conditions. .

次に本発明により製造される鋼の鋼成分の限定理由につ
いて述べる。以下%はいずれも重量%である。
Next, the reasons for limiting the steel composition of the steel produced by the present invention will be described. All the following percentages are weight percentages.

C:Cは鋼の強度増加に対して有効である。しかし添加量
を0.15%超とすると、焼入性を上昇させ組織をマルテン
サイトにし易くし、針状フェライト(AF)組織が出にく
くなる。したがってCは0.15%以下とする。
C: C is effective for increasing the strength of steel. However, if the addition amount exceeds 0.15%, the hardenability is increased, the structure becomes martensite easily, and the acicular ferrite (AF) structure becomes difficult to appear. Therefore, C is 0.15% or less.

Si:Siは脱酸のために添加する。しかし添加量が0.1%未
満では効果がなく、添加量が0.5%超では脱酸の効果は
充分となるが靱性が劣化する。したがってSiは0.1〜0.5
%とする。
Si: Si is added for deoxidation. However, if the addition amount is less than 0.1%, there is no effect, and if the addition amount exceeds 0.5%, the deoxidizing effect is sufficient but the toughness deteriorates. Therefore Si is 0.1-0.5
%.

Mn:Mnは靱性を向上させるために添加する。しかし添加
量が0.2%未満では靱性向上に効果がなく1%を超える
と焼入性を向上させる元素であるため組織をマルテンサ
イトにし易くし、AFが出にくくなる。したがって、Mnは
0.2〜1.0%とする。
Mn: Mn is added to improve toughness. However, if the added amount is less than 0.2%, it has no effect on improving the toughness, and if it exceeds 1%, it is an element that improves hardenability, so that the structure easily becomes martensite and AF is difficult to occur. Therefore, Mn is
0.2 to 1.0%.

Cr:CrはCO2腐食を低減させるに有効な元素である。しか
しながら本発明の対象にしているエネルギー分野での使
用の場合非常にシビアーな条件では添加量が少いとその
効果がない。下限値は腐食の低減効果の出初める添加量
で決る。添加量上限は効果がある範囲を超えて添加して
も添加した意味を持たない。したがってCrの添加範囲は
9〜16.0%とする。
Cr: Cr is an element effective in reducing CO 2 corrosion. However, in the case of use in the energy field, which is the object of the present invention, under extremely severe conditions, if the addition amount is small, the effect is not obtained. The lower limit is determined by the addition amount at which the effect of reducing corrosion begins to appear. The upper limit of the amount added does not have the meaning of being added even if it exceeds the effective range. Therefore, the Cr addition range is 9 to 16.0%.

P:Pは鋼を脆化させる。しかし本発明鋼の場合組織が焼
戻しマルテンサイトとなる従来のものと異り、AF組織と
するためPが鋼を脆化させる程度は低い。したがって通
常レベルの0.02%以下としておけば脆化の心配はない。
したがってPは0.02%以下とする。
P: P embrittles steel. However, in the case of the steel of the present invention, unlike the conventional one in which the structure is tempered martensite, since it has an AF structure, the degree of P embrittlement of the steel is low. Therefore, if it is set to 0.02% or less of the normal level, there is no concern about embrittlement.
Therefore, P is 0.02% or less.

S:Sも鋼を脆化させる。靱性を得るためには低い程良い
コストがかかるため実質的に問題とならない含有上限値
は0.02%程度である。したがってSは0.02%以下とす
る。
S: S also makes steel brittle. The lower the cost to obtain the toughness, the better the cost. Therefore, the upper limit of the content that does not substantially pose a problem is about 0.02%. Therefore, S is 0.02% or less.

Al:Alは脱酸のために添加する。0.01%未満では脱酸の
効果がなく、0.05%超では脱酸効果は充分となるが、鋼
の清浄度を下げ靱性低下を起こす。したがってAl添加量
は0.01〜0.05%とする。
Al: Al is added for deoxidation. If it is less than 0.01%, there is no deoxidizing effect, and if it exceeds 0.05%, the deoxidizing effect is sufficient, but the cleanliness of the steel is reduced and toughness is reduced. Therefore, the amount of Al added is 0.01 to 0.05%.

N:Nは13%Cr前後の鋼に於てはγループを広げる効果が
あり組織をコントロールするために重要な働きをする。
しかし添加量が0.01%未満であるとγループを広げる効
果がなく、0.01%以上を添加する必要がある。一方上限
値は多い方が良いが通常のプロセスで容易に添加し得る
添加量は0.25%程度である。したがってNの添加量は0.
01〜0.25%とする。
N: N has the effect of expanding the γ loop in steel with around 13% Cr, and plays an important role in controlling the microstructure.
However, if the addition amount is less than 0.01%, there is no effect of expanding the γ loop, and it is necessary to add 0.01% or more. On the other hand, the higher the upper limit value, the better, but the addition amount that can be easily added in a normal process is about 0.25%. Therefore, the amount of N added is 0.
01 to 0.25%

Ni,No,Nb,V,Ti:これらの元素は任意に1種以上添加可能
な元素である。組織をAFにしたときの炭化物形成により
強度上昇を図るために添加する。それぞれの添加量下限
未満では効果に乏しく、上限を超えると巨大炭化物を形
成するのでNi0.2〜2.5%,Mo0.2〜1.5%,V0.02〜1.5%,T
i0.001〜0.2%,Nb0.02〜1.5%の範囲とする。なおこれ
らの元素は複合添加した場合と単独添加した場合の差は
ないので必要に応じて1種または2種以上添加すること
ができる。
Ni, No, Nb, V, Ti: One or more of these elements can be arbitrarily added. It is added in order to increase the strength by the formation of carbide when the tissue is made into AF. If the addition amount is less than the lower limit, the effect is poor, and if it exceeds the upper limit, huge carbides are formed, so Ni0.2 to 2.5%, Mo0.2 to 1.5%, V0.02 to 1.5%, T
i 0.001 to 0.2%, Nb 0.02 to 1.5%. Since there is no difference between the case where these elements are added in combination and the case where they are added alone, one kind or two or more kinds can be added if necessary.

Cr,C,N添加量の関係式:均一なAF組織を得るために加熱
時にフェライトを含まないオーステナイト状態をするこ
とが必要である。実験の結果Cr%≧10×C(%)+30×
N(%)+8を満足させることが必要となる。
Relational expression of Cr, C, N addition amount: In order to obtain a uniform AF structure, it is necessary to make ferrite austenite state without heating. Result of experiment Cr% ≧ 10 × C (%) + 30 ×
It is necessary to satisfy N (%) + 8.

次に、本発明の熱間圧延工程について述べる。Next, the hot rolling process of the present invention will be described.

本発明の鋼成分よりなるスラブの加熱温度の限定理由は
針状フェライト組織を得るには完全オーステナイト域で
熱間加工する必要があり、それ故950℃以上とし、又オ
ーステナイトの粗大化を防止するため1250℃以下とす
る。
The reason for limiting the heating temperature of the slab consisting of the steel components of the present invention is that hot working in the complete austenite region is necessary to obtain an acicular ferrite structure, and therefore it is 950 ° C. or higher, and austenite coarsening is prevented. Therefore, the temperature shall be 1250 ° C or lower.

熱間加工率は耐硫化物応力割れ性を劣化させない微細組
織となすため60%以上が必要である。
The hot working rate is required to be 60% or more to form a fine structure that does not deteriorate the sulfide stress cracking resistance.

一方仕上板厚から言って通常加工率は95%以下となるの
で上限を95%以下とした。
On the other hand, in terms of the finished plate thickness, the normal working rate is 95% or less, so the upper limit was made 95% or less.

加工温度は針状フェライト組織とするために完全オース
テナイト域で加工することが必要で750℃以上にする必
要がある。加工後オーステナイト粒の再結晶および成長
による粗粒化を防止するため加工後可能な限り速やかに
冷却を開始することが必要である。冷却速度について冷
却以上としたのは空冷未満では冷却の制御にコストがか
かり、一方空冷以上の冷却をしても組織的に問題ないの
で冷却速度は空冷以上とした。
The processing temperature is required to be 750 ° C or higher because it needs to be processed in the complete austenite region in order to obtain the acicular ferrite structure. After processing, it is necessary to start cooling as soon as possible after processing in order to prevent coarsening due to recrystallization and growth of austenite particles after processing. Regarding the cooling rate, the cooling rate was set to be air cooling or higher because it takes a high cost to control cooling if it is less than air cooling, and there is no structural problem even if cooling is made to be air cooling or higher.

また焼戻し温度の限定理由は次の通りである。The reason for limiting the tempering temperature is as follows.

焼戻しは耐硫化物応力腐食割れ性に有害な内部応力除去
のため必須であり、その有効焼戻範囲として400℃〜750
℃未満の温度までとする。下限を400℃以上としたのは
下限以下では応力除去に効果がなく、上限750℃以上で
はフェライトの析出が起るためである。また焼戻し時間
は作業効率の上から15分〜60分で実施するのが望まし
い。
Tempering is essential for removing internal stress that is harmful to sulfide stress corrosion cracking resistance, and its effective tempering range is 400 ° C to 750 ° C.
Up to a temperature below ℃. The lower limit of 400 ° C. or higher is because there is no effect on stress relief below the lower limit and ferrite precipitation occurs at the upper limit of 750 ° C. or above. Further, it is desirable that the tempering time is 15 to 60 minutes from the viewpoint of work efficiency.

以上詳述したように、本発明の成分鋼を本発明の加工条
件で製造し、鋼組織を針状フェライト組織80%以上にす
れば、耐硫化物応力腐食割れ性を著しく向上することが
できる。そしてこの鋼の本来の優れた耐食性をそのまま
受けつぐことができる。
As described above in detail, if the component steel of the present invention is manufactured under the processing conditions of the present invention and the steel structure is made to have the acicular ferrite structure of 80% or more, the sulfide stress corrosion cracking resistance can be remarkably improved. . The original excellent corrosion resistance of this steel can be directly accepted.

(実施例) 第1表に示す組成の鋼について、第1表に示す製造条件
で処理して鋼を製造し、各鋼について試験した結果を第
1図に示す。鋼A〜Tは本発明法によるもの、U〜Zは
従来法による比較例である。
(Example) Steels having the compositions shown in Table 1 were processed under the manufacturing conditions shown in Table 1 to produce steels, and the results of testing each steel are shown in FIG. Steels A to T are according to the method of the present invention, and U to Z are comparative examples according to the conventional method.

試験はNACE液中での4点曲げ治具により、種々の応力を
負荷して336時間経過しても破断しない最小応力を限界
応力(σth)として求めたものである。第1図の横軸は
供試鋼の耐力(YS)を示し、縦軸は限界応力を示し、○
は本発明法による鋼を示し、●は比較鋼である。
The test was carried out by using a four-point bending jig in NACE liquid as the critical stress (σth), which is the minimum stress that does not fracture even after 336 hours have been applied with various stresses. The horizontal axis of Fig. 1 shows the proof stress (YS) of the sample steel, and the vertical axis shows the critical stress.
Indicates steel according to the method of the present invention, and ● indicates comparative steel.

第1図の結果から明らかなように本発明法により耐硫化
物応力腐食割れ性が著しく改善された鋼が得られる。
As is clear from the results shown in FIG. 1, the steel according to the present invention has a significantly improved resistance to sulfide stress corrosion cracking.

また本発明による鋼の耐炭酸ガス腐食性については従来
の13%Cr鋼と同様の優れた耐食性を持っている事は言う
までもない。
Regarding the carbon dioxide corrosion resistance of the steel according to the present invention, it goes without saying that it has the same excellent corrosion resistance as the conventional 13% Cr steel.

(発明の効果) 本発明によれば従来法である再加熱QT鋼では得られない
耐硫化物応力腐食割れ性を達成し、かつ再加熱焼入れ工
程を必要とせず、油井用鋼管、厚板等に有利に使用でき
る低コスト鋼を製造することができるのでその工業的効
果は大きい。
(Effects of the Invention) According to the present invention, the sulfide stress corrosion cracking resistance that cannot be obtained by the conventional reheated QT steel is achieved, and the reheat quenching step is not required. Since it is possible to produce a low-cost steel that can be advantageously used for the above, its industrial effect is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明法と比較例で製造した鋼の限界応力と耐
力との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the critical stress and the proof stress of the steels manufactured by the method of the present invention and the comparative example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で C:0.15%以下 Si:0.1〜0.5% Mn:0.2〜1.0% Cr:9〜16.0% P:0.02%以下 S:0.02%以下 Al:0.01〜0.05% N:0.01〜0.25% を含み、残部鉄及び不可避不純物から成り、且つCr%≧
10×C(%)+30×N(%)+8を満足させる組成の鋼
を加熱温度950℃〜1250℃に加熱後、仕上温度750℃以上
で加工率60%〜95%の範囲で熱間加工し、加工後室温ま
で空冷以上の冷却速度で冷却し、その後400℃〜750℃未
満の温度で15分〜60分焼戻し処理を行い、針状フェライ
ト組織を面積率で80%以上となすことを特徴とする耐応
力腐食割れ性の優れた針状フェライトステンレス鋼の製
造方法。
1. C .: 0.15% or less by weight% Si: 0.1 to 0.5% Mn: 0.2 to 1.0% Cr: 9 to 16.0% P: 0.02% or less S: 0.02% or less Al: 0.01 to 0.05% N: 0.01 ~ 0.25%, balance iron and inevitable impurities, and Cr% ≥
After steel with a composition satisfying 10 x C (%) + 30 x N (%) + 8 is heated to a heating temperature of 950 ° C to 1250 ° C, hot working is performed at a finishing temperature of 750 ° C or higher and a working rate of 60% to 95%. After processing, cool to room temperature at a cooling rate of air cooling or higher, and then temper at a temperature of 400 ° C to less than 750 ° C for 15 minutes to 60 minutes to make the acicular ferrite structure have an area ratio of 80% or more. A method for producing an acicular ferritic stainless steel having excellent stress corrosion cracking resistance.
【請求項2】重量%で C:0.15%以下 Si:0.1〜0.5% Mn:0.2〜1.0% Cr:9〜16.0% P:0.02%以下 S:0.02%以下 Al:0.01〜0.05% N:0.01〜0.25% を含有すると共に更に Ni:0.2〜2.5% Mo:0.2〜1.5% V:0.02〜1.5% Ti:0.001〜0.2% Nb:0.02〜1.5% を1種または2種以上含み、残部鉄及び不可避不純物か
ら成り、且つCr%≧10×C(%)+30×N(%)+8を
満足させる組成の鋼を加熱温度950℃〜1250℃に加熱
後、仕上温度750℃以上で加工率60%〜95%の範囲で熱
間加工し、加工後室温まで空冷以上の冷却速度で冷却
し、その後400℃〜750℃未満の温度で15分〜60分焼戻し
処理を行ない、針状フェライト組織を面積率で80%以上
となすことを特徴とする耐応力腐食割れ性の優れた針状
フェライトステンレス鋼の製造方法。
2. Weight% C: 0.15% or less Si: 0.1 to 0.5% Mn: 0.2 to 1.0% Cr: 9 to 16.0% P: 0.02% or less S: 0.02% or less Al: 0.01 to 0.05% N: 0.01 ~ 0.25%, Ni: 0.2 ~ 2.5% Mo: 0.2 ~ 1.5% V: 0.02 ~ 1.5% Ti: 0.001 ~ 0.2% Nb: 0.02 ~ 1.5%, 1 type or 2 types or more, and balance iron and Steel consisting of unavoidable impurities and having a composition satisfying Cr% ≥ 10 x C (%) + 30 x N (%) + 8 is heated to a heating temperature of 950 ° C to 1250 ° C, and a working rate of 60% at a finishing temperature of 750 ° C or higher. ~ 95% hot working, after processing cool to room temperature at a cooling rate of air cooling or higher, and then temper for 15 to 60 minutes at a temperature of 400 ° C to less than 750 ° C to obtain an area of acicular ferrite structure Of 80% or more in terms of percentage, a method for producing acicular ferritic stainless steel with excellent stress corrosion cracking resistance.
JP33044587A 1987-12-26 1987-12-26 Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking Expired - Lifetime JPH07110970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33044587A JPH07110970B2 (en) 1987-12-26 1987-12-26 Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33044587A JPH07110970B2 (en) 1987-12-26 1987-12-26 Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking

Publications (2)

Publication Number Publication Date
JPH01172516A JPH01172516A (en) 1989-07-07
JPH07110970B2 true JPH07110970B2 (en) 1995-11-29

Family

ID=18232695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33044587A Expired - Lifetime JPH07110970B2 (en) 1987-12-26 1987-12-26 Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPH07110970B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2562740B2 (en) * 1990-10-15 1996-12-11 日新製鋼株式会社 Ferrite stainless steel with excellent intergranular corrosion resistance, pipe forming property and high temperature strength
JP2002336990A (en) * 2001-05-11 2002-11-26 Daido Steel Co Ltd Weld zone of ferritic stainless steel having excellent high temperature tensile strength, elongation, cracking resistance and toughness, and welding method therefor
JP6112065B2 (en) * 2014-05-21 2017-04-12 Jfeスチール株式会社 Method for producing high strength 13Cr stainless steel plate with excellent toughness and workability
JP6112064B2 (en) * 2014-05-21 2017-04-12 Jfeスチール株式会社 High-strength 13Cr stainless steel plate with excellent toughness and workability and manufacturing method thereof
WO2016174500A1 (en) * 2015-04-30 2016-11-03 Aperam Martensitic stainless steel, method for producing a semi-finished product made from said steel and cutting tool produced from said semi-finished product

Also Published As

Publication number Publication date
JPH01172516A (en) 1989-07-07

Similar Documents

Publication Publication Date Title
CN101634001B (en) CT90-class steel for continuous oil pipe and method for manufacturing same
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
JPWO2008123422A1 (en) Seamless steel pipe manufacturing method
JP2682332B2 (en) Method for producing high strength corrosion resistant steel pipe
CN101353765A (en) Steel for CT80 grade coiled tubing, and manufacturing method and use thereof
JP2023526739A (en) High-strength high-temperature corrosion-resistant martensitic stainless steel and method for producing the same
JP3550726B2 (en) Method for producing high strength steel with excellent low temperature toughness
JP2861024B2 (en) Martensitic stainless steel for oil well and its production method
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
US20070256767A1 (en) Steel Wire for Cold Forging Having Excellent Low Temperature Impact Properties and Method of Producing the Same
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPH064889B2 (en) Method for manufacturing thick ultra high strength steel
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production
JP2000226614A (en) Production of high toughness martensitic stainless steel excellent in stress corrosion cracking resistance
JPH07113126B2 (en) Method for producing stainless steel with excellent resistance to stress corrosion cracking
JP3368413B2 (en) Manufacturing method of high Cr ferritic heat resistant steel
JP3620099B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JPH07179943A (en) Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPS61147812A (en) Production of high strength steel superior in delayed breaking characteristic
JP2672429B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2580407B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2004018993A (en) Low alloy non-heat-treated heat resistant steel having reduced variation in strength under high temperature environment and method of producing the same
JPS6046318A (en) Preparation of steel excellent in sulfide cracking resistance