JPS6046318A - Preparation of steel excellent in sulfide cracking resistance - Google Patents

Preparation of steel excellent in sulfide cracking resistance

Info

Publication number
JPS6046318A
JPS6046318A JP15373983A JP15373983A JPS6046318A JP S6046318 A JPS6046318 A JP S6046318A JP 15373983 A JP15373983 A JP 15373983A JP 15373983 A JP15373983 A JP 15373983A JP S6046318 A JPS6046318 A JP S6046318A
Authority
JP
Japan
Prior art keywords
steel
less
quenching
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15373983A
Other languages
Japanese (ja)
Inventor
Terutaka Tsumura
津村 輝隆
Yasuo Otani
大谷 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15373983A priority Critical patent/JPS6046318A/en
Publication of JPS6046318A publication Critical patent/JPS6046318A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Abstract

PURPOSE:To obtain high strength steel excellent in sulfide cracking resistance, by applying two-stage hot processing to steel, wherein the amount of C, Nb and Mn and the amount of P and S in impurities are specified and Cu, V and one of Ca, REM or the like are added, under specific condition before applying direct hardening. CONSTITUTION:The composition of steel consists of, on a wt% basis, 0.15-0.45 C, 0.08 or less Si, 0.01-0.30 Mn, 0.20-1.50 Cr, 0.05-0.80 Mo, 0.01-0.10 Nb, 0.01-0.10 Al, according to necessity, 0.0005-0.0050 B, 0.05-0.50 Cu, 0.01-0.10 V, and one or more of 0.001-0.030 Ca and 0.001-0.050 REM and the remainder of Fe and inevitable impurities. In this case, P in said impurities is set to 0.015 or less and S therein to 0.010 or less. This steel is subjected to primary hot processing and, thereafter, held or re-heated to Ac3-Ac3+200 deg.C to be subjected to secondary hot processing. Succeedingly, the processed steel is directly hardened from an austenite state and subsequently heated in the above mentioned temp. range to be subjected to hardening treatment one or more times. Thereafter, annealing treatment is applied at a temp. of Ac3 transformation point or less.

Description

【発明の詳細な説明】 この発明は、耐硫化物割れ性の優れた鋼の製造方法、特
に降伏強さ: 65 kgf/−以上の高強度を有する
とともに湿潤硫化水:4環境において優れた耐硫化物割
れ性全発揮し、油井やガス井で使用される構造部相、例
えば油井管やラインパイプ、更には油井・ガス井の周囲
に使用される装爵]用部材として用いるのに好適な油井
用鋼をコスト安く製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a steel with excellent sulfide cracking resistance, particularly a steel having high yield strength of 65 kgf/- or more and excellent resistance in a wet sulfide water environment. It exhibits excellent sulfide cracking properties and is suitable for use as structural parts used in oil and gas wells, such as oil country tubular goods and line pipes, as well as structural members used around oil and gas wells. This invention relates to a method of manufacturing oil well steel at low cost.

近年における新油田或いは新ガス田開発の目立った特徴
として、従来は放置されていたような、深層にして、し
かも油やガスが硫化水素(lFI2s)で汚染された所
謂サワー環境下にあるものにまで開発の目が向けられる
ようになったことをあげることができる。
A notable feature of the development of new oil and gas fields in recent years is that they are being developed in deep layers, where oil and gas are contaminated with hydrogen sulfide (lFI2s) and are in so-called sour environments, which were previously abandoned. I can point out that the focus of development has now turned to this area.

従って、石油及び天然ガスの生産分野においては、近年
、土庄(地層の圧力)やガス圧、或いは鋼材の自重によ
る引張り荷重に耐えるとともに、サワー環境で使用して
も十分に皮氷性叱忙発コ)41するところの、高強度に
して硫化物割れ(以−1・、5SCCと称す)にも強い
抵抗力を(iif+えた鋼に対する要望が一段と大きく
なっている。
Therefore, in recent years, in the field of oil and natural gas production, it has become necessary to withstand tensile loads due to the pressure of the earth's formations, gas pressure, or the own weight of steel materials, and also to withstand the effects of glaciation even when used in sour environments. J) There is a growing demand for steel that has high strength and strong resistance to sulfide cracking (hereinafter referred to as 5SCC) (iif+).

鋼の劇5scc性全向上ざぜる手段については1950
年来種々の検討が加えられてきているが、現在では、例
えばNACE 5tandard MR−01−75(
1977Revision)に示された硬度(強度)の
上限以下に鋼の強度を抑えることが5SCC防止に最も
有効であるとさカフており、こJしに基づ<L−80〔
降伏強さの下限が80000psi (56,2kgf
/mu) )がA PI規格に加えられて需要者の要望
に応えてきた。
1950 for steel drama 5scc sexual improvement means
Various studies have been carried out over the years, and currently, for example, NACE 5 standard MR-01-75 (
It is said that keeping the strength of steel below the upper limit of hardness (strength) shown in the 1977 Revision) is the most effective way to prevent 5SCC, and based on this, <L-80 [
The lower limit of yield strength is 80,000psi (56,2kgf
/mu)) has been added to the API standard to meet the demands of consumers.

ところが、上述のような酸性深井戸においては、油井管
として強度を抑えたものを用いると、その必要肉厚を必
然的に厚くせざるk #47ず、経済性及び作業性の点
で著しい不利金招くようになるという問題があったので
ある。このようなことから、L−80よシも更に強度が
高く、かつ耐5scc性に優れた鋼材が切望されるよう
になってきておす、特に最近では、降伏強さの下限が9
(JOU(Jpsi (63,3kgf/mj)を越す
高強度油井管に対する要望も太きくなっている。
However, in acidic deep wells such as those mentioned above, if oil country tubular goods with reduced strength are used, the required wall thickness will inevitably be increased, resulting in significant disadvantages in terms of economy and workability. The problem was that they started asking for money. For this reason, there has been a strong demand for steel materials that are even stronger than L-80 and have excellent 5scc resistance.In particular, recently, the lower limit of yield strength has been reduced to 9.
(The demand for high-strength oil country tubular goods exceeding JOU (Jpsi (63.3 kgf/mj) is also increasing.

従来、このような高強度・高耐5SCC性に対する要求
に対しては、焼入れ轡焼戻し処理によって形成された均
一な焼戻しマルテンサイト組* k有するAl5I 4
130系鋼全使用したり、或いは鋼の水素吸収を防止す
るためのCO添加全実施したシすることが試みられてき
たが、それでも、○ Al5I 4130糸鋼では、依
然として十分に満足できる耐食性全実現できない、○ 
Co添加鋼では、COの水素吸収防止効果全効かせるた
めにMoとの複合添加を避ける必要があるので、C、C
r又はVといった強化元素の多量添加によって鋼を強化
しなければならず、靭性劣化を招くこととなるほか、十
分な氷菓吸収防止効果全発揮せしめるために高価なCO
元素全1%(以下、成分割合を表わす%は重量%とする
)全はるかに越える量で添加する必要があるので調料製
ηLコストが大幅に上昇する、 という問題を避けることができh ZJ一つlコ。
Conventionally, in order to meet such demands for high strength and high 5SCC resistance, Al5I4 having a uniform tempered martensite group*k formed by quenching and tempering treatment was used.
Attempts have been made to use all 130 series steel or to add CO to prevent hydrogen absorption in the steel, but even so, Al5I 4130 thread steel still fails to achieve fully satisfactory corrosion resistance. I can't, ○
In Co-added steel, in order to fully utilize the hydrogen absorption prevention effect of CO, it is necessary to avoid combined addition with Mo.
It is necessary to strengthen the steel by adding large amounts of reinforcing elements such as r or V, which leads to deterioration of toughness.
It is possible to avoid the problem that the cost of preparation increases significantly because it is necessary to add elements in an amount far exceeding 1% of the total (hereinafter, % representing the component ratio is expressed as weight %). One.

ところで、耐5SCC性全確認する方法として、H2S
を飽和した0、5%CH3CO0H溶液から成るJl8
゜食液中で行うシェルタイブ試験法が多数の現場実績と
の対比による研究の積み亀ねによって開発いれており、
この試験によってi!++jwされるS S CC限界
応力値(Sc値)が、式、 Sc > (SMYSlo、75 ) x I O−’
全満足すれば割れの発生がないときノ1.ていゐけJl
ども、従来の低コスト型低合金高強吸鋼においてはこの
ような厳しい基準全満足するものがなかったのである。
By the way, as a method to fully confirm the 5SCC resistance, H2S
Jl8 consisting of a 0.5% CH3CO0H solution saturated with
゜The shell type test method, which is carried out in a food solution, was developed through extensive research and comparison with numerous field experiences.
By this test i! The S S CC critical stress value (Sc value) to be ++jw is given by the formula, Sc > (SMYSlo, 75) x I O-'
1. If all satisfaction is met, no cracks will occur. Teike Jl
However, none of the conventional low-cost, low-alloy, high-strength steels satisfies all of these strict standards.

なお、シェルタイブ試験法とは、負’S 1図りこ/I
<されるような、長さ方向の中央部にキリ孔を設けた試
験片1に、第2図に示す如く3点支持曲りでその中央部
に応力を付加して腐食液中に浸油l〜、割れ率が50%
となる見ガニ[けの応力?!−11111足しで、これ
全Sc値とするものである。第2図において、肴I号2
で示されるものは直径4節のガラス丸棒、符号3で示さ
れるものは荷重(応力)を句加するためのボルトである
In addition, the shell type test method is negative 'S 1 riko/I
A test specimen 1 with a drilled hole in the center of its length, as shown in FIG. ~, cracking rate is 50%
The stress of the crab [ke? ! -11111 is added to make the total Sc value. In Figure 2, Dish I No. 2
What is indicated by is a glass round rod with a diameter of 4 sections, and what is indicated by code 3 is a bolt for applying load (stress).

また、こうした材料自身の改良のはかに、鋼材全コーテ
ィングしたシ、腐食環境にインヒビターを注入する等の
方法も講じられているが、いずれも十分な効果を期待で
きるものではなかった。
In addition, attempts have been made to improve the materials themselves, such as coating the entire steel material or injecting inhibitors into the corrosive environment, but none of these methods have been expected to be sufficiently effective.

本発明者等は、上述のような観点から、SC値が、式、 Sc> (SMYSlo、75 )XI O’を満たす
とともに、降伏強さが65kgf/−以上の高強度を有
し、サワー環境下で使用される油井管としても十分に満
足できる性能を持つ比較的コストの安い鋼材を得るべく
研究を行った結果、以下(a)〜(f)に示されるよう
な知見を得るに至ったのである。即ち、 (a) 前記所定値以上のSc値を満たし、かつ降伏強
さ: 65 kgf/vuj以上の高強度を実現するK
は、鋼材組織を極微細な焼戻し低温変態組織、即ち極微
細焼戻しマルテンサイト組織、或いは極微細焼戻しマル
テンサイトと極微細焼戻し低−ベイナイトとの混合組織
とするのが有効であること、(b) 該極微細焼戻し低
温変態組織を得るには焼戻し前の低温変態組織が極微細
でなけれi’J、’ 4:らず、また、極微細な低温変
態組織しは、焼入れ前の組織がマルテンサイト組織、或
いQまマルテンサイトと低温ベイナイトとの混合組織、
それもマルテンサイトや低温ベイナイトのラス(lat
h)の崩れの小さい細粒組織でないと実現できないこと
、(c) fA拐の結晶粒微細化のためには、誘導加熱
法等の急速加熱手段を用いて1回以上の焼入れを施すの
が有効であることが知られているが、11イ足成分組成
の銅については、熱間加工の徐に内接uy+、;入れし
、次いでAC3点以上オーステナイト結晶粒粗大化開始
温度以下の温度域に加熱後焼入れる処理を1回以上繰シ
返すことeこまって、例え焼入オし処理の際の加熱速度
を電気炉加熱のように1 ’cz44以下程度のゆつく
りしたものにしたとしても、十分に細粒の低温変態組織
が得られること、(d) 上述のように、直接焼入れと
ゆっくりとした加熱速度での1回以上の焼入nとr(工
って鋼の細粒化を実現するには、鋼の成分組成全、特に
0.15%以上のC成分と0,01%以上のNb成分と
全同時に含有するものとし、かつ該鋼ヲla接焼入れす
る前の熱間加工を2段階に分けて、オーステナイト域で
先ず第1次の熱間加工全行い、その後変態を開始はせる
ことなく直ちに細粒オーステナイト域(オーステナイト
が粗大化しない温度領域:即ち、Ac3変態点〜〔Ac
3変態点+200℃)(7)温度域)に保定又は再加熱
して第2次の熱間圧延を行い、この第2次熱間圧延後に
オーステナイト状態から直接焼入れするのが効果的であ
ること、(e) 更に、鋼中の不可避不純物であるP及
びSの含有針金特定値以下に抑え、かつ(si + I
VIn )量、特に地合有量をも特定値以下に制r$:
、すると、ソoss s c c性が一層向上すること
、(f) 鋼中K、更KCu及びVの1種以上を含有せ
しめると、鋼の耐5scc性及び強度が一層向上し、ま
たCa及び希土類元素の1 s以上を添加含有させると
、鋼中の介在物が球状化されるとともに銅の清浄化がな
されて耐5scc性のUX−i葡見、そして微量のBを
添加含有せしめると鋼の強度、耐5SCC性、及び鞘付
が一層改善されること。
From the above-mentioned viewpoints, the present inventors have determined that the SC value satisfies the formula, Sc> (SMYSlo, 75) As a result of conducting research to obtain a relatively low-cost steel material that has sufficiently satisfactory performance as oil country tubular goods used in It is. That is, (a) K that satisfies the Sc value of the predetermined value or more and achieves high strength of yield strength: 65 kgf/vuj or more.
(b) It is effective to make the steel structure into an ultra-fine tempered low-temperature transformation structure, that is, an ultra-fine tempered martensite structure, or a mixed structure of ultra-fine tempered martensite and ultra-fine tempered low-bainite; In order to obtain the ultra-fine tempered low-temperature transformed structure, the low-temperature transformed structure before tempering must be extremely fine. structure, or a mixed structure of Qmartensite and low-temperature bainite,
It is also martensite and low-temperature bainite lath.
(h) This cannot be achieved without a fine-grained structure with little collapse; (c) In order to refine the crystal grains of fA, it is recommended to perform quenching one or more times using rapid heating means such as induction heating. Although it is known to be effective, for copper with an 11-foot component composition, it is gradually inscribed in hot working, and then the temperature range is at least 3 AC and below the austenite grain coarsening starting temperature. It is difficult to repeat the heating and quenching process one or more times, even if the heating rate during the quenching process is set at a slow rate of 1' cz44 or less, as in electric furnace heating. (d) As mentioned above, direct quenching and one or more quenchings at a slow heating rate (n and r) are used to refine the grain of the steel. In order to achieve this, the steel must contain all the components, especially C component of 0.15% or more and Nb component of 0.01% or more at the same time. The processing is divided into two stages: first, the entire first hot working is carried out in the austenite region, and then the process is immediately carried out in the fine-grained austenite region (temperature range in which austenite does not coarsen: that is, from the Ac3 transformation point) without starting transformation. [Ac
It is effective to perform a second hot rolling by holding or reheating at a temperature range of 3 transformation point + 200°C) (7) temperature range, and directly quenching from the austenitic state after this second hot rolling. , (e) Furthermore, the content of P and S, which are unavoidable impurities in steel, is suppressed to below the specified value in the wire, and (si + I
VIn) amount, especially the formation amount, is also controlled below a certain value r$:
(f) When one or more of K, K, Cu and V are contained in the steel, the 5 SCC resistance and strength of the steel are further improved, and Ca and When 1 s or more of rare earth elements is added, the inclusions in the steel become spheroidized and the copper is cleaned, resulting in a UX-i with 5scc resistance, and when a small amount of B is added, the steel becomes The strength, 5SCC resistance, and sheath attachment are further improved.

この発明は、上記知見に基ついてなSれたものであり、 C: 0.15〜0.45 % +Si: 0.80%
以下。
This invention was made based on the above knowledge, and includes: C: 0.15 to 0.45% + Si: 0.80%
below.

へ4r1:o、ox%以上0.30%未満。to4r1: o, ox% or more and less than 0.30%.

Cr : 0.20〜1.50%、 h’Lo : 0
.05〜0.80%。
Cr: 0.20-1.50%, h'Lo: 0
.. 05-0.80%.

Nil: 0.0 1 〜0.1 0 % 、lt: 
0.0 1 〜0.1 0 % 。
Nil: 0.01 to 0.10%, lt:
0.01 to 0.10%.

全含有し、必要により更に、 第1区分・・・ B : 0.0005〜0.0050%。Contains all of the ingredients, and if necessary, 1st category... B: 0.0005 to 0.0050%.

第2区分・・ Cu : 0.05〜0.50%。Second category... Cu: 0.05-0.50%.

V : 0.01〜0.10%。V: 0.01-0.10%.

第3区分・・・ Ca: 0.001〜0.030% REM、: 0.001〜0.050%。Third category... Ca: 0.001-0.030% REM: 0.001-0.050%.

のうちの1秒以上盆も含むとともに、 Fe及び不可避不純物:残り から成シ、かつ不純物中のP及び8の冨崩輩がそれぞれ
、 P : 0.015%以下、 S : 0.010 %
以下。
Fe and unavoidable impurities: formed from the rest, and P and 8 of the impurities are respectively P: 0.015% or less, S: 0.010%
below.

である鋼を、オーステナイト状態で第1次熱間加工した
後、変態全開始させることなくオーステナイト状態のま
ま直ちにAC3変態点〜[Aca変態点+200℃〕の
温度域に保定又は再加熱して第2次熱間加工全行い、続
いてオーステナイト状態からそのまま直接焼入れし、次
いで、これkAcsAC3変態点〜3変態点+200℃
〕の温度域に加熱後焼入れする処理を更に1回以上繰り
返し、その後Act変態点以下の温度で焼戻し処理を行
うことによって、耐5SCC性に優れ、かつ65 kg
f/mJM以上の降伏強さを有する鋼を得る点に特徴を
有するものである。
After the first hot working of the steel in the austenitic state, the steel is immediately maintained or reheated in the temperature range of AC3 transformation point to [Aca transformation point + 200°C] in the austenitic state without completely starting the transformation. All secondary hot working is performed, followed by direct quenching from the austenitic state, and then this kAcsAC3 transformation point ~ 3 transformation point + 200℃
] By repeating the process of heating to the temperature range and then quenching one or more times, and then performing the tempering process at a temperature below the Act transformation point, it has excellent 5SCC resistance and a weight of 65 kg.
This method is characterized in that a steel having a yield strength of f/mJM or more is obtained.

なお、この発明の方法において、第2次熱間加工を施す
ために細粒オーステナイト域に再加熱するに際し、第1
次熱間加工後に鋼材の保有している熱を有効に利用して
加熱エネルギーを節減できることは大きな特徴の1つで
ある。JjlJち、第1次熱間加工後、変態を開始させ
ることなへ、従ってオーステナイト状態から直ちに却1
粒オーステナイト域に加熱するか又は保持するためeこ
、鋼材の保有する大きな熱エネルギー全有効に利用でき
て、加熱エネルギーの節約がなをれるのである。
In addition, in the method of this invention, when reheating to the fine-grained austenite region for performing the second hot working, the first
One of the major features is that heating energy can be saved by effectively utilizing the heat held by the steel material after the next hot working. JjlJ, after the first hot working, transformation should not be started, therefore, the austenitic state should be immediately turned off.
Since the steel is heated to or maintained in the grain austenite region, all of the large thermal energy possessed by the steel material can be used effectively, resulting in savings in heating energy.

従来、このような2段階の熱間加工工程をとる場合には
、第1次熱間加工後に一旦Arl変態点以下に冷却して
変態を終了させ、その後にAc3変態点以上に再加熱し
て熱間加工を行うのが常であったが、これは変態をくぐ
らせることによって細粒化を狙ったものであシ、低温か
らAC3点以上VC,pJ加熱するために大きな熱エネ
ルギーを必要としていた。
Conventionally, when taking such a two-step hot working process, after the first hot working, the material is once cooled to below the Arl transformation point to complete the transformation, and then reheated to above the Ac3 transformation point. It was customary to carry out hot working, but this aimed to make the grain finer by passing through transformation, and it required a large amount of thermal energy to heat from low temperature to AC 3 points or more, VC, pJ. there was.

また、従来は、この第2次熱間加工後太気放冷によって
室温まで冷却し、絖いて焼入れ・焼戻し処理するのが常
であったが、この場合、焼入れ加熱の前組織はフェライ
トやパーライト或いは高1711’1ベイナイトといっ
た高温変態生成物であシ、このような前組織では次に焼
入れ処理を施しても細粒化できない。
In addition, conventionally, after this second hot working, the structure was cooled down to room temperature by air cooling, then hardened and tempered.In this case, the structure before quenching was ferrite or pearlite. Alternatively, it may be a high-temperature transformation product such as high 1711'1 bainite, and such a pre-structure cannot be refined even if a subsequent quenching treatment is performed.

しかるに、本発明では、第1次熱間力1工祠了後に直接
細粒オーステナイト域に再加熱又は保定しても次の第2
次熱間加工で、加工による十分な細粒効果が生じ、この
後に直接焼入れした低温変態組織は細粒組織となシ、続
く焼入れ処理によって容易に極細粒組織全実現できるの
で、必ずしも第1次熱間加工後に変態を終了させる必要
はなく、そのため鋼材の持つ熱エネルギーの有効利用も
可能となるのである。
However, in the present invention, even if it is directly reheated or retained in the fine-grained austenite region after the first hot stress is completed, the next second
In the next hot working, a sufficient fine-grain effect is produced by the working, and the low-temperature transformed structure that is directly quenched after this is not a fine-grained structure.The entire extremely fine-grained structure can be easily realized by the subsequent quenching treatment, so it is not necessarily the case that the first There is no need to terminate the transformation after hot working, which makes it possible to effectively utilize the thermal energy of the steel material.

更に、この発明の方法において、ゆっくりとした加熱速
度での焼入れ処理を2回以上繰シ返す場合には、2回目
以降のn回目の焼入れに際してのオーステナイト化加熱
温度i1:、(’n −1)回目の焼入れの際のオース
テナイト化加熱温度以下であるのが好ましく、このよう
にすることによって鋼の組織は一層細粒で、かつ整粒と
な9、耐5SCC性がよシ改善されることとなる。
Furthermore, in the method of the present invention, when the quenching treatment at a slow heating rate is repeated two or more times, the austenitizing heating temperature i1:, ('n -1 ) It is preferable that the heating temperature be lower than the austenitizing temperature during the second quenching, and by doing so, the structure of the steel will be finer and more uniform9, and the 5SCC resistance will be further improved. becomes.

つまり、この発明は、「特定量のC成分とNb成分とを
同時に含有する鋼においては、熱間加工工程を2段階に
分けて実施し、先ず第1次熱間加工を行った後、変態を
開始させることなくλ−ステナイト状態のままで直ちに
細粒オーステナイト域に保定するか又は再加熱して第2
次熱間加]二ヲ行い、続いてオーステナイト状態力)ら
直ちに直接焼入れすれば、その後電気炉加熱のようにゆ
つくシとした加熱速度で加熱してもAC3点以上オース
テナイト結晶粒粗大化開始温度以下の温度に加熱後焼入
れる処理を少なくとも1回収上※’IJフ返″′j−こ
とに」:って鋼が極めて細粒化する。従って、これ全A
cr点以下の温度で焼戻しすれば非常に微細な焼戻し低
温変態組織となって、十分な強度と優れた耐5scc性
とを共に具備する鋼材が召Jられる。」との技術的事項
全骨子としたものである。もちろん、直接焼入れ後の焼
入れに際して急速加熱全採用すればよシ一層の細粒組織
を得られるが、この発明の方法では特にこのような急速
加熱を施ζなくても所望の細粒化全十分に達成すること
かできる。
In other words, this invention proposes that ``For steel containing a specific amount of C component and Nb component at the same time, the hot working step is carried out in two stages, first, the first hot working is performed, and then the transformation process is carried out. Either the λ-stenite state is maintained in the fine-grained austenite region without starting, or the second stage is heated again.
If the next hot heating is carried out, followed by direct quenching from the austenite state, the austenite crystal grains will begin to coarsen at AC3 points or higher even if heated at a slow heating rate such as in an electric furnace. After at least one quenching process after heating to a temperature below that temperature, the steel becomes extremely fine-grained. Therefore, this is all A
When tempered at a temperature below the cr point, a very fine tempered low-temperature transformation structure is created, and a steel material having both sufficient strength and excellent 5scc resistance is obtained. ” is a complete outline of the technical matters. Of course, an even finer grain structure can be obtained by fully employing rapid heating during quenching after direct quenching, but with the method of this invention, the desired fine grain structure can be achieved even without such rapid heating. can be achieved.

また、直接焼入れ処理やこれに絖く焼入1q−処理の後
、次の焼入れに際しての加熱の前に、1h′き割れ等を
防止するために行う焼戻し処理(以下、ラフテンパーと
称す)を常法通シ実施するときには、ラフテンパー条件
を At = T (A2 +log t )なる式で計算
されるAlが、 Al< 19.OX 103 を満足するように設定するのが好壕しく、このようVC
することによってラフテンパーによるマルテンサイトラ
スや低温ベイナイトラスの崩れが小さく抑えられ、m回
目の焼入れで(m−1)回目よりも細粒の組織を得るこ
とができる。
In addition, after direct quenching or 1Q quenching treatment, tempering treatment (hereinafter referred to as rough tempering) is always performed to prevent 1h' cracking, etc., before heating for the next quenching. When implementing the law, Al calculated using the formula At = T (A2 + log t) as the rough tempering condition is Al< 19. It is preferable to set it to satisfy OX 103, and such VC
By doing so, the collapse of martensite laths and low-temperature bainite laths due to rough tempering is suppressed to a small extent, and a finer-grained structure can be obtained in the mth quenching than in the (m-1)th time.

次に、この発明の方法において、銅の化学成分組成、及
び圧延・熱処理条件を前記の如くに数値限定した理由を
説明する。
Next, in the method of the present invention, the reason why the chemical composition of copper and the rolling and heat treatment conditions are numerically limited as described above will be explained.

A、鋼の化学成分組成 C C成分は鋼の焼入れ性増加、強度増〃口に刀1えて細粒
化のために必須の元素であるが、その含有量が0.15
%を下回ると強度低下及び焼入れ性省化を来たし、従っ
て所望強度に、対して低部での炉、戻しを余儀なく芒れ
る上、直接焼入れ処理後に、箱にゆつ〈シとした加熱速
度では1回以上の枕シ返し焼入れ処理を行っても細粒化
が達成できず、5SCC感受付が犬となる。−力0.4
5 %を越えてCを含有させると、焼入れ時の1;割れ
感受性か増力9し、址た靴°性劣化をも招くことから、
C含イ1量を0.15〜0.45%と定めた。
A. Chemical composition of steel C Component C is an essential element for increasing the hardenability and strength of steel, as well as for refining the grains, but its content is 0.15
If the heating rate is less than 20%, the strength will decrease and the hardenability will be reduced. Even if the quenching treatment is performed one or more times, grain refinement cannot be achieved, and the 5SCC quality is poor. -force 0.4
If C is contained in excess of 5%, cracking susceptibility or strength increase during quenching may occur, leading to deterioration of shoe resistance.
The C content was determined to be 0.15 to 0.45%.

■ 5I Si成分は鋼の脱酸剤として不動な元素であるが、その
含有J、tがC1,80%を越えると靭性全劣化1−る
ようにな9、また5scc感受性を増太塾せることとも
なるので、Si含有量trs、o8o%以下と定めた。
■ 5I Si component is an immobile element as a deoxidizing agent for steel, but if its content J and t exceeds 80% of C1, it will cause a total deterioration of toughness and increase the 5scc sensitivity. Therefore, the Si content was determined to be trs, o8o% or less.

なお、耐5scc性を一層向上させるためにはp−ts
、或いは1′血の低減とともeこ(S+ +1!/In
 )の値を0.16%未満とすることが好まし1・、。
In addition, in order to further improve the 5scc resistance, p-ts
, or with the reduction of 1' blood (S+ +1!/In
) is preferably less than 0.16%.

■ Mn 励成分には、PやSの粒界偏析を助長して高強度材の耐
s scc性を劣化させる作用があり、この作用は地合
有量: 0.30%以上で顕著に現われる傾向にある。
■ The Mn excited component has the effect of promoting the grain boundary segregation of P and S and deteriorating the sscc resistance of high-strength materials, and this effect becomes noticeable at a formation content of 0.30% or more. There is a tendency.

なお、高強度材においては、PやSの量をできるだけ低
減し、かつ(Si+Mn)の値を0.16%未満と可能
なPり低減することが5SCCを防止する上で有効であ
るが、■石含有量全0.01%未満とすることは鋼の製
造上極めて困難であシ、コスト上昇を招くことから、胤
含有量全0.01%以上0.30%未満と定めた。
In addition, in high-strength materials, it is effective to reduce the amount of P and S as much as possible and to reduce the P content to less than 0.16% (Si + Mn), but it is effective to prevent 5SCC. (2) Since it is extremely difficult to make the total stone content less than 0.01% in terms of steel production and increases costs, the total seed content is set at 0.01% or more and less than 0.30%.

■ Cr Cr成分には、鋼の焼入れ性、強度、及び焼戻し軟化抵
抗性全増大させる作用があシ、高強度化のために極めて
有効であるほか、5SCC抵抗性改善作用もあるが、そ
の含有量が帆20%未満では前記作用に所望の効果を得
ることができず、一方1.50%を越えて含有させると
靭性の劣化及び焼割れ感受性の増大を来たすことから、
Cr含有量を0.20〜1.50%と定めた。
■ Cr The Cr component has the effect of increasing the hardenability, strength, and resistance to temper softening of steel, and is extremely effective for increasing the strength. It also has the effect of improving 5SCC resistance, but its content If the amount is less than 20%, the desired effect cannot be obtained, while if it is more than 1.50%, the toughness will deteriorate and the susceptibility to quench cracking will increase.
The Cr content was determined to be 0.20 to 1.50%.

■ M。■ M.

MOC成分、鋼の焼入れ性、強度、及び焼戻し軟化抵抗
性を増大させ、また靭性改善に有効な成分であるeよか
、焼戻し過程での不純物の粒界偏析を抑えて耐5SCC
性を向上させる作用があるが、その含有量が0.05%
未満では前記作用に7シr望の効果を?8ることかでき
ず、一方0.80%を越えて含有させても前記効果が飽
和してしまう上、Moは非常に高価な元素であることか
ら、Mo含有量を0.05〜0.80%と定めた。
The MOC component increases the hardenability, strength, and tempering softening resistance of steel, and is an effective component for improving toughness.It also suppresses grain boundary segregation of impurities during the tempering process and improves 5SCC resistance.
It has the effect of improving sex, but its content is 0.05%
If it is less than 7 hours, will the above effect have the desired effect? On the other hand, even if the Mo content exceeds 0.80%, the above effect will be saturated, and Mo is a very expensive element, so the Mo content should be reduced to 0.05 to 0.8%. It was set at 80%.

■ Nb Nb成分は、鋼の強度増加、焼戻し軟化抵抗の増大、耐
5scc性の向上に加えて、細粒化のために必須の元素
であるが、その含有量がo、o i%未満では、特にゆ
つくりとした加熱速度であると2回以上の繰Q返し焼入
れ処理を行っても所望の細粒化が達成できず、一方o、
i o%全越えて含イ(きせても前記効果が飽和してし
lい、また靭性の劣化をも招くことになるので、Nb含
有量’e 0.01〜0.10%と定めた。
■ Nb Nb component is an essential element for increasing steel strength, increasing temper softening resistance, and improving 5scc resistance, as well as for grain refinement, but if its content is less than o, o i%. If the heating rate is particularly slow, the desired grain refinement cannot be achieved even if the quenching treatment is repeated two or more times;
The Nb content was set at 0.01 to 0.10% since the above effect would not be saturated and it would also cause deterioration of toughness. .

■ At At成分は、鋼の脱酸の安定化、均質化及び細粒化を図
るために添加するものであるが、その含有量が0.01
%未満では前記作用に所望の効果が得られず、他方0.
10 % ’に越えて含有させると脱酸効果は飽和して
しまい、また介在物増大による疵の発生や靭性の劣化を
も招くことから、At含有量を0.01〜0.10%と
定めた。
■ At The At component is added to stabilize the deoxidation of steel, homogenize it, and make the grains finer.
If the content is less than 0.0%, the desired effect cannot be obtained.
If the At content exceeds 10%, the deoxidizing effect will be saturated, and this will also lead to the occurrence of defects and deterioration of toughness due to the increase in inclusions, so the At content is set at 0.01 to 0.10%. Ta.

■ B B成分は微量の添加で焼入れ性を向上させ、強度、靭性
、耐5scc性を改善する作用分有しているので、これ
らの特性をよシ向上させる必要がある場合に添加−含有
せしめられるものであるが、その含有量が0.0005
%未満では前記作用にP「望の効果を得ることができず
、他方0.0050φを越えて含有させてもそれ以上の
向上効果が認められず、逆に靭性劣化を招く場合も生ず
ることから、B含有量は0.0005〜0.0050%
と定めた。
■B Component B improves hardenability when added in a small amount, and has the effect of improving strength, toughness, and 5scc resistance, so it can be added when it is necessary to further improve these properties. However, the content is 0.0005
If the content is less than 0.0050φ, the desired effect cannot be obtained, and if the content exceeds 0.0050φ, no further improvement effect will be observed, and on the contrary, it may cause deterioration of toughness. , B content is 0.0005-0.0050%
It was determined that

■ Cu 、及びV これらの成分には、それぞれ舒りの強度及びrjSSC
C性を向上させる作用を有するので必要C(応じて1種
以上添加含有させるものであるが、Cu含有htが0,
05%未満、そしてV含有ぢ−が(1,01受未満では
前記作用に所望の効果を得ることかできず、他方、Cu
が0.50受を越えて含有されるとα、へ間加工性が劣
化し、またVが0.10%を越えて含有されると靭性が
劣化することとなるの1:、Cu含有51 k (Lo
 5〜0.50 %、■含’fi量(T” (1、01
〜0.10%とそれぞれ定めた。
■Cu, and V These components include the strength of the sow and rjSSC, respectively.
Since it has the effect of improving carbon properties, one or more types of necessary C (one or more types are added and contained depending on the case), but if the Cu content ht is 0,
If the V content is less than 0.05% and the V content is less than 1.01%, the desired effect cannot be obtained;
If more than 0.50% of V is contained, α, machinability will deteriorate, and if more than 0.10% of V is contained, toughness will be deteriorated. k (Lo
5 to 0.50%, ■ Content amount (T” (1,01
0.10%, respectively.

■ Ca、及びREM Ca及びR,EM(希土類元素)は、いずれも鋼中介在
物を球状化するとともに鋼を清浄化し7てS +、EC
C感受性を低減する作用があるので心火に応じて1種J
ン、上添加含有させるものであるが、いずれもその含有
量が0.001%未満では前記作JtlにI)r望の効
果がイnられず、他方、Caが0.030%を、REM
が0.050%全それぞれ越えて含有ネハると、その添
加効果が飽和するのみならず、ぞ1(、らの酸化物等の
非金属介在物が増加して鋼の希) 、IY、性が低下し
、5scc感受性をかえつ1尚のることとなるので、C
a含有tfO,001〜0.030 %、REM含有量
を0.001〜0.050%とそJしそれ定めた。
■ Ca, and REM Ca, R, and EM (rare earth elements) all spheroidize inclusions in steel and clean the steel.
Type 1 J depending on the type of fire because it has the effect of reducing C sensitivity.
However, if the Ca content is less than 0.001%, the desired effect on the production Jtl cannot be achieved.
If it is contained in excess of 0.050%, not only will the effect of its addition be saturated, but it will also increase the number of non-metallic inclusions such as oxides, which will increase the quality of the steel. decreases, changing the 5scc sensitivity and increasing the C.
The a content of tfO was determined to be 001 to 0.030%, and the REM content was determined to be 0.001 to 0.050%.

■ P、及びS 鋼の靭性向上全図91また酬5SCC性向上のためKは
、不純物であるP及びS量’(c−flJ及的に少なく
するのが望ましいが、銅の製造コストとのバランスを考
lしてP含有量の上限’tf: 0−015条、S含有
量の上限’k 0.010%とそれぞれ定めた1゜B、
圧延、及び熱処理条件 この発明は、以上のように構成さ北た調音溶製した後、
厚板、形鋼、鋼管等に熱間で加工するが、この際、オー
ステナイト粒全細粒化づ−るために熱間加工工程を、紀
1次熱間加工と、引き続いて変態全開始させることなく
直ちに却1粒オーステナ・rト域に保定又は再加熱して
から行う第2次熱間加工とに分けて行う。
■ P, and S Improving the toughness of steel Full diagram 91 Also note 5 To improve the SCC property, K is the impurity P and S content' (c-flJ) It is desirable to reduce it as much as possible, but it is Considering the balance, the upper limit of P content 'tf: 0-015 article, the upper limit of S content'k 0.010% and 1°B, respectively.
After rolling and heat treatment conditions, this invention was constructed as described above.
Thick plates, shaped steel, steel pipes, etc. are hot worked. At this time, the hot working process is carried out to completely refine the austenite grains, followed by the first hot working process, followed by the complete initiation of transformation. The process is divided into a second hot working process, which is carried out immediately after the grain is cooled and held in the austened/iron region or reheated.

そして、第2次熱間加工後、直しにオーステナイト状態
から適当な冷却媒体で直接焼入れすると微細な低温変態
組織が得られるのである。このことは直接焼入れに際し
ての焼割i″L感受性の低減に有効であるという2次的
効果をも生ずるが、その第1義とするところは、電気炉
加熱のようなゆつく9とした加熱速度であったとしても
、続いて細粒オーステナイト域に加熱後焼入れる処理を
1回以上行うのみで鋼の細粒化を達成できるような下地
を作る点にある。
After the second hot working, a fine low-temperature transformed structure can be obtained by directly quenching the austenitic state with an appropriate cooling medium. This also has the secondary effect of being effective in reducing the susceptibility to quench cracking i''L during direct quenching, but its primary meaning is Even if the speed is low, the point is to create a base that can achieve fine grain refinement of the steel by subsequently performing heating and quenching treatment on the fine grain austenite region one or more times.

即ち、直接焼入れ処理後に行う焼入れに際しての前組織
が微細な低温変態組織で46れは、それもラスの崩れの
小さい細粒組織であれば、次の焼入れによって極めて微
細な組織全行ることが″じさるのである。従って、直接
焼入tして微細な低温変態組織が得られるように細粒オ
ーステナイト域に保定又は再加熱して第2次熱間加工を
施すことは、本発明方法の大きな特徴の1つである。
In other words, if the pre-structure during quenching after direct quenching is a fine low-temperature transformed structure, if it is also a fine-grained structure with little lath collapse, the entire extremely fine structure can be removed by the next quenching. Therefore, it is an advantage of the method of the present invention to hold or reheat the fine-grained austenite region and perform the second hot working so as to obtain a fine low-temperature transformed structure by direct quenching. This is one of its major features.

そして、第2次加工の除の揚力〔1熱温度がAC3変態
点未満であると当然のことなからオーステナイト化75
<達成できず、−刀〔AC3変態点+200゛C〕を越
えて加熱するとオーステナイト結晶粒か粗大化してしま
って、本発明処理i/Cよつ1もフッ1望の細粒組織を
得ることができなくなる。
Then, the lifting force of the secondary processing [1 is natural when the thermal temperature is less than the AC3 transformation point, so it becomes austenitic 75
<Unable to achieve, - When heated above [AC3 transformation point + 200°C], the austenite crystal grains become coarse, and the treatment of the present invention i/C cannot obtain the desired fine grain structure. become unable to do so.

直接焼入れ処理に続く繰シ返しの焼入れ〜、直接焼入れ
材又は直接焼入れ後のラフテンパー材をACs変態点〜
[Ac3変態点+200℃]の温度に加熱して組織を完
全にオーステナイト化した後、適当な冷却媒体によって
焼入れして低温変態組織ながらオーステナイト化が達成
できず、一方、[Ac3変態点+200℃]を越えて加
熱1−るとオーステナイト結晶粒が粗大化してしまって
、本発明処理によっても所望の微細組織を得ることがで
きなくなる。従って、直接焼入れ処理に続く再度の焼入
れ処理における加熱温度全Ac3変態点〜[Ac3変態
点+200℃〕と定めた。
Repeated quenching following direct quenching process ~ Directly quenched material or rough tempered material after direct quenching to ACs transformation point ~
After heating to a temperature of [Ac3 transformation point + 200°C] to completely austenite the structure, quenching with an appropriate cooling medium failed to achieve austenitization despite the low-temperature transformed structure; on the other hand, [Ac3 transformation point + 200°C] If the temperature exceeds 1-1, the austenite crystal grains will become coarse, making it impossible to obtain the desired fine structure even by the treatment of the present invention. Therefore, the heating temperature in the second quenching treatment following the direct quenching treatment was determined to be between the total Ac3 transformation point and [Ac3 transformation point +200°C].

なお、前述したように、2回目以降の焼入れ時の加熱は
前回のそれの温度よシも低くすることが好ましく、これ
によって一層の細粒かつ塾粒組織が実現され、鋼材性能
を向上することができる。
As mentioned above, it is preferable that the heating temperature for the second and subsequent quenching be lower than that of the previous quenching, thereby achieving an even finer grain structure and improving the performance of the steel material. I can do it.

また、鋼の成分元素としてBヶ含南フ−ゐもの全対象と
するときには、B成分の焼入tし性向上効果全十分に発
揮させるためにオーステナイト化温度全1075℃以下
にすることが望ましい。、そして、各焼入れ処理に先立
ってラフテンパーを施す場合には、先にも述べたように
、T:ラフテンパ一温度(0K)。
In addition, when all steel components containing B are considered, it is desirable to keep the austenitizing temperature below 1075°C in order to fully exhibit the hardenability improvement effect of the B component. . , and when rough tempering is performed prior to each quenching treatment, as mentioned earlier, T: rough tempering temperature (0K).

t:ラフテン・七一温度での保持時間(hr) 。t: Retention time (hr) at Rough Ten 71 temperature.

A2=22−4 xC(%) ]、 OXNb(支))
A2=22-4 xC (%) ], OXNb (support))
.

としたときの At−T (A2 +log t ) なる式で計算されるAIが[19,OXl 03]以下
の値になるようにその条件全設定するのが良い。
It is preferable to set all the conditions so that the AI calculated by the formula At-T (A2 + log t) becomes a value of [19, OXl 03] or less.

上述のような焼入れ処理によってイ↓Iた做細な低温変
態u4織を、次にAcl変態点以下の温度で焼戻し処理
すると、銅に所望の強度と酊S SCC性が付与される
こととなる。pljち、A Cs変態点Jン、下の温度
で焼戻すことによってはじめて、それぞれの用途に適し
た6 5 kgf/−以上の降伏強芒と酊5sec”性
の優れた@ヲ得ることができるのである。
When the thin low-temperature transformed U4 weave, which has been quenched by the above-mentioned quenching process, is then tempered at a temperature below the ACl transformation point, the desired strength and SCC property will be imparted to the copper. . Only by tempering at a temperature below the A Cs transformation point can it be possible to obtain a material with excellent yield strength of 65 kgf/- or more and 5 sec properties suitable for each application. It is.

なお、焼戻し温度に格別な下限全課σる必要はないが、
高温の焼戻し処理が、焼入れによって生成したマルテン
サイトや低温ベイナイトの内部応力を除去し、かつセメ
ンタイ)k球状化して鋼材性能の向上をもたらすことか
らみて、出来れば650℃以上の温度で焼戻し処理を行
うのが望ましい。
Although it is not necessary to impose a special lower limit on the tempering temperature,
Considering that high-temperature tempering removes the internal stress of martensite and low-temperature bainite generated by quenching, and also improves the performance of the steel by turning cementite into spheroidized particles, tempering at a temperature of 650°C or higher is recommended if possible. It is desirable to do so.

この場合、焼戻し温度が、Acl変態点を越えると鋼材
強度が大幅に変動し、耐5scc性も劣化することから
、該温度’kACt変態点以下と定めた。
In this case, if the tempering temperature exceeds the ACl transformation point, the strength of the steel material changes significantly and the 5scc resistance deteriorates, so the temperature was determined to be below the 'kACt transformation point.

次に、この発明全実施例により比較例と対比しながら具
体的に説明する。
Next, all embodiments of this invention will be explained in detail while being compared with comparative examples.

実施例 1 まず、通常の方法によって第1表に示す如き成分組成の
鋼■〜■を溶製した。
Example 1 First, steels (1) to (2) having the compositions shown in Table 1 were melted by a conventional method.

次に、これらの鋼片全1200℃に均熱した後第2表に
示される条件にて熱間圧延及び熱処理ヲ行った。
Next, all of these steel slabs were soaked at 1200° C. and then hot rolled and heat treated under the conditions shown in Table 2.

イηられた鋼板について、降伏強さく耐力)、引張強さ
、及び耐5scce、’i測定し、その結果もに鋼片全
均熱した後第1次の熱間圧延で最終製品の寸法に仕上け
を行ない、それを室温まで空冷した後焼入れ・焼戻し処
理するものでろシ、本発明法とは、1200℃に均熱し
てオーステナイト域で第1次の熱間圧延を行った後、変
態を開始させることなく、従ってオーステナイト状態か
ら直ちに細粒オーステナイト域に保定又は−再加熱して
第2次の熱間圧延全行い、最終製品寸法に仕上け、その
後オーステナイト状態から直接焼入れし、更に焼入れ・
焼戻し処理全行うものである。
The yield strength (yield strength), tensile strength, and resistance to 5scce were measured for the rolled steel plate. The method of the present invention involves heating to 1200°C and performing the first hot rolling in the austenite region, followed by a transformation process. Therefore, the austenitic state is immediately held in the fine-grained austenite region or - reheated to complete the second hot rolling to finish the final product dimensions, and then directly quenched from the austenitic state, and then further quenched.
All tempering processing is performed.

耐s scc性については、各端から第1図に示したよ
うな試験片1を切p出し、第2図に示したような治具に
て応力全付加しながら、液温:20℃の)(2S全飽和
さぜた0、5 %CH3CO0H溶液中に20日間浸漬
してSc値を測定し、その値で示した。
Regarding the sscc resistance, a test piece 1 as shown in Fig. 1 was cut out from each end, and was heated at a liquid temperature of 20°C while applying full stress using a jig as shown in Fig. 2. ) (The Sc value was measured by immersing it in a 2S fully saturated 0.5% CH3COOH solution for 20 days, and the value is shown.

なお、第2図において、符号2で示されるものはガラス
丸棒、符号3で示されるものは応力付加ボルトである。
In FIG. 2, the reference numeral 2 indicates a glass round rod, and the reference numeral 3 indicates a stress-applying bolt.

第2表に示される結果からに、本発明り方法によれば高
強度にもかかわらず酎5sccuに優れた鋼材全確実に
得られるということが明白である。
From the results shown in Table 2, it is clear that according to the method of the present invention, it is possible to reliably obtain a steel material with excellent 5 sccu despite high strength.

実施例 2 前記第1表中の本発明対象鋼でろる鋼@全1220℃に
均熱後、オーステナイト域で7’51次の熱間圧延を施
し、その後第3表に示す条件で第2次熱間圧延、直接焼
入九、焼入れ、及び焼戻し全行い、得られた鋼材の強度
及び1fil(S S CCiJ:を測定して、その結
果を第3表に併せて示した。なお、耐5SCC性は実施
例1と同様の試験〈ρ件にてSc値をめて測定した。
Example 2 The steel subject to the present invention in Table 1 was soaked at a temperature of 1220°C, then subjected to 7'51 hot rolling in the austenite region, and then subjected to secondary hot rolling under the conditions shown in Table 3. After hot rolling, direct quenching, quenching, and tempering, the strength and 1fil (SS CCiJ) of the obtained steel were measured, and the results are also shown in Table 3. The properties were measured in the same test as in Example 1 by calculating the Sc value.

第3表に示される結果からも、本発明の方法によれば強
度及び耐5scc性の侵れ1ヒ銅相をイHられることが
明らかであシ、熱処理条件が本発明の範囲から外れると
耐S SCC性のカつた鋼*J’t、i’イ尋られない
こともり」白である。
From the results shown in Table 3, it is clear that the method of the present invention can improve the strength and corrosion resistance of the copper phase. SCC-resistant cut steel *J't, i'm not asked about it' white.

実施例 3 前記第1表中の本発明対象鋼である銅■を1230℃に
均熱後、オーステナイト域で第1次の熱間圧延音節し、
続いてオーステナイト状態を呈する870℃から102
0℃にまで再加熱して第2次熱間圧延を行って最終製品
寸法に仕上げ、次いで第4表に示す温度から直接焼入れ
し、その後更に第4表に示す条件にて焼入れ・焼戻し処
理して強度及び耐5scc性(試験条件は実施例1に同
じ)を測定した。
Example 3 After soaking copper (1), which is the steel subject to the present invention in Table 1, to 1230°C, it was subjected to the first hot rolling process in the austenite region, and
Subsequently, from 870°C to 102°C, which exhibits an austenitic state
It is reheated to 0°C and subjected to a second hot rolling to finish it into the final product dimensions, then directly quenched at the temperature shown in Table 4, and then further quenched and tempered under the conditions shown in Table 4. The strength and 5scc resistance (test conditions were the same as in Example 1) were measured.

このようにして得られた結果を第4表に併せて示した。The results thus obtained are also shown in Table 4.

第4表に示される結果からも、本発明の方法によって強
度及び耐5scc性の優れた鋼材を得られることが明白
である。
It is clear from the results shown in Table 4 that steel materials with excellent strength and 5 SCC resistance can be obtained by the method of the present invention.

実施例 4 前記第1表中の本発明対象鋼■’k 1200 ’Cに
均熱した後、第5表に示した処理条件にて仮相を製造し
、得られた板材についてオーステナイ)B度番号(AS
TMNα)を測定した。
Example 4 After soaking the steel of the present invention in Table 1 to 1200'C, a temporary phase was produced under the treatment conditions shown in Table 5, and the obtained plate material had an austenia degree of B Number (AS
TMNα) was measured.

(注)東印は、本発明の条件から外1ムていることを示
す。
(Note) The East mark indicates that there is a deviation from the conditions of the present invention.

第5表 なお、第5表における処理牽伸はそれぞれ、■ オース
テナイト域で第1次の熱間圧延を行った後、320℃ま
で冷却して変態を終了させ、その後930℃に再加熱し
て第2火熱1■1圧延葡行って最終製品寸法に仕上け、
そJL奮箪温1で空冷した後、930℃に0.75℃/
秒の加熱速度で加熱して焼入れ処理を行う、 ■ オーステナイト域で第1次の熱jFi1圧クツーり
行ってから、変態を開始させることle<87o℃から
950℃へ再加熱して第2次熱間圧延葡杓い、最終製品
寸法に仕上げた後、850℃から10接焼入れし、更に
930℃に0.75℃/イシの加熱速度で加熱して焼入
れ処理を行う、 というものであった。
Table 5 The drafting process in Table 5 is as follows: ■ After performing the first hot rolling in the austenite region, cooling to 320°C to complete the transformation, and then reheating to 930°C. 2nd heat 1*1 Roll grapes to final product size,
After cooling with air at JL Temperature 1, it was heated to 930℃ by 0.75℃/
Hardening treatment is performed by heating at a heating rate of seconds. ■ After the first heating in the austenite region, the transformation is started by reheating from le<87°C to 950°C and the second After hot-rolling the grapes and finishing them to the final product dimensions, they were quenched at 850°C for 10 minutes, and then heated to 930°C at a heating rate of 0.75°C/Ishi for quenching. .

第5表に示される結果からも、本発りJの条件を満たす
処理によって細粒組織の慣4cm、tすることか明らか
である。
From the results shown in Table 5, it is clear that the treatment that satisfies the conditions of the present invention increases the fine grain structure by 4 cm,t.

実施例 5 前記第1表中の本発明対象鋼■全1220℃に均熱した
後、オーステナイト域で第1次υ熱間圧IAヲ行い、続
いてオーステナイト状態葡呈する860℃から940℃
へ再加熱して第2次熱間圧延を行って最終製品寸法に仕
上げ、引続き850℃から直接焼入れし、その後第6表
に示す条件にて途中のラフテンパー処理を行い、次いで
焼入れ・焼戻し処理を行った。
Example 5 The steel subject to the present invention in Table 1 above was soaked to 1220°C, then subjected to the first υ hot pressure IA in the austenitic region, and then heated from 860°C to 940°C until the austenitic state was achieved.
The product is reheated to 200°C and subjected to a second hot rolling to finish it to the final product dimensions, followed by direct quenching at 850°C, followed by intermediate rough tempering under the conditions shown in Table 6, followed by quenching and tempering. went.

このようにして得られた製品の強度及び耐SSCC例・
(試験条件は実施例1に同じ)を測定し、その結果を第
6表に示した。
Examples of strength and SSCC resistance of products obtained in this way
(Test conditions are the same as in Example 1) were measured, and the results are shown in Table 6.

第6表に示される結果力・らは、11〕接焼入れの後に
行う焼入れ処理の前に、置き割れ防止等の意味でラフテ
ンパー処理を施しても強度及び劇5SCC性の優れた鋼
材が得られることが明白であり、寸だ、この際のラフテ
ンパー条件を、 A、 (19,o X 10” にすると、強度・耐5SCC性バランスのifnで一層
優れた鋼材になることもわかる。
The results shown in Table 6 are as follows: 11) Even if rough tempering is applied to prevent cracking due to cracking before the quenching after contact hardening, a steel material with excellent strength and 5SCC properties can be obtained. It is clear that if the rough tempering condition is set to A, (19,0 x 10"), the steel material will have an even better balance of strength and 5SCC resistance.

上述のように、この発明は、@依焼入れ処理と通常の1
勺加熱焼入れ処理を組合せて細粒組織を得、優れた強度
と耐5scc件ケ有する鋼を実現するものであって、こ
の発明によれは、細粒化のために何らの複雑な処理を必
要とするものではなく、深層にして、かつサワー環境下
に存在する油田やガス田開発に使用する油井管その他の
機器類に好適な高強度鋼を、簡単容易に、そして低コス
トで製造できるなど、工業上有用な効果かもたらされる
のである。
As mentioned above, this invention combines @i-quenching treatment and conventional 1
This invention combines a high heat quenching treatment to obtain a fine grain structure and achieves a steel with excellent strength and resistance to 5 SCC.According to this invention, no complicated treatment is required for grain refinement. It is possible to manufacture high-strength steel easily and at low cost, which is suitable for oil country tubular goods and other equipment used in the development of oil fields and gas fields located in deep layers and under sour environments. , industrially useful effects are brought about.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシェルタイブ腐食試験片の例を示すもので、第
1図(a)はその正面図、第1図(b)はその側面図で
あり、第2図はシェルタイブ腐食試験において試験片を
支持治具で支持した状態を示す概略模式図である。 図面において、 1・・・試験片、 2・・・ガラス丸棒、3・・・応力
付加ボルト。 舛1図 (Q) (b) 第2暦
Figure 1 shows an example of a shell-type corrosion test piece. Figure 1 (a) is its front view, Figure 1 (b) is its side view, and Figure 2 shows the test piece used in the shell-type corrosion test. FIG. 2 is a schematic diagram showing a state in which it is supported by a support jig. In the drawings, 1... test piece, 2... glass round bar, 3... stress-applied bolt. Figure 1 (Q) (b) Second Calendar

Claims (1)

【特許請求の範囲】[Claims] (1) 重量割合で、 C: 0.15〜0.45%。 Si : 0.80%以下。 Mn : 0.01 %以上0.30 %未満。 Cr : 0.20〜1.50%。 Mo : 0.05〜0.80%。 Nb:o、ot〜0.10%。 ht:0.01〜0.10%。 全含有し、必要によシ更に、 第1区分・・・ B : 0.0005〜0.0050係。 第2区分・・・ Cu: 0.05〜0.50 % 。 V : 0.0 1 〜0.1 0 % 。 第3区分・・・ Ca: 0.001〜0.030%。 REM : 0.001〜0.050%。 のうちの1種以上をも含むとともに、 Fe及び不可避不純物:残シ から成シ、かつ不純物中のP及びSの含有量がそれぞれ
、 P : 0.0 ]、 5%以下。 S : 0.010%以下 である鋼を、オーステナイト状態で第1次熱間加工した
後、変態を開始させることなくオーステナイト状態の1
1直ぢi/CAc、変態点〜[Ac3変態点+ 200
0G ]の温度域に保冗又は舟加熱して第2次熱間加工
全行い、続いてオーステナイト状態からそのま1直接焼
入れし、次いで、これk Ac3変態点〜(ACa変態
点+20(1℃〕の湿度域に加熱後焼入れする処理を更
に1回以上繰9返し、その後Ac、変態点以下の温度で
焼戻し処理を行うことを特徴とする耐硫化物割れ住の優
れた鋼の製造力法。
(1) C: 0.15 to 0.45% by weight. Si: 0.80% or less. Mn: 0.01% or more and less than 0.30%. Cr: 0.20-1.50%. Mo: 0.05-0.80%. Nb: o, ot~0.10%. ht: 0.01-0.10%. Contains all of the ingredients, and if necessary, the first category... B: 0.0005 to 0.0050. Second category... Cu: 0.05-0.50%. V: 0.01 to 0.10%. Third category... Ca: 0.001-0.030%. REM: 0.001-0.050%. Contains one or more of the following: Fe and unavoidable impurities: composed of residues, and the contents of P and S in the impurities are P: 0.0] and 5% or less, respectively. S: After the first hot working of steel with a S content of 0.010% or less in an austenitic state, the steel is reduced to 1 in an austenitic state without starting transformation.
1 directi/CAc, metamorphosis point ~ [Ac3 metamorphosis point + 200
The second hot working is carried out by heating to a temperature range of 0G], followed by direct quenching from the austenitic state, and then the temperature range from K Ac3 transformation point to (ACa transformation point + 20 (1℃) A method for producing steel with excellent sulfide cracking resistance, characterized by repeating the process of heating and quenching in a humidity range of 9 times or more, followed by tempering at a temperature below the Ac transformation point. .
JP15373983A 1983-08-23 1983-08-23 Preparation of steel excellent in sulfide cracking resistance Pending JPS6046318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15373983A JPS6046318A (en) 1983-08-23 1983-08-23 Preparation of steel excellent in sulfide cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15373983A JPS6046318A (en) 1983-08-23 1983-08-23 Preparation of steel excellent in sulfide cracking resistance

Publications (1)

Publication Number Publication Date
JPS6046318A true JPS6046318A (en) 1985-03-13

Family

ID=15569040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15373983A Pending JPS6046318A (en) 1983-08-23 1983-08-23 Preparation of steel excellent in sulfide cracking resistance

Country Status (1)

Country Link
JP (1) JPS6046318A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827379A (en) * 1993-10-27 1998-10-27 Nippon Steel Corporation Process for producing extra high tensile steel having excellent stress corrosion cracking resistance
US5938865A (en) * 1995-05-15 1999-08-17 Sumitomo Metal Industries, Ltc. Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
CN108914010A (en) * 2018-08-28 2018-11-30 宝钢湛江钢铁有限公司 A kind of low-cost high-strength low-alloy steel and its manufacturing method
CN113737096A (en) * 2021-08-31 2021-12-03 东风商用车有限公司 Annealing-free seamless steel tube, preparation method thereof and gearbox gear

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827379A (en) * 1993-10-27 1998-10-27 Nippon Steel Corporation Process for producing extra high tensile steel having excellent stress corrosion cracking resistance
US5938865A (en) * 1995-05-15 1999-08-17 Sumitomo Metal Industries, Ltc. Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
CN108914010A (en) * 2018-08-28 2018-11-30 宝钢湛江钢铁有限公司 A kind of low-cost high-strength low-alloy steel and its manufacturing method
CN113737096A (en) * 2021-08-31 2021-12-03 东风商用车有限公司 Annealing-free seamless steel tube, preparation method thereof and gearbox gear

Similar Documents

Publication Publication Date Title
JPS6086209A (en) Manufacture of steel having high resistance against crack by sulfide
JPH0741856A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
JPH01259124A (en) Manufacture of high-strength oil well tube excellent in corrosion resistance
JPH08176659A (en) Production of high tensile strength steel with low yield ratio
JPH0421718A (en) Production of high strength steel excellent in sulfide stress cracking resistance
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JPS6046318A (en) Preparation of steel excellent in sulfide cracking resistance
JPS6156235A (en) Manufacture of high toughness nontemper steel
JPS6148521A (en) Manufacture of reinforcing bar steel superior in low temperature toughness and strength
JPS6057490B2 (en) Manufacturing method of high-strength steel plate with low yield ratio
JPH01172516A (en) Manufacture of acicular ferritic stainless steel having excellent stress corrosive cracking resistance
JPS6046317A (en) Preparation of steel excellent in sulfide cracking resistance
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JPS6052521A (en) Manufacture of steel having superior resistance to sulfide cracking
JPH0445227A (en) Production of steel product with low yield ratio
JPS6056019A (en) Production of strong and tough steel
JPS6043424A (en) Production of steel having high resistance to sulfide cracking
JPS6052520A (en) Production of steel having excellent resistance to sulfide cracking
JPH10280036A (en) Wire rod for high strength bolt excellent in strength and ductility and its production
JPS62149814A (en) Production of low-carbon high-strength seamless steel pipe by direct hardening method
JPH07113126B2 (en) Method for producing stainless steel with excellent resistance to stress corrosion cracking
JPH01195242A (en) Manufacture of high tension steel plate having superior toughness at low temperature with uniformity in thickness direction
JPH04272129A (en) Production of high tension steel having low yield ratio