JP2023526739A - High-strength high-temperature corrosion-resistant martensitic stainless steel and method for producing the same - Google Patents

High-strength high-temperature corrosion-resistant martensitic stainless steel and method for producing the same Download PDF

Info

Publication number
JP2023526739A
JP2023526739A JP2022562373A JP2022562373A JP2023526739A JP 2023526739 A JP2023526739 A JP 2023526739A JP 2022562373 A JP2022562373 A JP 2022562373A JP 2022562373 A JP2022562373 A JP 2022562373A JP 2023526739 A JP2023526739 A JP 2023526739A
Authority
JP
Japan
Prior art keywords
strength
stainless steel
corrosion
temperature
martensitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022562373A
Other languages
Japanese (ja)
Inventor
春霞 ▲張▼
忠▲錵▼ ▲張▼
▲亞▼猛 ▲齊▼
▲鵬▼ ▲趙▼
麒麟 ▲劉▼
▲済▼美 ▲趙▼
蒙 ▲羅▼
▲海▼燕 蔡
Original Assignee
宝山鋼鉄股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山鋼鉄股▲分▼有限公司 filed Critical 宝山鋼鉄股▲分▼有限公司
Publication of JP2023526739A publication Critical patent/JP2023526739A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

質量%で以下の化学元素、すなわち、0<C≦0.05%、Siを0.1%~0.2%、Mnを0.20%~1.0%、Crを11.0%~14.0%、Niを4.0%~6.0%、Moを1.5%~2.5%、Nを0.001%~0.10%、Vを0.03%~0.2%、Nbを0.01%~0.1%、Alを0.01%~0.04%を含有し、且つ、残部がFe及び不可避的不純物であることを特徴とする、高強度耐高温腐食性マルテンサイト系ステンレス鋼を開示する。さらに、上記の高強度耐高温腐食性マルテンサイト系ステンレス鋼から製造される管材及びケーシング、並びに、当該管材及びケーシングの製造方法についても開示する。本開示の高強度耐高温腐食性マルテンサイト系ステンレス鋼は、二酸化炭素及び塩化物イオンに対する優れた耐高温腐食性を有し、尚且つ、優れた低温衝撃靭性及び耐高温強度劣化性も有する。The following chemical elements in mass %: 0<C≦0.05%, Si from 0.1% to 0.2%, Mn from 0.20% to 1.0%, Cr from 11.0% 14.0%, Ni 4.0%-6.0%, Mo 1.5%-2.5%, N 0.001%-0.10%, V 0.03%-0. 2%, 0.01% to 0.1% of Nb, 0.01% to 0.04% of Al, and the balance being Fe and unavoidable impurities. A hot corrosive martensitic stainless steel is disclosed. Also disclosed are tubing and casings made from the high-strength, hot-corrosion-resistant martensitic stainless steels described above, and methods of making the tubing and casings. The high-strength, hot-corrosion-resistant martensitic stainless steel of the present disclosure has excellent hot-corrosion resistance to carbon dioxide and chloride ions, and also has excellent low-temperature impact toughness and high-temperature strength deterioration resistance.

Description

本開示は、金属材料及びその製造方法に関し、特には、ステンレス鋼及びその製造方法に関する。 TECHNICAL FIELD The present disclosure relates to metallic materials and methods of manufacturing the same, and more particularly to stainless steel and methods of manufacturing the same.

昨今、現在の石油及びガス生産において、6000m以上の深度及び超深度の井戸での採掘が大きな問題になっている。これらの深井戸及び超深井戸における管材及びケーシングの使用環境は、主に、高温、高圧、及び、CO、Clなどを多く含む強い腐食環境などで益々過酷になってきている。また、多くの石油及びガス資源は比較的寒冷な地域に存在するため、冬季の操業時には温度が-20℃以下になることがある。このような過酷な環境下では、一般的に、耐腐食性を満たすために、高合金製品、例えばスーパーマルテンサイト系ステンレス鋼が必要とされる。既存のスーパーマルテンサイト系ステンレス鋼は、高温で高濃度のCO及びClイオンが存在する環境下での耐腐食性に優れているが、高温での使用環境に関しては、180℃以上の高温使用環境での材料の強度も、管材及びケーシングの安全設計の要求条件を満たすために必要である。 In modern oil and gas production, mining at depths of 6000 m and above and in ultra-deep wells has become a major problem these days. The usage environment of pipes and casings in these deep wells and ultra-deep wells is becoming more and more severe, mainly due to high temperature, high pressure, and highly corrosive environments containing large amounts of CO 2 , Cl and the like. Also, since many oil and gas resources are located in relatively cold regions, temperatures can drop below -20°C during winter operations. Such harsh environments generally require high alloy products, such as super martensitic stainless steels, to meet corrosion resistance. Existing super martensitic stainless steels have excellent corrosion resistance in environments where high concentrations of CO 2 and Cl ions exist at high temperatures. Material strength in the service environment is also necessary to meet safety design requirements for tubing and casing.

管材及びケーシングに伝統的に使用されている超低炭素マルテンサイト系ステンレス鋼は、主に、12.5%のCr、5.0%のNi、及び、2%のMoを含む。この組成は、110ksi(キロ重量ポンド毎平方インチ)の管材及びケーシングにのみ用いることができる。より高いグレードを得るためには、Crなどの高合金元素、及び、高価なMo元素を添加する必要がある。 Ultra-low carbon martensitic stainless steels traditionally used for tubing and casing mainly contain 12.5% Cr, 5.0% Ni and 2% Mo. This composition can only be used for 110 ksi (kilopounds per square inch) tubing and casing. To obtain higher grades, it is necessary to add high alloying elements such as Cr and expensive Mo elements.

2017年7月4日に公開された「油井用高強度ステンレス鋼シームレス管及びその製造方法」("High-strength stainless steel seamless pipe for oil well and manufacturing method thereof")と題する特許文献1は、フェライト、マルテンサイト及びオーステナイトなどの多相組織を有し、耐炭酸ガス腐食性及び耐硫化物応力腐食割れ性に優れ、110ksi、さらには125ksiまでの強度を有するステンレス鋼管を開示している。このステンレス鋼管は、以下の化学成分を含有している。すなわち、Cを0.05%以下、Siを0.5%以下、Mnを0.15%~1.0%、Pを0.030%以下、Sを0.005%以下、Crを15.5%~17.5%、Niを3.0%~6.0%、Moを1.5%~5.0%、Cuを4.0%以下、Wを0.1%~2.5%、及びNを0.15%以下である。耐腐食性に優れた本発明の高強度ステンレス鋼シームレス管は、200℃までの高温環境でCO及びClを含む場合に優れた耐炭酸ガス腐食性を有し、さらにHSを含む腐食環境において、優れた耐硫化物応力割れ性、及び、優れた耐硫化物応力腐食割れ性を有する。比較的、この組成は、組織制御が難しいため、製造が非常に困難であり、従って、その製造コストが、油田での使用には高過ぎる。 Patent Document 1 entitled "High-strength stainless steel seamless pipe for oil well and manufacturing method thereof" published on July 4, 2017 discloses ferrite , martensite and austenite, and has excellent resistance to carbon dioxide gas corrosion and sulfide stress corrosion cracking, and has a strength of 110 ksi and even up to 125 ksi. This stainless steel pipe contains the following chemical components. That is, C is 0.05% or less, Si is 0.5% or less, Mn is 0.15% to 1.0%, P is 0.030% or less, S is 0.005% or less, and Cr is 15%. 5% to 17.5%, Ni 3.0% to 6.0%, Mo 1.5% to 5.0%, Cu 4.0% or less, W 0.1% to 2.5% %, and N is 0.15% or less. The high-strength stainless steel seamless pipe of the present invention, which has excellent corrosion resistance, has excellent carbon dioxide gas corrosion resistance in a high temperature environment up to 200 ° C. when it contains CO 2 and Cl - , and further contains H 2 S. Excellent sulfide stress cracking resistance and excellent sulfide stress corrosion cracking resistance in corrosive environments. Comparatively, this composition is very difficult to manufacture due to the difficult texture control and thus its manufacturing cost is too high for oil field use.

2006年2月1日に公開された「耐炭酸ガス腐食性及び耐硫化物応力腐食割れ性に優れた高強度マルテンサイト系ステンレス鋼」("High-strength martensitic stainless steel with excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance")と題する特許文献2は、耐炭酸ガス腐食性及び耐硫化物応力腐食割れ性に優れた高強度マルテンサイト系ステンレス鋼であって、860MPa以上の降伏強度を有することを特徴とする高強度マルテンサイト系ステンレス鋼を開示している。この高強度マルテンサイト系ステンレス鋼は、以下の化学成分を含有している。すなわち、Cを0.005%~0.04%、Siを0.5%以下、Mnを0.1%~3.0%、Pを0.04%以下、Sを0.01%以下、Crを10%~15%、Niを4.0%~8%、Moを2.8%~5.0%、Alを0.001%~0.10%、Nを0.07%以下であり、残部がFe及び不純物であり、以下の式、Mo≦2.3-0.89Si+32.2Cを満たす。この高強度マルテンサイト系ステンレス鋼は、焼戻しマルテンサイト、焼戻し中に析出する炭化物、及び金属間化合物(例えば、焼戻し中に微細に析出するラーベス相又はσ相)から主に構成された金属組織を有する。この鋼は、高強度という特徴を有するが、一方、有害な金属間化合物(例えば析出相中のσ相)の存在、及び、Mo含有量が多いことにより、高コストでもある。 "High-strength martensitic stainless steel with excellent carbon dioxide gas corrosion resistance and resistance to sulfide stress corrosion cracking" published on February 1, 2006. and sulfide stress corrosion cracking resistance") describes a high-strength martensitic stainless steel excellent in carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance and having a yield strength of 860 MPa or more. Discloses a high-strength martensitic stainless steel characterized by This high-strength martensitic stainless steel contains the following chemical components. That is, C 0.005% to 0.04%, Si 0.5% or less, Mn 0.1% to 3.0%, P 0.04% or less, S 0.01% or less, Cr 10% to 15%, Ni 4.0% to 8%, Mo 2.8% to 5.0%, Al 0.001% to 0.10%, N 0.07% or less with the balance being Fe and impurities, satisfying the following formula: Mo≦2.3−0.89Si+32.2C. This high-strength martensitic stainless steel has a metal structure mainly composed of tempered martensite, carbides that precipitate during tempering, and intermetallic compounds (for example, Laves phase or σ phase that precipitates finely during tempering). have. This steel is characterized by high strength, but on the other hand it is also of high cost due to the presence of detrimental intermetallics (eg σ-phase in the precipitation phase) and high Mo content.

先行技術に開示されたステンレス鋼は、主にステンレス鋼材の耐腐食性に関するものであり、ステンレス鋼の高温での強度劣化に関する性能を含んでいないことがわかる。 It can be seen that the stainless steels disclosed in the prior art are mainly concerned with the corrosion resistance of stainless steel materials, and do not include the performance of strength deterioration of stainless steels at high temperatures.

中国特許第104884658B号明細書China Patent No. 104884658B 中国特許第1729306A号明細書China Patent No. 1729306A

本開示の目的の1つは、高強度耐高温腐食性マルテンサイト系ステンレス鋼を提供することである。この高強度耐高温腐食性マルテンサイト系ステンレス鋼は、125ksiまでの降伏強度を有し、180℃以上且つ高濃度の二酸化炭素(CO)を含む環境での使用に適し、二酸化炭素及び塩化物イオンに対する優れた耐高温腐食性、優れた低温衝撃靭性、及び、耐高温強度劣化性を有する。 One object of the present disclosure is to provide a high strength, hot corrosion resistant martensitic stainless steel. This high-strength, hot-corrosion-resistant martensitic stainless steel has a yield strength of up to 125 ksi and is suitable for use in environments above 180° C. and containing high concentrations of carbon dioxide (CO 2 ). It has excellent high-temperature corrosion resistance to ions, excellent low-temperature impact toughness, and high-temperature strength deterioration resistance.

上記目的を達成するために、本開示は、質量%で以下の化学元素を含む、高強度耐高温腐食性マルテンサイト系ステンレス鋼を提供する。すなわち、
0<C≦0.05%、Siを0.1%~0.2%、Mnを0.20%~1.0%、Crを11.0%~14.0%、Niを4.0%~6.0%、Moを1.5%~2.5%、Nを0.001%~0.10%、Vを0.03%~0.2%、Nbを0.01%~0.1%、Alを0.01%~0.04%含有する。
To achieve the above objectives, the present disclosure provides a high-strength, hot-corrosion-resistant martensitic stainless steel containing the following chemical elements in mass %. i.e.
0<C≦0.05%, Si 0.1% to 0.2%, Mn 0.20% to 1.0%, Cr 11.0% to 14.0%, Ni 4.0% % to 6.0%, Mo 1.5% to 2.5%, N 0.001% to 0.10%, V 0.03% to 0.2%, Nb 0.01% to 0.1%, and 0.01% to 0.04% Al.

好ましくは、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼は、質量%で以下の化学元素を含む。すなわち、
0<C≦0.05%、Siを0.1%~0.2%、Mnを0.20%~1.0%、Crを11.0%~14.0%、Niを4.0%~6.0%、Moを1.5%~2.5%、Nを0.001%~0.10%、Vを0.03%~0.2%、Nbを0.01%~0.1%、Alを0.01%~0.04%含有し、残部がFe及び不可避的不純物である。
Preferably, the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure contains the following chemical elements in mass %. i.e.
0<C≦0.05%, Si 0.1% to 0.2%, Mn 0.20% to 1.0%, Cr 11.0% to 14.0%, Ni 4.0% % to 6.0%, Mo 1.5% to 2.5%, N 0.001% to 0.10%, V 0.03% to 0.2%, Nb 0.01% to 0.1%, 0.01% to 0.04% Al, and the balance is Fe and unavoidable impurities.

本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼において、各化学元素の設計原理は以下の通りである。 The design principle of each chemical element in the high-strength, high-temperature corrosion-resistant martensitic stainless steel according to the present disclosure is as follows.

C(炭素):本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼では、マルテンサイト系ステンレス鋼の鋼種において、炭素をオーステナイト形成元素として用いる。Cの含有量を増やすことで、ステンレス鋼を高温でオーステナイト化させる割合が増大され、そして、室温でマルテンサイトを得ることができ、鋼の強度を向上させることができる。しかし、鋼中のC含有量が多すぎると、ステンレス鋼の耐腐食性が低下することになり、同時に靭性も低下することに留意すべきである。従って、本開示の高強度耐高温腐食性マルテンサイト系ステンレス鋼においては、Cの質量%を0<C≦0.05%となるように制御する。 C (Carbon): In the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure, carbon is used as an austenite-forming element in the martensitic stainless steel grade. By increasing the C content, the rate of austenitizing stainless steel at high temperature can be increased, and martensite can be obtained at room temperature, which can improve the strength of the steel. However, it should be noted that if the C content in the steel is too high, the corrosion resistance of the stainless steel will be reduced, and at the same time the toughness will also be reduced. Therefore, in the high-strength, hot-corrosion-resistant martensitic stainless steel of the present disclosure, the mass % of C is controlled so that 0<C≦0.05%.

幾つかの好ましい実施形態では、耐腐食性を確保しつつ強度の要求条件を満たすために、Cの質量%を0.003%~0.05%となるように制御できる。 In some preferred embodiments, the mass % of C can be controlled between 0.003% and 0.05% to meet strength requirements while ensuring corrosion resistance.

Si(ケイ素):本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼において、Siは、製鋼工程における重要な脱酸剤である。しかし、Siは、Cr含有量の高いステンレス鋼において、σ相及びフェライト相の生成を促進し、σ相及びフェライト相がステンレス鋼の靭性及び耐腐食性に悪影響を及ぼす危険性がある。従って、本開示の高強度耐高温腐食性マルテンサイト系ステンレス鋼においては、Siの質量%を0.1%~0.2%となるように制御する。 Si (silicon): In the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure, Si is an important deoxidizing agent in the steelmaking process. However, Si promotes the formation of σ phase and ferrite phase in stainless steel with high Cr content, and there is a risk that σ phase and ferrite phase adversely affect the toughness and corrosion resistance of the stainless steel. Therefore, in the high-strength, high-temperature corrosion-resistant martensitic stainless steel of the present disclosure, the mass % of Si is controlled to be 0.1% to 0.2%.

Mn(マンガン):本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼において、Mnは、ステンレス鋼の強度を向上させることができる。本開示では、管材及びケーシングに必要な強度を保証するために、Mnを0.2質量%以上添加する。しかし、Mnの質量%が1.0%を超えるとステンレス鋼の靭性が低下することになる。従って、本開示の高強度耐高温腐食性マルテンサイト系ステンレス鋼においては、Mnの質量%を0.20%~1.0%となるように制御する。 Mn (manganese): In the high-strength, high-temperature corrosion-resistant martensitic stainless steel according to the present disclosure, Mn can improve the strength of the stainless steel. In the present disclosure, 0.2% by mass or more of Mn is added to ensure the necessary strength of the pipe material and casing. However, when the mass % of Mn exceeds 1.0%, the toughness of the stainless steel is lowered. Therefore, in the high-strength, high-temperature corrosion-resistant martensitic stainless steel of the present disclosure, the mass % of Mn is controlled to be 0.20% to 1.0%.

幾つかの好ましい実施形態において、Mnの偏析に起因する耐腐食性の低下を低減するために、Mnの質量%を0.20%~0.5%となるように制御できる。 In some preferred embodiments, the mass % of Mn can be controlled to be between 0.20% and 0.5% in order to reduce corrosion resistance deterioration due to Mn segregation.

Cr(クロム):本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼において、Crは、ステンレス鋼の耐腐食性を向上させるための重要な元素である。Crを添加することにより、ステンレス鋼の表面に空気中で時間的に迅速に耐腐食性の不動態皮膜を形成させることができ、それにより、高温環境下における管材及びケーシングの耐CO腐食性を向上させることができる。本開示では、得られるステンレス鋼が、180℃以上での耐CO腐食性を有するようにするために、高強度耐高温腐食性マルテンサイト系ステンレス鋼中に添加されるCrの質量%が11.0%以上に達するべきである。しかし、鋼中に添加されるCr元素の質量%が14.0%を超えた場合、フェライトが析出する危険性が高くなり、製品の熱間加工性及び耐腐食性に悪影響を及ぼすことに注意すべきである。従って、本開示の高強度耐高温腐食性マルテンサイト系ステンレス鋼においては、Crの質量%を11.0%~14.0%となるように制御する。 Cr (chromium): In the high-strength, high-temperature corrosion-resistant martensitic stainless steel according to the present disclosure, Cr is an important element for improving the corrosion resistance of the stainless steel. By adding Cr, it is possible to form a corrosion-resistant passive film on the surface of stainless steel quickly in air in time, thereby improving the CO2 corrosion resistance of pipes and casings in high-temperature environments. can be improved. In the present disclosure, the mass % of Cr added in the high-strength, hot-corrosion-resistant martensitic stainless steel is 11 so that the resulting stainless steel has CO2 corrosion resistance at 180°C or higher. should reach 0.0% or more. However, if the mass% of the Cr element added to the steel exceeds 14.0%, the risk of ferrite precipitation increases, which adversely affects the hot workability and corrosion resistance of the product. Should. Therefore, in the high-strength, hot-corrosion-resistant martensitic stainless steel of the present disclosure, the mass % of Cr is controlled to be 11.0% to 14.0%.

幾つかの好ましい実施形態では、より優れた耐腐食性を得るために、Crの質量%を11.5%~13.5%となるように制御できる。 In some preferred embodiments, the mass % of Cr can be controlled to be between 11.5% and 13.5% for better corrosion resistance.

Ni(ニッケル):本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼において、Niは、ステンレス鋼中のオーステナイト領域を拡大させるための重要な元素である。Niは、ステンレス鋼の耐腐食性及び靭性を向上させるだけでなく、高温条件下でのステンレス鋼の耐応力腐食割れ性を効果的に向上させることができる。この効果を得るために、本開示の高強度耐高温腐食性マルテンサイト系ステンレス鋼におけるNiの含有量が、4.0%よりも大きくなるべきである。しかし、Niが、比較的貴重な合金元素でもあることに留意すべきである。高強度耐高温腐食性マルテンサイト系ステンレス鋼において、Niの質量%が6%を超えると、熱処理によりその強度が制御されることができないオーステナイト相が組織中に出現し、それによりステンレス鋼の強度を低下させる。従って、本開示の高強度耐高温腐食性マルテンサイト系ステンレス鋼においては、Niの質量%を4.0%~6.0%となるように制御する。 Ni (nickel): In the high-strength, high-temperature corrosion-resistant martensitic stainless steel according to the present disclosure, Ni is an important element for expanding the austenite region in the stainless steel. Ni can not only improve the corrosion resistance and toughness of stainless steel, but also effectively improve the stress corrosion cracking resistance of stainless steel under high temperature conditions. To obtain this effect, the Ni content in the high-strength, hot-corrosion-resistant martensitic stainless steel of the present disclosure should be greater than 4.0%. However, it should be noted that Ni is also a relatively valuable alloying element. In the high-strength, high-temperature corrosion-resistant martensitic stainless steel, when the Ni mass% exceeds 6%, an austenitic phase whose strength cannot be controlled by heat treatment appears in the structure, thereby increasing the strength of the stainless steel. reduce Therefore, in the high-strength, high-temperature corrosion-resistant martensitic stainless steel of the present disclosure, the Ni mass% is controlled to be 4.0% to 6.0%.

幾つかの好ましい実施形態において、より優れた耐腐食性を得るために、Niの質量%を4.5%~5.5%となるように制御できる。 In some preferred embodiments, the mass % of Ni can be controlled to be between 4.5% and 5.5% for better corrosion resistance.

Mo(モリブデン):本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼において、Moは、特に150℃以上の高温環境下におけるClイオンによるステンレス鋼の孔食に対する耐性を向上させる元素である。しかし、Moは貴金属元素であることに留意すべきである。また、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼中のMoの含有量が2.5%を超えると多量のフェライトが生成され、それにより、ステンレス鋼製品の熱間加工性及び耐腐食性の両方に悪影響を及ぼす。従って、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼においては、Moの質量%を1.5%~2.5%となるように制御する。 Mo (molybdenum): In the high-strength, high-temperature corrosion-resistant martensitic stainless steel according to the present disclosure, Mo is an element that improves the resistance of the stainless steel to pitting corrosion caused by Cl ions, especially in a high-temperature environment of 150°C or higher. However, it should be noted that Mo is a noble metal element. Also, when the content of Mo in the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure exceeds 2.5%, a large amount of ferrite is formed, thereby improving the hot workability and resistance of the stainless steel product. adversely affect both corrosiveness. Therefore, in the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure, the mass % of Mo is controlled to be 1.5% to 2.5%.

幾つかの好ましい実施形態において、より優れた耐腐食性を得るために、Moの質量%を1.8~2.3%となるように制御できる。 In some preferred embodiments, the mass % of Mo can be controlled to be 1.8-2.3% for better corrosion resistance.

N(窒素):本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼において、Nは、ステンレス鋼の耐孔食性を向上させる元素である。一方、Nは、オーステナイト形成元素として、本開示によるステンレス鋼のマルテンサイト比率を高めることができ、それにより、ステンレス鋼の強度を効果的に向上させることができる。しかし、鋼中のN元素の含有量が多すぎると、窒化物が形成されやすくなり、ステンレス鋼の靭性が低下する。従って、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼においては、Nの質量%を0.001%~0.10%となるように制御する。 N (Nitrogen): In the high-strength, high-temperature corrosion-resistant martensitic stainless steel according to the present disclosure, N is an element that improves the pitting corrosion resistance of the stainless steel. On the other hand, N, as an austenite-forming element, can increase the martensite ratio of the stainless steel according to the present disclosure, thereby effectively improving the strength of the stainless steel. However, if the N element content in the steel is too high, nitrides are likely to be formed and the toughness of the stainless steel is reduced. Therefore, in the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure, the mass % of N is controlled to be 0.001% to 0.10%.

Al(アルミニウム):本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼において、Alを製錬工程で脱酸剤として添加する。脱酸の効果を得るためには、Alの添加量は0.01%以上であるべきである。しかし、Alの含有量が0.04%を超えるとステンレス鋼の靭性が低下する。従って、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼においては、Alの質量%を0.01%~0.04%となるように制御する。 Al (aluminum): In the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure, Al is added as a deoxidizing agent during the smelting process. In order to obtain the deoxidizing effect, the amount of Al added should be 0.01% or more. However, if the Al content exceeds 0.04%, the toughness of the stainless steel is lowered. Therefore, in the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure, the mass % of Al is controlled to be 0.01% to 0.04%.

V、Nb(バナジウム、ニオブ):本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼において、V及びNbは両方共、重要なマイクロ合金元素である。一般に、結晶粒は炭窒化物の析出によるピンニング効果で微細化されることができ、それにより、ステンレス鋼の強度を向上させる。しかし、本発明者らは、詳細な研究により、本開示において、VとNbとの複合添加により、バナジウムニオブ炭窒化物を形成できることを見出した。バナジウムニオブ炭窒化物が均一に分布することで、結晶粒を微細化しつつ、ステンレス鋼の強度を向上させることができる。上記の効果を得るためには、ステンレス鋼中のV元素の添加量を0.03%以上にし、且つ、Nb元素の添加量を0.01%以上にしなければならない。しかし、一方、V及びNbは貴金属元素であり、ステンレス鋼中のV元素の添加量が0.2%を超え、且つNb元素の添加量が0.1%を超えた場合、合金の製造コストが大幅に上昇し、また、ステンレス鋼の靭性が低下することになる。従って、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼においては、Vの質量%を0.03%~0.2%となるように制御し、且つNbの質量%を0.01%~0.1%となるように制御する。 V, Nb (vanadium, niobium): Both V and Nb are important micro-alloying elements in the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure. In general, grains can be refined by the pinning effect of precipitation of carbonitrides, thereby improving the strength of stainless steel. However, through detailed research, the present inventors have found in the present disclosure that combined addition of V and Nb can form vanadium niobium carbonitrides. Uniform distribution of the vanadium niobium carbonitride can improve the strength of the stainless steel while refining the crystal grains. In order to obtain the above effect, the added amount of the V element in the stainless steel must be 0.03% or more, and the added amount of the Nb element must be 0.01% or more. However, on the other hand, V and Nb are noble metal elements. increases significantly and the toughness of the stainless steel decreases. Therefore, in the high-strength, high-temperature corrosion-resistant martensitic stainless steel according to the present disclosure, the mass% of V is controlled to be 0.03% to 0.2%, and the mass% of Nb is 0.01%. It is controlled to be ~0.1%.

好ましくは、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼において、化学元素の質量%での含有量が、(V+Nb):(C+N)=2:1~8:1を満たす。V、Nb、C及びNは、それぞれ、対応する元素の質量%での含有量を表す。 Preferably, in the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure, the content of chemical elements in mass % satisfies (V+Nb):(C+N)=2:1 to 8:1. V, Nb, C and N each represent the content of the corresponding element in mass %.

上述の技術的解決手段において、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼では、V、Nb、C及びNの含有量を質量%で(V+Nb):(C+N)=2:1~8:1を満たすように制御することにより、上述の元素によるステンレス鋼の強度及び靭性の改善及び増大効果を効果的に実現させることができる。 In the above technical solution, in the high-strength, high-temperature corrosion-resistant martensitic stainless steel according to the present disclosure, the content of V, Nb, C and N in mass% (V + Nb): (C + N) = 2: 1 ~ By controlling the ratio to satisfy 8:1, the effect of improving and increasing the strength and toughness of stainless steel by the above elements can be effectively realized.

好ましくは、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼は、さらに、Ti、Zr及びReの少なくとも1つを含み、Ti、Zr及びReのいずれか1つの質量%での含有量は0.2%以下であり、且つ、Ti+Zr+Re≦0.3%である。式中、Ti、Zr及びReは、それぞれ、対応する元素の、質量%での含有量を表す。 Preferably, the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure further includes at least one of Ti, Zr, and Re, and the content of any one of Ti, Zr, and Re is 0.2% or less, and Ti+Zr+Re≦0.3%. In the formula, Ti, Zr and Re each represent the content of the corresponding element in mass %.

本開示の技術的解決手段では、本開示の高強度耐高温腐食性マルテンサイト系ステンレス鋼は、Ti、Zr及びReの少なくとも1つをさらに含み、Reは他の希土類元素に置換えられてもよい。Ti、Zr及びReのうちの1つ以上をステンレス鋼に含有させると、ステンレス鋼における炭窒化物の析出及び結晶粒の微細化に寄与し、これにより、ステンレス鋼の強度及び靭性を向上させることができる。しかし、これらの元素のいずれかの質量%での含有量が0.2%を超えると、ステンレス鋼の靭性が低下することに留意すべきである。従って、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼においては、Ti、Zr及びReのいずれか1つの質量%での含有量は、0.2%以下であり、Ti+Zr+Re≦0.3%である。 In the technical solution of the present disclosure, the high-strength, high-temperature corrosion-resistant martensitic stainless steel of the present disclosure further includes at least one of Ti, Zr and Re, and Re may be replaced by other rare earth elements . Including one or more of Ti, Zr and Re in stainless steel contributes to the precipitation of carbonitrides and refinement of crystal grains in the stainless steel, thereby improving the strength and toughness of the stainless steel. can be done. However, it should be noted that when the content in mass % of any of these elements exceeds 0.2%, the toughness of the stainless steel is reduced. Therefore, in the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure, the content of any one of Ti, Zr, and Re is 0.2% or less, and Ti + Zr + Re ≤ 0.3 %.

好ましくは、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼において、前記不可避的不純物元素は、少なくともS、P及びOを含み、P、S及びOの含有量は、質量%で、P≦0.03%、S≦0.01%、及びO≦0.004%のうちの少なくとも1つを満たす。 Preferably, in the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure, the unavoidable impurity elements include at least S, P, and O, and the content of P, S, and O is, in mass%, P At least one of ≦0.03%, S≦0.01%, and O≦0.004% is satisfied.

P(リン):本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼において、Pは、ステンレス鋼の高温での耐CO腐食性を低下させる有害元素であり、ステンレス鋼の熱間加工性に悪影響を与える。Pの含有割合が0.03%を超えると、ステンレス鋼の耐腐食性が高温環境下での要求性能を満たさなくなる。従って、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼においては、Pの質量%での含有量を、P≦0.03%となるように制御する。 P (Phosphorus): In the high-strength, high-temperature corrosion-resistant martensitic stainless steel according to the present disclosure, P is a harmful element that reduces the high-temperature CO2 corrosion resistance of stainless steel, and improves the hot workability of stainless steel. adversely affect If the P content exceeds 0.03%, the corrosion resistance of stainless steel does not meet the required performance in a high temperature environment. Therefore, in the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure, the content of P in mass% is controlled so that P≦0.03%.

幾つかの好ましい実施形態において、より良好な耐腐食性を得るために、Pの質量%を、P≦0.015%となるように制御できる。 In some preferred embodiments, the weight percent of P can be controlled such that P≦0.015% in order to obtain better corrosion resistance.

S(硫黄):本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼において、Sは、ステンレス鋼の熱間加工性を低下させ、且つステンレス鋼の衝撃靭性に悪影響を及ぼす有害元素である。Sの質量%が0.01%を超えると、鋼管を正常に製造することができなくなる。従って、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼においては、Sの含有量(質量%)を、S≦0.01%となるように制御する。 S (sulfur): In the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure, S is a harmful element that reduces the hot workability of the stainless steel and adversely affects the impact toughness of the stainless steel. If the mass % of S exceeds 0.01%, the steel pipe cannot be produced normally. Therefore, in the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure, the S content (% by mass) is controlled so that S≦0.01%.

幾つかの好ましい実施形態において、より良好な耐腐食性を得るために、Sの質量%を、S≦0.005%となるように制御できる。 In some preferred embodiments, the weight percent of S can be controlled such that S≦0.005% in order to obtain better corrosion resistance.

O(酸素):本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼において、O元素は鋼中に酸化物として存在し、これがステンレス鋼の熱間加工性、衝撃靭性及び耐腐食性に悪影響を与える。従って、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼においては、Oの含有量を質量%でO≦0.004%となるように制御する。 O (oxygen): In the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure, the O element exists as an oxide in the steel, which adversely affects the hot workability, impact toughness, and corrosion resistance of the stainless steel. give. Therefore, in the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure, the O content is controlled so that O≦0.004% by mass.

好ましくは、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼において、高強度及び耐高温腐食性を得るために、化学元素の質量%での含有量は、以下の少なくとも1つを満たす。すなわち、
Cを0.003%~0.05%、
Mnを0.20%~0.5%、
Crを11.5%~13.5%、
Niを4.5%~5.5%及び、
Moを1.8%~2.3%。
Preferably, in the high-strength, hot-corrosion-resistant martensitic stainless steel according to the present disclosure, in order to obtain high strength and hot-corrosion resistance, the content of chemical elements in mass % satisfies at least one of the following: i.e.
0.003% to 0.05% of C,
Mn from 0.20% to 0.5%,
11.5% to 13.5% Cr,
4.5% to 5.5% Ni and
Mo from 1.8% to 2.3%.

好ましくは、本開示による高強度耐高温腐食性マルテンサイト系ステンレス鋼は、以下の特性のうちの少なくとも1つを有する。すなわち、室温での降伏強度が862MPaより大きいか又はそれに等しい(すなわち125ksiに合致);180℃での降伏強度が800MPa以上;-20℃での衝撃エネルギーが140J以上;及び、180℃でのCO及び高Cl濃度を含む環境での均一腐食速度が0.125mm/a以下、である。COを含む環境は、例えば、COの分圧が2MPa以上、例えば6MPaである。高Cl濃度を含む環境は、例えば、塩化物イオン濃度が50000mg/L以上、例えば、塩化物イオン濃度が100000mg/Lである。 Preferably, the high strength hot corrosion resistant martensitic stainless steel according to the present disclosure has at least one of the following properties. yield strength at 180°C greater than or equal to 800 MPa; impact energy at -20°C greater than or equal to 140 J; 2 and a uniform corrosion rate of 0.125 mm/a or less in an environment containing high Cl concentration. An environment comprising CO2 is, for example, a partial pressure of CO2 of 2 MPa or more, for example 6 MPa. An environment containing a high Cl concentration is, for example, a chloride ion concentration of 50000 mg/L or higher, for example a chloride ion concentration of 100000 mg/L.

従って、本開示の別の目的は、125ksiまでの降伏強度を有する管材及びケーシングを提供することである。この管材及びケーシングは、温度が180℃以上、二酸化炭素(CO)の分圧が2MPa以上の高濃度環境での使用に適しており、二酸化炭素及び塩化物イオンに対する優れた耐高温腐食性、優れた低温衝撃靭性、180℃以上であっても高い降伏強度、すなわち高温での耐強度劣化性があり、高強度、高靭性、及び高耐腐食性という重要な利点を有する。 Accordingly, another object of the present disclosure is to provide tubing and casings having a yield strength of up to 125 ksi. This pipe material and casing are suitable for use in a high-concentration environment where the temperature is 180° C. or higher and the partial pressure of carbon dioxide (CO 2 ) is 2 MPa or higher, and has excellent high-temperature corrosion resistance to carbon dioxide and chloride ions. It has excellent low-temperature impact toughness, high yield strength even above 180° C., ie resistance to strength deterioration at high temperatures, and has the important advantages of high strength, high toughness and high corrosion resistance.

上述の目的を達成するために、本開示は、上述のような高強度耐高温腐食性マルテンサイト系ステンレス鋼から製造される管材及びケーシングを提供する。 To achieve the above objectives, the present disclosure provides tubing and casings made from high strength, hot corrosion resistant martensitic stainless steel as described above.

従って、本開示のさらなる目的は、上述のような管材及びケーシングの製造方法を提供することである。この製造方法によって得られる管材及びケーシングは、125ksiまでの降伏強度を有し、180℃以上且つ高濃度の二酸化炭素(CO)の環境下での使用に適し、二酸化炭素及び塩化物イオンに対する優れた耐高温腐食性、優れた低温衝撃靭性及び耐高温強度劣化性を有し、且つ、高強度、高靭性、及び高耐腐食性という重要な利点を有する。 It is therefore a further object of the present disclosure to provide a method of manufacturing tubing and casings as described above. The pipe material and casing obtained by this manufacturing method have a yield strength of up to 125 ksi, are suitable for use in an environment of 180 ° C. or higher and high concentrations of carbon dioxide (CO 2 ), and have excellent resistance to carbon dioxide and chloride ions. It has excellent high temperature corrosion resistance, excellent low temperature impact toughness and high temperature strength deterioration resistance, and has the important advantages of high strength, high toughness and high corrosion resistance.

上述の目的を達成するために、本開示は、上記のような管材及びケーシングの製造方法を提供し、この方法は、以下のステップを含む。すなわち、
(1)パイプブランクを製造するステップと、
(2)前記パイプブランクからシームレス管を製造し、次いで、前記シームレス管を室温まで冷却するステップと、
(3)焼入れ:前記シームレス管を、A3~1050℃の温度に加熱し、熱保存をt×(0.5~3)分間行い;次いで、前記シームレス管を、2℃/秒~40℃/秒の冷却速度で、温度T1まで冷却し、そして、熱保存をt×(0.5~1.5)分間行い、T1=M-80℃、Mがマルテンサイト変態開始時の温度であるステップと、
(4)第1焼戻し:前記シームレス管を、焼戻し処理のために温度T2まで加熱し、熱保存をt×(3~7)分間行い、次いで、前記シームレス管を5℃/秒~30℃/秒の冷却速度で100℃以下まで冷却し、T2の範囲が500℃~A3であるステップと、
(5)第2焼戻し:前記シームレス管を、第2焼戻し処理のために温度T3まで加熱し、そして、熱保存をt×(3~7)分間行い、次いで、前記シームレス管を5℃/秒~30℃/秒の冷却速度で100℃以下まで冷却し、T3=T2-40℃であるステップと、を含み、
tは肉厚(mm)を表し、A3は、鋼のオーステナイト変態が終了する温度である。
In order to achieve the above objectives, the present disclosure provides a method of manufacturing tubing and casing as described above, which method includes the following steps. i.e.
(1) manufacturing a pipe blank;
(2) manufacturing a seamless pipe from the pipe blank and then cooling the seamless pipe to room temperature;
(3) Quenching: The seamless tube is heated to a temperature of AC 3-1050° C. and heat preserved for t×(0.5-3) minutes; C./s cooling rate to temperature T1, and thermal storage is performed for t×(0.5-1.5) minutes, T1=M S −80° C., M S at the start of martensite transformation. a step that is temperature;
(4) First tempering: The seamless tube is heated to temperature T2 for tempering treatment, thermal storage is performed for t×(3-7) minutes, and then the seamless tube is heated from 5° C./s to 30° C./ cooling to 100° C. or less at a cooling rate of 1 sec and T2 in the range of 500° C. to A C 3;
(5) Second tempering: The seamless tube is heated to temperature T3 for the second tempering treatment, and heat preservation is performed for t×(3-7) minutes, and then the seamless tube is heated at 5° C./s. cooling to 100° C. or less at a cooling rate of ˜30° C./sec, where T3=T2−40° C.;
t represents the wall thickness (mm) and A C 3 is the temperature at which the austenite transformation of the steel ends.

本開示による管材及びケーシングの製造方法において、ステップ(1)では、パイプブランクを、慣用的な製錬方法により、例えば、転炉、電気炉、真空誘導炉等を用いて、連続鋳造、インゴット鋳造等により製造できる。ステップ(2)において、前記パイプブランクからシームレス管を製造する工程では、パイプブランクを、一般的に用いられているマンネスマン製管機を用いて規定のサイズのシームレス鋼管に圧延し、次いで、製造されたシームレス鋼管を室温まで冷却する。 In the method of manufacturing pipes and casings according to the present disclosure, in step (1), pipe blanks are cast by conventional smelting methods, such as continuous casting, ingot casting, using a converter, electric furnace, vacuum induction furnace, etc. etc. can be manufactured. In the step (2), in the process of producing a seamless pipe from the pipe blank, the pipe blank is rolled into a seamless steel pipe of a specified size using a commonly used Mannesmann pipe mill, and then produced. Cool the seamless steel pipe to room temperature.

ステップ(3)において、シームレス管の加熱温度をA3~1050℃に制御する理由は、A3未満の温度で加熱を行った場合、本開示のステンレス鋼を十分にオーステナイト化できず、それにより、その後の処理でステンレス鋼おいて均一な析出を得ることが困難になるからである。幾つかの好ましい実施形態において、加熱は、好ましくは1000℃以下の温度で行われる。焼入れ加熱温度が1000℃を超えると、オーステナイト組織が成長し、それにより、ステンレス鋼の衝撃靭性が劣化する。さらに、ステップ(3)においては、ステンレス鋼を完全にオーステナイト化して熱保存を行った後、冷却プロセス中に温度T1で熱保存プロセスを行うので、V及びNbの炭化物を、マルテンサイトラス間の保持されたオーステナイト中に十分に分散させることができ、それと同時に、マルテンサイトラス中のC含有量の低減により、マルテンサイトマトリックスの靱性及び可塑性を効果的に向上させることができる。ステップ(4)における、焼戻し温度T2での次の熱保存プロセスにおいて、逆変態オーステナイトがマルテンサイトラス間に形成され、VとNbとの炭化物が逆変態オーステナイト内に移動し、それにより、ステンレス鋼の強度を向上させる。その金属組織は、マルテンサイトラス基部とラス境界の一部との間に形成された逆変態オーステナイト及び保持オーステナイトである。次いで、上記解決手段におけるステップ(5)において、第2焼戻し処理により、第1焼戻しで未分解であったマルテンサイトを変態させて新たな逆変態オーステナイトを形成させ、それにより、常温強度、低温衝撃靭性、及び、180℃以上での強度を、ステンレス鋼の硬度を下げつつ向上させることができる。 The reason for controlling the heating temperature of the seamless tube to A C 3 to 1050° C. in step (3) is that if the heating is performed at a temperature lower than A C 3, the stainless steel of the present disclosure cannot be sufficiently austenitized, This makes it difficult to obtain uniform precipitation on the stainless steel in subsequent treatments. In some preferred embodiments, heating is preferably performed at a temperature of 1000° C. or less. If the quenching heating temperature exceeds 1000° C., an austenitic structure grows, thereby deteriorating the impact toughness of the stainless steel. Furthermore, in step (3), after the stainless steel is fully austenitized and heat-preserved, the heat-preservation process is performed at temperature T1 during the cooling process, so that the carbides of V and Nb are retained between the martensite laths. At the same time, the reduction of C content in the martensite lath can effectively improve the toughness and plasticity of the martensite matrix. In the subsequent heat preservation process at tempering temperature T2 in step (4), reverse transformed austenite is formed between the martensitic laths and carbides of V and Nb migrate into the reverse transformed austenite, thereby increasing the strength of the stainless steel. Improve strength. The metallographic structure is reverse transformed austenite and retained austenite formed between the martensitic lath base and part of the lath boundary. Next, in step (5) in the above solution, the second tempering treatment transforms the martensite that was not decomposed in the first tempering to form new reverse transformed austenite, thereby improving room temperature strength and low temperature impact Toughness and strength above 180° C. can be improved while decreasing the hardness of stainless steel.

Nb及びVを複合添加しない従来の超低炭素マルテンサイト系ステンレス鋼、並びに、焼入れ及び焼戻しプロセスと比較して、本開示の技術的解決策は、強度、靭性及び塑性を大幅に向上させることができる。また、炭化物の分布がより均一になるため、焼戻し後の組織が微細化し、これにより、180℃の高温での長期使用における強度及び耐腐食性が向上する。 Compared to the conventional ultra-low carbon martensitic stainless steel without combined addition of Nb and V, and the quenching and tempering process, the technical solution of the present disclosure can greatly improve strength, toughness and plasticity. can. In addition, since the distribution of carbides becomes more uniform, the structure after tempering becomes finer, thereby improving the strength and corrosion resistance in long-term use at a high temperature of 180°C.

好ましくは、本開示による管材及びケーシングの製造方法では、ステップ(3)において、加熱温度は、A3~1000℃である。 Preferably, in the method for manufacturing tubing and casing according to the present disclosure, in step (3), the heating temperature is A C 3-1000°C.

先行技術と比較して、高強度耐高温腐食性マルテンサイト系ステンレス鋼及びその製造方法は、以下の利点及び有益な効果を有する。 Compared with the prior art, the high-strength, hot-corrosion-resistant martensitic stainless steel and its production method have the following advantages and beneficial effects.

合理的な化学組成系設計により、本開示は、高強度耐高温腐食性マルテンサイト系ステンレス鋼を提供し、このステンレス鋼は、125ksiまでの降伏強度を有し、180℃以上で高濃度二酸化炭素(CO)の環境下での使用に適し、二酸化炭素及び塩化物イオンに対する優れた耐高温腐食性を有し、尚且つ、優れた低温衝撃靭性及び耐高温強度劣化性を有する。 With rational chemical composition system design, the present disclosure provides high strength hot corrosion resistant martensitic stainless steel, which has a yield strength of up to 125 ksi and a high concentration of carbon dioxide at 180°C or higher. It is suitable for use in a (CO 2 ) environment, has excellent high-temperature corrosion resistance to carbon dioxide and chloride ions, and has excellent low-temperature impact toughness and high-temperature strength deterioration resistance.

また、本開示の高強度耐高温腐食性マルテンサイト系ステンレス鋼から製造される管材及びケーシングも、高強度、高靭性、及び高耐腐食性という大きな利点を有する優れた特性を有し、多数の過酷な環境下で有効に使用されることができる。 Tubing and casings made from the high-strength, hot-corrosion-resistant martensitic stainless steel of the present disclosure also have excellent properties with the major advantages of high strength, high toughness, and high corrosion resistance, and are It can be used effectively in harsh environments.

本開示による、高強度耐高温腐食性マルテンサイト系ステンレス鋼及びその製造方法を、以下に、具体例に関してさらに説明及び図示するが、これらは、本発明の技術的解決策を不当に制限するものではない。 The high-strength, hot-corrosion-resistant martensitic stainless steel and its production method according to the present disclosure are further described and illustrated below with respect to specific examples, which unduly limit the technical solutions of the present invention. isn't it.

実施例1~15及び比較例1~7
表1に、実施例1~15の高強度耐高温腐食性マルテンサイト系ステンレス鋼、及び、比較例1~7のステンレス鋼に含まれる化学元素の質量%を示す。
Examples 1-15 and Comparative Examples 1-7
Table 1 shows mass % of chemical elements contained in the high-strength, high-temperature corrosion-resistant martensitic stainless steels of Examples 1-15 and the stainless steels of Comparative Examples 1-7.

Figure 2023526739000001
Figure 2023526739000001

実施例1~15の高強度耐高温腐食性マルテンサイト系ステンレス鋼から製造された管材、及び、比較例1~3のステンレス鋼から製造された管材は、以下のステップにより製造された。
(1)パイプブランクを製造した。
(2)パイプブランクから、外径88.9mm、肉厚7.34mmのシームレス管を製造し、その後室温まで冷却した。
(3)焼入れ:シームレス管をA3~1050℃、好ましくはA3~1000℃の温度に加熱し、t×(0.5~3)分間熱保存した(第1熱保存時間として示す)。その後、シームレス管を、2℃/秒~40℃/秒の冷却速度で、温度T1まで冷却し、t×(0.5~1.5)分間熱保存した(第2熱保存時間として示す)。T1=M-80℃、Mは、マルテンサイト変態開始時の温度である。
(4)第1焼戻し:シームレス管を、焼戻し処理のために再び温度T2まで加熱し、t×(3~7)分間熱保存し(第3熱保存時間として示す)、その後、5℃/秒~30℃/秒の冷却速度で100℃以下まで冷却した。T2の範囲は500℃~A3である。
(5)第2焼戻し:第2焼戻し処理を温度T3で行い、t×(3~7)分間熱保存し(第4熱保存時間として示す)、その後、5℃/秒~30℃/秒の冷却速度で100℃以下まで冷却した。T3=T2-40℃であり、tは肉厚(mm)を表す。
The tubes made from the high-strength, hot-corrosion-resistant martensitic stainless steel of Examples 1-15 and the tubes made from the stainless steel of Comparative Examples 1-3 were made by the following steps.
(1) A pipe blank was manufactured.
(2) A seamless pipe having an outer diameter of 88.9 mm and a wall thickness of 7.34 mm was produced from the pipe blank and then cooled to room temperature.
(3) Quenching: The seamless tube is heated to a temperature of A C 3 to 1050° C., preferably A C 3 to 1000° C., and heat stored for t × (0.5 to 3) minutes (shown as the first heat storage time ). After that, the seamless tube was cooled to temperature T1 at a cooling rate of 2° C./sec to 40° C./sec and heat-stored for t×(0.5-1.5) minutes (indicated as the second heat storage time). . T1=M S −80° C., M S is the temperature at the start of martensite transformation.
(4) First tempering: The seamless tube is heated again to temperature T2 for tempering treatment, heat-storage for t×(3-7) minutes (indicated as the third heat-storage time), and then 5° C./sec. Cooled to 100° C. or less at a cooling rate of ˜30° C./sec. The range of T2 is from 500° C. to A C 3.
(5) Second tempering: The second tempering treatment is performed at temperature T3, heat stored for t×(3 to 7) minutes (shown as the fourth heat storage time), and then heated at a temperature of 5° C./sec to 30° C./sec. It cooled to 100 degrees C or less at the cooling rate. T3=T2-40° C., and t represents the thickness (mm).

表1を参照すると、比較例4~6のステンレス鋼のグレードが、それぞれ、比較例1~3のグレード、すなわちB1~B3に相当することに留意されたい。比較例4~6のステンレス鋼管に関し、慣用的な熱処理方法のみを使用した。すなわち、シームレス管を1000℃で30分間加熱し、室温まで空冷し、その後、600℃で1回焼戻し熱処理を行い、そして40分間熱保存した。 Referring to Table 1, note that the stainless steel grades of Comparative Examples 4-6 correspond to the grades of Comparative Examples 1-3, B1-B3, respectively. For the stainless steel tubes of Comparative Examples 4-6, only conventional heat treatment methods were used. That is, the seamless tube was heated at 1000° C. for 30 minutes, air-cooled to room temperature, then tempered once at 600° C., and heat-stored for 40 minutes.

表2-1及び表2-2に、実施例1~15及び比較例1~3の製造方法の各ステップにおける具体的なプロセスパラメータを示す。 Tables 2-1 and 2-2 show specific process parameters in each step of the manufacturing methods of Examples 1-15 and Comparative Examples 1-3.

Figure 2023526739000002
Figure 2023526739000002

Figure 2023526739000003
Figure 2023526739000003

実施例1~15の高強度耐高温腐食性マルテンサイト系ステンレス鋼及び比較例1~7のステンレス鋼から製造した管材の関連特性、例えば、降伏強度YS、引張強度TS、衝撃靭性などを試験して、それらの特性をそれぞれ評価するための試験データを得た。その具体的試験項目及び試験方法は以下の通りである。
1)降伏強度及び引張強度試験:製造した鋼管をAPIアーク試験片に加工し、そして、試験後にISO6892規格に基づいて平均値をとることにより降伏強度試験データを取得した。
2)高温降伏強度試験:製造した鋼管をニアアーク試験片に加工し、そして、高温引張試験をISO6892規格に基づいて行い、平均値をとることにより降伏強度を求めた。
3)シャルピーVノッチ衝撃吸収エネルギー(すなわち衝撃靭性)試験:体積5×10×55(mm)のVノッチ衝撃試験片を鋼管から採取し、GB/T229規格に基づいて試験後の平均値をとり、API5CT規格に基づいて10×10×55(mm)のフルサイズの平均値に変換した。試験温度は-20℃である。
4)CO及びCl存在下での高温での腐食試験:試験片をCO分圧6MPa、Cl濃度100000mg/L、液流速1m/sで、温度180℃のオートクレーブ内の液中に浸漬させた。試験時間は240時間であった。試験前後の試験片の重量を比較することにより、均一の腐食速度を算出した。
The relevant properties, such as yield strength YS, tensile strength TS, impact toughness, etc., of the tubes made from the high strength hot corrosion resistant martensitic stainless steels of Examples 1-15 and the stainless steels of Comparative Examples 1-7 were tested. and obtained test data to evaluate each of their properties. The specific test items and test methods are as follows.
1) Yield strength and tensile strength test: The produced steel pipe was processed into API arc test pieces, and yield strength test data was obtained by taking the average value based on the ISO6892 standard after the test.
2) High-temperature yield strength test: The produced steel pipe was processed into a near-arc test piece, and a high-temperature tensile test was performed based on the ISO6892 standard, and the yield strength was determined by taking the average value.
3) Charpy V-notch impact absorption energy (i.e., impact toughness) test: A V-notch impact test piece with a volume of 5 x 10 x 55 (mm) is taken from a steel pipe, and the average value after the test is taken based on the GB/T229 standard. , converted to the average value of the full size of 10×10×55 (mm) based on the API5CT standard. The test temperature is -20°C.
4) Corrosion test at high temperature in the presence of CO 2 and Cl - : The test piece was placed in a liquid in an autoclave at a temperature of 180 ° C. with a CO 2 partial pressure of 6 MPa, a Cl - concentration of 100,000 mg / L, and a liquid flow rate of 1 m / s. soaked. The test time was 240 hours. A uniform corrosion rate was calculated by comparing the weight of the specimen before and after the test.

表3は、実施例1~15及び比較例1~7から製造された管材における関連する性能パラメータを記載している。 Table 3 lists relevant performance parameters for tubing made from Examples 1-15 and Comparative Examples 1-7.

Figure 2023526739000004
Figure 2023526739000004

表3から分かるように、本開示の実施例1~15において、125ksiの要件を満たす降伏強度YSが862MPa以上であり、180℃での降伏強度が810MPa以上であり、-20℃での衝撃靭性が143J以上であり、CO及び高Cl濃度を含む環境での180℃での均一腐食速度が0.115mm/a以下である。本開示の実施例1~15は、比較例1~3及び比較例4~6と比較して、総合性能がより優れているという利点を有することが分かる。比較例1~3における成分は本開示の範囲外であり、比較例1のCr元素の含有量、比較例2のMo元素の含有量、比較例3のNi元素の含有量が開示の範囲外である。また、(V+Nb):(C+N)が2:1~8:1の範囲外であり、これにより、平均腐食速度が0.125mm/a以上になり低靭性になった。比較例4~6においては、成分が本開示の範囲外であることに加え、焼入れ方法及び焼戻し方法が本開示の製造方法の範囲外であり、靭性がさらに低下し、高温での降伏強度が低くなっている。従って、比較例と比較して、本開示の実施例1~15により製造された管材は、二酸化炭素及び塩化物イオンに対する耐高温腐食性が優れており、また、低温衝撃靭性及び耐高温強度劣化性も優れているという大きな利点を有する。 As can be seen from Table 3, in Examples 1-15 of the present disclosure, the yield strength YS that meets the requirement of 125 ksi is 862 MPa or more, the yield strength at 180° C. is 810 MPa or more, and the impact toughness at −20° C. is 143 J or more, and the uniform corrosion rate at 180° C. in an environment containing CO 2 and high Cl concentration is 0.115 mm/a or less. It can be seen that Examples 1-15 of the present disclosure have the advantage of better overall performance compared to Comparative Examples 1-3 and Comparative Examples 4-6. The components in Comparative Examples 1 to 3 are outside the scope of the disclosure, and the content of Cr element in Comparative Example 1, the content of Mo element in Comparative Example 2, and the content of Ni element in Comparative Example 3 are outside the scope of disclosure. is. Also, (V+Nb):(C+N) was outside the range of 2:1 to 8:1, which resulted in an average corrosion rate of 0.125 mm/a or more and low toughness. In Comparative Examples 4 to 6, in addition to the components being outside the scope of the present disclosure, the quenching method and tempering method were outside the scope of the manufacturing method of the present disclosure, the toughness was further reduced, and the yield strength at high temperatures was low. getting low. Therefore, compared to the comparative examples, the pipe materials manufactured according to Examples 1 to 15 of the present disclosure have excellent hot corrosion resistance to carbon dioxide and chloride ions, and also have excellent low temperature impact toughness and high temperature strength deterioration resistance. It has the great advantage of being highly durable.

上述の実施例が、単に本発明の具体的な実施例を例示したに過ぎないことに留意されたい。本発明が上述の実施例に限定されることなく、多くの類似の変型又は改変が可能であることが明らかである。本開示に開示された内容から当業者が直接導き出すことができ、又は容易に思いつくことができる全ての変型又は修正は、本発明の保護範囲内にあることが意図されている。 It should be noted that the above-described embodiments merely illustrate specific embodiments of the present invention. It is clear that many similar variations or modifications are possible without the invention being limited to the examples described above. Any variation or modification that can be directly derived or easily conceived by a person skilled in the art from the content disclosed in the present disclosure is intended to fall within the protection scope of the present invention.

Claims (10)

以下の化学元素を質量%で、すなわち、
0<C≦0.05%、Siを0.1%~0.2%、Mnを0.20%~1.0%、Crを11.0%~14.0%、Niを4.0%~6.0%、Moを1.5%~2.5%、Nを0.001%~0.10%、Vを0.03%~0.2%、Nbを0.01%~0.1%、Alを0.01%~0.04%含有する、高強度耐高温腐食性マルテンサイト系ステンレス鋼。
The following chemical elements in mass %, i.e.
0<C≦0.05%, Si 0.1% to 0.2%, Mn 0.20% to 1.0%, Cr 11.0% to 14.0%, Ni 4.0% % to 6.0%, Mo 1.5% to 2.5%, N 0.001% to 0.10%, V 0.03% to 0.2%, Nb 0.01% to High-strength, high-temperature corrosion-resistant martensitic stainless steel containing 0.1% Al and 0.01% to 0.04% Al.
以下の化学元素を質量%で、
0<C≦0.05%、Siを0.1%~0.2%、Mnを0.20%~1.0%、Crを11.0%~14.0%、Niを4.0%~6.0%、Moを1.5%~2.5%、Nを0.001%~0.10%、Vを0.03%~0.2%、Nbを0.01%~0.1%、Alを0.01%~0.04%含有し、残部がFe及び不可避的不純物である、請求項1に記載の高強度耐高温腐食性マルテンサイト系ステンレス鋼。
The following chemical elements in mass %,
0<C≦0.05%, Si 0.1% to 0.2%, Mn 0.20% to 1.0%, Cr 11.0% to 14.0%, Ni 4.0% % to 6.0%, Mo 1.5% to 2.5%, N 0.001% to 0.10%, V 0.03% to 0.2%, Nb 0.01% to 2. The high-strength, hot-corrosion-resistant martensitic stainless steel according to claim 1, containing 0.1% Al, 0.01% to 0.04% Al, and the balance being Fe and unavoidable impurities.
前記化学元素の質量%での含有量が、(V+Nb):(C+N)=2:1~8:1を満たす、請求項1又は2に記載の高強度耐高温腐食性マルテンサイト系ステンレス鋼。 3. The high-strength, hot-corrosion-resistant martensitic stainless steel according to claim 1, wherein the content of said chemical elements in mass % satisfies (V+Nb):(C+N)=2:1 to 8:1. さらに、Ti、Zr及びReの少なくとも1つを含み、Ti、Zr及びReのいずれか1つの質量%での含有量が、0.2%以下であり、且つ、Ti+Zr+Re≦0.3%である、請求項1又は2に記載の高強度耐高温腐食性マルテンサイトステンレス鋼。 Furthermore, at least one of Ti, Zr and Re is included, and the content of any one of Ti, Zr and Re is 0.2% or less and Ti + Zr + Re ≤ 0.3% The high-strength, hot-corrosion-resistant martensitic stainless steel according to claim 1 or 2. 前記不可避的不純物元素が少なくともS、P及びOを含み、P、S及びOの質量%での含有量が、P≦0.03%、S≦0.01%、及びO≦0.004%の少なくとも1つを満たす、請求項2に記載の高強度耐高温腐食性マルテンサイト系ステンレス鋼。 The unavoidable impurity element contains at least S, P and O, and the content of P, S and O in mass% is P ≤ 0.03%, S ≤ 0.01%, and O ≤ 0.004% The high-strength, hot-corrosion-resistant martensitic stainless steel according to claim 2, which satisfies at least one of: 前記化学元素の質量%での含有量が、
Cを0.003%~0.05%
Mnを0.20%~0.5%
Crを11.5%~13.5%
Niを4.5%~5.5%、及び
Moを1.8%~2.3%、
の少なくとも1つを満たす、請求項1又は2に記載の高強度耐高温腐食性マルテンサイト系ステンレス鋼。
The content in mass % of the chemical element is
0.003% to 0.05% of C
0.20% to 0.5% of Mn
11.5% to 13.5% Cr
4.5% to 5.5% Ni and 1.8% to 2.3% Mo;
The high-strength, hot-corrosion-resistant martensitic stainless steel according to claim 1 or 2, which satisfies at least one of:
以下の特性、すなわち、室温での降伏強度が862MPa以上、180℃での降伏強度が800MPa以上、-20℃での衝撃エネルギーが140J以上、180℃でのCO及び高Cl濃度を含む環境での均一腐食速度が0.125mm/a、の少なくとも1つを有する、請求項1又は2に記載の高強度耐高温腐食性マルテンサイトステンレス鋼。 The following properties: yield strength at room temperature of 862 MPa or more, yield strength at 180°C of 800 MPa or more, impact energy at -20°C of 140 J or more, environment containing CO2 and high Cl- concentration at 180°C The high-strength, hot-corrosion-resistant martensitic stainless steel according to claim 1 or 2, having at least one uniform corrosion rate at 0.125 mm/a. 請求項1~7のいずれか一項に記載の高強度耐高温腐食性マルテンサイト系ステンレス鋼から製造された管材及びケーシング。 Pipes and casings made from the high-strength, hot-corrosion-resistant martensitic stainless steel according to any one of claims 1 to 7. 以下のステップ、すなわち、
(1)パイプブランクを製造するステップと、
(2)前記パイプブランクからシームレス管を製造し、次いで、当該シームレス管を室温まで冷却するステップと、
(3)焼入れ:前記シームレス管を、A3~1050℃の温度に加熱し、熱保存をt×(0.5~3)分間行い;次いで、前記シームレス管を、2℃/秒~40℃/秒の冷却速度で、温度T1まで冷却し、熱保存をt×(0.5~1.5)分間行い、T1=M-80℃、Mがマルテンサイト変態開始時の温度であるステップと、
(4)第1焼戻し:前記シームレス管を、焼戻し処理のために温度T2まで加熱し、熱保存をt×(3~7)分間行い、次いで、前記シームレス管を5℃/秒~30℃/秒の冷却速度で100℃以下まで冷却し、T2の範囲が500℃~A3であるステップと、
(5)第2焼戻し:前記シームレス管を、第2焼戻し処理のために温度T3まで加熱し、そして、熱保存をt×(3~7)分間行い、次いで、前記シームレス管を5℃/秒~30℃/秒の冷却速度で100℃以下まで冷却し、T3=T2-40℃であるステップと、を含み、
tが肉厚(mm)を表す、請求項8に記載の、管材及びケーシングを製造するための方法。
The following steps i.e.
(1) manufacturing a pipe blank;
(2) manufacturing a seamless pipe from the pipe blank and then cooling the seamless pipe to room temperature;
(3) Quenching: The seamless tube is heated to a temperature of AC 3-1050° C. and heat preserved for t×(0.5-3) minutes; C./sec cooling rate to temperature T1, thermal storage is performed for t×(0.5 to 1.5) minutes, T1=M S −80° C., M S is the temperature at the start of martensitic transformation. a step and
(4) First tempering: The seamless tube is heated to temperature T2 for tempering treatment, thermal storage is performed for t×(3-7) minutes, and then the seamless tube is heated from 5° C./s to 30° C./ cooling to 100° C. or less at a cooling rate of 1 sec and T2 in the range of 500° C. to A C 3;
(5) Second tempering: The seamless tube is heated to temperature T3 for the second tempering treatment, and heat preservation is performed for t×(3-7) minutes, and then the seamless tube is heated at 5° C./s. cooling to 100° C. or less at a cooling rate of ˜30° C./sec, where T3=T2−40° C.;
9. A method for manufacturing tubing and casings according to claim 8, wherein t represents wall thickness (mm).
前記ステップ(3)において、前記シームレス管をA3~1000℃の温度に加熱する、請求項9に記載の、管材及びケーシングを製造するための方法。 The method for manufacturing tubing and casing according to claim 9, wherein in step (3), the seamless tube is heated to a temperature of A C 3-1000°C.
JP2022562373A 2020-04-30 2021-04-26 High-strength high-temperature corrosion-resistant martensitic stainless steel and method for producing the same Pending JP2023526739A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010363059.2 2020-04-30
CN202010363059.2A CN113584407A (en) 2020-04-30 2020-04-30 High-strength high-temperature corrosion resistant martensitic stainless steel and manufacturing method thereof
PCT/CN2021/090024 WO2021218932A1 (en) 2020-04-30 2021-04-26 High strength, high-temperature corrosion resistant martensitic stainless steel and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2023526739A true JP2023526739A (en) 2023-06-23

Family

ID=78237213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022562373A Pending JP2023526739A (en) 2020-04-30 2021-04-26 High-strength high-temperature corrosion-resistant martensitic stainless steel and method for producing the same

Country Status (4)

Country Link
US (1) US20230167522A1 (en)
JP (1) JP2023526739A (en)
CN (1) CN113584407A (en)
WO (1) WO2021218932A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324081B (en) * 2021-12-30 2024-04-02 中国航空工业集团公司金城南京机电液压工程研究中心 Martensitic stainless steel grain forming and displaying method
CN114574777B (en) * 2022-03-04 2023-03-31 攀钢集团江油长城特殊钢有限公司 High-strength and high-toughness stainless steel large steel ingot for ultralow-temperature service environment and preparation method thereof
WO2024070784A1 (en) * 2022-09-29 2024-04-04 Jfeスチール株式会社 Stainless steel powder, stainless steel member, and stainless steel member manufacturing method
CN115807190A (en) * 2022-11-28 2023-03-17 攀钢集团攀枝花钢铁研究院有限公司 High-strength corrosion-resistant stainless steel seamless pipe for oil transportation and manufacturing method thereof
CN116288064B (en) * 2022-12-14 2024-05-14 鞍钢股份有限公司 Ultra-high-strength corrosion-resistant low Wen Haigong steel plate and manufacturing method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010654A1 (en) * 1994-09-30 1996-04-11 Nippon Steel Corporation Highly corrosion-resistant martensitic stainless steel with excellent weldability and process for producing the same
JP3529701B2 (en) * 2000-04-28 2004-05-24 Jfeスチール株式会社 Martensitic stainless steel for large diameter seamless steel pipes
JP4367412B2 (en) * 2003-07-22 2009-11-18 住友金属工業株式会社 Martensitic stainless steel
JP4978073B2 (en) * 2006-06-16 2012-07-18 Jfeスチール株式会社 High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same
RU2416670C2 (en) * 2006-08-22 2011-04-20 Сумитомо Метал Индастриз, Лтд. Martensite stainless steel
JP5145793B2 (en) * 2007-06-29 2013-02-20 Jfeスチール株式会社 Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
US9284634B2 (en) * 2011-04-11 2016-03-15 Nkk Tubes Martensitic stainless steel having excellent corrosion resistance
CN102534418A (en) * 2012-02-29 2012-07-04 宝山钢铁股份有限公司 Martensitic stainless steel for oil casing and manufacturing method thereof
JP5807630B2 (en) * 2012-12-12 2015-11-10 Jfeスチール株式会社 Heat treatment equipment row of seamless steel pipe and method for producing high strength stainless steel pipe
BR102014005015A8 (en) * 2014-02-28 2017-12-26 Villares Metals S/A martensitic-ferritic stainless steel, manufactured product, process for producing forged or rolled bars or parts of martensitic-ferritic stainless steel and process for producing all seamless martensitic-ferritic stainless steel
EP3333276A4 (en) * 2015-08-04 2019-01-09 Nippon Steel & Sumitomo Metal Corporation Stainless steel and oil well stainless steel material
EP3342894A4 (en) * 2015-08-28 2019-03-06 Nippon Steel & Sumitomo Metal Corporation Stainless steel pipe and method for producing same
CN105039863A (en) * 2015-09-02 2015-11-11 山西太钢不锈钢股份有限公司 Manufacturing method of martensite stainless steel seamless tube for oil well
CN105734453B (en) * 2016-03-23 2018-01-26 宝山钢铁股份有限公司 Martensitic stain less steel oil annular tube steel, tubing and casing and its manufacture method of sulfurated hydrogen stress etching-resisting cracking
CN107937828B (en) * 2017-12-01 2020-10-02 宝鼎科技股份有限公司 F6NM martensitic stainless steel cylinder forging and heat treatment method
CN108517471A (en) * 2018-03-29 2018-09-11 太原钢铁(集团)有限公司 Oil well corrosion-resistant super martensitic stain less steel pipe and its manufacturing method
CN109234615B (en) * 2018-09-11 2020-05-05 中国科学院金属研究所 Stainless steel for microbial corrosion resistant oil well pipe and manufacturing method thereof

Also Published As

Publication number Publication date
US20230167522A1 (en) 2023-06-01
WO2021218932A1 (en) 2021-11-04
CN113584407A (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP5109222B2 (en) High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
CN105734453B (en) Martensitic stain less steel oil annular tube steel, tubing and casing and its manufacture method of sulfurated hydrogen stress etching-resisting cracking
CN101171351B (en) Stainless steel pipe for oil well excellent in enlarging characteristics
JP5145793B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP2023526739A (en) High-strength high-temperature corrosion-resistant martensitic stainless steel and method for producing the same
US10597760B2 (en) High-strength steel material for oil well and oil well pipes
WO2010050519A1 (en) High strength stainless steel piping having outstanding resistance to sulphide stress cracking and resistance to high temperature carbon dioxide corrosion
WO2018131340A1 (en) High strength seamless stainless steel pipe and production method therefor
JP2015110822A (en) High strength seamless stainless steel tube for oil well, having excellent corrosion resistance, and method for manufacturing the same
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JPWO2008123422A1 (en) Seamless steel pipe manufacturing method
JP5582307B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
RU2763722C1 (en) SULPHUR-RESISTANT PIPE FOR A PETROLEUM BOREHOLE ATTRIBUTED TO THE KILOPOUND/INCH2 (862 MPa) STEEL STRENGTH CLASS, AND METHOD FOR MANUFACTURE THEREOF
JP2007332442A (en) High-toughness ultrahigh-strength stainless steel pipe for oil well having excellent corrosion resistance, and its production method
CN112955576A (en) Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing same
JP4470617B2 (en) High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance
CN109423573B (en) High-temperature oxygen corrosion resistant stainless steel, sleeve and manufacturing method thereof
JP5162820B2 (en) Stainless steel pipe for oil well pipes with excellent pipe expandability
JP4289109B2 (en) High strength stainless steel pipe for oil well with excellent corrosion resistance
CN105369149B (en) A kind of H grades of alitizing is modified steel for sucker rod and its body of rod manufacture method
WO2016052271A1 (en) Steel material, and oil-well steel pipe for expansion
RU2807645C2 (en) Seamless oil-grade pipe made of high-strength corrosion-resistant martensitic steel and method for its production
JP6747628B1 (en) Duplex stainless steel, seamless steel pipe, and method for producing duplex stainless steel
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JP5407508B2 (en) Cr-containing steel pipe for supercritical carbon dioxide injection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240422