JP4470617B2 - High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance - Google Patents

High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance Download PDF

Info

Publication number
JP4470617B2
JP4470617B2 JP2004193402A JP2004193402A JP4470617B2 JP 4470617 B2 JP4470617 B2 JP 4470617B2 JP 2004193402 A JP2004193402 A JP 2004193402A JP 2004193402 A JP2004193402 A JP 2004193402A JP 4470617 B2 JP4470617 B2 JP 4470617B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
corrosion resistance
stainless steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004193402A
Other languages
Japanese (ja)
Other versions
JP2006016637A (en
Inventor
光男 木村
孝徳 玉利
義男 山崎
教次 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004193402A priority Critical patent/JP4470617B2/en
Publication of JP2006016637A publication Critical patent/JP2006016637A/en
Application granted granted Critical
Publication of JP4470617B2 publication Critical patent/JP4470617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、原油あるいは天然ガスの油井、ガス井に使用される油井用鋼管に係り、特に炭酸ガス(CO)、塩素イオン(Cl-)を含む腐食環境の厳しい油井、ガス井用として好適な、優れた耐食性を有する油井用高強度ステンレス鋼管に関する。なお、本発明でいう「高強度ステンレス鋼管」とは、降伏強さ:654MPa(95ksi)以上の高強度を有するステンレス鋼管をいうものとする。 The present invention relates to oil wells for crude oil or natural gas, and steel pipes for oil wells used for gas wells, and is particularly suitable for oil wells and gas wells with severe corrosive environments containing carbon dioxide (CO 2 ) and chlorine ions (Cl ). The present invention relates to a high-strength stainless steel pipe for oil wells having excellent corrosion resistance. The “high strength stainless steel pipe” in the present invention refers to a stainless steel pipe having a high strength of yield strength: 654 MPa (95 ksi) or more.

近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇化に対処するために、従来、省みられなかったような深層油田に対する開発が、世界的規模で盛んになっている。このような油田、ガス田は一般に深度が極めて深く、またその雰囲気も高温でかつ、CO、Cl- 等を含む厳しい腐食環境となっている。したがって、このような油田、ガス田の採掘に使用される油井用鋼管としては、高強度で、しかも耐食性に優れた鋼管が要求される。 In recent years, in order to cope with soaring crude oil prices and the depletion of oil resources expected in the near future, development of deep oil fields that have not been excluded in the past has become active on a global scale. Such oil, gas fields are generally the depth is very deep, and the atmosphere at a high temperature and, CO 2, Cl - has a severe corrosive environment and the like. Accordingly, steel pipes for oil wells used for mining such oil fields and gas fields are required to have high strength and excellent corrosion resistance.

従来から、CO2、Cl等を含む環境下の油田、ガス田では、油井用鋼管として、耐CO2腐食性に優れた13%Crマルテンサイト系ステンレス鋼管が使用されるのが一般的であった。しかし、従来の13%Crマルテンサイト系ステンレス鋼管では降伏強さが654MPaを超えると靭性の低下が著しくなり、使用に耐えなくなるという問題もあった。そのため、高強度が要求される井戸では、冷間加工された二相ステンレス鋼管が用いられていた。しかし、二相ステンレス鋼管は、合金元素量が多く、熱間加工性が劣り特殊な熱間加工法でしか製造できず、高価であるという問題がある。 Conventionally, 13% Cr martensitic stainless steel pipes with excellent resistance to CO 2 corrosion have been used as oil well steel pipes in oil fields and gas fields in environments containing CO 2 , Cl −, etc. there were. However, the conventional 13% Cr martensitic stainless steel pipe has a problem that if the yield strength exceeds 654 MPa, the toughness is remarkably lowered and it cannot be used. For this reason, cold-worked duplex stainless steel pipes have been used in wells that require high strength. However, the duplex stainless steel pipe has a problem that it has a large amount of alloy elements, is inferior in hot workability, and can be produced only by a special hot working method, and is expensive.

また、近年、寒冷地における油田開発も活発になってきており、高強度に加えて、優れた低温靱性を有することが要求されることも多い。   In recent years, oil fields have been actively developed in cold regions, and it is often required to have excellent low temperature toughness in addition to high strength.

このようなことから、熱間加工性に優れ、安価である13%Crマルテンサイト系ステンレス鋼をベースとした、降伏強さが654MPa(95ksi)を超える高強度で、かつ優れた耐CO2腐食性と、高靭性とを有する油井用高強度13Crマルテンサイト系ステンレス鋼管が強く望まれていた。 For this reason, it is based on 13% Cr martensitic stainless steel, which is excellent in hot workability and inexpensive, and has high yield strength exceeding 654 MPa (95 ksi) and excellent CO 2 corrosion resistance. High-strength 13Cr martensitic stainless steel pipes for oil wells that have excellent properties and high toughness have been strongly desired.

このような要求に対して、例えば、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5には、13%Crマルテンサイト系ステンレス鋼 (鋼管)の耐食性を改善した、改良型マルテンサイト系ステンレス鋼 (鋼管)が提案されている。   In response to such a demand, for example, Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5 include an improvement in which the corrosion resistance of 13% Cr martensitic stainless steel (steel pipe) is improved. Type martensitic stainless steel (steel pipe) has been proposed.

特許文献1に記載された技術は、13%Crマルテンサイト系ステンレス鋼管の組成で、Cを0.005 〜0.05%と制限し、Ni:2.4〜6%とCu:0.2〜4%とを複合添加し、さらにMoを0.5〜3%添加し、さらにNieqを10.5以上に調整した組成とし、熱間加工後に空冷以上の速度で冷却したのち、あるいはさらに(Ac変態点+10℃)〜(Ac変態点+200 ℃)の温度に加熱し、あるいはさらにAc変態点〜Ac変態点の温度に加熱し、続いて室温まで空冷以上の冷却速度で冷却し、焼戻しする、耐食性に優れたマルテンサイト系ステンレス継目無鋼管の製造方法である。特許文献1に記載された技術によれば、API−C95級以上の高強度と、180 ℃以上のCO2を含む環境における耐食性と、耐SCC性とを兼ね備えたマルテンサイト系ステンレス継目無鋼管となるとしている。 The technology described in Patent Document 1 is a composition of 13% Cr martensitic stainless steel pipe, C is limited to 0.005 to 0.05%, and Ni: 2.4 to 6% and Cu: 0.2 to 4% are added in combination. Further, Mo is added in an amount of 0.5 to 3%, and Nieq is adjusted to 10.5 or more. After hot working, the composition is cooled at a speed higher than that of air cooling, or further (Ac 3 transformation point + 10 ° C.) to (Ac 3 transformation). Martensite system with excellent corrosion resistance that is heated to a temperature of the point + 200 ° C. or further heated to a temperature of Ac 1 transformation point to Ac 3 transformation point, then cooled to room temperature at a cooling rate higher than air cooling, and tempered. It is a manufacturing method of a stainless steel seamless steel pipe. According to the technique described in Patent Document 1, a martensitic stainless steel seamless pipe having high strength of API-C95 grade or higher, corrosion resistance in an environment containing CO 2 of 180 ° C. or higher, and SCC resistance, and It is going to be.

特許文献2に記載された技術は、C:0.005〜0.05%、N:0.005〜0.1%を含み、Ni:3.0〜6.0%、Cu:0.5〜3%、Mo:0.5〜3%に調整した組成の13%Crマルテンサイト系ステンレス鋼を熱間加工し室温まで自然放冷したのち、(Ac1点+10℃)〜(Ac1点+40℃)に加熱し30〜60分間保持しMs点以下の温度まで冷却し、Ac1点以下の温度で焼戻し、組織を焼戻しマルテンサイトと20体積%以上のγ相とが混在した組織とする耐硫化物応力腐食割れ性に優れたマルテンサイト系ステンレス鋼の製造方法である。特許文献2に記載された技術によれば、γ相を20体積%以上含む焼戻しマルテンサイト組織とすることにより耐硫化物応力腐食割れ性が顕著に向上するとしている。 The technology described in Patent Document 2 includes C: 0.005 to 0.05%, N: 0.005 to 0.1%, Ni: 3.0 to 6.0%, Cu: 0.5 to 3%, and Mo: 0.5 to 3%. 13% Cr martensitic stainless steel was hot-worked and allowed to cool naturally to room temperature, then heated to (Ac 1 point + 10 ° C) to (Ac 1 point + 40 ° C) and held for 30 to 60 minutes. Of martensitic stainless steel with excellent resistance to sulfide stress corrosion cracking, which is cooled to a temperature and tempered at a temperature of Ac 1 point or less, and the structure is a mixture of tempered martensite and γ phase of 20% by volume or more. It is a manufacturing method. According to the technique described in Patent Document 2, the resistance to sulfide stress corrosion cracking is remarkably improved by forming a tempered martensite structure containing 20% by volume or more of the γ phase.

特許文献3に記載された技術は、10〜15%Crを含有するマルテンサイト系ステンレス鋼の組成で、Cを0.005〜0.05%と制限し、Ni:4.0%以上、Cu:0.5〜3%を複合添加し、さらにMoを1.0〜3.0%添加し、さらにNieqを−10以上に調整した組成とし、 組織を焼戻しマルテンサイト相、マルテンサイト相、残留オーステナイト相からなり、焼戻しマルテンサイト相、マルテンサイト相の合計の分率が60〜90%である、耐食性、耐硫化物応力腐食割れ性に優れたマルテンサイト系ステンレス鋼である。これにより、湿潤炭酸ガス環境および湿潤硫化水素環境における耐食性と耐硫化物応力腐食割れ性が向上するとしている。   The technique described in Patent Document 3 is a composition of martensitic stainless steel containing 10 to 15% Cr, C is limited to 0.005 to 0.05%, Ni: 4.0% or more, Cu: 0.5 to 3% Combined addition, Mo added 1.0 to 3.0%, and Nieq adjusted to -10 or more, the structure consists of tempered martensite phase, martensite phase, residual austenite phase, tempered martensite phase, martensite It is a martensitic stainless steel having a total phase fraction of 60 to 90% and excellent corrosion resistance and sulfide stress corrosion cracking resistance. As a result, the corrosion resistance and sulfide stress corrosion cracking resistance in a wet carbon dioxide environment and a wet hydrogen sulfide environment are improved.

特許文献4に記載された技術は、15%超19%以下のCrを含有し、C:0.05%以下、N:0.1%以下、Ni:3.5〜8.0%を含み、さらにMo:0.1〜4.0%を含有し、30Cr+36Mo+14Si−28Ni≦455 (%)、21Cr+25Mo+17Si+35Ni≦731(%)を同時に満足する鋼組成とする硫化物応力割れ性に優れた油井用マルテンサイト系ステンレス鋼材であり、これにより、塩化物イオン、炭酸ガスと微量の硫化水素ガスが存在する苛酷な油井環境中でも優れた耐食性を有する鋼材となるとしている。   The technique described in Patent Document 4 contains more than 15% and 19% or less of Cr, C: 0.05% or less, N: 0.1% or less, Ni: 3.5-8.0%, and Mo: 0.1-4.0% Is a martensitic stainless steel material for oil wells with excellent sulfide stress cracking properties that has 30Cr + 36Mo + 14Si-28Ni ≦ 455 (%) and 21Cr + 25Mo + 17Si + 35Ni ≦ 731 (%) at the same time. The steel material has excellent corrosion resistance even in a harsh oil well environment where ions, carbon dioxide gas, and a small amount of hydrogen sulfide gas exist.

特許文献5に記載された技術は、10.0〜17%のCrを含有し、C:0.08%以下、N:0.015%以下、Ni:6.0〜10.0%、Cu:0.5〜2.0%を含み、さらにMo:0.5〜3.0%を含有する鋼組成とし、35%以上の冷間加工と焼鈍により、平均結晶粒径が25μm以下、マトリックスに析出した粒径5×10−2μm以上の析出物を6×10個/mm以下に抑えられた組織を有する強度および靭性に優れた析出硬化型マルテンサイト系ステンレス鋼であり、微細な結晶粒と析出物の少ない組織とすることにより、高強度で靭性低下を引き起こさない析出硬化型マルテンサイト系ステンレス鋼を提供できるとしている。
特開平8-120345号公報 特開平9-268349号公報 特開平10-1755 号公報 特許第2814528 号公報 特許第3251648 号公報
The technique described in Patent Document 5 contains 10.0 to 17% Cr, includes C: 0.08% or less, N: 0.015% or less, Ni: 6.0 to 10.0%, Cu: 0.5 to 2.0%, and Mo. : A steel composition containing 0.5 to 3.0%, and by cold working and annealing of 35% or more, an average crystal grain size of 25 μm or less and a precipitate having a grain size of 5 × 10 −2 μm or more deposited on the matrix is 6 × 10 Precipitation hardening type martensitic stainless steel with a structure suppressed to 6 pieces / mm 2 or less and excellent in strength and toughness. By making the structure with fine crystal grains and few precipitates, high strength and toughness It is said that precipitation hardening martensitic stainless steel that does not cause a decrease can be provided.
Japanese Patent Laid-Open No. 8-120345 JP-A-9-268349 Japanese Patent Laid-Open No. 10-1755 Japanese Patent No. 2814528 Japanese Patent No. 3251648

しかしながら、特許文献1〜5に記載された技術で製造された改良型13%Crマルテンサイト系ステンレス鋼管は、CO2、Cl等を含み、170 ℃を超える高温の苛酷な腐食環境下では、安定して所望の耐食性を示さないという問題があった。また、改良型13%Crマルテンサイト系ステンレス鋼管は耐硫化物応力腐食割れ性を考慮して多量のMoを含有する場合が多く、硫化水素が存在しない高温環境で使用するにはコストアップ要因となっていた。 However, the improved 13% Cr martensitic stainless steel pipe manufactured by the techniques described in Patent Documents 1 to 5 contains CO 2 , Cl −, etc., under a severe corrosive environment at a high temperature exceeding 170 ° C. There was a problem that the desired corrosion resistance was not stably exhibited. In addition, improved 13% Cr martensitic stainless steel pipes often contain a large amount of Mo in consideration of resistance to sulfide stress corrosion cracking. It was.

本発明は、このような従来技術の問題を有利に解決し、硫化水素を含まないが、炭酸ガス(CO)、塩素イオン(Cl)等を含み、かつ170℃を超える高温の苛酷な腐食環境下においても優れた耐CO2腐食性を示す、耐食性に優れた安価な油井用高強度ステンレス鋼管を提供することを目的とする。 The present invention advantageously solves such problems of the prior art, does not contain hydrogen sulfide, contains carbon dioxide (CO 2 ), chlorine ions (Cl ), etc., and is severe at high temperatures exceeding 170 ° C. An object of the present invention is to provide an inexpensive high-strength stainless steel pipe for oil wells that exhibits excellent CO 2 corrosion resistance even in a corrosive environment and has excellent corrosion resistance.

本発明者らは、上記した課題を達成するために、13%Crマルテンサイト系ステンレス鋼管をベースとして、降伏強さ:654MPa(95ksi)以上の高強度を維持したまま、200℃までの高温でかつ150気圧までのCOや、Cl等を含む腐食環境下における耐食性に及ぼす鋼組成の影響について鋭意検討した。その結果、従来より著しくCを低減し、Ni含有量、さらにはSi、Mn、V、Al、N、O含有量を適正範囲に調整し、あるいはさらに適正量のMo、Cu、あるいはNb、Ti等を添加することによって、高強度でかつ良好な熱間加工性、耐食性を確保できることを見出し、本発明を完成した。 In order to achieve the above-mentioned problems, the present inventors based on a 13% Cr martensitic stainless steel pipe, maintained a high strength of yield strength: 654 MPa (95 ksi) or higher, at a high temperature up to 200 ° C. Moreover, the influence of the steel composition on the corrosion resistance in a corrosive environment containing CO 2 up to 150 atm, Cl −, etc. was studied earnestly. As a result, C is remarkably reduced as compared with the prior art, and the Ni content, and further the Si, Mn, V, Al, N, and O contents are adjusted to an appropriate range, or an appropriate amount of Mo, Cu, or Nb, Ti. It was found that by adding the above, it was possible to ensure high strength and good hot workability and corrosion resistance, and the present invention was completed.

すなわち、本発明の要旨はつぎの通りである。
(1)mass%で、C:0.05%以下、Si:0.5%以下、Mn:0.2〜1.8%、P:0.03%以下、S:0.005%以下、Cr:15.5〜18.5%、Ni:1.5〜5%、Al:0.05%以下、V:0.2%以下、N:0.15%以下、O:0.006%以下を、次(1)式および(2)式
Cr+0.65Ni+0.6Mo+0.55Cu−20C≧18.0 ………(1)
Cr+Mo+0.3Si−43.5C−0.4Mn−Ni−0.3Cu−9N≧11.5 ………(2)
(ここで、Cr、Ni、Mo、Cu、C、Si、Mn、N:各元素の含有量(mass%))
を満足するように含有し、残部がFeおよび不可避的不純物よりなる組成と、体積率でフェライト相を5〜70%含み、残部がマルテンサイト相からなる組織を有することを特徴とする優れた耐炭酸ガス腐食性を有する油井用高強度ステンレス鋼管。
(2)(1)において、前記組成に加えてさらに、mass%で、Mo:1.0%未満、Cu:3.5%以下のうちから選ばれた1種又は2種を含有する組成とすることを特徴とする油井用高強度ステンレス鋼管
That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.05% or less, Si: 0.5% or less, Mn: 0.2-1.8%, P: 0.03% or less, S: 0.005% or less, Cr: 15.5-18.5%, Ni: 1.5-5 %, Al: 0.05% or less, V: 0.2% or less, N: 0.15% or less, O: 0.006% or less, the following formulas (1) and (2)
Cr + 0.65Ni + 0.6Mo + 0.55Cu-20C ≧ 18.0 (1)
Cr + Mo + 0.3Si-43.5C-0.4Mn-Ni-0.3Cu-9N ≧ 11.5 (2)
(Here, Cr, Ni, Mo, Cu, C, Si, Mn, N: content of each element (mass%))
In which the balance is composed of Fe and unavoidable impurities, the ferrite phase is included in a volume ratio of 5 to 70%, and the balance is a martensite phase. High-strength stainless steel pipe for oil wells that has carbon dioxide corrosiveness.
(2) In (1), in addition to the above-mentioned composition, the composition further comprises one or two selected in mass% from Mo: less than 1.0% and Cu: 3.5% or less. High strength stainless steel pipe for oil wells .

本発明によれば、硫化水素を含まないが、CO、Cl- を含む厳しい高温腐食環境下においても優れた耐CO2腐食性を有し、充分な耐食性と、高靭性を有する、高強度の油井用ステンレス鋼管を、安価にしかも安定して製造でき、産業上格段の効果を奏する。 According to the present invention, but does not contain hydrogen sulfide, CO 2, Cl - has excellent resistance to CO 2 corrosion resistance even in a severe high-temperature corrosive environments comprising a sufficient corrosion resistance, has a high toughness, high strength The oil well stainless steel pipe can be manufactured inexpensively and stably, and has a remarkable industrial effect.

まず、本発明鋼管の成分限定理由について説明する。以下、組成におけるmass%は単に%と記す。   First, the reasons for limiting the components of the steel pipe of the present invention will be described. Hereinafter, mass% in the composition is simply referred to as%.

C:0.05%以下
Cは、マルテンサイト系ステンレス鋼の強度増加に関係する重要な元素であり、本発明では0.01%以上の含有を必要とするが、0.05%を超えて含有すると、Ni含有による焼戻し時の鋭敏化が増大する。この焼戻し時の鋭敏化を防止する目的から、本発明ではCは0.05%以下に限定した。また、耐食性の観点からもCはできるだけ少ないほうが好ましい。なお、好ましくは0.01〜0.03%である。
C: 0.05% or less C is an important element related to an increase in the strength of martensitic stainless steel. In the present invention, it is necessary to contain 0.01% or more. Sensitization during tempering increases. In order to prevent sensitization during tempering, C is limited to 0.05% or less in the present invention. Further, from the viewpoint of corrosion resistance, it is preferable that C is as small as possible. In addition, Preferably it is 0.01 to 0.03%.

Si:0.5%以下
Siは、脱酸剤として作用する元素であり、本発明では0.1%以上含有することが好ましいが、0.5%を超える含有は、耐CO腐食性を低下させ、さらには熱間加工性をも低下させる。このため、Siは0.5%以下に限定した。
Si: 0.5% or less
Si is an element that acts as a deoxidizing agent. In the present invention, Si is preferably contained in an amount of 0.1% or more. However, if it exceeds 0.5%, the CO 2 corrosion resistance is reduced, and hot workability is further improved. Reduce. For this reason, Si was limited to 0.5% or less.

Mn:0.2〜1.8%
Mnは、強度を増加させる元素であり、本発明における所望の強度を確保するために0.2%以上含有する必要があるが、1.8%を超えて含有すると靭性に悪影響を及ぼす。このため、Mnは0.2〜1.8%に限定した。なお、好ましくは0.3〜1.0%である。
Mn: 0.2-1.8%
Mn is an element that increases the strength and needs to be contained in an amount of 0.2% or more in order to ensure the desired strength in the present invention, but if it exceeds 1.8%, the toughness is adversely affected. For this reason, Mn was limited to 0.2 to 1.8%. In addition, Preferably it is 0.3 to 1.0%.

P:0.03%以下
Pは、耐CO腐食性、耐CO応力腐食割れ性および耐孔食性をともに劣化させる元素であり、本発明では可及的に低減することが望ましいが、極端な低減は製造コストの上昇を招く。工業的に比較的安価に実施可能でかつ耐CO腐食性、耐CO応力腐食割れ性および耐孔食性をともに劣化させない範囲として、Pは0.03%以下に限定した。なお、好ましくは0.02%以下である。
P: 0.03% or less P is an element that deteriorates both CO 2 corrosion resistance, CO 2 stress corrosion cracking resistance and pitting corrosion resistance. In the present invention, it is desirable to reduce as much as possible, but extreme reduction Increases the manufacturing cost. P was limited to 0.03% or less as a range that can be industrially implemented at a relatively low cost and does not deteriorate the CO 2 corrosion resistance, the CO 2 stress corrosion cracking resistance, and the pitting corrosion resistance. In addition, Preferably it is 0.02% or less.

S:0.005%以下
Sは、パイプ製造過程において熱間加工性を著しく劣化させる元素であり、可及的に少ないことが望ましいが、0.005%以下に低減すれば通常工程によるパイプ製造が可能となることから、Sは0.005%以下に限定した。なお、好ましくは0.003%以下である。
S: 0.005% or less S is an element that significantly deteriorates hot workability in the pipe manufacturing process, and is preferably as small as possible. However, if it is reduced to 0.005% or less, pipe manufacturing by a normal process becomes possible. Therefore, S is limited to 0.005% or less. In addition, Preferably it is 0.003% or less.

Cr:15.5〜18.5%
Crは、保護被膜を形成して耐食性を向上させる元素であり、とくに耐CO腐食性、耐CO応力腐食割れ性の向上に寄与する主要な元素である。本発明では、特に高温における耐食性向上の観点から、15.5%以上の含有を必要とする。一方、18.5%を超える含有は、強度を低下させる。このため、Crは15.5〜18.5%の範囲に限定した。なお、好ましくは16.5〜18.0%である。
Cr: 15.5-18.5%
Cr is to form a protective coating is an element for improving corrosion resistance, particularly resistance CO 2 corrosion resistance, a major element contributing to the improvement of the resistance to CO 2 stress corrosion cracking resistance. In the present invention, the content of 15.5% or more is required particularly from the viewpoint of improving the corrosion resistance at high temperatures. On the other hand, the content exceeding 18.5% decreases the strength. For this reason, Cr was limited to the range of 15.5-18.5%. In addition, Preferably it is 16.5-18.0%.

Ni:1.5〜5%
Niは、保護被膜を強固にして、耐CO腐食性、耐CO応力腐食割れ性および耐孔食性を高める作用を有する元素であるが、1.5%未満の含有では本発明が対象とする腐食環境下では効果が認められない、一方、5%を超える含有は、マルテンサイト組織の安定性が低下し、強度が低下する。このため、Niは1.5〜5%の範囲に限定した。なお、好ましくは2.0〜4.5%である。
Ni: 1.5-5%
Ni is an element having an effect of strengthening the protective film and enhancing the resistance to CO 2 corrosion resistance, the resistance to CO 2 stress corrosion cracking and the pitting corrosion resistance. The effect is not recognized under the environment. On the other hand, when the content exceeds 5%, the stability of the martensite structure is lowered and the strength is lowered. For this reason, Ni was limited to the range of 1.5 to 5%. In addition, Preferably it is 2.0 to 4.5%.

Al:0.05%以下
Alは、強力な脱酸剤として作用するが、このような効果を得るためには、0.001%以上含有することが望ましい。一方、0.05%を超える含有は、靭性に悪影響を及ぼす。このため、Alは0.05%以下に限定した。なお、好ましくは0.03%以下である。
Al: 0.05% or less
Al acts as a strong deoxidizer, but in order to obtain such an effect, it is desirable to contain 0.001% or more. On the other hand, a content exceeding 0.05% adversely affects toughness. For this reason, Al was limited to 0.05% or less. In addition, Preferably it is 0.03% or less.

V:0.2%以下
Vは、強度を上昇させるとともに、耐応力腐食割れ性を改善する効果を有する。このような効果は0.01 %以上の含有で顕著となる。一方、0.2%を超えて含有すると靭性が劣化する。このため、Vは0.2%以下に限定した。なお、好ましくは0.02〜0.08%である。
V: 0.2% or less V has the effect of increasing strength and improving stress corrosion cracking resistance. Such an effect becomes remarkable when the content is 0.01% or more. On the other hand, if the content exceeds 0.2%, the toughness deteriorates. For this reason, V was limited to 0.2% or less. In addition, Preferably it is 0.02 to 0.08%.

N:0.15%以下
Nは、耐孔食性を著しく向上させる元素であり、本発明では0.01%以上含有することが望ましいが、0.15%を超える含有は、種々の窒化物を形成して靭性を劣化させる。このため、Nは0.15%以下に限定した。なお、好ましくは0.02〜0.08%である。
N: 0.15% or less N is an element that remarkably improves pitting corrosion resistance. In the present invention, N is preferably contained in an amount of 0.01% or more. However, if it exceeds 0.15%, various nitrides are formed to deteriorate toughness. Let For this reason, N was limited to 0.15% or less. In addition, Preferably it is 0.02 to 0.08%.

O:0.006%以下
Oは、鋼中では酸化物として存在し、各種特性に悪影響を及ぼす元素であり、本発明鋼管の性能を十分に発揮させるために、できるだけ低減することが極めて重要となる。すなわち、O含有量が多いと各種の酸化物を形成して、熱間加工性、耐CO応力腐食割れ性、耐孔食性および靭性を著しく低下させる。このため、本発明ではOは0.006%以下に限定した。
O: 0.006% or less O is an element that exists as an oxide in steel and adversely affects various properties, and it is extremely important to reduce it as much as possible in order to sufficiently exhibit the performance of the steel pipe of the present invention. That is, when the O content is large, various oxides are formed, and hot workability, resistance to CO 2 stress corrosion cracking, pitting corrosion resistance and toughness are significantly reduced. Therefore, in the present invention, O is limited to 0.006% or less.

上記した基本組成に加えてさらに、必要に応じ、Mo、Cuのうちから選ばれた1種又は2種、および/または、Nb、Ti、Zr、B、Wのうちから選ばれた1種又は2種以上、および/またはCaを含有することができる。   In addition to the basic composition described above, if necessary, one or two selected from Mo and Cu, and / or one selected from Nb, Ti, Zr, B and W or Two or more kinds and / or Ca can be contained.

Mo、Cu は、いずれも耐食性を向上させる元素であり、必要に応じ選択して含有できる。Moは、耐食性、とくに耐孔食性を向上させる元素であり、含有する場合は0.3%以上含有することが望ましいが、1.0%以上含有しても、本発明が対象とする腐食環境では効果が飽和し含有量に見合う効果が期待できず、経済的に不利となる。このため、Moは1.0%未満に限定することが好ましい。なお、より好ましくは0.3〜0.7%である。     Mo and Cu are elements that improve corrosion resistance, and can be selected and contained as necessary. Mo is an element that improves the corrosion resistance, particularly pitting corrosion resistance. When contained, it is desirable to contain 0.3% or more, but even if contained 1.0% or more, the effect is saturated in the corrosive environment targeted by the present invention. However, an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to limit Mo to less than 1.0%. In addition, More preferably, it is 0.3 to 0.7%.

Cuは、保護被膜を強固にして耐食性を向上させる元素であり、含有する場合は0.2%以上含有することが望ましいが、3.5%を超えて含有すると、高温でCuSが粒界に析出し、熱間加工性が低下する。このため、Cuは3.5%以下に限定することが好ましい。なお、より好ましくは0.5〜2.0%である。   Cu is an element that strengthens the protective coating and improves the corrosion resistance. If it is contained, it is desirable to contain 0.2% or more, but if it exceeds 3.5%, CuS precipitates at the grain boundaries at high temperatures and heat Interworkability is reduced. For this reason, it is preferable to limit Cu to 3.5% or less. In addition, More preferably, it is 0.5 to 2.0%.

Nb、Ti、Zr、B、Wは、いずれも強度を増加させる元素であり、必要に応じ選択して含有できる。なお、Ti、Zr、B、Wは、強度を増加させることに加えて耐応力腐食割れ性を改善する元素でもある。また、Nbは、強度を増加させることに加えて靭性を向上させる。このような効果は、Nb:0.03%以上、Ti:0.03%以上、Zr:0.03%以上、B:0.0005%以上、W:0.2%以上の含有で顕著となる。一方、Nb:0.2%、Ti:0.3%、Zr:0.2%、B:0.01%、W:3.0%を超えて含有すると靭性が低下する。このため、Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下、W:3.0%以下にそれぞれ限定することが好ましい。   Nb, Ti, Zr, B, and W are all elements that increase the strength, and can be selected and contained as necessary. Ti, Zr, B, and W are elements that improve the stress corrosion cracking resistance in addition to increasing the strength. Nb improves toughness in addition to increasing strength. Such an effect becomes remarkable when Nb: 0.03% or more, Ti: 0.03% or more, Zr: 0.03% or more, B: 0.0005% or more, and W: 0.2% or more. On the other hand, if Nb: 0.2%, Ti: 0.3%, Zr: 0.2%, B: 0.01%, W: more than 3.0%, the toughness decreases. For this reason, it is preferable to limit to Nb: 0.2% or less, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less, and W: 3.0% or less, respectively.

Caは、SをCaSとして固定し、硫化物系介在物を球状化する作用を有し、これにより介在物周囲のマトリックスの格子歪を小さくして、介在物の水素トラップ能を低下させる効果を有する。このような効果は0.0005%以上の含有で顕著となるが、0.01%を超えるとCaOの増加を招き、耐CO腐食性、耐孔食性が低下する。このため、Caは0.0005〜0.01%の範囲に限定することが好ましい。 Ca has the effect of fixing S as CaS and spheroidizing sulfide inclusions, thereby reducing the lattice strain of the matrix around the inclusions and reducing the hydrogen trapping ability of the inclusions. Have. Such an effect becomes remarkable when the content is 0.0005% or more. However, when the content exceeds 0.01%, CaO is increased, and the CO 2 corrosion resistance and pitting corrosion resistance are lowered. For this reason, it is preferable to limit Ca to 0.0005 to 0.01% of range.

本発明では、上記した各成分を上記した範囲で、かつ次(1)式および次(2)式
Cr+0.65Ni+0.6Mo+0.55Cu−20C≧18.0 ………(1)
Cr+Mo+0.3Si−43.5C−0.4Mn−Ni−0.3Cu−9N≧11.5 ………(2)
を満足するように調整して含有し、残部がFeおよび不可避的不純物よりなる組成とする。ここで、Cr、Ni、Mo、Cu、C、Si、Mn、Nは各元素の含有量(mass%)である。なお、(1)式、(2)式の左辺を計算する際には、含まれない元素は零%として計算するものとする。
In the present invention, each of the above-described components is within the above-described range, and the following formulas (1) and (2)
Cr + 0.65Ni + 0.6Mo + 0.55Cu-20C ≧ 18.0 (1)
Cr + Mo + 0.3Si-43.5C-0.4Mn-Ni-0.3Cu-9N ≧ 11.5 (2)
The composition is adjusted so as to satisfy the above, and the balance is composed of Fe and inevitable impurities. Here, Cr, Ni, Mo, Cu, C, Si, Mn, and N are the contents (mass%) of each element. In addition, when calculating the left side of the formulas (1) and (2), the elements not included are calculated as 0%.

Cr、Ni、Mo、Cu、C含有量を、(1)式を満足するように調整することにより、200 ℃までの高温で、かつCO2、Cl-を含む、高温腐食環境下での耐食性が顕著に向上する。 Corrosion resistance of the containing, in a high-temperature corrosive environment - Cr, Ni, Mo, Cu , and C content, (1) by adjusting so as to satisfy the formula, at elevated temperatures up to 200 ° C., and CO 2, Cl Is significantly improved.

また、Cr、Mo、Si、C、Mn、Ni、Cu、N含有量を、(2) 式を満足するように調整することにより、熱間加工性が向上し、継目無鋼管製造のための十分な熱間加工性が確保できるとともに、強度も増加する。なお、本発明では、熱間加工性を向上させるために、P、S、Oを著しく低減しているが、P、S、Oをそれぞれ低減するのみでは、マルテンサイト系ステンレス鋼継目無鋼管を造管するために必要十分な熱間加工性を確保することができない。継目無鋼管を造管するために必要十分な熱間加工性を確保するには、P、S、Oを著しく低減したうえで、(2)式を満足するように、Cr、Mo、Si、C、Mn、Ni、Cu、N含有量を調整することが肝要となる。   Moreover, by adjusting the Cr, Mo, Si, C, Mn, Ni, Cu, and N contents so as to satisfy the formula (2), the hot workability is improved, and for the production of seamless steel pipes. Sufficient hot workability can be secured and the strength is increased. In the present invention, P, S, and O are remarkably reduced in order to improve hot workability. However, by simply reducing P, S, and O, respectively, a martensitic stainless steel seamless steel pipe is formed. The hot workability necessary and sufficient for pipe making cannot be ensured. In order to secure the hot workability necessary and sufficient for making seamless steel pipes, Cr, Mo, Si, It is important to adjust the C, Mn, Ni, Cu, and N contents.

上記した成分以外の残部はFeおよび不可避的不純物である。   The balance other than the above components is Fe and inevitable impurities.

本発明の油井用高強度ステンレス鋼管は、上記した組成に加えて、マルテンサイト相をベース相とし、さらにフェライト相を体積率で5〜70%含有する組織を有する。本発明鋼管は、高強度を確保するために組織は、マルテンサイト組織を基本とする。強度を低下させずに靭性、耐食性を向上させるために、マルテンサイト相をベース相とし、第二相としてフェライト相を体積率で5〜70%含有する組織とする。フェライト相が5体積%未満では所期の目的が達成できない。一方、フェライト相を70体積%を超えて含有すると、強度が低下する。このため、フェライト相は、体積率で5〜70%の範囲に限定する。なお、好ましくは10〜50体積%である。なお、フェライト相以外の第二相としては、30体積%以下のオーステナイト相を含有しても何ら問題はない。
Oil well high strength stainless steel pipe of the present invention, in addition to the above-described composition, the martensite phase based phase, that further having a 5% to 70% containing tissue ferrite phase by volume. The steel pipe of the present invention is based on a martensite structure in order to ensure high strength. Toughness without lowering the strength, in order to improve the corrosion resistance, the martensite phase based phase shall be the tissue containing 5% to 70% ferrite phase by volume as the second phase. If the ferrite phase is less than 5% by volume, the intended purpose cannot be achieved. On the other hand, when the ferrite phase is contained exceeding 70% by volume, the strength is lowered. Therefore, the ferrite phase, it limits the scope of 5% to 70% by volume. In addition, Preferably it is 10-50 volume%. Note that there is no problem even if the second phase other than the ferrite phase contains an austenite phase of 30% by volume or less.

次に、本発明鋼管の好ましい製造方法について、継目無鋼管を例として説明する。     Next, a preferred method for producing the steel pipe of the present invention will be described using a seamless steel pipe as an example.

本発明鋼管は、上記した組成の鋼素材を使用することにより、通常の製造工程に何ら手を加えることなく製造できる。   The steel pipe of the present invention can be manufactured without any modification to the normal manufacturing process by using the steel material having the above composition.

まず、上記した組成を有する溶鋼を、転炉、電気炉、真空溶解炉等の通常公知の溶製方法で溶製し、連続鋳造法、造塊−分塊圧延法等通常公知の方法でビレット等の鋼管素材とすることが好ましい。ついで、これら鋼管素材を加熱し、通常のマンネスマン−プラグミル方式、あるいはマンネスマン−マンドレルミル方式の製造工程を用いて熱間加工し造管して、所望寸法の継目無鋼管とする。造管後継目無鋼管は、空冷以上、好ましくは800〜500℃までの平均で0.5℃/s以上、の冷却速度で室温まで冷却することが好ましい。なお、プレス方式による熱間押出で継目無鋼管を製造してもよい。   First, the molten steel having the above composition is melted by a generally known melting method such as a converter, electric furnace, vacuum melting furnace, etc., and billet is obtained by a generally known method such as a continuous casting method or an ingot-bundling rolling method. It is preferable to use a steel pipe material such as. Subsequently, these steel pipe materials are heated and hot-worked and formed using a normal Mannesmann-plug mill system or Mannesmann-Mandrel mill process to obtain seamless steel pipes of desired dimensions. The seamless steel pipe after pipe making is preferably cooled to room temperature at a cooling rate of at least 0.5 ° C./s on average, preferably on average from 800 to 500 ° C. In addition, you may manufacture a seamless steel pipe by the hot extrusion by a press system.

上記した本発明範囲内の組成を有する継目無鋼管であれば、熱間加工後、空冷以上、好ましくは800〜500℃までの平均で0.5℃/s以上、の冷却速度で室温まで冷却することにより、マルテンサイト相をベース相とする組織とすることができるが、造管後、空冷以上、好ましくは800〜500℃までの平均で0.5℃/s以上、の冷却速度での冷却に続いてさらに800℃以上の温度に再加熱したのち空冷以上、好ましくは800〜500℃までの平均で0.5℃/s以上、の冷却速度で100℃以下好ましくは室温まで冷却する焼入れ処理を施すことが好ましい。これにより、適正量のフェライト相を含む、微細で高靭性のマルテンサイト組織とすることができる。   If it is a seamless steel pipe having a composition within the scope of the present invention as described above, after hot working, it is cooled to room temperature at a cooling rate of air cooling or more, preferably 0.5 ° C./s or more on average from 800 to 500 ° C. According to the above, it is possible to obtain a structure having a martensite phase as a base phase, but after tube forming, cooling at an air cooling rate or more, preferably at an average of 0.5 ° C./s to 800 ° C. to 500 ° C., followed by cooling at a cooling rate of Further, after reheating to a temperature of 800 ° C. or higher, it is preferably air-cooled or higher, preferably a quenching treatment of cooling to 800 ° C. to 500 ° C. at an average of 0.5 ° C./s or higher, cooling to 100 ° C. or lower, preferably room temperature . Thereby, it can be set as the fine and tough martensitic structure containing a suitable quantity of ferrite phases.

焼入れ処理の加熱温度が、800℃未満では、組織を十分なマルテンサイト組織とすることができず、強度が低下する傾向となる。このため、焼入れ処理の加熱温度は800 ℃以上の温度とすることが好ましい。   If the heating temperature of the quenching treatment is less than 800 ° C., the structure cannot be made into a sufficient martensite structure, and the strength tends to decrease. For this reason, it is preferable that the heating temperature of the quenching treatment is 800 ° C. or higher.

焼入れ処理を施された継目無鋼管は、ついで、650℃以下の温度に加熱され、空冷以上の冷却速度で冷却される焼戻処理を施されることが好ましい。650℃以下、好ましくは400 ℃以上の温度に加熱し、焼戻しすることにより、組織は焼戻しマルテンサイト相、あるいはさらに少量のフェライト相とからなる組織となり、所望の高強度とさらには所望の高靭性、所望の優れた耐食性を有する継目無鋼管となる。なお、焼戻し処理における加熱後の冷却は、強度確保の観点から空冷以上とすることが好ましい。   The seamless steel pipe that has been subjected to the quenching treatment is then preferably tempered by being heated to a temperature of 650 ° C. or lower and cooled at a cooling rate of air cooling or higher. By heating to 650 ° C or less, preferably 400 ° C or more and tempering, the structure becomes a structure composed of a tempered martensite phase or a small amount of ferrite phase, and the desired high strength and further desired high toughness. It becomes a seamless steel pipe having desired excellent corrosion resistance. In addition, it is preferable that the cooling after the heating in a tempering process shall be air cooling or more from a viewpoint of ensuring intensity | strength.

なお、焼入れ処理なしで上記した焼戻処理のみを施してもよい。
ここまでは、継目無鋼管を例にして説明したが、本発明鋼管はこれに限定されるものではない。上記した本発明範囲内の組成を有する鋼管素材を用いて、通常の工程に従い、電縫鋼管、UOE鋼管を製造し、油井用鋼管とすることも可能である。
In addition, you may give only the above-mentioned tempering process without quenching process.
So far, the seamless steel pipe has been described as an example, but the steel pipe of the present invention is not limited to this. Using a steel pipe material having a composition within the scope of the present invention as described above, it is possible to produce an electric-welded steel pipe and a UOE steel pipe in accordance with a normal process to obtain a steel pipe for an oil well.

上記した本発明範囲内の組成を有する鋼管素材を用いて、通常の製造工程にしたがい得られた継目無鋼管以外の鋼管、例えば電縫鋼管、UOE鋼管では、造管後の鋼管に、上記した焼入れ−焼戻処理である、800℃以上の温度に再加熱したのち空冷以上、好ましくは800〜500℃までの平均で0.5℃/s以上、の冷却速度で100℃以下好ましくは室温まで冷却する焼入れ処理と、ついで650℃以下、好ましくは400℃以上の温度に加熱し空冷以上の冷却速度で冷却する焼戻処理とを施すことが好ましい。   Using the steel pipe material having the composition within the scope of the present invention as described above, steel pipes other than seamless steel pipes obtained in accordance with a normal manufacturing process, such as ERW steel pipes and UOE steel pipes, are described above in the steel pipes after pipe making. In the quenching-tempering process, after reheating to a temperature of 800 ° C. or higher, air cooling or higher, preferably 800 ° C. to 500 ° C. on average, 0.5 ° C./s or higher, and cooling rate of 100 ° C. or lower, preferably room temperature It is preferable to perform a quenching treatment and then a tempering treatment in which the temperature is 650 ° C. or lower, preferably 400 ° C. or higher and cooled at a cooling rate of air cooling or higher.

以下に、実施例に基づいて、さらに本発明について詳細に説明する。   Below, based on an Example, this invention is demonstrated further in detail.

表1に示す組成の溶鋼を脱ガス後、100kg鋼塊(鋼管素材)に鋳造し、モデルシームレス圧延機により熱間加工により造管し、造管後空冷し、外径83.8mm×肉厚12.7mm(3.3in×肉厚0.5in)の継目無鋼管とした。   After degassing the molten steel with the composition shown in Table 1, it is cast into a 100kg steel ingot (steel pipe material), piped by hot working with a model seamless rolling mill, air cooled after pipe making, outer diameter 83.8mm x wall thickness 12.7 It was a seamless steel pipe of mm (3.3 in x 0.5 in thickness).

得られた継目無鋼管について、造管後空冷のままで内外表面の割れ発生の有無を目視で調査し、熱間加工性を評価した。割れ無しを〇、割れ有りを×で表示した。   About the obtained seamless steel pipe, the presence or absence of the crack generation | occurrence | production of the inner and outer surface was visually examined with air cooling after pipe making, and hot workability was evaluated. No cracking was indicated by ○, and cracking was indicated by ×.

また、得られた継目無鋼管から、試験片素材を切り出し、表2に示す条件で加熱したのち、水冷し、さらに表2に示す条件で焼戻処理を施した。   Further, a test piece material was cut out from the obtained seamless steel pipe, heated under the conditions shown in Table 2, cooled with water, and further tempered under the conditions shown in Table 2.

このように焼入れ−焼戻処理を施された試験片素材から、組織観察用試験片を採取し、組織観察用試験片を王水で腐食して走査型電子顕微鏡(1000倍)で組織を撮像し画像解析装置を用いて、フェライト相の組織分率(体積%)を算出した。   The specimen for tissue observation is collected from the specimen material that has been quenched and tempered in this way, and the specimen is corroded with aqua regia and imaged with a scanning electron microscope (1000x). Then, using the image analysis apparatus, the structure fraction (volume%) of the ferrite phase was calculated.

また、残留オーステナイト(γ)相の組織分率は、X線回折法を用いて測定した。焼入れ−焼戻処理を施された試験片素材から測定用試験片を採取し、X線回折によりγの(220)面、αの(211)面、の回折X線積分強度を測定し、次式
γ(体積率)=100/{1+(IαRγ/IγRα)}
ここで、Iα:αの積分強度
Iγ:γの積分強度
Rα:αの結晶学的理論計算値
Rγ:γの結晶学的理論計算値
を用いて換算した。なお、マルテンサイト相の分率はこれらの相以外の残部として算出した。
Moreover, the structural fraction of the retained austenite (γ) phase was measured using an X-ray diffraction method. Test specimens are taken from the quenched and tempered test specimen material, and the X-ray diffraction intensity of γ (220) plane and α (211) plane is measured by X-ray diffraction. Formula γ (volume ratio) = 100 / {1+ (IαRγ / IγRα)}
Where Iα: Integral intensity of α
Iγ: Integral intensity of γ
Rα: Calculated crystallographic theory of α
Rγ: Conversion was performed using a crystallographic theoretical calculation value of γ. The fraction of the martensite phase was calculated as the remainder other than these phases.

また、焼入れ−焼戻処理を施された試験片素材から、API 弧状引張試験片を採取し、引張試験を実施し引張特性(降伏強さYS、引張強さTS)を求めた。   In addition, API arc-shaped tensile test specimens were collected from the specimen material subjected to quenching and tempering treatment, and tensile tests were performed to determine tensile properties (yield strength YS, tensile strength TS).

さらに、焼入れ−焼戻処理を施された試験片素材から、厚さ3mm×幅30mm×長さ40mmの腐食試験片を機械加工によって作製し、腐食試験を実施した。   Furthermore, a corrosion test piece having a thickness of 3 mm, a width of 30 mm, and a length of 40 mm was produced by machining from a specimen material subjected to quenching and tempering treatment, and a corrosion test was performed.

腐食試験は、オートクレーブ中に保持された試験液:20%NaCl水溶液(液温:200 ℃、150 気圧のCOガス雰囲気) 中に、腐食試験片を浸漬し、浸漬期間を2週間として実施した。腐食試験後の試験片について、重量を測定し、腐食試験前後の重量減から計算した腐食速度を求めた。また、試験後の腐食試験片について倍率:10倍のルーペを用いて試験片表面の孔食発生の有無を観察した。 The corrosion test was conducted by immersing the corrosion test piece in a test solution kept in an autoclave: 20% NaCl aqueous solution (liquid temperature: 200 ° C, 150 atmospheres CO 2 gas atmosphere), and the immersion period was 2 weeks. . The test piece after the corrosion test was weighed, and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained. Moreover, about the corrosion test piece after a test, the presence or absence of pitting corrosion on the test piece surface was observed using a magnifying glass with a magnification of 10 times.

また、焼入れ−焼戻処理を施された試験片素材から、JIS Z 2202の規定に準拠してVノッチ試験片(厚さ:5mm)を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、−40℃における吸収エネルギーvE-40(J)を求めた。 In addition, a V-notch test piece (thickness: 5 mm) was collected from the specimen material that had been quenched and tempered in accordance with JIS Z 2202, and Charpy impact was applied in accordance with JIS Z 2242. The test was carried out to determine the absorbed energy vE- 40 (J) at -40 ° C.

得られた結果を表2に示す。   The obtained results are shown in Table 2.

Figure 0004470617
Figure 0004470617

Figure 0004470617
Figure 0004470617

Figure 0004470617
Figure 0004470617

本発明例はいずれも、鋼管表面の割れ発生は認められず、また降伏強さYS:654MPa以上の高強度を有し、腐食速度も小さく、孔食の発生も無く、熱間加工性およびCO、Clを含み,200 ℃という高温で苛酷な腐食環境下においても、優れた耐炭酸ガス腐食性を示し、優れた耐食性を有する鋼管となっている。さらに5%以上のフェライト相を含むことにより、CO、Clを含み200 ℃という高温で苛酷な腐食環境下における耐食性に優れ、かつ降伏強さYS:654MPa以上の高強度を有する鋼管となっている。 In all of the examples of the present invention, the occurrence of cracks on the surface of the steel pipe was not observed, the yield strength was YS: 654 MPa or more, the corrosion rate was low, no pitting corrosion occurred, hot workability and CO 2, Cl - comprises, even in harsh corrosive environment at a high temperature of 200 ° C., showed excellent耐炭acid gas corrosion resistance, and has a steel pipe having excellent corrosion resistance. Furthermore, by including a ferrite phase of 5% or more, it has a high strength of YS: 654 MPa or more, which has excellent corrosion resistance in a severe corrosive environment at a high temperature of 200 ° C. containing CO 2 and Cl −. ing.

これに対し、本発明の範囲を外れる比較例は、表面に割れが発生し熱間加工性が低下しているか、あるいは腐食速度が大きく、孔食が発生し耐食性が低下している。とくに (2)式を満足しない比較例は熱間加工性が低下して、鋼管表面に疵が発生していた。なお、フェライト量が本発明の好適範囲を外れる場合には、強度が低下し、降伏強さYS:654MPa以上の高強度を満足できていない。   On the other hand, in the comparative example that is out of the scope of the present invention, cracks are generated on the surface and the hot workability is lowered, or the corrosion rate is high, pitting corrosion occurs and the corrosion resistance is lowered. In particular, in the comparative example not satisfying the formula (2), the hot workability was lowered and the surface of the steel pipe was wrinkled. In addition, when the ferrite content is outside the preferred range of the present invention, the strength is lowered, and the high strength of yield strength YS: 654 MPa or more cannot be satisfied.

Claims (2)

mass%で、
C:0.05%以下、 Si:0.5%以下、
Mn:0.2〜1.8%、 P:0.03%以下、
S:0.005%以下、 Cr:15.5〜18.5%、
Ni:1.5〜5%、 Al:0.05%以下、
V:0.2%以下、 N:0.15%以下、
O:0.006%以下
を、下記(1)式および(2)式を満足するように含有し、残部がFeおよび不可避的不純物よりなる組成と、体積率でフェライト相を5〜70%含み、残部がマルテンサイト相からなる組織を有することを特徴とする優れた耐炭酸ガス腐食性を有する油井用高強度ステンレス鋼管。

Cr+0.65Ni+0.6Mo+0.55Cu−20C≧18.0 ………(1)
Cr+Mo+0.3Si−43.5C−0.4Mn−Ni−0.3Cu−9N≧11.5 ………(2)
ここで、Cr、Ni、Mo、Cu、C、Si、Mn、N:各元素の含有量(mass%)
mass%
C: 0.05% or less, Si: 0.5% or less,
Mn: 0.2 to 1.8%, P: 0.03% or less,
S: 0.005% or less, Cr: 15.5-18.5%,
Ni: 1.5-5%, Al: 0.05% or less,
V: 0.2% or less, N: 0.15% or less,
O: 0.006% or less is contained so as to satisfy the following formulas (1) and (2), the balance is composed of Fe and inevitable impurities, and the ferrite phase is included in a volume ratio of 5 to 70%, and the balance A high-strength stainless steel pipe for oil wells having excellent carbon dioxide corrosion resistance, characterized in that has a structure composed of a martensite phase.
Record
Cr + 0.65Ni + 0.6Mo + 0.55Cu-20C ≧ 18.0 (1)
Cr + Mo + 0.3Si-43.5C-0.4Mn-Ni-0.3Cu-9N ≧ 11.5 (2)
Here, Cr, Ni, Mo, Cu, C, Si, Mn, N: Content of each element (mass%)
前記組成に加えてさらに、mass%で、Mo:1.0%未満、Cu:3.5%以下のうちから選ばれた1種又は2種を含有する組成とすることを特徴とする請求項1に記載の油井用高強度ステンレス鋼管 2. The composition according to claim 1, wherein in addition to the composition, the composition further includes at least one selected from mass: less than 1.0% and Cu: 3.5% or less. High strength stainless steel pipe for oil wells .
JP2004193402A 2004-06-30 2004-06-30 High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance Expired - Lifetime JP4470617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004193402A JP4470617B2 (en) 2004-06-30 2004-06-30 High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004193402A JP4470617B2 (en) 2004-06-30 2004-06-30 High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance

Publications (2)

Publication Number Publication Date
JP2006016637A JP2006016637A (en) 2006-01-19
JP4470617B2 true JP4470617B2 (en) 2010-06-02

Family

ID=35791177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004193402A Expired - Lifetime JP4470617B2 (en) 2004-06-30 2004-06-30 High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance

Country Status (1)

Country Link
JP (1) JP4470617B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978070B2 (en) * 2006-06-16 2012-07-18 Jfeスチール株式会社 Stainless steel pipe for oil wells with excellent pipe expandability
JP5040215B2 (en) * 2006-08-24 2012-10-03 Jfeスチール株式会社 Stainless steel pipe for oil wells with excellent pipe expandability
CN100485077C (en) * 2007-06-13 2009-05-06 陈卫东 Ultrathin alloy material hose and producing method thereof
JP5399635B2 (en) * 2008-01-25 2014-01-29 Jfeスチール株式会社 Stainless steel pipe for oil well with excellent pipe expandability and method for producing the same
JP4577457B2 (en) 2008-03-28 2010-11-10 住友金属工業株式会社 Stainless steel used for oil well pipes
AR073884A1 (en) 2008-10-30 2010-12-09 Sumitomo Metal Ind STAINLESS STEEL TUBE OF HIGH RESISTANCE EXCELLENT IN RESISTANCE TO FISURATION UNDER VOLTAGE SULFURS AND CORROSION OF GAS OF CARBONIC ACID IN HIGH TEMPERATURE.
AR076669A1 (en) 2009-05-18 2011-06-29 Sumitomo Metal Ind STAINLESS STEEL FOR PETROLEUM WELLS, STAINLESS STEEL TUBE FOR PETROLEUM WELLS, AND STAINLESS STEEL MANUFACTURING METHOD FOR PETROLEUM WELLS
CA2795326C (en) 2010-04-28 2016-05-17 Sumitomo Metal Industries, Ltd. High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well
US9783876B2 (en) 2012-03-26 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Stainless steel for oil wells and stainless steel pipe for oil wells
JP6409827B2 (en) * 2015-08-18 2018-10-24 Jfeスチール株式会社 Manufacturing method of seamless stainless steel pipe for oil well
JP6859921B2 (en) * 2017-10-19 2021-04-14 日本製鉄株式会社 Stainless steel materials and stainless steel pipes
CN110964990B (en) * 2019-11-11 2021-06-01 南京工程学院 High-performance large-diameter thick-wall austenitic stainless steel forged pipe for nuclear power and short-process preparation method thereof
CN116121664A (en) * 2022-12-13 2023-05-16 钢铁研究总院有限公司 High-corrosion-resistance high-toughness economic profile steel and preparation method thereof
CN116145051A (en) * 2022-12-13 2023-05-23 钢铁研究总院有限公司 High-corrosion-resistance economic oil well pipe steel and preparation method thereof

Also Published As

Publication number Publication date
JP2006016637A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP5109222B2 (en) High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
JP6399259B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP4893196B2 (en) High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance
JP6766887B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP5967066B2 (en) High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
JP4363327B2 (en) Stainless steel pipe for oil well and manufacturing method thereof
JP5446335B2 (en) Evaluation method of high strength stainless steel pipe for oil well
JP5924256B2 (en) High strength stainless steel seamless pipe for oil well with excellent corrosion resistance and manufacturing method thereof
JP6304460B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP4978073B2 (en) High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same
WO2017138050A1 (en) High strength stainless steel seamless pipe for oil well and manufacturing method therefor
JP5145793B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP6156609B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP4462005B2 (en) High strength stainless steel pipe for line pipe with excellent corrosion resistance and method for producing the same
WO2014112353A1 (en) Stainless steel seamless tube for use in oil well and manufacturing process therefor
JP6237873B2 (en) High strength stainless steel seamless steel pipe for oil well
JP7315097B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP4470617B2 (en) High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance
JP7226675B1 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP4978070B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability
JP4449174B2 (en) Manufacturing method of high strength martensitic stainless steel pipe for oil well
JP2007146226A (en) Stainless steel pipe for oil well excellent in enlarging characteristic
JP4289109B2 (en) High strength stainless steel pipe for oil well with excellent corrosion resistance
JP3966136B2 (en) Stainless steel pipe for line pipe with excellent corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4470617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term