JP5446335B2 - Evaluation method of high strength stainless steel pipe for oil well - Google Patents

Evaluation method of high strength stainless steel pipe for oil well Download PDF

Info

Publication number
JP5446335B2
JP5446335B2 JP2009056363A JP2009056363A JP5446335B2 JP 5446335 B2 JP5446335 B2 JP 5446335B2 JP 2009056363 A JP2009056363 A JP 2009056363A JP 2009056363 A JP2009056363 A JP 2009056363A JP 5446335 B2 JP5446335 B2 JP 5446335B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
stainless steel
strength stainless
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009056363A
Other languages
Japanese (ja)
Other versions
JP2010209402A (en
Inventor
拓也 長濱
光男 木村
裕介 水野
健 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009056363A priority Critical patent/JP5446335B2/en
Publication of JP2010209402A publication Critical patent/JP2010209402A/en
Application granted granted Critical
Publication of JP5446335B2 publication Critical patent/JP5446335B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、原油あるいは天然ガスの油井、ガス井に使用される油井用鋼管に係り、とくに、炭酸ガス(CO2)、塩素イオン(Cl-)等を含み、極めて厳しい腐食環境の油井、ガス井用として好適な、優れた耐食性を有する油井用高強度ステンレス鋼管に関する。 TECHNICAL FIELD The present invention relates to oil wells for crude oil or natural gas, and steel pipes for oil wells used for gas wells. In particular, the present invention includes carbon wells (CO 2 ), chlorine ions (Cl ), etc. The present invention relates to a high-strength stainless steel pipe for oil wells having excellent corrosion resistance suitable for well use.

近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇化に対処するために、従来、省みられなかったような深層油田や、開発が一旦は放棄されていた腐食性の強いサワーガス田等に対する開発が、世界的規模で盛んになっている。このような油田、ガス田は一般に深度が極めて深く、またその雰囲気も高温でかつ、CO2、Cl-等を含む厳しい腐食環境となっている。したがって、このような油田、ガス田の採掘に使用される油井用鋼管としては、高強度で、しかも耐食性に優れた鋼管が要求されている。 In recent years, in order to cope with soaring crude oil prices and the depletion of petroleum resources expected in the near future, deep oil fields that have not been excluded in the past, and highly corrosive once development has been abandoned Development on sour gas fields and the like has become active worldwide. Such oil, gas fields are generally the depth is very deep, and the atmosphere at a high temperature and, CO 2, Cl - has a severe corrosive environment and the like. Accordingly, steel pipes for oil wells used for mining such oil fields and gas fields are required to have high strength and excellent corrosion resistance.

また、近年、寒冷地における油田開発も活発になってきており、高強度に加えて、優れた低温靱性を有することが要求されることも多い。   In recent years, oil fields have been actively developed in cold regions, and it is often required to have excellent low temperature toughness in addition to high strength.

このような要望に対して、特許文献1に、熱間加工性に優れるとともに、YS:654MPaを超える高強度を有し、CO2、Cl等を含む170℃以上の苛酷な高温腐食環境下において、優れた耐CO2腐食性を示し、さらにH2Sが存在する環境下においても、優れた耐SSC性を示し、かつ高靭性を有する、安価な油井用高強度マルテンサイト系ステンレス鋼管が提案されている。 In response to such a request, Patent Document 1 describes that in hot severe corrosive environment of 170 ° C. or higher, which has excellent hot workability and high strength exceeding YS: 654 MPa, and contains CO 2 , Cl and the like. Proposal of an inexpensive high-strength martensitic stainless steel pipe for oil wells that exhibits excellent CO 2 corrosion resistance and also exhibits excellent SSC resistance and high toughness even in the presence of H 2 S Has been.

その基本的構成は下記の通りである。   Its basic configuration is as follows.

mass%で、C:0.04%以下、Si:0.50%以下、Mn:0.20〜1.80%、P:0.03%以下、S:0.005%以下、Cr:15.5〜17.5%、Ni:2.5〜5.5%、V:0.20%以下、Mo:1.5〜3.5%、W:0.50〜3.0%、Al:0.05%以下、N:0.15%以下、O:0.006%以下を、下記(1)〜(3)式を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有する高靱性でかつ耐食性に優れた油井用高強度ステンレス鋼管。
Cr+3.2Mo+2.6W−10C≧23.4 ・・・(1)
Cr+Mo+0.5W+0.3Si−43.5C−0.4Mn−0.3Cu−Ni−9N≧11.5 ・・・(2)
2.2≦Mo+0.8W≦4.5 ・・・(3)
ここで、Cr、Mo、W、Si、C、Mn、Cu、Ni、N:各元素の含有量(mass%)
In mass%, C: 0.04% or less, Si: 0.50% or less, Mn: 0.20 to 1.80%, P: 0.03% or less, S: 0.005% or less, Cr: 15.5-17.5%, Ni: 2.5-5.5%, V : 0.20% or less, Mo: 1.5 to 3.5%, W: 0.50 to 3.0%, Al: 0.05% or less, N: 0.15% or less, O: 0.006% or less, satisfying the following formulas (1) to (3) A high-strength stainless steel pipe for oil wells having a composition comprising the balance Fe and inevitable impurities and having high toughness and excellent corrosion resistance.
Cr + 3.2Mo + 2.6W-10C ≧ 23.4 (1)
Cr + Mo + 0.5W + 0.3Si-43.5C-0.4Mn-0.3Cu-Ni-9N ≧ 11.5 (2)
2.2 ≦ Mo + 0.8W ≦ 4.5 (3)
Here, Cr, Mo, W, Si, C, Mn, Cu, Ni, N: Content of each element (mass%)

特開2008−081793号公報JP 2008-081793 A

しかし、前記特許文献1に記載の油井用高強度ステンレス鋼管おいては、低温靱性が不安定で、所望の値が得られない場合があった。   However, in the high-strength stainless steel pipe for oil well described in Patent Document 1, the low-temperature toughness is unstable and a desired value may not be obtained.

本発明は、上記のような事情に鑑みてなされたものであり、熱間加工性に優れるとともに、YS:654MPaを超える高強度を有し、CO2、Cl-等を含む170℃以上の苛酷な高温腐食環境下において、優れた耐CO2腐食性を示し、さらにH2Sが存在する環境下においても、優れた耐SSC性を示し、かつ安定して高靭性を有する、安価な油井用高強度マルテンサイト系ステンレス鋼管を提供することを目的とする。 The present invention has been made in view of the above circumstances, has excellent hot workability, has a high strength exceeding YS: 654 MPa, and is severe at 170 ° C. or higher containing CO 2 , Cl 2- , and the like. For low-priced oil wells that exhibit excellent CO 2 corrosion resistance in high-temperature corrosive environments, and excellent SSC resistance even in the presence of H 2 S, and that have stable high toughness An object is to provide a high-strength martensitic stainless steel pipe.

なお、本発明でいう「高強度マルテンサイト系ステンレス鋼管」は、降伏強さが654MPa(95ksi)を超える強度を有するマルテンサイト系ステンレス鋼管をいうものとする。また、本発明でいう「高靭性」とは、シャルピー衝撃試験の−40℃における吸収エネルギーが20J以上を示す場合をいうものとする。   The “high-strength martensitic stainless steel pipe” referred to in the present invention refers to a martensitic stainless steel pipe having a yield strength exceeding 654 MPa (95 ksi). Further, “high toughness” as used in the present invention refers to the case where the absorbed energy at −40 ° C. in the Charpy impact test shows 20 J or more.

本発明者らは、上記した目的を達成するために、特許文献1に記載の油井用高強度ステンレス鋼管において靱性が不安定になる原因について鋭意検討を行った。その結果、ミクロ組織がフェライト相とマルテンサイト相の二相組織であることが特徴である特許文献1記載の油井用高強度ステンレス鋼管において、粗大フェライト粒が発生する場合があり、これによって、低温靱性が不安定になり、所望の値が得られなくなることを突き止めた。   In order to achieve the above-mentioned object, the present inventors diligently investigated the cause of unstable toughness in the high-strength stainless steel pipe for oil well described in Patent Document 1. As a result, in the high strength stainless steel pipe for oil well described in Patent Document 1 characterized in that the microstructure is a two-phase structure of a ferrite phase and a martensite phase, coarse ferrite grains may be generated. It was found that the toughness became unstable and the desired value could not be obtained.

したがって、特許文献1記載の油井用高強度ステンレス鋼管において、低温靱性を安定させるためには、ミクロ組織を構成する結晶粒の微細化が必要であり、さらなる検討を行った結果、所望の靱性が安定して得られるには、結晶粒径(結晶粒内の任意の2点間の距離)が200μm以下であることが必要ということを見出した。   Therefore, in the high-strength stainless steel pipe for oil well described in Patent Document 1, in order to stabilize the low-temperature toughness, it is necessary to refine the crystal grains constituting the microstructure. It has been found that the crystal grain size (the distance between any two points in the crystal grain) needs to be 200 μm or less in order to obtain it stably.

上記の知見に基づいて、本発明は以下のような特徴を有している。   Based on the above findings, the present invention has the following characteristics.

[1]mass%で、
C:0.04%以下、 Si:0.50%以下、
Mn:0.20〜1.80%、 P:0.03%以下、
S:0.005%以下、 Cr:15.5〜17.5%、
Ni:2.5〜5.5%、 V:0.20%以下、
Mo:1.5〜3.5%、 W:0.50〜3.0%、
Al:0.05%以下、 N:0.15%以下、
O:0.006%以下
を、下記(1)〜(3)式を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有し、さらにミクロ組織を構成する結晶粒のうち最も大きいものにおいて、当該結晶粒内の任意の2点間の距離が200μm以下であることを特徴とする、高靱性でかつ耐食性に優れた油井用高強度ステンレス鋼管。

Cr+3.2Mo+2.6W−10C≧23.4 ・・・(1)
Cr+Mo+0.5W+0.3Si−43.5C−0.4Mn−0.3Cu−Ni−9N≧11.5 ・・・(2)
2.2≦Mo+0.8W≦4.5 ・・・(3)
ここで、Cr、Mo、W、Si、C、Mn、Cu、Ni、N:各元素の含有量(mass%)
[2]前記組成に加えてさらに、mass%で、Cu:0.5〜3.5%を含有する組成とすることを特徴とする前記[1]に記載の油井用高強度ステンレス鋼管。
[1] In mass%,
C: 0.04% or less, Si: 0.50% or less,
Mn: 0.20 to 1.80%, P: 0.03% or less,
S: 0.005% or less, Cr: 15.5-17.5%,
Ni: 2.5-5.5%, V: 0.20% or less,
Mo: 1.5-3.5%, W: 0.50-3.0%
Al: 0.05% or less, N: 0.15% or less,
O: 0.006% or less is contained so as to satisfy the following formulas (1) to (3), the composition is composed of the balance Fe and inevitable impurities, and the largest one among the crystal grains constituting the microstructure A high-strength stainless steel pipe for oil wells having high toughness and excellent corrosion resistance, wherein the distance between any two points in the crystal grains is 200 μm or less.
Record
Cr + 3.2Mo + 2.6W-10C ≧ 23.4 (1)
Cr + Mo + 0.5W + 0.3Si-43.5C-0.4Mn-0.3Cu-Ni-9N ≧ 11.5 (2)
2.2 ≦ Mo + 0.8W ≦ 4.5 (3)
Here, Cr, Mo, W, Si, C, Mn, Cu, Ni, N: Content of each element (mass%)
[2] The high-strength stainless steel pipe for oil wells according to [1], wherein the composition further includes, in mass%, Cu: 0.5 to 3.5% in addition to the composition.

[3]前記組成に加えてさらに、mass%で、Nb:0.20%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする前記[1]または[2]に記載の油井用高強度ステンレス鋼管。   [3] In addition to the above-mentioned composition, at least one selected from mass%, Nb: 0.20% or less, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less The high-strength stainless steel pipe for oil wells according to [1] or [2], wherein the composition contains.

[4]前記組成に加えてさらに、mass%で、Ca:0.0005〜0.01%を含有する組成とすることを特徴とする前記[1]ないし[3]のいずれかに記載の油井用高強度ステンレス鋼管。   [4] The high-strength stainless steel for oil wells according to any one of [1] to [3], wherein in addition to the composition, the composition further includes mass% and Ca: 0.0005 to 0.01%. Steel pipe.

[5]マルテンサイト相をベース相とし、さらにフェライト相を体積率で、10〜50%含有する組織を有することを特徴とする前記[1]ないし[4]のいずれかに記載の油井用高強度ステンレス鋼管。   [5] The oil well height according to any one of the above [1] to [4], wherein the martensite phase is a base phase and the ferrite phase has a structure containing 10 to 50% by volume. Strength stainless steel pipe.

本発明においては、熱間加工性に優れるとともに、YS:654MPaを超える高強度を有し、CO2、Cl-等を含む170℃以上の苛酷な高温腐食環境下において、優れた耐CO2腐食性を示し、さらにH2Sが存在する環境下においても、優れた耐SSC性を示し、かつ安定して高靭性を有する、安価な油井用高強度マルテンサイト系ステンレス鋼管を提供することができる。 In the present invention, it is excellent in hot workability, YS: has a high strength of more than 654MPa, CO 2, Cl -, etc. In severe hot corrosion environment over 170 ° C. containing, excellent CO 2 corrosion It is possible to provide an inexpensive, high-strength martensitic stainless steel pipe for oil wells that exhibits excellent SSC resistance and has stable and high toughness even in an environment where H 2 S is present. .

まず、本発明高強度ステンレス鋼管の組成限定理由について説明する。以下、とくに断らない限りmass%は、単に%と記す。   First, the reasons for limiting the composition of the high-strength stainless steel pipe of the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply written as%.

C:0.04%以下
Cは、マルテンサイト系ステンレス鋼の強度に関係する重要な元素であり、所望の強度を確保するためには、0.005%以上含有することが望ましいが、0.04%を超えて含有すると、Ni含有による焼戻時の鋭敏化が増大しやすくなる。このため、この焼戻時の鋭敏化を防止する目的から、Cは0.04%以下に限定した。なお、好ましくは、耐食性の観点から0.005〜0.03%の範囲である。
C: 0.04% or less C is an important element related to the strength of martensitic stainless steel. To ensure the desired strength, 0.005% or more is desirable, but more than 0.04% is contained. Then, the sensitization at the time of tempering by Ni containing tends to increase. Therefore, C is limited to 0.04% or less for the purpose of preventing sensitization during tempering. In addition, Preferably, it is 0.005 to 0.03% of range from a viewpoint of corrosion resistance.

Si:0.50%以下
Siは、通常の製鋼過程において脱酸剤として作用する元素であり、本発明では、0.05%以上含有させることが望ましいが、0.50%を超えて含有すると、耐CO2腐食性が低下し、さらに熱間加工性も低下する。このために、Siは0.50%以下に限定した。なお、好ましくは0.10〜0.35%である。
Si: 0.50% or less
Si is an element that acts as a deoxidizer in the normal steelmaking process, and in the present invention, it is desirable to contain 0.05% or more, but if it exceeds 0.50%, the CO 2 corrosion resistance decreases, Hot workability also decreases. For this reason, Si was limited to 0.50% or less. In addition, Preferably it is 0.10 to 0.35%.

Mn:0.20〜1.80%
Mnは、強度を増加させる元素であり、本発明では油井用マルテンサイト系ステンレス鋼管として必要な強度を確保するために0.20%以上の含有を必要とするが、1.80%を超える含有は、靭性に悪影響を及ぼす。このため、Mnは0.20〜1.80%の範囲に限定した。なお、好ましくは0.25〜0.60%である。
Mn: 0.20 to 1.80%
Mn is an element that increases the strength, and in the present invention, it is necessary to contain 0.20% or more in order to ensure the strength required as a martensitic stainless steel pipe for oil wells, but if it exceeds 1.80%, Adversely affect. For this reason, Mn was limited to the range of 0.20 to 1.80%. In addition, Preferably it is 0.25 to 0.60%.

P:0.03%以下
Pは、耐CO2腐食性、耐CO2応力腐食割れ性、耐孔食性および耐硫化物応力腐食割れ性を劣化させる元素であり、本発明では可及的に低減することが望ましいが、極端な低減は製造コストの上昇を招く。工業的に比較的安価に実施可能でかつ耐CO2腐食性、耐CO2応力腐食割れ性、耐孔食性および耐硫化物応力腐食割れ性を劣化させない範囲として、Pは0.03%以下に限定した。なお、好ましくは0.02%以下である。
P: 0.03% or less P is an element that degrades CO 2 corrosion resistance, CO 2 stress corrosion cracking resistance, pitting corrosion resistance and sulfide stress corrosion cracking resistance, and should be reduced as much as possible in the present invention. However, extreme reduction leads to increased manufacturing costs. P is limited to 0.03% or less as a range that can be implemented relatively inexpensively industrially and does not deteriorate CO 2 corrosion resistance, CO 2 stress corrosion cracking resistance, pitting corrosion resistance and sulfide stress corrosion cracking resistance. . In addition, Preferably it is 0.02% or less.

S:0.005%以下
Sは、パイプ製造過程において熱間加工性を著しく劣化させる元素であり、可及的に少ないことが望ましいが、0.005%以下に低減すれば通常工程でのパイプ製造が可能となることから、Sは0.005%以下に限定した。なお、好ましくは0.003%以下である。
S: 0.005% or less S is an element that significantly deteriorates hot workability in the pipe manufacturing process, and it is desirable that it be as small as possible. However, if it is reduced to 0.005% or less, pipes can be manufactured in the normal process. Therefore, S is limited to 0.005% or less. In addition, Preferably it is 0.003% or less.

Cr:15.5〜17.5%
Crは、保護被膜を形成して耐食性を向上させる元素で、とくに耐CO2腐食性、耐CO2応力腐食割れ性の向上に有効に寄与するとともに、耐硫化物応力腐食割れ性(耐SSC性)を向上させる作用を有する元素である。本発明では特に、高温における耐食性向上の観点から、15.5%以上の含有を必要とする。一方、17.5%を超える含有は、強度を低下させる。このため、本発明では、Crは15.5〜17.5%の範囲に限定した。なお、好ましくは16.0〜17.0%である。
Cr: 15.5-17.5%
Cr is an element improving the corrosion resistance by forming a protective coating, in particular resistance to CO 2 corrosion, as well as effectively contribute to the improvement of resistance to CO 2 stress corrosion cracking resistance, resistance to sulfide stress corrosion cracking (SSC resistance ). In the present invention, the content of 15.5% or more is particularly required from the viewpoint of improving corrosion resistance at high temperatures. On the other hand, the content exceeding 17.5% decreases the strength. For this reason, in the present invention, Cr is limited to a range of 15.5-17.5%. In addition, Preferably it is 16.0 to 17.0%.

Ni:2.5〜5.5%
Niは、保護被膜を強固する作用を有し、耐CO2腐食性、耐CO2応力腐食割れ性、耐孔食性および耐硫化物応力腐食割れ性を高める元素である。このような効果を、本発明が対象とする苛酷な腐食環境下で確保するためには、2.5%以上のNi含有を必要とする。一方、5.5%を超える含有は、マルテンサイト組織の安定性が低下し、強度が低下する。このため、Niは2.5〜5.5%の範囲に限定した。なお、好ましくは3.0〜5.0%である。
Ni: 2.5-5.5%
Ni has an effect of strengthening the protective film, and is an element that enhances CO 2 corrosion resistance, CO 2 stress corrosion cracking resistance, pitting corrosion resistance, and sulfide stress corrosion cracking resistance. In order to ensure such an effect under the severe corrosive environment targeted by the present invention, Ni content of 2.5% or more is required. On the other hand, if the content exceeds 5.5%, the stability of the martensite structure decreases and the strength decreases. For this reason, Ni was limited to the range of 2.5 to 5.5%. In addition, Preferably it is 3.0 to 5.0%.

V:0.20%以下
Vは、強度を上昇させるとともに、耐SSC性を改善する効果を有する元素であり、このような効果を得るためには、0.01%以上含有することが望ましいが、0.20%を超えて含有すると、靱性が低下する。このため、Vは0.20 %以下に限定した。 なお、好ましくは0.05〜0.08%である。
V: 0.20% or less V is an element that has the effect of increasing the strength and improving the SSC resistance. To obtain such an effect, it is desirable to contain 0.01% or more, but 0.20% If it is contained in excess, the toughness decreases. For this reason, V was limited to 0.20% or less. In addition, Preferably it is 0.05 to 0.08%.

Mo:1.5〜3.5%
Moは、Cl-による孔食に対する抵抗性を増加させる作用を有する元素であり、さらに耐SSC性の向上に有効に作用する。このような効果を、本発明が対象とする苛酷な腐食環境下で確保するためには、1.5%以上の含有を必要とする。一方、3.5%を超えて含有すると、強度が低下するとともに、材料コストを高騰させる。このため、Moは1.5〜3.5%の範囲に限定した。なお、好ましくは1.8〜3.0%である。
Mo: 1.5-3.5%
Mo is, Cl - by an element having the effect of increasing the resistance to pitting, further effectively acts to improve the SSC resistance. In order to ensure such an effect under the severe corrosive environment targeted by the present invention, the content of 1.5% or more is required. On the other hand, if the content exceeds 3.5%, the strength is lowered and the material cost is increased. For this reason, Mo was limited to the range of 1.5 to 3.5%. In addition, Preferably it is 1.8 to 3.0%.

W:0.50〜3.0%
Wは、Moと同様に、耐SSC性の向上に有効な元素であり、このような効果は、0.50%以上の含有で顕著となる。一方、3.0%を超える含有は、靱性を劣化させる。このため、Moは0.50〜3.0%の範囲に限定した。なお、好ましくは0.7〜2.0%である。
W: 0.50 ~ 3.0%
W, like Mo, is an element effective for improving the SSC resistance, and such an effect becomes remarkable when the content is 0.50% or more. On the other hand, the content exceeding 3.0% deteriorates toughness. For this reason, Mo was limited to the range of 0.50 to 3.0%. In addition, Preferably it is 0.7 to 2.0%.

本発明では、Mo、W含有量は、上記した範囲内でかつ、次(3)式
2.2≦Mo+0.8W≦4.5 ・・・(3)
(ここで、Mo、W:各元素の含有量(mass%))
を満足するように調整される。MoとWを複合して含有することにより、耐SSC性が顕著に向上する。Mo+0.8Wを2.2以上とすることにより、本発明が対象とするCO2、Cl-を含み、さらにH2Sを含む高温の苛酷な腐食環境下でも、優れた耐SSC性を確保できる。一方、Mo+0.8Wが4.5を超えると、靱性、熱間加工性の低下を引き起こす。このため、本発明では、Mo、Wが(3)式を満足する、Mo+0.8Wが2.2〜4.5の範囲となるように、Mo、W含有量を調整することとした。
In the present invention, the contents of Mo and W are within the above-described range, and the following formula (3)
2.2 ≦ Mo + 0.8W ≦ 4.5 (3)
(Where, Mo, W: content of each element (mass%))
It is adjusted to satisfy. By containing Mo and W in combination, the SSC resistance is significantly improved. With a Mo + 0.8 W 2.2 or more, CO 2, Cl covered by the present invention - comprises a further even under severe corrosive environment of the hot containing H 2 S, can ensure excellent SSC resistance. On the other hand, if Mo + 0.8W exceeds 4.5, toughness and hot workability are reduced. Therefore, in the present invention, the Mo and W contents are adjusted so that Mo and W satisfy the formula (3), and Mo + 0.8W is in the range of 2.2 to 4.5.

Al:0.05%以下
Alは、強力な脱酸作用を有する元素であり、このような効果を得るためには、0.002%以上含有することが望ましいが、0.05%を超える含有は、靭性に悪影響を及ぼす。このため、Alは0.05%以下に限定した。なお、好ましくは0.03%以下である。
Al: 0.05% or less
Al is an element having a strong deoxidizing action, and in order to obtain such an effect, it is desirable to contain 0.002% or more, but inclusion exceeding 0.05% adversely affects toughness. For this reason, Al was limited to 0.05% or less. In addition, Preferably it is 0.03% or less.

N:0.15%以下
Nは、耐孔食性を著しく向上させる元素であり、このような効果は、0.01%以上の含有で顕著となる。一方、0.15%を超える含有は、種々の窒化物を形成して靭性を低下させる。このため、Nは0.15%以下に限定した。なお、好ましくは0.02〜0.08%である。
N: 0.15% or less N is an element that remarkably improves pitting corrosion resistance, and such an effect becomes remarkable when the content is 0.01% or more. On the other hand, the content exceeding 0.15% forms various nitrides and lowers the toughness. For this reason, N was limited to 0.15% or less. In addition, Preferably it is 0.02 to 0.08%.

O:0.006%以下
Oは、鋼中では酸化物として存在し、各種特性に悪影響を及ぼすため、できるだけ低減することが望ましい。とくにO含有量が0.006%を超えて多くなると、熱間加工性、耐CO2応力腐食割れ性、耐孔食性、耐硫化物応力腐食割れ性および靭性を著しく低下させる。このため、Oは0.006%以下に限定した。
O: 0.006% or less O is present as an oxide in steel and adversely affects various properties, so it is desirable to reduce it as much as possible. In particular, when the O content exceeds 0.006%, the hot workability, the CO 2 stress corrosion cracking resistance, the pitting corrosion resistance, the sulfide stress corrosion cracking resistance, and the toughness are significantly reduced. For this reason, O was limited to 0.006% or less.

上記した成分が基本の組成であるが、本発明では、上記した組成に加えてさらに、Cu:0.5〜3.5%、および/または、Nb:0.20%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下のうち1種または2種以上、および/または、Ca:0.0005〜0.01%、を必要に応じて選択して含有することができる。   In the present invention, in addition to the above composition, Cu: 0.5 to 3.5% and / or Nb: 0.20% or less, Ti: 0.3% or less, Zr: 0.2% Hereinafter, one or more of B: 0.01% or less and / or Ca: 0.0005 to 0.01% may be selected and contained as necessary.

Cu:0.5〜3.5%
Cuは、保護皮膜を強固にして鋼中への水素の侵入を抑制し、耐硫化物応力腐食割れ性を向上させる作用を有する元素であり、必要に応じて含有できる。このような効果を得るためには、0.5%以上含有することが好ましい。一方、3.5%を超える含有は、高温でのCuSの粒界析出を招き、熱間加工性が低下する。このため、含有する場合には、Cuは、0.5〜3.5%の範囲に限定することが好ましい。なお、より好ましくは0.5〜2.5%、さらに好ましくは0.8〜1.5%である。
Cu: 0.5-3.5%
Cu is an element having an action of strengthening the protective film and suppressing the penetration of hydrogen into the steel and improving the resistance to sulfide stress corrosion cracking, and can be contained as required. In order to acquire such an effect, it is preferable to contain 0.5% or more. On the other hand, if the content exceeds 3.5%, grain boundary precipitation of CuS occurs at a high temperature, and the hot workability decreases. For this reason, when it contains, it is preferable to limit Cu to 0.5 to 3.5% of range. In addition, More preferably, it is 0.5 to 2.5%, More preferably, it is 0.8 to 1.5%.

Nb:0.20%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下のうちから選ばれた1種または2種以上
Nb、Ti、Zr、Bはいずれも、強度を増加させる元素であり、必要に応じて選択して1種以上、含有することができる。なお、Nbは、上記した効果に加えて、さらに靭性を向上させる効果も有する。また、Ti、Zr、Bは、上記した効果に加えて、さらに耐応力腐食割れ性を改善する効果も有する。このような効果を得るためには、Nb:0.01%以上、Ti:0.01%以上、Zr:0.01%以上、B:0.0005%以上、含有することが望ましい。一方、Nb:0.20%、Ti:0.3%、Zr:0.2%、B:0.01%を超えて含有すると、靱性が低下する。このため、含有する場合には、Nb:0.20%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下に限定することが好ましい。なお、より好ましくはNb:0.02〜0.10%、Ti:0.02〜0.12%、Zr:0.02〜0.08%、B:0.0005〜0.003%である。
One or more selected from Nb: 0.20% or less, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less
Each of Nb, Ti, Zr, and B is an element that increases the strength, and can be selected as required and contained in one or more kinds. Nb has an effect of further improving toughness in addition to the above-described effects. Ti, Zr, and B have an effect of further improving the stress corrosion cracking resistance in addition to the above-described effects. In order to obtain such an effect, it is desirable to contain Nb: 0.01% or more, Ti: 0.01% or more, Zr: 0.01% or more, B: 0.0005% or more. On the other hand, if Nb: 0.20%, Ti: 0.3%, Zr: 0.2%, and B: more than 0.01%, the toughness decreases. For this reason, when it contains, it is preferable to limit to Nb: 0.20% or less, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less. More preferably, Nb: 0.02 to 0.10%, Ti: 0.02 to 0.12%, Zr: 0.02 to 0.08%, B: 0.0005 to 0.003%.

Ca:0.0005〜0.01%
Caは、SをCaSとして固定し、硫化物系介在物を球状化する作用を有する元素である。これにより、介在物周辺のマトリックスの格子歪を小さくして、介在物の水素のトラップ能を低下させる効果を有する。このような効果は、0.0005%以上の含有で顕著となるが、0.01%を超える含有は、CaOの増加を招き、耐CO2腐食性、耐孔食性が低下する。このため、Caは含有する場合には、0.0005〜0.01%の範囲に限定することが好ましい。
Ca: 0.0005 to 0.01%
Ca is an element having an action of fixing S as CaS and spheroidizing sulfide inclusions. This has the effect of reducing the lattice strain of the matrix around the inclusions and reducing the hydrogen trapping ability of the inclusions. Such an effect becomes prominent when the content is 0.0005% or more. However, if the content exceeds 0.01%, CaO increases, and the resistance to CO 2 corrosion and pitting corrosion decreases. For this reason, when it contains Ca, it is preferable to limit to 0.0005 to 0.01% of range.

本発明では、上記した各成分を上記した範囲内で含み、かつ次(1)式
Cr+3.2Mo+2.6W−10C≧23.4 ・・・(1)
および、次(2)式
Cr+Mo+0.5W+0.3Si−43.5C−0.4Mn−0.3Cu−Ni−9N≧11.5 ・・・(2)
(ここで、Cr、Mo、W、Si、C、Mn、Cu、Ni、N:各元素の含有量(mass%))
を満足するように、各成分の含有量を調整する。
In the present invention, each of the above components is included within the above range, and the following formula (1)
Cr + 3.2Mo + 2.6W-10C ≧ 23.4 (1)
And the following equation (2)
Cr + Mo + 0.5W + 0.3Si-43.5C-0.4Mn-0.3Cu-Ni-9N ≧ 11.5 (2)
(Here, Cr, Mo, W, Si, C, Mn, Cu, Ni, N: content of each element (mass%))
The content of each component is adjusted so as to satisfy the above.

上記した(1)式を満足するように、Cr、Mo、W、C含有量を調整することにより、耐SSC性が顕著に向上する。(1)式を満足することができない場合には、充分な耐SSC性を確保できない。また、P、S、Oを上記した範囲にそれぞれ低減することに加えて、さらに上記した(2)式を満足するように、Cr、Mo、W、Si、C、Mn、Cu、Ni、N含有量を調整することにより、マルテンサイト系ステンレス鋼継目無管を造管するために必要十分な熱間加工性を確保でき、さらに所望の強度を維持することができる。P、S、Oを上記した範囲にそれぞれ低減することのみでは、マルテンサイト系ステンレス鋼継目無管を造管するために必要十分な熱間加工性を確保できない。また、(2)式を満足することができない場合には、マルテンサイト系ステンレス鋼継目無管製造のための熱間加工性が不足する。   By adjusting the Cr, Mo, W, and C contents so as to satisfy the above-described expression (1), the SSC resistance is remarkably improved. If the formula (1) cannot be satisfied, sufficient SSC resistance cannot be secured. Further, in addition to reducing P, S, and O to the above ranges, Cr, Mo, W, Si, C, Mn, Cu, Ni, N, so as to satisfy the above-described formula (2). By adjusting the content, it is possible to ensure the necessary and sufficient hot workability for forming a martensitic stainless steel seamless pipe, and to maintain a desired strength. Only by reducing P, S, and O within the above ranges, it is not possible to ensure the hot workability necessary and sufficient for forming a martensitic stainless steel seamless pipe. Moreover, when the formula (2) cannot be satisfied, the hot workability for the production of martensitic stainless steel seamless pipes is insufficient.

上記した成分以外の残部は、Feおよび不可避的不純物である。   The balance other than the above components is Fe and inevitable impurities.

本発明になる高強度ステンレス鋼管は、上記した組成を有し、好ましくはさらにマルテンサイト相をベース相とし、さらにフェライト相を体積率で、10〜50%含有する組織を有する。本発明になる高強度ステンレス鋼管では、高強度を維持するために、組織は、マルテンサイト相をベース相とする組織とする。そして、本発明では、強度を低下させずに耐食性を向上させる目的で、体積率で、10%以上のフェライト相を含有する組織とすることが好ましい。一方、フェライト相が体積率で50%を超えると、強度の低下が著しくなる。このため、本発明鋼管においては、フェライト相分率を体積率で10〜50%の範囲に限定することが好ましい。なお、より好ましくは12〜30%である。なお、フェライト相以外の第二相としては、20体積%以下のオーステナイト相を含有してもなんら問題はない。   The high-strength stainless steel pipe according to the present invention has the above-described composition, and preferably has a structure containing a martensite phase as a base phase and further containing a ferrite phase in a volume ratio of 10 to 50%. In the high-strength stainless steel pipe according to the present invention, the structure is a structure having a martensite phase as a base phase in order to maintain high strength. And in this invention, it is preferable to set it as the structure | tissue which contains a ferrite phase 10% or more by volume for the purpose of improving corrosion resistance, without reducing intensity | strength. On the other hand, when the ferrite phase exceeds 50% by volume, the strength is significantly reduced. For this reason, in the steel pipe of the present invention, the ferrite phase fraction is preferably limited to a range of 10 to 50% by volume. More preferably, it is 12 to 30%. In addition, there is no problem even if the second phase other than the ferrite phase contains an austenite phase of 20% by volume or less.

その上で、本発明になる高強度ステンレス鋼管は、ミクロ組織を構成する結晶粒のうち最も大きいものにおいて、当該結晶粒内の任意の2点間の距離が200μm以下となっている。   In addition, in the high-strength stainless steel pipe according to the present invention, the distance between any two points in the crystal grain is 200 μm or less in the largest crystal grain constituting the microstructure.

このように、結晶粒が微細化されていることによって、所望の靱性(シャルピー衝撃試験の−40℃における吸収エネルギーが20J以上)を安定して得ることができる。   Thus, the desired toughness (the absorbed energy at −40 ° C. in the Charpy impact test is 20 J or more) can be stably obtained by making the crystal grains fine.

次に、本発明になる高強度ステンレス鋼管の好ましい製造方法について、継目無鋼管を例にして説明する。   Next, a preferred method for producing a high-strength stainless steel pipe according to the present invention will be described using a seamless steel pipe as an example.

まず、上記した組成を有する溶鋼を、転炉、電気炉、真空溶解炉等の通常公知の溶製方法で溶製し、連続鋳造法、造塊−分塊圧延法等、通常の方法でビレット等の鋼管素材とすることが好ましい。ついで、これら鋼管素材を加熱し、通常のマンネスマン−プラグミル方式、あるいはマンネスマン−マンドレルミル方式の製造工程を用いて熱間加工し造管して、所望寸法の継目無鋼管とする。   First, molten steel having the above composition is melted by a generally known melting method such as a converter, an electric furnace, a vacuum melting furnace, etc., and billet is obtained by a conventional method such as a continuous casting method or an ingot-bundling rolling method. It is preferable to use a steel pipe material such as. Subsequently, these steel pipe materials are heated and hot-worked and formed using a normal Mannesmann-plug mill system or Mannesmann-Mandrel mill process to obtain seamless steel pipes of desired dimensions.

ここで、上記において鋼管素材を加熱する際には、結晶粒の成長を抑制する加熱条件で行うことが好ましい。   Here, when heating a steel pipe raw material in the above, it is preferable to carry out on the heating conditions which suppress the growth of a crystal grain.

造管後、継目無鋼管は、空冷以上の冷却速度で室温まで冷却することが好ましい。これにより、鋼管の組織を、マルテンサイト相をベース相とする組織とすることができる。なお、プレス方式による熱間押出で継目無鋼管を製造してもよい。   After the pipe making, the seamless steel pipe is preferably cooled to room temperature at a cooling rate equal to or higher than air cooling. Thereby, the structure | tissue of a steel pipe can be made into the structure | tissue which makes a martensite phase a base phase. In addition, you may manufacture a seamless steel pipe by the hot extrusion by a press system.

なお、造管後、空冷以上の冷却速度での冷却に続いて、さらに所定の温度に再加熱したのち、空冷以上の冷却速度で所定の温度まで冷却する焼入れ処理を施すことが好ましい。これにより、好ましくは適正量のフェライト相を含む、微細で高靭性のマルテンサイト組織とすることができる。   In addition, it is preferable to perform the hardening process which cools to predetermined temperature with the cooling rate more than air cooling, after re-heating to predetermined temperature after pipe | tube forming at the cooling rate more than air cooling. Thereby, it is possible to obtain a fine and high toughness martensite structure preferably containing an appropriate amount of ferrite phase.

焼入れ処理を施された継目無鋼管は、ついで、所定の温度に加熱され、空冷以上の冷却速度で冷却される焼戻処理を施されることが好ましい。所定の温度に加熱し、焼戻しすることにより、組織は焼戻しマルテンサイト相、さらに少量のフェライト相とからなる組織となり、所望の高強度とさらには所望の高靭性、所望の優れた耐食性を有する継目無鋼管となる。なお、焼入れ処理なしで上記した焼戻処理のみを施してもよい。   The seamless steel pipe that has been subjected to the quenching treatment is then preferably subjected to a tempering treatment that is heated to a predetermined temperature and cooled at a cooling rate equal to or higher than air cooling. By heating to a predetermined temperature and tempering, the structure becomes a structure composed of a tempered martensite phase and a small amount of ferrite phase, and has a desired high strength, a desired high toughness, and a desired excellent corrosion resistance. It becomes a steel-free pipe. In addition, you may give only the above-mentioned tempering process without quenching process.

なお、上記の熱処理を行う際にも、結晶粒の成長を抑制する熱処理条件で行うことが好ましい。   Note that the heat treatment is preferably performed under heat treatment conditions that suppress the growth of crystal grains.

ここまでは、継目無鋼管を例にして説明したが、本発明鋼管はこれに限定されるものではない。上記した本発明範囲内の組成を有する鋼管素材を用いて、通常の工程に従い、電縫鋼管、UOE鋼管を製造し、油井用鋼管とすることも可能である。   So far, the seamless steel pipe has been described as an example, but the steel pipe of the present invention is not limited to this. Using a steel pipe material having a composition within the scope of the present invention as described above, it is possible to produce an electric-welded steel pipe and a UOE steel pipe in accordance with a normal process to obtain a steel pipe for an oil well.

上記した本発明範囲内の組成を有する鋼管素材を用いて、通常の製造工程にしたがい得られた継目無鋼管以外の鋼管、例えば電縫鋼管、UOE鋼管では、造管後の鋼管に、上記した焼入れ−焼戻処理である、所定の温度に再加熱したのち空冷以上の冷却速度で所定の温度まで冷却する焼入れ処理と、ついで所定の温度に加熱し空冷以上の冷却速度で冷却する焼戻処理とを施すことが好ましい。   Using steel pipe material having a composition within the scope of the present invention described above, steel pipes other than seamless steel pipes obtained in accordance with a normal manufacturing process, such as ERW steel pipes and UOE steel pipes, are described above in steel pipes after pipe making. Quenching-tempering treatment, which is re-heated to a predetermined temperature and then cooled to a predetermined temperature at a cooling rate higher than air cooling, and then tempered to be heated to a predetermined temperature and cooled at a cooling rate higher than air cooling. Are preferably applied.

表1に示す鋼No.A〜Rの組成の溶鋼を脱ガス後、100kg鋼塊(鋼管素材)に鋳造し、モデルシームレス圧延機による熱間加工により造管し、造管後空冷または水冷し、外径83.8mm×肉厚12.7mm(3.3in×肉厚0.5in)の継目無鋼管とした。   After degassing the molten steel with the composition of steel Nos. A to R shown in Table 1, it is cast into a 100kg steel ingot (steel pipe material), piped by hot working with a model seamless rolling mill, and then air-cooled or water-cooled after pipe making A seamless steel pipe having an outer diameter of 83.8 mm and a wall thickness of 12.7 mm (3.3 inches × wall thickness of 0.5 inches) was used.

得られた継目無鋼管について、造管後冷却のままで内外表面の割れ発生の有無を目視で調査し、熱間加工性を評価した。なお、鋼管の前後端面で1mm以上の長さの割れが存在する場合を熱間加工性良好とし、それ以外を熱間加工性不良とした。   About the obtained seamless steel pipe, the presence or absence of the crack generation | occurrence | production of the inner and outer surface was visually examined with cooling after pipe making, and hot workability was evaluated. In addition, the case where the crack of 1 mm or more exists in the front-and-rear end surface of a steel pipe was made into hot workability favorable, and the other was made into hot workability defect.

また、得られた継目無鋼管から、試験片素材を切り出し、920℃で1h加熱したのち、水冷(800〜500℃までの平均冷却速度:10℃/s)する焼入れ処理を施した。さらに500〜650℃の範囲の温度で30min間保持し、空冷する焼戻処理を施した。   Further, from the obtained seamless steel pipe, a test piece material was cut out, heated at 920 ° C. for 1 h, and then subjected to quenching treatment with water cooling (average cooling rate from 800 to 500 ° C .: 10 ° C./s). Furthermore, the tempering process which hold | maintains for 30 minutes at the temperature of the range of 500-650 degreeC and air-cools was performed.

このような処理を施された試験片素材から、組織観察用試験片を採取し、組織観察用試験片を王水で腐食して走査型電子顕微鏡(400倍)で組織を撮像し、画像解析装置を用いて、結晶粒のうち最も大きいものにおいて、当該結晶粒内の任意の2点間の距離の最大値(結晶内最大距離)を算出した。   Tissue observation specimens are collected from the specimen material treated in this way, and the tissue observation specimens are corroded with aqua regia and imaged with a scanning electron microscope (400x) for image analysis. Using the apparatus, the maximum value of the distance between any two points in the crystal grain (maximum distance in the crystal) of the largest crystal grain was calculated.

また、残留オーステナイト相組織分率は、X線回折法を用いて測定した。焼入れ−焼戻処理を施された試験片素材から測定用試験片を採取し、X線回折によりγの(220)面、αの(211)面、の回折X線積分強度を測定し、次式
γ(体積率)=100/(1+(IαRγ/IγRγ))
ここで、Iα:αの積分強度
Rγ:αの結晶学的理論計算値
Iγ:γの積分強度
Rγ:γの結晶学的理論計算値
を用いて換算した。なお、マルテンサイト相の分率はこれらの相以外の残部として算出した。
Further, the retained austenite phase structure fraction was measured using an X-ray diffraction method. Test specimens are taken from the quenched and tempered test specimen material, and the X-ray diffraction intensity of γ (220) plane and α (211) plane is measured by X-ray diffraction. Formula γ (volume ratio) = 100 / (1+ (IαRγ / IγRγ))
Where Iα: Integral intensity of α
Rγ: Theoretical calculation value of α
Iγ: Integral intensity of γ
Rγ: Conversion was performed using a crystallographic theoretical calculation value of γ. The fraction of the martensite phase was calculated as the remainder other than these phases.

また、上記の処理を施された試験片素材から、API 弧状引張試験片を採取し、引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を求めた。   In addition, API arc-shaped tensile test pieces were collected from the test piece materials subjected to the above treatment, and subjected to a tensile test to obtain tensile properties (yield strength YS, tensile strength TS).

また、上記の処理を施された試験片素材から、JIS Z 2242の規定に準拠して、Vノッチ試験片(5mm厚)を採取し、シャルピー衝撃試験を実施し、−40℃における吸収エネルギーvE-40を求め、靭性を評価した。なお、所望の靭性(−40℃における吸収エネルギーvE-40が、20J以上)が得られている場合を靭性良好(○)とし、所望の靭性が得られていない場合を靭性不良(×)とした。 In addition, a V-notch test piece (5 mm thick) was collected from the test piece material subjected to the above treatment in accordance with JIS Z 2242, a Charpy impact test was performed, and the absorbed energy vE at −40 ° C. -40 was determined and toughness was evaluated. In addition, when the desired toughness (absorbed energy vE- 40 at −40 ° C. is 20 J or more) is obtained, the toughness is good (◯), and when the desired toughness is not obtained, the toughness is poor (×). did.

さらに、上記の処理を施された試験片素材から、厚さ3mm×幅30mm×長さ40mmの腐食試験片を機械加工によって作製し、腐食試験を実施した。   Furthermore, a corrosion test piece having a thickness of 3 mm, a width of 30 mm, and a length of 40 mm was produced by machining from the test piece material subjected to the above treatment, and a corrosion test was performed.

腐食試験は、オートクレーブ中に保持された試験液:20%NaCl水溶液(液温:220℃、100気圧のCO2ガス雰囲気) 中に、腐食試験片を浸漬し、浸漬期間を2週間として実施した。腐食試験後の試験片について、重量を測定し、腐食試験前後の重量減から計算した腐食速度を求めた。また、試験後の腐食試験片について倍率:10倍のルーペを用いて試験片表面の孔食発生の有無を観察した。なお、孔食が、直径0.3mm以上の場合を孔食発生有り(×)とし、それ以外を孔食無し(○)とした。 The corrosion test was carried out by immersing the corrosion test piece in a test solution held in an autoclave: 20% NaCl aqueous solution (liquid temperature: 220 ° C., 100 atm CO 2 gas atmosphere), and the immersion period was 2 weeks. . The test piece after the corrosion test was weighed, and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained. Moreover, about the corrosion test piece after a test, the presence or absence of pitting corrosion on the test piece surface was observed using a magnifying glass with a magnification of 10 times. In addition, the case where the pitting corrosion was 0.3 mm or more in diameter was regarded as having pitting corrosion (x), and the other was not pitting corrosion (◯).

さらに、上記の処理を施された試験片素材から、NACE-TM0177 Method Aの規定に準拠して、丸棒状の試験片(平行部の直径:6.4mm)を機械加工によって作製し、耐SSC試験を実施した。   In addition, a round bar-shaped test piece (parallel part diameter: 6.4 mm) is made from the test piece material that has been subjected to the above treatment in accordance with NACE-TM0177 Method A, and subjected to an SSC resistance test. Carried out.

耐SSC試験は、試験容器中に保持された試験液:20%NaCl水溶液(液温:25℃、H2S:0.1気圧、CO2:0.9気圧の雰囲気、液pH:3.5(0.5%CH3COOH+CH3COONaで調整)) 中に、試験片を浸漬し、浸漬期間を30日(720h)とし、該試験片に100%SMYS(Specified Minimum Yield Strength)の応力を付加して、試験片の破断の有無を調査した。破断した場合を耐SCC性に劣るとして×、破断しなかった場合を耐SCC性に優れるとして○、として評価した。 The SSC resistance test was conducted in a test solution held in a test vessel: 20% NaCl aqueous solution (liquid temperature: 25 ° C., H 2 S: 0.1 atm, CO 2 : 0.9 atm atmosphere, solution pH: 3.5 (0.5% CH 3 The specimen is immersed in COOH + CH 3 COONa), the immersion period is 30 days (720h), 100% SMYS (Specified Minimum Yield Strength) stress is applied to the specimen, and the specimen breaks. The presence or absence of was investigated. The case where it broke was evaluated as “poor” as being inferior in SCC resistance, and the case where it was not broken was evaluated as “O”, as being excellent in SCC resistance.

まず、結晶内最大距離を表1に示す。   First, the maximum distance in the crystal is shown in Table 1.

表1に示すように、鋼No.A〜Rの内、結晶内最大距離が200μm以下である鋼No.A〜Iが本発明例であり、結晶内最大距離が200μm超えである鋼No.J〜Rが比較例である。   As shown in Table 1, steel Nos. A to I having a maximum intra-crystal distance of 200 μm or less among steel Nos. A to R are examples of the present invention, and steel No. A having a maximum intra-crystal distance of more than 200 μm. J to R are comparative examples.

そして、それぞれについて得られた耐食性、耐SSC性、靭性の評価結果を表2に示す。   Table 2 shows the evaluation results of the corrosion resistance, SSC resistance and toughness obtained for each.

なお、表2には記載していないが、鋼No.A〜Rのいずれも、熱間加工性は良好であり、強度も所望の値(降伏強さが654Mpa超え)を有していた。また、鋼No.A〜Rのいずれも、マルテンサイト相をベース相とし、フェライト相を体積率で10〜50%含有する組織であった。   Although not shown in Table 2, all of steel Nos. A to R had good hot workability and had a desired value (yield strength exceeded 654 Mpa). Each of Steel Nos. A to R was a structure containing a martensite phase as a base phase and containing a ferrite phase in a volume ratio of 10 to 50%.

Figure 0005446335
Figure 0005446335

Figure 0005446335
Figure 0005446335

表2に示すように、本発明例(鋼No.A〜I)および比較例(鋼No.J〜R)のいずれも、耐食性と耐SSC性は良好(○)であった。   As shown in Table 2, the corrosion resistance and SSC resistance were good (◯) in all of the inventive examples (steel Nos. A to I) and the comparative examples (steel Nos. J to R).

しかし、靭性については、結晶内最大距離が200μm以下である本発明例(鋼No.A〜I)では、所望の靭性が得られている(○)のに対して、結晶内最大距離が200μm超えである比較例(鋼No.A〜I)では、所望の靭性が得られなかった(×)。   However, with regard to toughness, in the present invention examples (steel Nos. A to I) in which the maximum distance in the crystal is 200 μm or less, the desired toughness is obtained (◯), whereas the maximum distance in the crystal is 200 μm. In the comparative example (steel Nos. A to I) exceeding the range, the desired toughness was not obtained (×).

この結果から、本発明の有効性を確認することができた。   From this result, the effectiveness of the present invention could be confirmed.

Claims (5)

mass%で、
C:0.04%以下、Si:0.50%以下、
Mn:0.20〜1.80%、P:0.03%以下、
S:0.005%以下、Cr:15.5〜17.5%、
Ni:2.5〜5.5%、V:0.20%以下、
Mo:1.5〜3.5%、W:0.50〜3.0%、
Al:0.05%以下、N:0.15%以下、
O:0.006%以下
を、下記(1)〜(3)式を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有する油井用高強度ステンレス鋼管の評価方法であって、
ミクロ組織を構成する結晶粒のうち最も大きいものにおいて、当該結晶粒内の任意の2点間の距離が200μm以下である場合に、高靱性でかつ耐食性に優れた油井用高強度ステンレス鋼管であると判定する油井用高強度ステンレス鋼管の評価方法

Cr+3.2Mo+2.6W−10C≧23.4 ・・・(1)
Cr+Mo+0.5W+0.3Si−43.5C−0.4Mn−0.3Cu−Ni−9N≧11.5 ・・・(2)
2.2≦Mo+0.8W≦4.5 ・・・(3)
ここで、Cr、Mo、W、Si、C、Mn、Cu、Ni、N:各元素の含有量(mass%)
mass%
C: 0.04% or less, Si: 0.50% or less,
Mn: 0.20 to 1.80%, P: 0.03% or less,
S: 0.005% or less, Cr: 15.5-17.5%,
Ni: 2.5-5.5%, V: 0.20% or less,
Mo: 1.5-3.5%, W: 0.50-3.0%
Al: 0.05% or less, N: 0.15% or less,
O: 0.006% or less is contained so as to satisfy the following formulas (1) to (3), and is a method for evaluating a high-strength stainless steel pipe for oil wells having a composition consisting of the remaining Fe and inevitable impurities ,
In the largest among the crystal grains constituting the microstructure, when the distance between any two points in the crystal grains is 200μm or less, is a high strength stainless steel pipe for high oil well in a high toughness and and corrosion resistance Evaluation method for high-strength stainless steel pipes for oil wells .
Record
Cr + 3.2Mo + 2.6W-10C ≧ 23.4 (1)
Cr + Mo + 0.5W + 0.3Si-43.5C-0.4Mn-0.3Cu-Ni-9N ≧ 11.5 (2)
2.2 ≦ Mo + 0.8W ≦ 4.5 (3)
Here, Cr, Mo, W, Si, C, Mn, Cu, Ni, N: Content of each element (mass%)
前記組成に加えてさらに、mass%で、Cu:0.5〜3.5%を含有する組成とすることを特徴とする請求項1に記載の油井用高強度ステンレス鋼管の評価方法In addition to the said composition, it is set as the composition containing Cu: 0.5-3.5% by mass%, The evaluation method of the high strength stainless steel pipe for oil wells of Claim 1 characterized by the above-mentioned. 前記組成に加えてさらに、mass%で、Nb:0.20%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1または2に記載の油井用高強度ステンレス鋼管の評価方法In addition to the above composition, the composition further contains one or more selected from mass%, Nb: 0.20% or less, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less The method for evaluating a high-strength stainless steel pipe for oil wells according to claim 1 or 2. 前記組成に加えてさらに、mass%で、Ca:0.0005〜0.01%を含有する組成とすることを特徴とする請求項1ないし3のいずれかに記載の油井用高強度ステンレス鋼管の評価方法The method for evaluating a high-strength stainless steel pipe for oil wells according to any one of claims 1 to 3, wherein the composition further includes, in mass%, Ca: 0.0005 to 0.01% in addition to the composition. マルテンサイト相をベース相とし、さらにフェライト相を体積率で、10〜50%含有する組織を有することを特徴とする請求項1ないし4のいずれかに記載の油井用高強度ステンレス鋼管の評価方法The method for evaluating a high-strength stainless steel pipe for oil wells according to any one of claims 1 to 4, further comprising a structure containing a martensite phase as a base phase and further containing a ferrite phase in a volume ratio of 10 to 50%. .
JP2009056363A 2009-03-10 2009-03-10 Evaluation method of high strength stainless steel pipe for oil well Expired - Fee Related JP5446335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056363A JP5446335B2 (en) 2009-03-10 2009-03-10 Evaluation method of high strength stainless steel pipe for oil well

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056363A JP5446335B2 (en) 2009-03-10 2009-03-10 Evaluation method of high strength stainless steel pipe for oil well

Publications (2)

Publication Number Publication Date
JP2010209402A JP2010209402A (en) 2010-09-24
JP5446335B2 true JP5446335B2 (en) 2014-03-19

Family

ID=42969871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056363A Expired - Fee Related JP5446335B2 (en) 2009-03-10 2009-03-10 Evaluation method of high strength stainless steel pipe for oil well

Country Status (1)

Country Link
JP (1) JP5446335B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3246418A4 (en) * 2015-01-15 2017-11-22 JFE Steel Corporation Seamless stainless steel pipe for oil well, and method for manufacturing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640762B2 (en) * 2011-01-20 2014-12-17 Jfeスチール株式会社 High strength martensitic stainless steel seamless pipe for oil wells
JP6045256B2 (en) 2012-08-24 2016-12-14 エヌケーケーシームレス鋼管株式会社 High strength, high toughness, high corrosion resistance martensitic stainless steel
JP5967066B2 (en) * 2012-12-21 2016-08-10 Jfeスチール株式会社 High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
CN103343282A (en) * 2013-07-02 2013-10-09 首钢总公司 Hydrogen sulfide corrosion resistant X70MS steel plate and production method thereof
JP6292142B2 (en) * 2015-02-06 2018-03-14 Jfeスチール株式会社 Manufacturing method of high strength stainless steel seamless steel pipe for oil well
BR112018000540B1 (en) 2015-07-10 2022-03-03 Jfe Steel Corporation High strength seamless stainless steel pipe and method for manufacturing high strength seamless stainless steel pipe
AU2016302517B2 (en) 2015-08-04 2018-11-29 Nippon Steel Corporation Stainless steel and oil well stainless steel material
JP2018538440A (en) 2015-11-16 2018-12-27 ベントラー スティール / チューブ ゲーエムベーハー Alloy steel and pipe products with high energy absorption capability
EP3404120B1 (en) 2016-01-13 2020-03-04 Nippon Steel Corporation Method for manufacturing stainless steel pipe for oil wells and stainless steel pipe for oil wells
EP3385403B1 (en) 2016-02-08 2020-01-01 JFE Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods and method of manufacturing high-strength seamless stainless steel pipe
MX2019008377A (en) 2017-01-13 2019-09-16 Jfe Steel Corp High strength seamless stainless steel pipe and production method therefor.
EP3670693B1 (en) 2017-08-15 2023-10-04 JFE Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
WO2022224640A1 (en) 2021-04-21 2022-10-27 Jfeスチール株式会社 Stainless steel pipe and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893196B2 (en) * 2006-09-28 2012-03-07 Jfeスチール株式会社 High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3246418A4 (en) * 2015-01-15 2017-11-22 JFE Steel Corporation Seamless stainless steel pipe for oil well, and method for manufacturing same

Also Published As

Publication number Publication date
JP2010209402A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP4893196B2 (en) High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance
JP5446335B2 (en) Evaluation method of high strength stainless steel pipe for oil well
JP5109222B2 (en) High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
JP6766887B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP6399259B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP4363327B2 (en) Stainless steel pipe for oil well and manufacturing method thereof
JP5924256B2 (en) High strength stainless steel seamless pipe for oil well with excellent corrosion resistance and manufacturing method thereof
JP5967066B2 (en) High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
JP4978073B2 (en) High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same
WO2017138050A1 (en) High strength stainless steel seamless pipe for oil well and manufacturing method therefor
JP6156609B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP5765036B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
JP4462005B2 (en) High strength stainless steel pipe for line pipe with excellent corrosion resistance and method for producing the same
WO2014112353A1 (en) Stainless steel seamless tube for use in oil well and manufacturing process therefor
JP6237873B2 (en) High strength stainless steel seamless steel pipe for oil well
WO2005042793A1 (en) High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
WO2019225281A1 (en) Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
JP7315097B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP7226675B1 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP2010168646A (en) Seamless pipe of martensitic stainless steel for oil well pipe and process for producing the same
JP4470617B2 (en) High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance
JP4449174B2 (en) Manufacturing method of high strength martensitic stainless steel pipe for oil well
JP4978070B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability
JP4289109B2 (en) High strength stainless steel pipe for oil well with excellent corrosion resistance
JP3966136B2 (en) Stainless steel pipe for line pipe with excellent corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5446335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees