WO2022224640A1 - Stainless steel pipe and manufacturing method thereof - Google Patents

Stainless steel pipe and manufacturing method thereof Download PDF

Info

Publication number
WO2022224640A1
WO2022224640A1 PCT/JP2022/011814 JP2022011814W WO2022224640A1 WO 2022224640 A1 WO2022224640 A1 WO 2022224640A1 JP 2022011814 W JP2022011814 W JP 2022011814W WO 2022224640 A1 WO2022224640 A1 WO 2022224640A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
stainless steel
content
temperature
Prior art date
Application number
PCT/JP2022/011814
Other languages
French (fr)
Japanese (ja)
Inventor
健一郎 江口
正雄 柚賀
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2023011826A priority Critical patent/MX2023011826A/en
Priority to JP2022536963A priority patent/JP7279863B2/en
Priority to BR112023021507A priority patent/BR112023021507A2/en
Priority to EP22791420.7A priority patent/EP4293133A1/en
Priority to US18/285,695 priority patent/US20240191331A1/en
Priority to CN202280028088.0A priority patent/CN117120653A/en
Publication of WO2022224640A1 publication Critical patent/WO2022224640A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a stainless steel pipe suitable for use in oil and gas wells for crude oil or natural gas (hereinafter simply referred to as oil wells) and geothermal wells, and a method for manufacturing the same.
  • 13Cr martensitic stainless steel pipes have generally been used as oil country tubular goods for mining in oil and gas fields in environments containing carbon dioxide gas (CO 2 ), chloride ions (Cl ⁇ ), and the like. Recently, however, the development of oil wells in corrosive environments at even higher temperatures (up to 200°C) has progressed, and in such environments, 13Cr martensitic stainless steel pipes sometimes lack corrosion resistance. rice field. Therefore, there has been a demand for oil well steel pipes having excellent corrosion resistance that can be used in such environments.
  • CO 2 carbon dioxide gas
  • Cl ⁇ chloride ions
  • geothermal wells that collect steam for geothermal power generation are also being developed in deeper layers than before.
  • Patent Document 1 describes a high-strength stainless steel pipe for oil wells with improved corrosion resistance.
  • C 0.005 to 0.05%
  • Si 0.05 to 0.5%
  • Mn 0.2 to 1.8%
  • P 0 .03% or less
  • S 0.005% or less
  • Cr 15.5-18%
  • Ni 1.5-5%
  • Mo 1-3.5%
  • V 0.02-0.2%
  • N 0.01 to 0.15%
  • O 0.006% or less
  • Cr, Ni, Mo, Cu and C satisfy a specific relational expression
  • Cr, Mo, Si, C It has a composition containing Mn, Ni, Cu and N so as to satisfy a specific relational expression, and further has a martensite phase as a base phase, a ferrite phase at a volume fraction of 10 to 60%, or an austenite phase at a volume fraction.
  • Patent Document 2 describes a high-strength stainless steel pipe for oil wells with improved toughness and corrosion resistance.
  • C 0.04% or less
  • Si 0.50% or less
  • Mn 0.20 to 1.80%
  • P 0.03% or less
  • S 0.005% or less
  • Cr 15.5 to 17.5%
  • Ni 2.5 to 5.5%
  • V 0.20% or less
  • Mo 1.5 to 3.5%
  • W 0.50 to 3.0%
  • Al 0.05% or less
  • N 0.15% or less
  • Cr, Mo, W and C have a specific relationship, and , Cr, Mo, W, Si, C, Mn, Cu, Ni and N satisfy specific relationships, and Mo and W satisfy specific relationships, respectively; and a steel pipe having a structure containing 10 to 50% by volume of ferrite phase.
  • Patent Document 3 describes a high-strength stainless steel pipe with improved sulfide stress cracking resistance and high-temperature carbon dioxide corrosion resistance.
  • C 0.05% or less
  • Si 1.0% or less
  • P 0.05% or less
  • S less than 0.002%
  • Cr 16% More than 18% or less
  • Mo more than 2% and 3% or less
  • Cu 1-3.5%
  • Ni 3% or more and less than 5%
  • Al 0.001-0.1%
  • Mn 1%
  • the composition contains Mn and N so as to satisfy a specific relationship, so that the martensite phase is the main component and the ferrite phase is 10 to 40% by volume.
  • Patent Document 4 describes a stainless steel pipe for oil wells.
  • C 0.05% or less
  • Si 0.5% or less
  • Mn 0.01 to 0.5%
  • P 0.04% or less
  • S 0.01% or less
  • Cr more than 16.0 to 18.0%
  • Ni more than 4.0 to 5.6%
  • Mo 1.6 to 4.0%
  • Cu 1.5 to 3.0%
  • Al 0.001 to 0.10%
  • N 0.050% or less
  • Cr, Cu, Ni and Mo satisfy a specific relationship
  • C + N Mn, Ni
  • Stainless steel for oil wells having a plurality of imaginary line segments arranged in a row within a range of 200 ⁇ m, a structure in which the ratio of fer
  • Patent Document 5 describes a high-strength stainless steel pipe for oil wells with high toughness and improved corrosion resistance.
  • C 0.04% or less
  • Si 0.50% or less
  • Mn 0.20 to 1.80%
  • P 0.03% or less
  • S 0.005% or less
  • Cr 15.5 to 17.5%
  • Ni 2.5 to 5.5%
  • V 0.20% or less
  • Mo 1.5 to 3.5%
  • W 0.50 to 3.0%
  • Al 0.05% or less
  • N 0.15% or less
  • Cr, Mo, W and C satisfy a specific relationship , Cr, Mo, W, Si, C, Mn, Cu, Ni and N satisfying the specified relationship, and Mo and W satisfying the specified relationship, and the largest crystal
  • a steel pipe having a grain structure in which the distance between any two points within a grain is 200 ⁇ m or less.
  • This steel pipe has a high yield strength exceeding 654 MPa (95 ksi), has sufficient toughness, and has sufficient corrosion resistance in a high-temperature corrosion environment of 170°C or higher containing CO 2 , Cl ⁇ , and H 2 S. is intended to indicate
  • Patent Document 6 describes a high-strength martensitic stainless steel seamless steel pipe for oil wells.
  • C 0.01% or less
  • Si 0.5% or less
  • Mn 0.1 to 2.0%
  • P 0.03% or less
  • S 0.005% or less
  • Cr more than 15.5 and 17.5% or less
  • Ni 2.5 to 5.5%
  • Mo 1.8 to 3.5%
  • Cu 0.3 to 3.5 %
  • V 0.20% or less
  • Al 0.05% or less
  • N 0.06% or less
  • the seamless steel pipe has a structure containing an austenite phase and a tempered martensite phase as the remainder.
  • the composition in addition to the above composition, may contain W: 0.25 to 2.0% and/or Nb: 0.20% or less. As a result, it has a high strength with a yield strength of 655 MPa or more and 862 MPa or less, a tensile property with a yield ratio of 0.90 or more , and a high temperature of 170 ° C. It is possible to stably manufacture high-strength martensitic stainless steel seamless steel pipes for oil wells that have sufficient corrosion resistance (carbon dioxide corrosion resistance and sulfide stress cracking resistance) even in severe corrosive environments.
  • Patent Document 7 describes a stainless steel pipe for oil wells.
  • C 0.05% or less
  • Si 1.0% or less
  • Mn 0.01 to 1.0%
  • P 0.05% or less
  • S less than 0.002%
  • Cr 16-18%
  • Mo 1.8-3%
  • Cu 1.0-3.5%
  • Co 0.01 ⁇ 1.0%
  • Al 0.001 to 0.1%
  • O 0.05% or less
  • N 0.05% or less
  • Cr, Ni, Mo and Cu satisfy a specific relationship
  • the stainless steel pipe has a structure containing 10% or more and less than 60% by volume of ferrite phase, 10% or less of retained austenite phase, and 40% or more of martensite phase.
  • Patent Document 8 describes a stainless steel material.
  • C 0.040% or less
  • Si 0.05 to 1.0%
  • Mn 0.010 to 0.30%
  • Cr 18.0%
  • Cu 1.5 to 4.0%
  • sol.Al 0.001 to 0.100%
  • Mo 0 to 0.60%
  • W 0-2.0%
  • Co 0-0.30%
  • Ti 0-0.10%
  • V 0-0.15%
  • Zr 0-0.10%
  • Nb 0-0.10%
  • Ca 0-0.010%
  • Mg 0-0.010%
  • REM 0-0.05%
  • B 0-0.005%
  • the balance consists of Fe and impurities , among the impurities, P, S, O, and N are respectively P: 0.050% or less, S: less than 0.0020%, O: 0.020% or less, N: 0.020% or less
  • C N, Si, Mn, Ni, Cr, Cu
  • Patent Document 1 8 cannot maintain the desired corrosion resistance (carbon dioxide gas corrosion resistance, sulfide stress cracking resistance). In addition, considering the use in cold regions, it is also required to have both high strength and low temperature toughness.
  • An object of the present invention is to solve the problems of the prior art and to provide a stainless steel pipe having a yield strength of 758 MPa or more, excellent low-temperature toughness, and excellent corrosion resistance, and a method for producing the same.
  • excellent corrosion resistance in the present invention means excellent carbon dioxide corrosion resistance and sulfide stress cracking resistance.
  • Excellent carbon dioxide corrosion resistance in the present invention means that a test piece is placed in a test liquid: 25 mass% NaCl aqueous solution (liquid temperature: 250 ° C., 30 atm CO2 gas atmosphere) held in an autoclave.
  • a test liquid 25 mass% NaCl aqueous solution (liquid temperature: 250 ° C., 30 atm CO2 gas atmosphere) held in an autoclave.
  • the corrosion rate is 0.125 mm/y or less when the test piece is immersed and the immersion period is 336 hours, and no pitting corrosion occurs in the test piece after the corrosion test, and the test solution is 0.01 mol/L H 2 SO 4 aqueous solution (liquid temperature: 250° C., 30 atm CO 2 gas atmosphere)
  • the test piece was immersed for 336 hours, and the corrosion rate was 0.125 mm/y or less and the corrosion test was performed. It refers to the case where no pitting corrosion occurred in the later test piece.
  • the "excellent sulfide stress cracking resistance" in the present invention refers to a sulfide stress cracking test (SSC test) that evaluates the cracking susceptibility of a test piece to which stress is applied in a corrosive environment containing H2S . , refers to low sulfide stress cracking susceptibility.
  • test liquid 5% by mass NaCl aqueous solution (liquid temperature: 25°C, 0.95 atm CO2 gas, 0.05 atm H2S atmosphere) to obtain a pH:
  • the test piece is immersed in an aqueous solution adjusted to 3.5, the immersion time is 720 hours, and the test is performed with a load stress of 90% of the yield stress, and no cracks occur in the test piece after the test. shall mean the case.
  • excellent low temperature toughness (high toughness) in the present invention refers to the absorbed energy vE -10 at a test temperature of -10 ° C in a Charpy impact test conducted in accordance with the provisions of JIS Z 2242 (2016). is 40J or more.
  • the above absorbed energy vE -10 is preferably 250J or less.
  • the present inventors used, as a stainless steel pipe, a seamless steel pipe having a stainless steel composition that has a yield strength of 758 MPa or more and high toughness, and has corrosion resistance (carbon dioxide corrosion resistance and corrosion resistance).
  • corrosion resistance carbon dioxide corrosion resistance and corrosion resistance.
  • Various factors that affect the sulfide stress cracking resistance have been extensively studied.
  • the gist of the present invention is as follows. [1] in % by mass, C: 0.05% or less, Si: 1.0% or less, Mn: 0.10-2.0%, P: 0.05% or less, S: less than 0.005%, Cr: more than 16.0% and 20.0% or less, Mo: more than 0.6% and less than 1.4%, Ni: 3.0% or more and less than 5.0%, Al: 0.001 to 0.10%, N: 0.010 to 0.100%, O: 0.01% or less, Cu: 0.3-3.5% and satisfies the formulas (1) and (2), with the balance being Fe and unavoidable impurities, Having a structure consisting of a tempered martensite phase of 45% or more, a ferrite phase of 20 to 40%, and a retained austenite phase of 5% or more and 25% or less, in volume fraction, Yield strength is 758 MPa or more, A stainless steel pipe having an absorbed energy v
  • Group A One or more selected from Ti: 0.3% or less, Nb: 0.5% or less, V: 0.5% or less, Ta: 0.5% or less
  • Group C Mg: 0.010% or less and Zr: 0.2 1 or 2 selected from % or less
  • Group D 1 or 2 selected from Sn: 0.20% or less and Sb: 0.20% or less
  • Group E Co: 1.0 % or less and W: 3.0% or less, one or two selected from [3] [1] or [2], A steel pipe material is heated at a temperature in the range of 1100 to 1350° C.
  • the seamless steel pipe is reheated to a temperature in the range of 850 to 1150°C, and subjected to a quenching treatment in which the surface temperature is cooled to a cooling stop temperature of 50°C or less and over 0°C at a cooling rate faster than air cooling.
  • a method for manufacturing a stainless steel pipe which is then subjected to a tempering treatment of heating to a tempering temperature in the range of 500 to 650°C.
  • the yield strength (YS) is high strength of 758 MPa or more, low temperature toughness at -10 ° C., high temperature of 250 ° C. or more, and excellent even in severe corrosive environments containing CO 2 and Cl - It is possible to provide a stainless steel pipe having excellent corrosion resistance and a method for manufacturing the same. Moreover, the stainless steel pipe of the present invention can be suitably used as a seamless stainless steel pipe for oil wells.
  • C 0.05% or less C is an important element that increases the strength of martensitic stainless steel. In the present invention, it is desirable to contain 0.003% or more of C in order to ensure the desired high strength. On the other hand, when the C content exceeds 0.05%, the sulfide stress cracking resistance is lowered. Therefore, the C content should be 0.05% or less.
  • the C content is preferably 0.005% or more.
  • the C content is preferably 0.040% or less, more preferably 0.035% or less.
  • Si 1.0% or less
  • Si is an element that acts as a deoxidizing agent, and in order to obtain such an effect, it is desirable to contain 0.005% or more of Si.
  • the Si content is set to 1.0% or less.
  • the Si content is more preferably 0.1% or more, more preferably 0.25% or more.
  • the Si content is preferably 0.6% or less.
  • Mn 0.10-2.0%
  • Mn is an element that increases the strength of martensitic stainless steel, and in order to ensure the strength targeted in the present invention, the content of Mn is required to be 0.10% or more. On the other hand, when the Mn content exceeds 2.0%, the low temperature toughness is lowered. Therefore, the Mn content should be 0.10 to 2.0%.
  • the Mn content is preferably 0.15% or more, more preferably 0.20% or more.
  • the Mn content is preferably 0.5% or less.
  • P 0.05% or less
  • P is an element that lowers corrosion resistance such as carbon dioxide corrosion resistance and sulfide stress cracking resistance, and is preferably reduced as much as possible in the present invention.
  • P content of 0.05% or less is permissible. Therefore, the P content should be 0.05% or less.
  • the P content is preferably 0.02% or less.
  • the lower limit of the P content is not particularly limited. However, excessive reduction causes an increase in manufacturing costs, so the P content is preferably 0.005% or more.
  • S less than 0.005%
  • S is an element that significantly lowers hot workability and hinders stable operation of the hot pipe-making process, and is preferably reduced as much as possible in the present invention. If the S content is less than 0.005%, the pipe can be manufactured by the process described later. For this reason, the S content is set to less than 0.005%.
  • the S content is preferably 0.0015% or less, more preferably 0.0010% or less.
  • the lower limit of the S content is not particularly limited. However, excessive reduction causes an increase in manufacturing costs, so the S content is preferably 0.0003% or more.
  • Cr more than 16.0% and not more than 20.0% Cr is an element that forms a protective film on the steel pipe surface and contributes to the improvement of corrosion resistance. If the Cr content is 16.0% or less, the corrosion resistance intended in the present invention cannot be ensured. Therefore, the content of Cr exceeding 16.0% is required. On the other hand, if the Cr content exceeds 20.0%, the ferrite phase fraction becomes too high, and the strength aimed at in the present invention cannot be secured. Therefore, the Cr content should be more than 16.0% and 20.0% or less. The Cr content is preferably 17.0% or more. The Cr content is preferably 19.0% or less.
  • Mo more than 0.6% and less than 1.4% Mo stabilizes the protective film on the steel pipe surface and increases the resistance to pitting corrosion caused by Cl ⁇ and low pH, thereby improving sulfide stress cracking resistance. It is an element that enhances. In order to obtain such an effect, it is necessary to contain Mo over 0.6%.
  • the Cr content exceeds 16.0%, the content of Mo of 1.4% or more increases the fraction of ferrite phase and causes a decrease in low temperature toughness. Therefore, the Mo content should be more than 0.6% and less than 1.4%.
  • the Mo content is preferably 0.7% or more.
  • the Mo content is preferably 1.2% or less, more preferably 1.1% or less.
  • Ni 3.0% or more and less than 5.0%
  • Ni is an element that strengthens the protective film on the steel pipe surface and contributes to the improvement of corrosion resistance. Such an effect becomes remarkable when the Ni content is 3.0% or more.
  • the Ni content should be 3.0% or more and less than 5.0%.
  • the Ni content is preferably 3.5% or more.
  • the Ni content is preferably 4.5% or less.
  • Al 0.001-0.10%
  • Al is an element that acts as a deoxidizing agent. In order to obtain such effects, the content of Al must be 0.001% or more. On the other hand, if the Al content exceeds 0.10%, the amount of oxides increases and the cleanliness decreases, thereby lowering the low temperature toughness. Therefore, the Al content is set to 0.001 to 0.10%.
  • the Al content is preferably 0.01% or more, more preferably 0.02% or more.
  • the Al content is preferably 0.07% or less, more preferably 0.040% or less.
  • N 0.010 to 0.100%
  • N is an element that improves pitting corrosion resistance. In order to obtain such effects, 0.010% or more of N is contained. On the other hand, if the N content exceeds 0.100%, nitrides are formed to lower the low temperature toughness. Therefore, the N content should be 0.010 to 0.100%.
  • the N content is preferably 0.02% or more.
  • the N content is preferably 0.06% or less.
  • O 0.01% or less O (oxygen) exists as an oxide in steel, and thus has an adverse effect on various properties. Therefore, in the present invention, it is desirable to reduce it as much as possible. In particular, when O exceeds 0.01%, the hot workability, corrosion resistance and low temperature toughness deteriorate. Therefore, the O content is set to 0.01% or less.
  • the O content is preferably 0.0050% or less.
  • the O content is preferably 0.0010% or more, more preferably 0.0025% or more.
  • Cu 0.3-3.5%
  • Cu has the effect of strengthening the protective film on the surface of the steel pipe, suppressing the penetration of hydrogen into the steel, and increasing the resistance to sulfide stress cracking. In order to obtain such an effect, 0.3% or more of Cu is required.
  • the Cu content should be 0.3 to 3.5%.
  • the Cu content is preferably 0.5% or more, more preferably 1.0% or more, and still more preferably 1.5% or more.
  • the Cu content is preferably 3.0% or less.
  • Cr, Ni, Mo, W, Cu and C are contained within the above-described content range and adjusted so as to satisfy the formula (1).
  • Cr, Ni, Mo, W, Cu and C in the formula (1) are the contents (% by mass) of the respective elements, and the contents of the elements not contained are zero.
  • the left-side value of formula (1) is 21.7 or more.
  • the left side value of formula (1) shall be calculated with the element concerned being zero (zero).
  • the left-side value of formula (1) is preferably 22.0 or more. Note that there is no particular upper limit for the left-side value of expression (1). From the viewpoint of suppressing an increase in cost and a decrease in strength due to excessive alloying, the left-side value of the formula (1) is preferably 26.0 or less, more preferably 24.0 or less.
  • Cr, Mo, W and C are contained within the above-described content range and adjusted so as to satisfy the formula (2).
  • Cr, Mo, W and C in the formula (2) are the content (% by mass) of each element, and the content of the element not contained is zero.
  • the left-side value of formula (2) is 21.0 or more.
  • the left-side value of formula (2) is preferably 21.5 or more. Note that there is no particular upper limit for the left-side value of expression (2). Since the effect saturates, the left-side value of formula (2) is preferably 28.0 or less, more preferably 25.0 or less.
  • the balance other than the above components consists of iron (Fe) and unavoidable impurities.
  • the basic components of the present invention are the components described above. By having these basic components and satisfying all of the above-described formulas (1) and (2), the stainless steel pipe of the present invention can obtain the desired properties.
  • the following selective elements can be contained as necessary.
  • each component of Ti, Nb, V, Ta, B, Ca, REM, Mg, Zr, Sn, Sb, Co, and W below can be contained as necessary, these components are 0%. There may be.
  • Ti, Nb, V and Ta are elements that increase the strength, and if necessary, one or more of Ti, Nb, V and Ta can be selected and contained.
  • Ti, Nb, V and Ta also have the effect of improving sulfide stress cracking resistance by trapping hydrogen atoms when hydrogen generated by corrosion penetrates into the steel.
  • Ta is an element that provides the same effect as Nb, and part of Nb can be replaced with Ta. In order to obtain such effects, it is desirable to contain Ti: 0.01% or more, Nb: 0.01% or more, V: 0.01% or more, and Ta: 0.01% or more.
  • Ti: 0.3%, Nb: 0.5%, V: 0.5%, and Ta: 0.5% are contained, respectively, the low temperature toughness decreases. Therefore, when Ti, Nb, V and Ta are contained, Ti: 0.3% or less, Nb: 0.5% or less, V: 0.5% or less and Ta: 0.5% or less is preferred. More preferably, Ti: 0.02% or more, Nb: 0.02% or more, V: 0.03% or more, and Ta: 0.03% or more. More preferably, Ti: 0.2% or less, Nb: 0.3% or less, V: 0.2% or less, and Ta: 0.2% or less.
  • B 0.0050% or less, Ca: 0.0050% or less, and REM: 0.010% or less
  • B 0.0050% or less B improves grain boundary strength It is an element that improves hot workability by reducing the In order to obtain such an effect, it is desirable to contain 0.0010% or more of B.
  • B is preferably 0.0050% or less.
  • the B content is more preferably 0.0020% or more.
  • the B content is more preferably 0.0040% or less.
  • Both Ca and REM are elements that contribute to improving sulfide stress cracking resistance through morphology control of sulfides, and are necessary. may contain one or both of Ca and REM depending on the In order to obtain such effects, it is desirable to contain Ca: 0.0001% or more and REM: 0.001% or more.
  • Ca: 0.0050% or less and REM: 0.010% or less it is preferable that Ca: 0.0050% or less and REM: 0.010% or less, respectively. More preferably, Ca: 0.0005% or more and REM: 0.005% or more. More preferably, Ca: 0.0040% or less and REM: 0.008% or less.
  • Mg: 0.010% or less, Zr: 0.2% or less Both Mg and Zr are inclusions is an element that improves corrosion resistance by controlling the morphology of Mg and Zr.
  • Mg: 0.010% or less and Zr: 0.2% or less it is preferable that Mg: 0.010% or less and Zr: 0.2% or less, respectively. More preferably, Mg: 0.003% or more and Zr: 0.02% or more. More preferably, Mg: 0.005% or less and Zr: 0.1% or less.
  • Sn 0.20% or less and Sb: 0.20% or less Sn: 0.20% or less, Sb: 0.20% or less It is an element that improves corrosion resistance by suppressing and promoting passivation, and one or both of Sn and Sb can be selected and contained as necessary. In order to obtain such effects, it is desirable to contain Sn: 0.01% or more and Sb: 0.01% or more. On the other hand, even if the Sn content exceeds 0.20% and the Sb content exceeds 0.20%, the effect is saturated, and the effect commensurate with the content cannot be expected. Therefore, when Sn and Sb are contained, it is preferable that Sn: 0.20% or less and Sb: 0.20% or less, respectively. More preferably, Sn: 0.02% or more and Sb: 0.02% or more. More preferably, Sn: 0.15% or less and Sb: 0.15% or less.
  • Co raises the Ms point to increase the fraction of the retained austenite phase. It is an element that reduces S and improves strength and resistance to sulfide stress cracking, and can be selected and contained. In order to obtain such effects, it is desirable to contain 0.01% or more of Co. On the other hand, even if the Co content exceeds 1.0%, the effect is saturated. Therefore, when Co is contained, the Co content is set to 1.0% or less.
  • the Co content is preferably 0.01% or more, more preferably 0.05% or more, and still more preferably 0.07% or more.
  • the Co content is preferably 0.15% or less, more preferably 0.09% or less.
  • W 3.0% or less W is an element that contributes to the improvement of the strength of steel, stabilizes the protective film on the surface of the steel pipe, and increases the resistance to sulfide stress cracking. can do.
  • W is contained in combination with Mo, the resistance to sulfide stress cracking is remarkably improved.
  • the content of W exceeding 3.0% lowers the low temperature toughness due to the formation of intermetallic compounds. Therefore, when W is contained, the W content should be 3.0% or less.
  • the W content is preferably 0.1% or more, more preferably 0.5% or more, and still more preferably 0.8% or more.
  • the W content is preferably 2.0% or less.
  • the stainless steel pipe of the present invention has the chemical composition described above, and has a tempered martensite phase of 45% or more, a ferrite phase of 20 to 40%, and a retained austenite of 5% or more and 25% or less in volume fraction. It has a structure consisting of phases.
  • the tempered martensite phase is the main phase in order to ensure the desired strength.
  • the "main phase” refers to a structure that occupies 45% or more of the volume of the entire steel pipe.
  • the volume fraction of the tempered martensite phase is preferably 50% or more, more preferably 55% or more.
  • the volume fraction of the tempered martensite phase is preferably 75% or less, more preferably 70% or less.
  • Ferrite phase 20 to 40% by volume
  • at least a ferrite phase is precipitated as a second phase in a volume ratio of 20% or more with respect to the entire steel pipe.
  • the ferrite phase becomes resistant to the progress of cracking, so the progress of sulfide stress cracking can be suppressed, and the corrosion resistance aimed at in the present invention can be secured. be able to.
  • the desired strength may not be ensured.
  • the ferrite phase should be 20 to 40% by volume.
  • the volume ratio of the ferrite phase is preferably 23% or more, more preferably 26% or more.
  • the volume fraction of the ferrite phase is preferably 37% or less, more preferably 34% or less.
  • the austenite phase (retained austenite phase) is precipitated as the second phase.
  • the presence of the retained austenite phase which has excellent ductility and low-temperature toughness, improves the ductility and low-temperature toughness of the steel as a whole.
  • the retained austenite phase is precipitated at a volume ratio of 5% or more in the entire steel pipe.
  • precipitation of a large amount of austenite phase exceeding 25% in volume fraction cannot ensure desired strength because austenite has lower strength than martensite phase and ferrite phase. Therefore, the volume fraction of the retained austenite phase is set to 5% or more and 25% or less.
  • the volume fraction of the retained austenite phase is preferably over 10%, preferably 20% or less, and more preferably 15% or less.
  • Each tissue of the present invention described above can be measured by the following method.
  • a test piece for tissue observation was taken from the central portion of the wall thickness of a cross section perpendicular to the tube axis direction, and corroded with a Villella reagent (picric acid, hydrochloric acid, and ethanol mixed in proportions of 2 g, 10 ml, and 100 ml, respectively).
  • the structure is imaged with a scanning electron microscope (magnification: 1000 times), the structure fraction (area %) of the ferrite phase is calculated using an image analyzer, and this area ratio is treated as the volume ratio %.
  • the X-ray diffraction test piece is ground and polished so that the cross section (C cross section) perpendicular to the tube axis direction becomes the measurement surface, and the amount of retained austenite ( ⁇ ) is measured using the X-ray diffraction method. .
  • the amount of retained austenite is obtained by measuring the diffraction X-ray integrated intensity of the (220) plane of ⁇ and the (211) plane of ⁇ (ferrite) and converting it using the following formula.
  • ⁇ (volume ratio) 100/(1 + (I ⁇ R ⁇ /I ⁇ R ⁇ ))
  • I ⁇ integrated intensity of ⁇
  • R ⁇ theoretical crystallographically calculated value of ⁇
  • I ⁇ integrated intensity of ⁇
  • R ⁇ theoretically calculated crystallographic value of ⁇
  • the fraction (volume ratio) of the tempered martensite phase is the remainder other than the ferrite phase and the residual ⁇ phase.
  • the above structure of the present invention can be adjusted by heat treatment (quenching treatment and tempering treatment) under specific conditions, which will be described later.
  • the content range of the above-described components, the specific component composition satisfying the formulas (1) and (2), and the volume fraction of tempered marten of 45% or more By adjusting the structure to consist of a site phase, 20 to 40% ferrite phase, and 5% to 25% retained austenite phase, the above-mentioned properties aimed at in the present invention can be obtained.
  • a steel pipe material having the chemical composition described above is used as a starting material.
  • the method of manufacturing the steel pipe material, which is the starting material is not particularly limited.
  • the molten steel having the above composition is melted by a melting method such as a converter, and cast into a billet (steel pipe material) by a casting method such as a continuous casting method or an ingot-slabbing-rolling method. is preferred.
  • the manufacturing method of a steel pipe material is not limited to this method.
  • the slab may be further subjected to hot rolling to obtain a steel slab having desired dimensions and shape, and the resulting slab may be used as a steel pipe material.
  • the steel pipe material for example, billet
  • the heating temperature in the heating step is set to a temperature in the range of 1100 to 1350.degree.
  • the heating temperature is preferably 1150° C. or higher and preferably 1300° C. or lower.
  • the term "decreased hot workability" in the present invention means that a round bar test piece having a parallel part diameter of 10 mm was taken from a billet and tested with a Gleeble tester. After heating to 1250 ° C., holding for 100 seconds, cooling at 1 ° C./sec to 1000 ° C., holding for 10 seconds, pulling until it breaks, and evaluating by measuring the cross-sectional reduction rate (%) The cross-sectional reduction rate is less than 70%.
  • the heated steel pipe material is then subjected to hot working in a hot pipe making process to form a seamless steel pipe of a predetermined shape.
  • the hot tube-making process is preferably a Mannesmann-plug mill system or Mannesmann-mandrel mill system hot tube-making process.
  • a seamless steel pipe may be produced by hot extrusion using a press method. In the hot pipe-making process, it is sufficient that a seamless steel pipe having a predetermined shape can be produced, and no particular conditions are defined.
  • the obtained seamless steel pipe may be subjected to a cooling treatment (cooling process).
  • the cooling step need not be particularly limited.
  • the steel pipe is cooled to room temperature at a cooling rate similar to that of air cooling, so that the structure of the steel pipe has a martensite phase as the main phase. can be done.
  • the seamless steel pipe is subjected to heat treatment including quenching treatment and tempering treatment.
  • the seamless steel pipe is reheated to a temperature (heating temperature) in the range of 850 to 1150°C, held for a predetermined time, and then cooled at a cooling rate higher than air cooling so that the surface temperature of the seamless steel pipe is 50°C or lower and exceeds 0°C. (cooling stop temperature).
  • the heating temperature of the quenching treatment is less than 850° C., the Ac 3 point or less is achieved, so reverse transformation from martensite to austenite does not occur. Also, transformation from austenite to martensite does not occur during cooling in the quenching process. As a result, it is not possible to ensure the desired strength in the present invention.
  • the heating temperature of the quenching treatment exceeds 1150° C. and becomes high, the crystal grains become coarse. As a result, the low temperature toughness value decreases. Therefore, the heating temperature for the quenching treatment is set to a temperature in the range of 850 to 1150.degree.
  • the heating temperature is preferably 900° C. or higher.
  • the heating temperature is preferably 1000° C. or lower.
  • the seamless steel pipe is heated to the above heating temperature and then held for a predetermined time.
  • the soaking time is preferably 5 to 40 minutes (min) in order to uniformize the temperature in the wall thickness direction of the seamless steel pipe and prevent fluctuations in the material quality.
  • the soaking time is more preferably 10 minutes or more.
  • the cooling stop temperature in cooling in the quenching treatment is set at 50°C or lower and higher than 0°C.
  • the cooling stop temperature is preferably 10° C. or higher.
  • the cooling stop temperature is preferably 40° C. or lower.
  • cooling rate equal to or higher than air cooling means an average cooling rate of 0.01°C/sec or higher.
  • the tempering process is a process in which the seamless steel pipe is heated to a temperature (tempering temperature) in the range of 500 to 650° C., held for a predetermined time, and allowed to cool.
  • Air cooling is air cooling.
  • the tempering temperature should be in the range of 500 to 650°C.
  • the tempering temperature is preferably 520°C or higher, more preferably 550°C or higher.
  • the tempering temperature is preferably 630°C or lower, more preferably 600°C or lower.
  • the seamless steel pipe is heated at the tempering temperature and then held for a predetermined time.
  • the soaking time (holding time) is preferably 5 to 90 minutes (min) in order to uniformize the temperature in the wall thickness direction of the seamless steel pipe and to prevent the material from fluctuating.
  • the soaking time (holding time) is more preferably 15 minutes or longer.
  • the soaking time (holding time) is more preferably 60 minutes or less.
  • the structure of the steel pipe obtained has a tempered martensite phase as the main phase as described above, and a structure composed of a ferrite phase and a retained austenite phase. becomes.
  • the high-strength seamless stainless steel pipe for oil wells having high strength, high toughness and excellent corrosion resistance which is the object of the present invention, can be obtained.
  • the stainless steel pipe obtained by the present invention has a yield strength (YS) of 758 MPa or more, excellent low-temperature toughness, and excellent corrosion resistance.
  • Yield strength is preferably 800 MPa or more.
  • the yield strength is preferably 1034 MPa or less.
  • a heating process was performed in which molten steel having the chemical composition shown in Table 1 was melted by vacuum melting, and the obtained steel pipe material (slab) was heated at the heating temperature shown in Table 2.
  • test material was cut out from the obtained seamless steel pipe, and the test material was subjected to heat treatment (quenching treatment and tempering treatment) under the conditions shown in Table 2.
  • the test material was sampled so that the longitudinal direction of the test piece was aligned with the tube axis direction.
  • the average cooling rate in water cooling during quenching treatment was 11° C./sec
  • the average cooling rate in air cooling (air cooling) during tempering treatment was 0.04° C./sec.
  • “-" in "Component composition” in Table 1 indicates that it is not intentionally added, and includes not only the case of not containing (0%) but also the case of unavoidably containing.
  • test piece was taken from the obtained heat-treated test material, and a structure observation, tensile test, impact test, and corrosion resistance test were performed using the test piece.
  • the methods for each test were as follows.
  • an X-ray diffraction test piece is taken from the obtained heat-treated test material, ground and polished so that the cross section (C section) perpendicular to the tube axis direction becomes the measurement surface, and the X-ray diffraction method is performed. was used to measure the amount of retained austenite ( ⁇ ).
  • the amount of retained austenite was obtained by measuring the diffraction X-ray integrated intensity of the (220) plane of ⁇ and the (211) plane of ⁇ (ferrite) and converting it using the following formula.
  • ⁇ (volume ratio) 100/(1 + (I ⁇ R ⁇ /I ⁇ R ⁇ ))
  • I ⁇ integrated intensity of ⁇
  • R ⁇ theoretical crystallographically calculated value of ⁇
  • I ⁇ integrated intensity of ⁇
  • R ⁇ theoretically calculated crystallographic value of ⁇
  • the fraction (volume ratio) of the tempered martensite phase was the remainder other than the ferrite phase and the residual ⁇ phase.
  • Corrosion resistance test A corrosion test was performed using a corrosion test piece as follows to evaluate carbon dioxide corrosion resistance and sulfide stress cracking resistance.
  • a corrosion test piece having a thickness of 3 mm, a width of 30 mm, and a length of 40 mm was machined from the obtained heat-treated test material.
  • a corrosion test was carried out as follows using the corrosion test piece. (Corrosion test A) In the corrosion test, the corrosion test piece was immersed in a test liquid: 25 mass% NaCl aqueous solution (liquid temperature: 250 ° C., 30 atm CO 2 gas atmosphere) held in an autoclave, and the immersion period was 14 days ( 336 hours). The weight of the test piece after the corrosion test was measured, and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained. Here, a corrosion rate of 0.125 mm/y or less was evaluated as acceptable, and a corrosion rate exceeding 0.125 mm/y was evaluated as unacceptable.
  • pitting corrosion present refers to the case where pitting corrosion having a diameter of 0.2 mm or more occurs.
  • No pitting corrosion means the case where no pitting corrosion occurs and the case where the pitting corrosion is less than 0.2 mm in diameter.
  • Corrosion test B The corrosion test was carried out by immersing the corrosion test piece in a test liquid: 0.01 mol/L H 2 SO 4 aqueous solution (liquid temperature: 250°C, 30 atm CO 2 gas atmosphere) held in an autoclave. A period of 14 days (336 hours) was performed. The weight of the test piece after the corrosion test was measured, and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained. Here, a corrosion rate of 0.125 mm/y or less was evaluated as acceptable, and a corrosion rate exceeding 0.125 mm/y was evaluated as unacceptable.
  • pitting corrosion present refers to the case where pitting corrosion having a diameter of 0.2 mm or more occurs.
  • No pitting corrosion means the case where no pitting corrosion occurs and the case where the pitting corrosion is less than 0.2 mm in diameter.
  • the corrosion rate in corrosion test A was 0.125 mm / y or less and the pitting corrosion did not occur
  • the corrosion rate in corrosion test B was 0.125 mm / y or less and the pitting corrosion was evaluated as having excellent carbon dioxide gas corrosion resistance.
  • a round-bar-shaped test piece (diameter: 6.4 mm ⁇ ) was produced from the obtained heat-treated test material by machining according to NACE (National Association of Corrosion and Engineers) TM0177 Method A.
  • a sulfide stress cracking resistance test (SSC (Sulfide Stress Cracking) resistance test) was carried out as follows using the round bar-shaped test piece.
  • the SSC resistance test was carried out by adding acetic acid + Na acetate to a test liquid: 5 mass% NaCl aqueous solution (liquid temperature: 25 ° C., CO 2 : atmosphere of 0.95 atm, H 2 S: 0.05 atm), pH: 3
  • the test piece was immersed in an aqueous solution adjusted to 0.5, the immersion period was set to 720 hours, and 90% of the yield stress was applied as the load stress.
  • the presence or absence of cracks was observed for the test piece after the SSC resistance test. Here, those without cracks were evaluated as acceptable, and those with cracks were evaluated as unacceptable.
  • All of the examples of the present invention have high strength with a yield strength (YS) of 758 MPa or more, excellent low temperature toughness, and are excellent at high temperatures of 250 ° C. or more and in severe corrosive environments containing CO 2 and Cl - . It had corrosion resistance (excellent carbon dioxide corrosion resistance and excellent sulfide stress cracking resistance).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided are a stainless steel pipe and a manufacturing method thereof. This stainless steel pipe has: a component composition containing, by mass%, 0.05% or less of C, 1.0% or less of Si, 0.10 to 2.0% of Mn, 0.05% or less of P, less than 0.005% of S, more than 16.0% but not more than 20.0% of Cr, more than 0.6% but less than 1.4% of Mo, 3.0% or more but less than 5.0% of Ni, 0.001 to 0.10% of Al, 0.010 to 0.100% of N, 0.01% or less of O, 0.3 to 3.5% of Cu, and the balance Fe and inevitable impurities, wherein Cr, Ni, Mo, W, Cu, and C satisfy a prescribed relational expression; a structure comprising, by volume fraction, 45% or more of tempered martensite phase, 20 to 40% of ferrite phase, and 5% to 25% of retained austenite phase; a yield strength of 758 MPa or greater; and absorbed energy vE-10 of 40 J or greater at -10˚C.

Description

ステンレス鋼管およびその製造方法Stainless steel pipe and its manufacturing method
 本発明は、原油あるいは天然ガスの油井およびガス井(以下、単に油井と称する)や地熱井向けに好適に用いられる、ステンレス鋼管およびその製造方法に関する。 The present invention relates to a stainless steel pipe suitable for use in oil and gas wells for crude oil or natural gas (hereinafter simply referred to as oil wells) and geothermal wells, and a method for manufacturing the same.
 近年、近い将来に予想されるエネルギー資源の枯渇という観点から、従来には省みられなかったような、高深度の油田や、炭酸ガスや硫化水素等を含む環境下、いわゆるサワー環境下にある厳しい腐食環境の油田やガス田等の開発が盛んに行われている。このような油田およびガス田は、一般に深度が極めて深く、またその雰囲気も高温でかつCO、Cl、さらにHSを含む厳しい腐食環境となっている。このような環境下で使用される油井用鋼管には、高強度および優れた耐食性を兼ね備えた材質とすることが要求される。 In recent years, from the perspective of the expected depletion of energy resources in the near future, there are so-called sour environments such as deep oil fields and environments containing carbon dioxide gas and hydrogen sulfide that have not been considered in the past. The development of oil fields, gas fields, etc., in severe corrosive environments is being actively carried out. Such oil fields and gas fields are generally very deep, and the atmosphere is a severe corrosive environment containing high temperature, CO 2 , Cl , and H 2 S. Steel pipes for oil wells used in such an environment are required to be made of a material having both high strength and excellent corrosion resistance.
 従来、炭酸ガス(CO)、塩素イオン(Cl)等を含む環境下にある油田およびガス田では、採掘に使用する油井管として13Crマルテンサイト系ステンレス鋼管が一般的に使用されてきた。しかし、最近では、更なる高温(200℃までの高温)の腐食環境下にある油井の開発が進められ、このような環境下では、13Crマルテンサイト系ステンレス鋼管では耐食性が不足するという場合があった。このため、このような環境下でも使用できる、優れた耐食性を有する油井用鋼管が要望されていた。 Conventionally, 13Cr martensitic stainless steel pipes have generally been used as oil country tubular goods for mining in oil and gas fields in environments containing carbon dioxide gas (CO 2 ), chloride ions (Cl ), and the like. Recently, however, the development of oil wells in corrosive environments at even higher temperatures (up to 200°C) has progressed, and in such environments, 13Cr martensitic stainless steel pipes sometimes lack corrosion resistance. rice field. Therefore, there has been a demand for oil well steel pipes having excellent corrosion resistance that can be used in such environments.
 また、再生可能エネルギーに対する意識の高まりを背景に、地熱発電用の蒸気を採取する地熱井においても、従来よりも深層の地熱井の開発が進められている。 In addition, against the backdrop of growing awareness of renewable energy, geothermal wells that collect steam for geothermal power generation are also being developed in deeper layers than before.
 このような背景から、近年では、250℃程度でCOとClを含む大深度油井環境や250℃程度でCOと硫酸とを含む大深度地熱井環境における、油井用鋼管の使用のニーズがある。 Against this background, in recent years, there is a need for the use of steel pipes for oil wells in deep oil well environments containing CO 2 and Cl at about 250°C and in deep geothermal well environments containing CO 2 and sulfuric acid at about 250°C. There is
 このような要望に対し、例えば特許文献1~特許文献8の技術がある。
特許文献1には、耐食性を向上させた油井用高強度ステンレス鋼管が記載されている。特許文献1に記載された技術では、mass%で、C:0.005~0.05%、Si:0.05~0.5%、Mn:0.2~1.8%、P:0.03%以下、S:0.005%以下、Cr:15.5~18%、Ni:1.5~5%、Mo:1~3.5%、V:0.02~0.2%、N:0.01~0.15%、O:0.006%以下を含有し、Cr、Ni、Mo、CuおよびCが特定の関係式を満足し、さらにCr、Mo、Si、C、Mn、Ni、CuおよびNが特定の関係式を満足するように含有する組成を有し、さらにマルテンサイト相をベース相とし、フェライト相を体積率で10~60%、あるいはさらにオーステナイト相を体積率で30%以下含有する組織を有する油井用高強度ステンレス鋼管とする。特許文献1によれば、COおよびClを含む230℃までの高温での厳しい腐食環境においても十分な耐食性を示し、降伏強さが654MPa(95ksi)を超える高強度と、さらには高靭性を有する油井用ステンレス鋼管を安定して製造できるとしている。
In response to such a demand, there are techniques disclosed in Patent Documents 1 to 8, for example.
Patent Document 1 describes a high-strength stainless steel pipe for oil wells with improved corrosion resistance. In the technology described in Patent Document 1, in mass%, C: 0.005 to 0.05%, Si: 0.05 to 0.5%, Mn: 0.2 to 1.8%, P: 0 .03% or less, S: 0.005% or less, Cr: 15.5-18%, Ni: 1.5-5%, Mo: 1-3.5%, V: 0.02-0.2% , N: 0.01 to 0.15%, O: 0.006% or less, Cr, Ni, Mo, Cu and C satisfy a specific relational expression, and further Cr, Mo, Si, C, It has a composition containing Mn, Ni, Cu and N so as to satisfy a specific relational expression, and further has a martensite phase as a base phase, a ferrite phase at a volume fraction of 10 to 60%, or an austenite phase at a volume fraction. A high-strength stainless steel pipe for oil wells having a structure containing 30% or less by percentage. According to Patent Document 1, it exhibits sufficient corrosion resistance even in a severe corrosive environment at high temperatures up to 230 ° C. containing CO 2 and Cl - , and has a high yield strength exceeding 654 MPa (95 ksi) and high toughness. It is said that it is possible to stably manufacture oil well stainless steel pipes with
 特許文献2には、高靭性かつ耐食性を向上させた油井用高強度ステンレス鋼管が記載されている。特許文献2に記載された技術では、mass%で、C:0.04%以下、Si:0.50%以下、Mn:0.20~1.80%、P:0.03%以下、S:0.005%以下、Cr:15.5~17.5%、Ni:2.5~5.5%、V:0.20%以下、Mo:1.5~3.5%、W:0.50~3.0%、Al:0.05%以下、N:0.15%以下、O:0.006%以下を含み、かつCr、Mo、WおよびCが特定の関係を、また、Cr、Mo、W、Si、C、Mn、Cu、NiおよびNが特定の関係を、さらにMoおよびWが特定の関係を、それぞれ満足するように含有する組成と、マルテンサイト相をベース相とし、フェライト相を体積率で10~50%を含有する組織とを有する鋼管とする。これにより、降伏強さが654MPa(95ksi)を超える高強度を有し、CO、Cl、さらにHSを含む高温の厳しい腐食環境においても十分な耐食性を示す油井用高強度ステンレス鋼管を安定して製造できるとしている。 Patent Document 2 describes a high-strength stainless steel pipe for oil wells with improved toughness and corrosion resistance. In the technique described in Patent Document 2, in mass%, C: 0.04% or less, Si: 0.50% or less, Mn: 0.20 to 1.80%, P: 0.03% or less, S : 0.005% or less, Cr: 15.5 to 17.5%, Ni: 2.5 to 5.5%, V: 0.20% or less, Mo: 1.5 to 3.5%, W: 0.50 to 3.0%, Al: 0.05% or less, N: 0.15% or less, O: 0.006% or less, and Cr, Mo, W and C have a specific relationship, and , Cr, Mo, W, Si, C, Mn, Cu, Ni and N satisfy specific relationships, and Mo and W satisfy specific relationships, respectively; and a steel pipe having a structure containing 10 to 50% by volume of ferrite phase. As a result, a high-strength stainless steel pipe for oil wells having a yield strength exceeding 654 MPa (95 ksi) and exhibiting sufficient corrosion resistance even in a high-temperature, severely corrosive environment containing CO 2 , Cl , and H 2 S is produced. It is said that it can be manufactured stably.
 特許文献3には、耐硫化物応力割れ性と耐高温炭酸ガス腐食を向上させた高強度ステンレス鋼管が記載されている。特許文献3に記載された技術では、質量%で、C:0.05%以下、Si:1.0%以下、P:0.05%以下、S:0.002%未満、Cr:16%超18%以下、Mo:2%超3%以下、Cu:1~3.5%、Ni:3%以上5%未満、Al:0.001~0.1%を含み、かつMn:1%以下、N:0.05%以下の領域で、MnとNが特定の関係を満足するように含有する組成とすることにより、マルテンサイト相を主体として、体積率で10~40%のフェライト相と、体積率で10%以下の残留オーステナイト(γ)相を含む組織とを有する鋼管とする。これにより、降伏強さが758MPa(110ksi)以上の高強度で、さらに200℃という高温の炭酸ガス環境下でも十分な耐食性を有し、環境ガス温度が低下したときでも、十分な耐硫化物応力割れ性を有する耐食性を向上させた高強度ステンレス鋼管となるとしている。 Patent Document 3 describes a high-strength stainless steel pipe with improved sulfide stress cracking resistance and high-temperature carbon dioxide corrosion resistance. In the technique described in Patent Document 3, in mass%, C: 0.05% or less, Si: 1.0% or less, P: 0.05% or less, S: less than 0.002%, Cr: 16% More than 18% or less, Mo: more than 2% and 3% or less, Cu: 1-3.5%, Ni: 3% or more and less than 5%, Al: 0.001-0.1%, and Mn: 1% Hereinafter, in the region where N: 0.05% or less, the composition contains Mn and N so as to satisfy a specific relationship, so that the martensite phase is the main component and the ferrite phase is 10 to 40% by volume. and a structure containing a retained austenite (γ) phase of 10% or less in volume fraction. As a result, it has a high yield strength of 758 MPa (110 ksi) or more, has sufficient corrosion resistance even in a carbon dioxide gas environment at a high temperature of 200 ° C., and has sufficient resistance to sulfide stress even when the environmental gas temperature drops. It is supposed to be a high-strength stainless steel pipe with crack resistance and improved corrosion resistance.
 特許文献4には、油井用ステンレス鋼管が記載されている。特許文献4に記載された技術では、質量%で、C:0.05%以下、Si:0.5%以下、Mn:0.01~0.5%、P:0.04%以下、S:0.01%以下、Cr:16.0超~18.0%、Ni:4.0超~5.6%、Mo:1.6~4.0%、Cu:1.5~3.0%、Al:0.001~0.10%、N:0.050%以下を含有し、Cr、Cu、NiおよびMoが特定の関係を満足し、さらに、(C+N)、Mn、Ni、Cuおよび(Cr+Mo)が特定の関係を満足する組成と、マルテンサイト相と体積率で10~40%のフェライト相とを含み、表面から厚さ方向に50μmの長さを有し、10μmピッチで200μmの範囲に1列に配列された複数の仮想線分と、フェライト相が交差する割合が85%より多い組織とを有し、0.2%耐力で758MPa以上の高強度を有する油井用ステンレス鋼管である。これにより、150~250℃の高温環境で十分な耐食性を有し、常温での耐硫化物応力割れ性を向上させた油井用ステンレス鋼管となるとしている。 Patent Document 4 describes a stainless steel pipe for oil wells. In the technique described in Patent Document 4, in mass%, C: 0.05% or less, Si: 0.5% or less, Mn: 0.01 to 0.5%, P: 0.04% or less, S : 0.01% or less, Cr: more than 16.0 to 18.0%, Ni: more than 4.0 to 5.6%, Mo: 1.6 to 4.0%, Cu: 1.5 to 3.0% 0%, Al: 0.001 to 0.10%, N: 0.050% or less, Cr, Cu, Ni and Mo satisfy a specific relationship, and further (C + N), Mn, Ni, A composition in which Cu and (Cr + Mo) satisfy a specific relationship, a martensite phase and a ferrite phase with a volume fraction of 10 to 40%, a length of 50 μm in the thickness direction from the surface, and a pitch of 10 μm Stainless steel for oil wells having a plurality of imaginary line segments arranged in a row within a range of 200 μm, a structure in which the ratio of ferrite phases intersects is more than 85%, and high strength of 758 MPa or more at 0.2% proof stress. Steel pipe. As a result, the stainless steel pipe for oil wells has sufficient corrosion resistance in a high temperature environment of 150 to 250° C. and improved sulfide stress cracking resistance at room temperature.
 特許文献5には、高靭性で耐食性を向上させた油井用高強度ステンレス鋼管が記載されている。特許文献5に記載された技術では、質量%で、C:0.04%以下、Si:0.50%以下、Mn:0.20~1.80%、P:0.03%以下、S:0.005%以下、Cr:15.5~17.5%、Ni:2.5~5.5%、V:0.20%以下、Mo:1.5~3.5%、W:0.50~3.0%、Al:0.05%以下、N:0.15%以下、O:0.006%以下を含有し、Cr、Mo、WおよびCが特定の関係を満足し、Cr、Mo、W、Si、C、Mn、Cu、NiおよびNが特定の関係を満足し、また、MoおよびWが特定の関係を満足するように含有する組成を有し、最も大きい結晶粒において、粒内の任意の2点間の距離が200μm以下である組織を有する鋼管とする。この鋼管は、降伏強さが654MPa(95ksi)を超える高強度で、十分な靭性を有し、CO、Cl、さらにHSを含む170℃以上の高温腐食環境下において、十分な耐食性を示すとしている。 Patent Document 5 describes a high-strength stainless steel pipe for oil wells with high toughness and improved corrosion resistance. In the technique described in Patent Document 5, in mass%, C: 0.04% or less, Si: 0.50% or less, Mn: 0.20 to 1.80%, P: 0.03% or less, S : 0.005% or less, Cr: 15.5 to 17.5%, Ni: 2.5 to 5.5%, V: 0.20% or less, Mo: 1.5 to 3.5%, W: 0.50 to 3.0%, Al: 0.05% or less, N: 0.15% or less, O: 0.006% or less, Cr, Mo, W and C satisfy a specific relationship , Cr, Mo, W, Si, C, Mn, Cu, Ni and N satisfying the specified relationship, and Mo and W satisfying the specified relationship, and the largest crystal A steel pipe having a grain structure in which the distance between any two points within a grain is 200 μm or less. This steel pipe has a high yield strength exceeding 654 MPa (95 ksi), has sufficient toughness, and has sufficient corrosion resistance in a high-temperature corrosion environment of 170°C or higher containing CO 2 , Cl , and H 2 S. is intended to indicate
 特許文献6には、油井用高強度マルテンサイト系ステンレス継目無鋼管が記載されている。特許文献6に記載された技術では、質量%で、C:0.01%以下、Si:0.5%以下、Mn:0.1~2.0%、P:0.03%以下、S:0.005%以下、Cr:15.5超17.5%以下、Ni:2.5~5.5%、Mo:1.8~3.5%、Cu:0.3~3.5%、V:0.20%以下、Al:0.05%以下、N:0.06%以下を含む組成を有し、好ましくは体積率で15%以上のフェライト相あるいはさらに25%以下の残留オーステナイト相を含み、残部が焼戻マルテンサイト相からなる組織を有する継目無鋼管としている。なお、特許文献6では、上記組成に加えて、W:0.25~2.0%、および/または、Nb:0.20%以下を含有する組成としてもよいとしている。これにより、降伏強さが655MPa以上862MPa以下の高強度と降伏比が0.90以上の引張特性とを有し、CO、Cl等、さらにはHSを含む、170℃以上の高温の厳しい腐食環境においても十分な耐食性(耐炭酸ガス腐食性、耐硫化物応力割れ性)を有する油井用高強度マルテンサイト系ステンレス継目無鋼管を、安定して製造できるとしている。 Patent Document 6 describes a high-strength martensitic stainless steel seamless steel pipe for oil wells. In the technique described in Patent Document 6, in mass%, C: 0.01% or less, Si: 0.5% or less, Mn: 0.1 to 2.0%, P: 0.03% or less, S : 0.005% or less, Cr: more than 15.5 and 17.5% or less, Ni: 2.5 to 5.5%, Mo: 1.8 to 3.5%, Cu: 0.3 to 3.5 %, V: 0.20% or less, Al: 0.05% or less, N: 0.06% or less, preferably a ferrite phase of 15% or more by volume or a residual of 25% or less The seamless steel pipe has a structure containing an austenite phase and a tempered martensite phase as the remainder. Incidentally, in Patent Document 6, in addition to the above composition, the composition may contain W: 0.25 to 2.0% and/or Nb: 0.20% or less. As a result, it has a high strength with a yield strength of 655 MPa or more and 862 MPa or less, a tensile property with a yield ratio of 0.90 or more , and a high temperature of 170 ° C. It is possible to stably manufacture high-strength martensitic stainless steel seamless steel pipes for oil wells that have sufficient corrosion resistance (carbon dioxide corrosion resistance and sulfide stress cracking resistance) even in severe corrosive environments.
 特許文献7には、油井用ステンレス鋼管が記載されている。特許文献7に記載された技術では、質量%で、C:0.05%以下、Si:1.0%以下、Mn:0.01~1.0%、P:0.05%以下、S:0.002%未満、Cr:16~18%、Mo:1.8~3%、Cu:1.0~3.5%、Ni:3.0~5.5%、Co:0.01~1.0%、Al:0.001~0.1%、O:0.05%以下、N:0.05%以下を含有し、Cr、Ni、MoおよびCuが特定の関係を満足する組成とし、好ましくは、体積率で10%以上60%未満のフェライト相と、10%以下の残留オーステナイト相と、40%以上のマルテンサイト相を含有する組織を有するステンレス鋼管とする。これにより、降伏強さが758MPa以上の高強度と、十分な高温耐食性を有する油井用ステンレス鋼管が安定して得られるとしている。 Patent Document 7 describes a stainless steel pipe for oil wells. In the technique described in Patent Document 7, in mass%, C: 0.05% or less, Si: 1.0% or less, Mn: 0.01 to 1.0%, P: 0.05% or less, S : less than 0.002%, Cr: 16-18%, Mo: 1.8-3%, Cu: 1.0-3.5%, Ni: 3.0-5.5%, Co: 0.01 ~1.0%, Al: 0.001 to 0.1%, O: 0.05% or less, N: 0.05% or less, Cr, Ni, Mo and Cu satisfy a specific relationship Preferably, the stainless steel pipe has a structure containing 10% or more and less than 60% by volume of ferrite phase, 10% or less of retained austenite phase, and 40% or more of martensite phase. As a result, it is possible to stably obtain a stainless steel pipe for oil wells having a high yield strength of 758 MPa or more and sufficient high-temperature corrosion resistance.
 特許文献8には、ステンレス鋼材が記載されている。特許文献8に記載された技術では、質量%で、C:0.040%以下、Si:0.05~1.0%、Mn:0.010~0.30%、Cr:18.0%超え21.0%以下、Cu:1.5~4.0%、Ni:3.0~6.0%、sol.Al:0.001~0.100%、Mo:0~0.60%、W:0~2.0%、Co:0~0.30%、Ti:0~0.10%、V:0~0.15%、Zr:0~0.10%、Nb:0~0.10%、Ca:0~0.010%、Mg:0~0.010%、REM:0~0.05%、B:0~0.005%、及び、残部はFe及び不純物からなり、前記不純物のうち、P、S、O、NはそれぞれP:0.050%以下、S:0.0020%未満、O:0.020%以下、N:0.020%以下であり、C、N、Si、Mn、Ni、Cr、Cu、Moが所定の関係を満足し、体積率で、20.0~60.0%のフェライト相、1.0~10.0%のオーステナイト相、及び、残部がマルテンサイト相からなるミクロ組織を有するステンレス鋼材とする。これにより、熱処理ままで高強度を有し、さらに、高温環境下において耐強酸、炭酸ガス腐食性を有するステンレス鋼材及びステンレス鋼管が得られるとしている。 Patent Document 8 describes a stainless steel material. In the technique described in Patent Document 8, in mass%, C: 0.040% or less, Si: 0.05 to 1.0%, Mn: 0.010 to 0.30%, Cr: 18.0% Exceeding 21.0% or less, Cu: 1.5 to 4.0%, Ni: 3.0 to 6.0%, sol.Al: 0.001 to 0.100%, Mo: 0 to 0.60% , W: 0-2.0%, Co: 0-0.30%, Ti: 0-0.10%, V: 0-0.15%, Zr: 0-0.10%, Nb: 0- 0.10%, Ca: 0-0.010%, Mg: 0-0.010%, REM: 0-0.05%, B: 0-0.005%, and the balance consists of Fe and impurities , among the impurities, P, S, O, and N are respectively P: 0.050% or less, S: less than 0.0020%, O: 0.020% or less, N: 0.020% or less, and C , N, Si, Mn, Ni, Cr, Cu, and Mo satisfy a predetermined relationship, and the volume fraction is 20.0 to 60.0% ferrite phase, 1.0 to 10.0% austenite phase, And, the stainless steel material has a microstructure in which the balance is a martensite phase. As a result, it is possible to obtain a stainless steel material and a stainless steel pipe which have high strength as they are heat-treated and which have strong acid resistance and carbon dioxide gas corrosion resistance in a high temperature environment.
特開2005-336595号公報JP-A-2005-336595 特開2008-81793号公報JP 2008-81793 A 国際公開第2010/050519号WO2010/050519 国際公開第2010/134498号WO2010/134498 特開2010-209402号公報Japanese Patent Application Laid-Open No. 2010-209402 特開2012-149317号公報JP 2012-149317 A 国際公開第2013/146046号WO2013/146046 特開2019-73789号公報JP 2019-73789 A
 しかしながら、上述のような厳しい環境(すなわち、250℃程度でCOとClを含む大深度油井環境や250℃程度でCOと硫酸とを含む大深度地熱井環境)においては、特許文献1~8に記載された技術では、所望の耐食性(耐炭酸ガス腐食性、耐硫化物応力割れ性)を保持することができない。また、寒冷地で使用される場合を考慮し、高強度および低温靭性を兼ね備えることも求められる。 However, in a severe environment as described above (that is, a deep oil well environment containing CO 2 and Cl at about 250 ° C. or a deep geothermal well environment containing CO 2 and sulfuric acid at about 250 ° C.), Patent Document 1 8 cannot maintain the desired corrosion resistance (carbon dioxide gas corrosion resistance, sulfide stress cracking resistance). In addition, considering the use in cold regions, it is also required to have both high strength and low temperature toughness.
 本発明は、このような従来技術の問題を解決し、降伏強さが758MPa以上の高強度と、優れた低温靭性と、優れた耐食性とを有するステンレス鋼管およびその製造方法を提供することを目的とする。 An object of the present invention is to solve the problems of the prior art and to provide a stainless steel pipe having a yield strength of 758 MPa or more, excellent low-temperature toughness, and excellent corrosion resistance, and a method for producing the same. and
 ここで、本発明における「優れた耐食性」とは、耐炭酸ガス腐食性および耐硫化物応力割れ性が優れることをいうものとする。 Here, "excellent corrosion resistance" in the present invention means excellent carbon dioxide corrosion resistance and sulfide stress cracking resistance.
 本発明における「優れた耐炭酸ガス腐食性」とは、オートクレーブ中に保持された試験液:25質量%NaCl水溶液(液温:250℃、30気圧のCOガス雰囲気)中に、試験片を浸漬し、浸漬期間を336時間として実施した際の腐食速度が0.125mm/y以下および腐食試験後の試験片に孔食の発生が無かった場合、かつ、試験液:0.01mol/L HSO水溶液(液温:250℃、30気圧のCOガス雰囲気)中に、試験片を浸漬し、浸漬時間を336時間として実施した際の腐食速度が0.125mm/y以下および腐食試験後の試験片に孔食の発生が無かった場合をいうものとする。 "Excellent carbon dioxide corrosion resistance" in the present invention means that a test piece is placed in a test liquid: 25 mass% NaCl aqueous solution (liquid temperature: 250 ° C., 30 atm CO2 gas atmosphere) held in an autoclave. When the corrosion rate is 0.125 mm/y or less when the test piece is immersed and the immersion period is 336 hours, and no pitting corrosion occurs in the test piece after the corrosion test, and the test solution is 0.01 mol/L H 2 SO 4 aqueous solution (liquid temperature: 250° C., 30 atm CO 2 gas atmosphere), the test piece was immersed for 336 hours, and the corrosion rate was 0.125 mm/y or less and the corrosion test was performed. It refers to the case where no pitting corrosion occurred in the later test piece.
 また、本発明における「優れた耐硫化物応力割れ性」とは、HSを含む腐食環境下において、応力を付与した試験片の割れ感受性を評価する硫化物応力割れ試験(SSC試験)における、硫化物応力割れ感受性が低いことを指す。具体的には、試験液:5質量%NaCl水溶液(液温:25℃、0.95気圧のCOガス、0.05気圧のHS雰囲気)に、酢酸+酢酸ナトリウムを加えてpH:3.5に調整した水溶液中に、試験片を浸漬し、浸漬時間を720時間とし、降伏応力の90%を負荷応力として負荷して試験を実施し、試験後の試験片に割れが発生しない場合をいうものとする。 In addition, the "excellent sulfide stress cracking resistance" in the present invention refers to a sulfide stress cracking test (SSC test) that evaluates the cracking susceptibility of a test piece to which stress is applied in a corrosive environment containing H2S . , refers to low sulfide stress cracking susceptibility. Specifically, acetic acid + sodium acetate was added to a test liquid: 5% by mass NaCl aqueous solution (liquid temperature: 25°C, 0.95 atm CO2 gas, 0.05 atm H2S atmosphere) to obtain a pH: The test piece is immersed in an aqueous solution adjusted to 3.5, the immersion time is 720 hours, and the test is performed with a load stress of 90% of the yield stress, and no cracks occur in the test piece after the test. shall mean the case.
 また、本発明における「優れた低温靭性(高靭性)」とは、JIS Z 2242(2018年)の規定に準拠して実施したシャルピー衝撃試験における、試験温度-10℃での吸収エネルギーvE-10が40J以上のものを指す。上記の吸収エネルギーvE-10は、好ましくは250J以下とする。 In addition, "excellent low temperature toughness (high toughness)" in the present invention refers to the absorbed energy vE -10 at a test temperature of -10 ° C in a Charpy impact test conducted in accordance with the provisions of JIS Z 2242 (2018). is 40J or more. The above absorbed energy vE -10 is preferably 250J or less.
 なお、上記の各試験は、後述する実施例に記載の方法で行うことができる。 It should be noted that each of the above tests can be carried out by the method described in Examples described later.
 本発明者らは、上記した目的を達成するために、ステンレス鋼管として、降伏強さが758MPa以上で高靭性となるステンレス鋼組成の継目無鋼管を用いて、耐食性(耐炭酸ガス腐食性および耐硫化物応力割れ性)に影響を及ぼす各種要因について鋭意検討した。 In order to achieve the above object, the present inventors used, as a stainless steel pipe, a seamless steel pipe having a stainless steel composition that has a yield strength of 758 MPa or more and high toughness, and has corrosion resistance (carbon dioxide corrosion resistance and corrosion resistance). Various factors that affect the sulfide stress cracking resistance) have been extensively studied.
 降伏強さが758MPa以上であり高靭性の高強度材において優れた耐炭酸ガス腐食性を得るためには、保護性のある緻密な腐食生成物が鋼材表面に生成することが必要である。そのためには、ステンレス鋼材の成分組成においてCr、Mo、W、Cu、NiおよびCの添加量が(1)式を満足するように調整する必要があることを知見した。
Cr + 0.65× Ni + 0.6×(Mo + 0.5×W) + 0.55 × Cu - 20 × C ≧ 21.7 …(1)
 また、上記特性に加えて、優れた耐硫化物応力割れ性を得るためには、割れの起点となる孔食の発生を抑制することが有効である。したがって、ステンレス鋼材の成分組成においてC、CrおよびMoの添加量が(2)式を満足するように調整する必要がある。
Cr + 3.3× ( Mo + 0.5 ×W ) - 17 × C ≧21.0 …(2)
ここで、各式におけるCr、Mo、W、Cu、NiおよびCは、各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。
In order to obtain excellent carbon dioxide gas corrosion resistance in a high-strength steel with a yield strength of 758 MPa or more and high toughness, it is necessary to form protective and dense corrosion products on the surface of the steel material. For this purpose, it has been found that it is necessary to adjust the amounts of Cr, Mo, W, Cu, Ni and C added in the chemical composition of the stainless steel material so as to satisfy the formula (1).
Cr + 0.65 × Ni + 0.6 × (Mo + 0.5 × W) + 0.55 × Cu - 20 × C ≥ 21.7 (1)
In addition to the above properties, in order to obtain excellent sulfide stress cracking resistance, it is effective to suppress the occurrence of pitting corrosion, which is the origin of cracking. Therefore, it is necessary to adjust the additive amounts of C, Cr and Mo in the chemical composition of the stainless steel material so as to satisfy the formula (2).
Cr + 3.3 × ( Mo + 0.5 × W ) - 17 × C ≥ 21.0 (2)
Here, Cr, Mo, W, Cu, Ni and C in each formula are the content (% by mass) of each element, and the content of elements not contained is zero.
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
[1] 質量%で、
 C :0.05%以下、
 Si:1.0%以下、
 Mn:0.10~2.0%、
 P :0.05%以下、
 S :0.005%未満、
 Cr:16.0%超え20.0%以下、
 Mo:0.6%超え1.4%未満、
 Ni:3.0%以上5.0%未満、
 Al:0.001~0.10%、
 N :0.010~0.100%、
 O :0.01%以下、
 Cu:0.3~3.5%
を含有し、かつ式(1)および式(2)式を満足し、残部がFeおよび不可避的不純物からなる成分組成を有し、
 体積率で、45%以上の焼戻マルテンサイト相、20~40%のフェライト相、および5%以上25%以下の残留オーステナイト相からなる組織を有し、
 降伏強さが758MPa以上であり、
-10℃における吸収エネルギーvE-10が40J以上である、ステンレス鋼管。
Cr +0.65 × Ni +0.6(Mo + 0.5 × W) + 0.55 × Cu -20 × C ≧ 21.7 …(1)
Cr +3.3 × (Mo +0.5 × W) - 17 × C ≧ 21.0 …(2)
ここで、各式におけるCr、Ni、Mo、W、CuおよびCは、各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。
[2] 前記成分組成に加えて、質量%で、以下のA群~E群のうちから選ばれた1群または2群以上を含有する、[1]に記載のステンレス鋼管。
A群:Ti:0.3%以下、Nb:0.5%以下、V:0.5%以下、Ta:0.5%以下のうちから選ばれた1種または2種以上
B群:B:0.0050%以下、Ca:0.0050%以下、REM:0.010%以下のうちから選ばれた1種または2種以上
C群:Mg:0.010%以下およびZr:0.2%以下のうちから選ばれた1種または2種
D群:Sn:0.20%以下およびSb:0.20%以下のうちから選ばれた1種または2種
E群:Co:1.0%以下およびW:3.0%以下のうちから選ばれた1種または2種
[3] [1]または[2]に記載のステンレス鋼管の製造方法であって、
 鋼管素材を、加熱温度:1100~1350℃の範囲の温度で加熱し、熱間加工を施して所定形状の継目無鋼管とし、
 前記熱間加工後に、前記継目無鋼管を850~1150℃の範囲の温度に再加熱し、空冷以上の冷却速度で表面温度が50℃以下0℃超えの冷却停止温度まで冷却する焼入れ処理を施し、
その後、500~650℃の範囲の焼戻温度に加熱する焼戻処理を施す、ステンレス鋼管の製造方法。
The present invention has been completed based on these findings and further studies. That is, the gist of the present invention is as follows.
[1] in % by mass,
C: 0.05% or less,
Si: 1.0% or less,
Mn: 0.10-2.0%,
P: 0.05% or less,
S: less than 0.005%,
Cr: more than 16.0% and 20.0% or less,
Mo: more than 0.6% and less than 1.4%,
Ni: 3.0% or more and less than 5.0%,
Al: 0.001 to 0.10%,
N: 0.010 to 0.100%,
O: 0.01% or less,
Cu: 0.3-3.5%
and satisfies the formulas (1) and (2), with the balance being Fe and unavoidable impurities,
Having a structure consisting of a tempered martensite phase of 45% or more, a ferrite phase of 20 to 40%, and a retained austenite phase of 5% or more and 25% or less, in volume fraction,
Yield strength is 758 MPa or more,
A stainless steel pipe having an absorbed energy vE -10 at -10°C of 40 J or more.
Cr+0.65×Ni+0.6(Mo+0.5×W)+0.55×Cu-20×C≧21.7 (1)
Cr +3.3 × (Mo +0.5 × W) - 17 × C ≥ 21.0 (2)
Here, Cr, Ni, Mo, W, Cu, and C in each formula represent the content (% by mass) of each element, and the content of elements not contained is zero.
[2] The stainless steel pipe according to [1], which contains, in mass %, one or more groups selected from Groups A to E below, in addition to the composition.
Group A: One or more selected from Ti: 0.3% or less, Nb: 0.5% or less, V: 0.5% or less, Ta: 0.5% or less Group B: B : 0.0050% or less, Ca: 0.0050% or less, REM: 0.010% or less Group C: Mg: 0.010% or less and Zr: 0.2 1 or 2 selected from % or less Group D: 1 or 2 selected from Sn: 0.20% or less and Sb: 0.20% or less Group E: Co: 1.0 % or less and W: 3.0% or less, one or two selected from [3] [1] or [2],
A steel pipe material is heated at a temperature in the range of 1100 to 1350° C. and subjected to hot working to form a seamless steel pipe of a predetermined shape,
After the hot working, the seamless steel pipe is reheated to a temperature in the range of 850 to 1150°C, and subjected to a quenching treatment in which the surface temperature is cooled to a cooling stop temperature of 50°C or less and over 0°C at a cooling rate faster than air cooling. ,
A method for manufacturing a stainless steel pipe, which is then subjected to a tempering treatment of heating to a tempering temperature in the range of 500 to 650°C.
 本発明によれば、降伏強さ(YS)が758MPa以上の高強度と、-10℃における低温靱性と、250℃以上という高温で、かつCO、Clを含む厳しい腐食環境下においても優れた耐食性とを有するステンレス鋼管およびその製造方法を提供できる。また、本発明のステンレス鋼管は、油井用のステンレス継目無鋼管として好適に用いることができる。 According to the present invention, the yield strength (YS) is high strength of 758 MPa or more, low temperature toughness at -10 ° C., high temperature of 250 ° C. or more, and excellent even in severe corrosive environments containing CO 2 and Cl - It is possible to provide a stainless steel pipe having excellent corrosion resistance and a method for manufacturing the same. Moreover, the stainless steel pipe of the present invention can be suitably used as a seamless stainless steel pipe for oil wells.
 以下、本発明について詳細に説明する。なお、本発明は以下の実施形態に限定されない。 The present invention will be described in detail below. In addition, this invention is not limited to the following embodiment.
 まず、本発明のステンレス鋼管の成分組成と、その限定理由について説明する。以下、特に断わらない限り、「質量%」は単に「%」と記す。 First, the component composition of the stainless steel pipe of the present invention and the reasons for its limitation will be explained. Hereinafter, unless otherwise specified, "% by mass" is simply referred to as "%".
 C:0.05%以下
 Cは、マルテンサイト系ステンレス鋼の強度を増加させる重要な元素である。本発明では、所望の高強度を確保するために、0.003%以上のCを含有することが望ましい。一方、0.05%を超えてCを含有すると、耐硫化物応力割れ性が低下する。このため、C含有量は0.05%以下とする。C含有量は、好ましくは0.005%以上とする。C含有量は、好ましくは0.040%以下とし、より好ましくは0.035%以下とする。
C: 0.05% or less C is an important element that increases the strength of martensitic stainless steel. In the present invention, it is desirable to contain 0.003% or more of C in order to ensure the desired high strength. On the other hand, when the C content exceeds 0.05%, the sulfide stress cracking resistance is lowered. Therefore, the C content should be 0.05% or less. The C content is preferably 0.005% or more. The C content is preferably 0.040% or less, more preferably 0.035% or less.
 Si:1.0%以下
 Siは、脱酸剤として作用する元素であり、このような効果を得るためには、0.005%以上のSiを含有することが望ましい。一方、1.0%を超えてSiを含有すると、製品を製造する途中段階の中間生成物(ビレット等)における熱間加工性が低下する。このため、Si含有量は1.0%以下とする。Si含有量は、より好ましくは0.1%以上とし、より好ましくは0.25%以上とする。Si含有量は、好ましくは0.6%以下とする。
Si: 1.0% or less Si is an element that acts as a deoxidizing agent, and in order to obtain such an effect, it is desirable to contain 0.005% or more of Si. On the other hand, if the Si content exceeds 1.0%, the hot workability of intermediate products (billets, etc.) during the production of the product is lowered. Therefore, the Si content is set to 1.0% or less. The Si content is more preferably 0.1% or more, more preferably 0.25% or more. The Si content is preferably 0.6% or less.
 Mn:0.10~2.0%
 Mnは、マルテンサイト系ステンレス鋼の強度を増加させる元素であり、本発明で目的とする強度を確保するために、0.10%以上のMnの含有を必要とする。一方、2.0%を超えてMnを含有すると、低温靭性が低下する。このため、Mn含有量は0.10~2.0%とする。Mn含有量は、好ましくは0.15%以上とし、より好ましくは0.20%以上とする。Mn含有量は、好ましくは0.5%以下とする。
Mn: 0.10-2.0%
Mn is an element that increases the strength of martensitic stainless steel, and in order to ensure the strength targeted in the present invention, the content of Mn is required to be 0.10% or more. On the other hand, when the Mn content exceeds 2.0%, the low temperature toughness is lowered. Therefore, the Mn content should be 0.10 to 2.0%. The Mn content is preferably 0.15% or more, more preferably 0.20% or more. The Mn content is preferably 0.5% or less.
 P:0.05%以下
 Pは、耐炭酸ガス腐食性および耐硫化物応力割れ性等の耐食性を低下させる元素であり、本発明ではできるだけ低減することが好ましい。Pは、0.05%以下の含有であれば許容できる。このため、P含有量は0.05%以下とする。P含有量は、好ましくは0.02%以下とする。なお、P含有量の下限は特に限定されない。ただし、過度の低減は製造コストの増加を招くため、P含有量は、好ましくは0.005%以上とする。
P: 0.05% or less P is an element that lowers corrosion resistance such as carbon dioxide corrosion resistance and sulfide stress cracking resistance, and is preferably reduced as much as possible in the present invention. P content of 0.05% or less is permissible. Therefore, the P content should be 0.05% or less. The P content is preferably 0.02% or less. In addition, the lower limit of the P content is not particularly limited. However, excessive reduction causes an increase in manufacturing costs, so the P content is preferably 0.005% or more.
 S:0.005%未満
 Sは、熱間加工性を著しく低下させ、熱間造管工程の安定操業を阻害する元素であり、本発明ではできるだけ低減することが好ましい。Sは、0.005%未満の含有であれば、後述する工程によるパイプ製造が可能となる。このようなことから、S含有量は0.005%未満とする。S含有量は、好ましくは0.0015%以下とし、より好ましくは0.0010%以下とする。なお、S含有量の下限は特に限定されない。ただし、過度の低減は製造コストの増加を招くため、S含有量は、好ましくは0.0003%以上とする。
S: less than 0.005% S is an element that significantly lowers hot workability and hinders stable operation of the hot pipe-making process, and is preferably reduced as much as possible in the present invention. If the S content is less than 0.005%, the pipe can be manufactured by the process described later. For this reason, the S content is set to less than 0.005%. The S content is preferably 0.0015% or less, more preferably 0.0010% or less. In addition, the lower limit of the S content is not particularly limited. However, excessive reduction causes an increase in manufacturing costs, so the S content is preferably 0.0003% or more.
 Cr:16.0%超え20.0%以下
 Crは、鋼管表面の保護皮膜を形成して耐食性向上に寄与する元素である。Cr含有量が16.0%以下では、本発明で目的とする耐食性を確保することができない。このため、16.0%を超えるCrの含有を必要とする。一方、20.0%を超えるCrの含有は、フェライト相の分率が高くなりすぎて、本発明で目的とする強度を確保できなくなる。このため、Cr含有量は16.0%超え20.0%以下とする。Cr含有量は、好ましくは17.0%以上とする。Cr含有量は、好ましくは19.0%以下とする。
Cr: more than 16.0% and not more than 20.0% Cr is an element that forms a protective film on the steel pipe surface and contributes to the improvement of corrosion resistance. If the Cr content is 16.0% or less, the corrosion resistance intended in the present invention cannot be ensured. Therefore, the content of Cr exceeding 16.0% is required. On the other hand, if the Cr content exceeds 20.0%, the ferrite phase fraction becomes too high, and the strength aimed at in the present invention cannot be secured. Therefore, the Cr content should be more than 16.0% and 20.0% or less. The Cr content is preferably 17.0% or more. The Cr content is preferably 19.0% or less.
 Mo:0.6%超え1.4%未満
 Moは、鋼管表面の保護皮膜を安定化させて、Clや低pHによる孔食に対する抵抗性を増加させ、これにより耐硫化物応力割れ性を高める元素である。このような効果を得るためには、0.6%を超えるMoを含有する必要がある。一方、16.0%を超えてCrを含有する場合における、1.4%以上のMoの含有は、フェライト相の分率が増加し、低温靭性の低下を招く。このため、Mo含有量は0.6%超え1.4%未満とする。Mo含有量は、好ましくは0.7%以上とする。Mo含有量は、好ましくは1.2%以下とし、さらに好ましくは1.1%以下とする。
Mo: more than 0.6% and less than 1.4% Mo stabilizes the protective film on the steel pipe surface and increases the resistance to pitting corrosion caused by Cl and low pH, thereby improving sulfide stress cracking resistance. It is an element that enhances. In order to obtain such an effect, it is necessary to contain Mo over 0.6%. On the other hand, when the Cr content exceeds 16.0%, the content of Mo of 1.4% or more increases the fraction of ferrite phase and causes a decrease in low temperature toughness. Therefore, the Mo content should be more than 0.6% and less than 1.4%. The Mo content is preferably 0.7% or more. The Mo content is preferably 1.2% or less, more preferably 1.1% or less.
 Ni:3.0%以上5.0%未満
 Niは、鋼管表面の保護皮膜を強固にして耐食性向上に寄与する元素である。このような効果は3.0%以上のNiの含有で顕著になる。一方、5.0%以上のNiの含有は、マルテンサイト相の安定性が低下し、強度が低下する。このため、Ni含有量は3.0%以上5.0%未満とする。Ni含有量は、好ましくは3.5%以上とする。Ni含有量は、好ましくは4.5%以下とする。
Ni: 3.0% or more and less than 5.0% Ni is an element that strengthens the protective film on the steel pipe surface and contributes to the improvement of corrosion resistance. Such an effect becomes remarkable when the Ni content is 3.0% or more. On the other hand, if the Ni content is 5.0% or more, the stability of the martensite phase is lowered, and the strength is lowered. Therefore, the Ni content should be 3.0% or more and less than 5.0%. The Ni content is preferably 3.5% or more. The Ni content is preferably 4.5% or less.
 Al:0.001~0.10%
 Alは、脱酸剤として作用する元素である。このような効果を得るためには、0.001%以上のAlの含有を必要とする。一方、0.10%を超えてAlを含有すると、酸化物量が増加し清浄度が低下し、これにより低温靭性が低下する。このため、Al含有量は0.001~0.10%とする。Al含有量は、好ましくは0.01%以上とし、より好ましくは0.02%以上とする。Al含有量は、好ましくは0.07%以下とし、より好ましくは0.040%以下とする。
Al: 0.001-0.10%
Al is an element that acts as a deoxidizing agent. In order to obtain such effects, the content of Al must be 0.001% or more. On the other hand, if the Al content exceeds 0.10%, the amount of oxides increases and the cleanliness decreases, thereby lowering the low temperature toughness. Therefore, the Al content is set to 0.001 to 0.10%. The Al content is preferably 0.01% or more, more preferably 0.02% or more. The Al content is preferably 0.07% or less, more preferably 0.040% or less.
 N:0.010~0.100%
 Nは、耐孔食性を向上させる元素である。このような効果を得るためには、Nを0.010%以上含有する。一方、0.100%を超えてNを含有すると、窒化物を形成して低温靭性を低下させる。このため、N含有量は0.010~0.100%とする。N含有量は、好ましくは0.02%以上とする。N含有量は、好ましくは0.06%以下とする。
N: 0.010 to 0.100%
N is an element that improves pitting corrosion resistance. In order to obtain such effects, 0.010% or more of N is contained. On the other hand, if the N content exceeds 0.100%, nitrides are formed to lower the low temperature toughness. Therefore, the N content should be 0.010 to 0.100%. The N content is preferably 0.02% or more. The N content is preferably 0.06% or less.
 O:0.01%以下
 O(酸素)は、鋼中では酸化物として存在するため、各種特性に悪影響を及ぼす。このため、本発明では、できるだけ低減することが望ましい。とくに、Oが0.01%を超えると、熱間加工性、耐食性および低温靭性が低下する。このため、O含有量は0.01%以下とする。O含有量は、好ましくは0.0050%以下とする。O含有量は、好ましくは0.0010%以上とし、より好ましくは0.0025%以上とする。
O: 0.01% or less O (oxygen) exists as an oxide in steel, and thus has an adverse effect on various properties. Therefore, in the present invention, it is desirable to reduce it as much as possible. In particular, when O exceeds 0.01%, the hot workability, corrosion resistance and low temperature toughness deteriorate. Therefore, the O content is set to 0.01% or less. The O content is preferably 0.0050% or less. The O content is preferably 0.0010% or more, more preferably 0.0025% or more.
 Cu:0.3~3.5%
 Cuは、鋼管表面の保護皮膜を強固にして鋼中への水素侵入を抑制し、耐硫化物応力割れ性を高める効果を有する。このような効果を得るためには、0.3%以上のCuの含有を必要とする。一方、3.5%を超えるCuの含有は、CuSの粒界析出を招き、熱間加工性を低下させる。このため、Cu含有量は0.3~3.5%とする。Cu含有量は、好ましくは0.5%以上とし、より好ましくは1.0%以上とし、さらに好ましくは1.5%以上とする。Cu含有量は、好ましくは3.0%以下とする。
Cu: 0.3-3.5%
Cu has the effect of strengthening the protective film on the surface of the steel pipe, suppressing the penetration of hydrogen into the steel, and increasing the resistance to sulfide stress cracking. In order to obtain such an effect, 0.3% or more of Cu is required. On the other hand, if the Cu content exceeds 3.5%, grain boundary precipitation of CuS is caused and the hot workability is deteriorated. Therefore, the Cu content should be 0.3 to 3.5%. The Cu content is preferably 0.5% or more, more preferably 1.0% or more, and still more preferably 1.5% or more. The Cu content is preferably 3.0% or less.
 また、本発明では、Cr、Ni、Mo、W、CuおよびCを、上記した含有範囲とし、かつ(1)式を満足するように調整して含有する。
Cr + 0.65× Ni + 0.6(Mo+ 0.5 × W) + 0.55 × Cu - 20 × C ≧ 21.7 …(1)
ここで、(1)式におけるCr、Ni、Mo、W、CuおよびCは各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。
Further, in the present invention, Cr, Ni, Mo, W, Cu and C are contained within the above-described content range and adjusted so as to satisfy the formula (1).
Cr + 0.65 × Ni + 0.6 (Mo + 0.5 × W) + 0.55 × Cu - 20 × C ≥ 21.7 (1)
Here, Cr, Ni, Mo, W, Cu and C in the formula (1) are the contents (% by mass) of the respective elements, and the contents of the elements not contained are zero.
 (1)式の左辺( Cr+0.65×Ni+0.6(Mo+0.5×W)+0.55×Cu-20×C )の値が21.7未満では、鋼管表面に形成する腐食生成物が十分強固でなく、本発明で目的とする耐食性を得ることができない。このため、本発明では、(1)式の左辺値が21.7以上となるように、Cr、Ni、Mo、W、CuおよびCの含有量を調整する。なお、上述したように(1)式に記載の元素を含有しない場合には、(1)式の左辺値は当該元素を零(ゼロ)として算出するものとする。(1)式の左辺値は、好ましくは22.0以上とする。
なお、(1)式の左辺値の上限は特に設けない。過剰な合金添加によるコスト増の抑制および強度低下の抑制の観点から、(1)式の左辺値は26.0以下とすることが好ましく、24.0以下とすることがより好ましい。
When the value of the left side of formula (1) (Cr + 0.65 x Ni + 0.6 (Mo + 0.5 x W) + 0.55 x Cu - 20 x C) is less than 21.7, corrosion products formed on the steel pipe surface are sufficient. It is not strong, and the corrosion resistance aimed at in the present invention cannot be obtained. Therefore, in the present invention, the contents of Cr, Ni, Mo, W, Cu and C are adjusted so that the left-side value of formula (1) is 21.7 or more. As described above, when the element described in the formula (1) is not contained, the left side value of the formula (1) shall be calculated with the element concerned being zero (zero). The left-side value of formula (1) is preferably 22.0 or more.
Note that there is no particular upper limit for the left-side value of expression (1). From the viewpoint of suppressing an increase in cost and a decrease in strength due to excessive alloying, the left-side value of the formula (1) is preferably 26.0 or less, more preferably 24.0 or less.
 さらに、本発明では、Cr、Mo、WおよびCを、上記した含有範囲とし、かつ(2)式を満足するように調整して含有する。
Cr + 3.3× ( Mo + 0.5 ×W ) - 17 × C ≧21.0 …(2)
ここで、(2)式におけるCr、Mo、WおよびCは各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。
Furthermore, in the present invention, Cr, Mo, W and C are contained within the above-described content range and adjusted so as to satisfy the formula (2).
Cr + 3.3 × ( Mo + 0.5 × W ) - 17 × C ≥ 21.0 (2)
Here, Cr, Mo, W and C in the formula (2) are the content (% by mass) of each element, and the content of the element not contained is zero.
 (2)式の左辺( Cr+3.3×(Mo+0.5×W)-17×C )の値が21.0未満では、鋼管表面に存在する不働態被膜が十分強固でなく、割れの起点となる孔食が発生し、本発明で目的とする耐硫化物応力割れ性を得ることができない。このため、本発明では、(2)式の左辺値が21.0以上となるように、Cr、Mo、WおよびCの含有量を調整する。(2)式の左辺値は、好ましくは21.5以上とする。
なお、(2)式の左辺値の上限は特に設けない。効果が飽和することから、(2)式の左辺値は28.0以下とすることが好ましく、25.0以下とすることがより好ましい。
If the value of the left side of equation (2) (Cr+3.3×(Mo+0.5×W)-17×C) is less than 21.0, the passive film present on the surface of the steel pipe is not sufficiently strong, and cracks can start. pitting corrosion occurs, and the sulfide stress cracking resistance aimed at in the present invention cannot be obtained. Therefore, in the present invention, the contents of Cr, Mo, W and C are adjusted so that the left-side value of formula (2) is 21.0 or more. The left-side value of formula (2) is preferably 21.5 or more.
Note that there is no particular upper limit for the left-side value of expression (2). Since the effect saturates, the left-side value of formula (2) is preferably 28.0 or less, more preferably 25.0 or less.
 本発明では、上記した成分以外の残部は、鉄(Fe)および不可避的不純物からなる。 In the present invention, the balance other than the above components consists of iron (Fe) and unavoidable impurities.
 本発明は、上記した成分が基本の成分である。この基本成分を有し、かつ、上記した(1)式および(2)式の全てを満足することで、本発明のステンレス鋼管は目的とする特性を得られる。本発明では、上記した基本成分に加えて、必要に応じて下記の選択元素を含有することができる。なお、以下の、Ti、Nb、V、Ta、B、Ca、REM、Mg、Zr、Sn、Sb、Co、Wの各成分は、必要に応じて含有できるので、これらの成分は0%であってもよい。 The basic components of the present invention are the components described above. By having these basic components and satisfying all of the above-described formulas (1) and (2), the stainless steel pipe of the present invention can obtain the desired properties. In the present invention, in addition to the basic components described above, the following selective elements can be contained as necessary. In addition, since each component of Ti, Nb, V, Ta, B, Ca, REM, Mg, Zr, Sn, Sb, Co, and W below can be contained as necessary, these components are 0%. There may be.
 Ti:0.3%以下、Nb:0.5%以下、V:0.5%以下、Ta:0.5%以下のうちから選ばれた1種または2種以上
 Ti、Nb、VおよびTaはいずれも強度を増加させる元素であり、必要に応じて、Ti、Nb、VおよびTaのうちから1種または2種以上を選択して含有することができる。Ti、Nb、VおよびTaは、上記した効果に加えて、腐食により発生した水素が鋼中に侵入した際に、水素原子をトラップすることにより耐硫化物応力割れ性を改善する効果も有する。特に、TaはNbと同様の効果をもたらす元素であり、Nbの一部をTaに置き換えることができる。このような効果を得るためには、Ti:0.01%以上、Nb:0.01%以上、V:0.01%以上およびTa:0.01%以上を、それぞれ含有することが望ましい。一方、Ti:0.3%、Nb:0.5%、V:0.5%およびTa:0.5%を、それぞれ超えて含有すると、低温靭性が低下する。このため、Ti、Nb、VおよびTaを含有する場合には、Ti:0.3%以下、Nb:0.5%以下、V:0.5%以下およびTa:0.5%以下とすることが好ましい。
より好ましくは、Ti:0.02%以上、Nb:0.02%以上、V:0.03%以上およびTa:0.03%以上とする。より好ましくは、Ti:0.2%以下、Nb:0.3%以下、V:0.2%以下およびTa:0.2%以下とする。
One or more selected from Ti: 0.3% or less, Nb: 0.5% or less, V: 0.5% or less, Ta: 0.5% or less Ti, Nb, V and Ta are elements that increase the strength, and if necessary, one or more of Ti, Nb, V and Ta can be selected and contained. In addition to the above effects, Ti, Nb, V and Ta also have the effect of improving sulfide stress cracking resistance by trapping hydrogen atoms when hydrogen generated by corrosion penetrates into the steel. In particular, Ta is an element that provides the same effect as Nb, and part of Nb can be replaced with Ta. In order to obtain such effects, it is desirable to contain Ti: 0.01% or more, Nb: 0.01% or more, V: 0.01% or more, and Ta: 0.01% or more. On the other hand, when Ti: 0.3%, Nb: 0.5%, V: 0.5%, and Ta: 0.5% are contained, respectively, the low temperature toughness decreases. Therefore, when Ti, Nb, V and Ta are contained, Ti: 0.3% or less, Nb: 0.5% or less, V: 0.5% or less and Ta: 0.5% or less is preferred.
More preferably, Ti: 0.02% or more, Nb: 0.02% or more, V: 0.03% or more, and Ta: 0.03% or more. More preferably, Ti: 0.2% or less, Nb: 0.3% or less, V: 0.2% or less, and Ta: 0.2% or less.
 B:0.0050%以下、Ca:0.0050%以下およびREM:0.010%以下のうちから選ばれた1種または2種以上
 B:0.0050%以下
 Bは、粒界強度を向上させることにより熱間加工性を向上させる元素であり、必要に応じて含有することができる。このような効果を得るためには、Bは0.0010%以上を含有することが望ましい。一方、0.0050%超えのBを含有すると、粒界に窒化物を形成し、耐硫化物応力割れ性が低下する。このため、Bを含有する場合には、Bは0.0050%以下とすることが好ましい。B含有量は、より好ましくは0.0020%以上とする。B含有量は、より好ましくは0.0040%以下とする。
One or more selected from B: 0.0050% or less, Ca: 0.0050% or less, and REM: 0.010% or less B: 0.0050% or less B improves grain boundary strength It is an element that improves hot workability by reducing the In order to obtain such an effect, it is desirable to contain 0.0010% or more of B. On the other hand, if the B content exceeds 0.0050%, nitrides are formed at the grain boundaries and the sulfide stress cracking resistance is lowered. Therefore, when B is contained, B is preferably 0.0050% or less. The B content is more preferably 0.0020% or more. The B content is more preferably 0.0040% or less.
 Ca:0.0050%以下、REM:0.010%以下
 CaおよびREM(希土類金属)はいずれも、硫化物の形態制御を介して耐硫化物応力割れ性の改善に寄与する元素であり、必要に応じてCaおよびREMの1種または2種を含有することができる。このような効果を得るためには、Ca:0.0001%以上およびREM:0.001%以上を含有することが望ましい。一方、Ca:0.0050%およびREM:0.010%をそれぞれ超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、CaおよびREMを含有する場合には、それぞれCa:0.0050%以下およびREM:0.010%以下とすることが好ましい。より好ましくは、Ca:0.0005%以上およびREM:0.005%以上とする。より好ましくは、Ca:0.0040%以下およびREM:0.008%以下とする。
Ca: 0.0050% or less, REM: 0.010% or less Both Ca and REM (rare earth metal) are elements that contribute to improving sulfide stress cracking resistance through morphology control of sulfides, and are necessary. may contain one or both of Ca and REM depending on the In order to obtain such effects, it is desirable to contain Ca: 0.0001% or more and REM: 0.001% or more. On the other hand, even if the Ca content exceeds 0.0050% and the REM content exceeds 0.010%, the effect saturates, and the effect commensurate with the content cannot be expected. Therefore, when Ca and REM are contained, it is preferable that Ca: 0.0050% or less and REM: 0.010% or less, respectively. More preferably, Ca: 0.0005% or more and REM: 0.005% or more. More preferably, Ca: 0.0040% or less and REM: 0.008% or less.
 Mg:0.010%以下およびZr:0.2%以下のうちから選ばれた1種または2種
 Mg:0.010%以下、Zr:0.2%以下
 MgおよびZrはいずれも、介在物の形態制御により耐食性を向上させる元素であり、必要に応じてMgおよびZrの1種または2種を選択して含有することができる。このような効果を得るためには、Mg:0.002%以上、Zr:0.01%以上をそれぞれ含有することが望ましい。一方、Mg:0.010%、Zr:0.2%をそれぞれ超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、MgおよびZrを含有する場合には、それぞれMg:0.010%以下、Zr:0.2%以下とすることが好ましい。より好ましくは、Mg:0.003%以上およびZr:0.02%以上とする。より好ましくは、Mg:0.005%以下およびZr:0.1%以下とする。
One or two selected from Mg: 0.010% or less and Zr: 0.2% or less Mg: 0.010% or less, Zr: 0.2% or less Both Mg and Zr are inclusions is an element that improves corrosion resistance by controlling the morphology of Mg and Zr. In order to obtain such effects, it is desirable to contain Mg: 0.002% or more and Zr: 0.01% or more. On the other hand, even if the contents of Mg and Zr exceed 0.010% and 0.2%, respectively, the effect is saturated and the effect corresponding to the content cannot be expected. Therefore, when Mg and Zr are contained, it is preferable that Mg: 0.010% or less and Zr: 0.2% or less, respectively. More preferably, Mg: 0.003% or more and Zr: 0.02% or more. More preferably, Mg: 0.005% or less and Zr: 0.1% or less.
 Sn:0.20%以下およびSb:0.20%以下のうちから選ばれた1種または2種
 Sn:0.20%以下、Sb:0.20%以下
 SnおよびSbはいずれも、活性溶解の抑制と不働態化の促進により耐食性を向上させる元素であり、必要に応じてSnおよびSbの1種または2種を選択して含有することができる。このような効果を得るためには、Sn:0.01%以上およびSb:0.01%以上をそれぞれ含有することが望ましい。一方、Sn:0.20%およびSb:0.20%をそれぞれ超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、SnおよびSbを含有する場合には、それぞれSn:0.20%以下およびSb:0.20%以下とすることが好ましい。より好ましくは、Sn:0.02%以上およびSb:0.02%以上とする。より好ましくは、Sn:0.15%以下およびSb:0.15%以下とする。
One or two selected from Sn: 0.20% or less and Sb: 0.20% or less Sn: 0.20% or less, Sb: 0.20% or less It is an element that improves corrosion resistance by suppressing and promoting passivation, and one or both of Sn and Sb can be selected and contained as necessary. In order to obtain such effects, it is desirable to contain Sn: 0.01% or more and Sb: 0.01% or more. On the other hand, even if the Sn content exceeds 0.20% and the Sb content exceeds 0.20%, the effect is saturated, and the effect commensurate with the content cannot be expected. Therefore, when Sn and Sb are contained, it is preferable that Sn: 0.20% or less and Sb: 0.20% or less, respectively. More preferably, Sn: 0.02% or more and Sb: 0.02% or more. More preferably, Sn: 0.15% or less and Sb: 0.15% or less.
 Co:1.0%以下およびW:3.0%以下のうちから選ばれた1種または2種
 Co:1.0%以下
 Coは、Ms点を上昇させることで残留オーステナイト相の分率を低減し、強度および耐硫化物応力割れ性を向上させる元素であり、選択して含有することができる。このような効果を得るためには0.01%以上のCoを含有することが望ましい。一方、1.0%を超えてCoを含有しても効果は飽和する。このため、Coを含有する場合には、Coは1.0%以下とする。Co含有量は、好ましくは0.01%以上とし、より好ましくは0.05%以上とし、さらに好ましくは0.07%以上とする。Co含有量は、好ましくは0.15%以下とし、より好ましくは0.09%以下とする。
One or two selected from Co: 1.0% or less and W: 3.0% or less Co: 1.0% or less Co raises the Ms point to increase the fraction of the retained austenite phase. It is an element that reduces S and improves strength and resistance to sulfide stress cracking, and can be selected and contained. In order to obtain such effects, it is desirable to contain 0.01% or more of Co. On the other hand, even if the Co content exceeds 1.0%, the effect is saturated. Therefore, when Co is contained, the Co content is set to 1.0% or less. The Co content is preferably 0.01% or more, more preferably 0.05% or more, and still more preferably 0.07% or more. The Co content is preferably 0.15% or less, more preferably 0.09% or less.
 W:3.0%以下
 Wは、鋼の強度向上に寄与するとともに、鋼管表面の保護皮膜を安定化させて、耐硫化物応力割れ性を高めることができる元素であり、必要に応じて含有することができる。Wは、Moと複合して含有することにより、とくに耐硫化物応力割れ性を顕著に向上させる。このような効果を得るためには、0.1%以上のWを含有することが望ましい。一方、3.0%を超えるWの含有は、金属間化合物の形成することにより低温靭性を低下させる。このため、Wを含有する場合には、W含有量は3.0%以下とする。W含有量は、好ましくは0.1%以上とし、より好ましくは0.5%以上とし、さらに好ましくは0.8%以上とする。W含有量は、好ましくは2.0%以下とする。
W: 3.0% or less W is an element that contributes to the improvement of the strength of steel, stabilizes the protective film on the surface of the steel pipe, and increases the resistance to sulfide stress cracking. can do. When W is contained in combination with Mo, the resistance to sulfide stress cracking is remarkably improved. In order to obtain such effects, it is desirable to contain 0.1% or more of W. On the other hand, the content of W exceeding 3.0% lowers the low temperature toughness due to the formation of intermetallic compounds. Therefore, when W is contained, the W content should be 3.0% or less. The W content is preferably 0.1% or more, more preferably 0.5% or more, and still more preferably 0.8% or more. The W content is preferably 2.0% or less.
 次に、本発明のステンレス鋼管の組織と、その限定理由について説明する。 Next, the structure of the stainless steel pipe of the present invention and the reasons for its limitation will be explained.
 本発明のステンレス鋼管は、上記した成分組成を有し、かつ、体積率で、45%以上の焼戻マルテンサイト相と、20~40%のフェライト相と、5%以上25%以下の残留オーステナイト相とからなる組織を有する。 The stainless steel pipe of the present invention has the chemical composition described above, and has a tempered martensite phase of 45% or more, a ferrite phase of 20 to 40%, and a retained austenite of 5% or more and 25% or less in volume fraction. It has a structure consisting of phases.
 焼戻マルテンサイト相:体積率で45%以上
 本発明のステンレス鋼管では、所望の強度を確保するために、焼戻マルテンサイト相を主相とする。ここで、「主相」とは、鋼管全体に対する体積率で45%以上を占める組織のことを指す。焼戻マルテンサイト相は、体積率で、好ましくは50%以上とし、より好ましくは55%以上とする。焼戻マルテンサイト相は、体積率で、好ましくは75%以下とし、より好ましくは70%以下とする。
Tempered Martensite Phase: 45% or More in Volume Fraction In the stainless steel pipe of the present invention, the tempered martensite phase is the main phase in order to ensure the desired strength. Here, the "main phase" refers to a structure that occupies 45% or more of the volume of the entire steel pipe. The volume fraction of the tempered martensite phase is preferably 50% or more, more preferably 55% or more. The volume fraction of the tempered martensite phase is preferably 75% or less, more preferably 70% or less.
 フェライト相:体積率で20~40%
 本発明では、少なくとも第二相としてフェライト相を、鋼管全体に対する体積率で20%以上析出させる。これにより、熱間圧延時に導入された歪が軟質なフェライト相に集中して疵が発生することを防止できる。また、フェライト相を体積率で20%以上析出させることにより、フェライト相が割れの進展に対して抵抗となるため、硫化物応力割れの進展を抑制でき、本発明で目的とする耐食性を確保することができる。一方、体積率で40%を超えて多量の軟質なフェライト相が析出すると、所望の強度を確保できない場合がある。このため、フェライト相は、体積率で20~40%とする。フェライト相は、体積率で、好ましくは23%以上とし、より好ましくは26%以上とする。フェライト相は、体積率で、好ましくは37%以下とし、より好ましくは34%以下とする。
Ferrite phase: 20 to 40% by volume
In the present invention, at least a ferrite phase is precipitated as a second phase in a volume ratio of 20% or more with respect to the entire steel pipe. As a result, it is possible to prevent the strain introduced during hot rolling from concentrating on the soft ferrite phase and causing flaws. In addition, by precipitating the ferrite phase at a volume ratio of 20% or more, the ferrite phase becomes resistant to the progress of cracking, so the progress of sulfide stress cracking can be suppressed, and the corrosion resistance aimed at in the present invention can be secured. be able to. On the other hand, if a large amount of soft ferrite phase precipitates exceeding 40% by volume, the desired strength may not be ensured. Therefore, the ferrite phase should be 20 to 40% by volume. The volume ratio of the ferrite phase is preferably 23% or more, more preferably 26% or more. The volume fraction of the ferrite phase is preferably 37% or less, more preferably 34% or less.
 残留オーステナイト相:体積率で5%以上25%以下
 本発明では、第二相としてフェライト相に加えて、オーステナイト相(残留オーステナイト相)を析出させる。延性および低温靭性に優れる残留オーステナイト相の存在により、鋼全体の延性および低温靭性が向上する。所望の強度を確保しつつ、このような延性および低温靭性の向上効果を得るためには、残留オーステナイト相は鋼管全体に対する体積率で5%以上析出させる。一方、体積率で25%を超える多量のオーステナイト相の析出は、オーステナイトはマルテンサイト相やフェライト相よりも低強度であることから、所望の強度を確保できない。このため、残留オーステナイト相は体積率で5%以上25%以下とする。残留オーステナイト相は、体積率で、10%超えが好ましく、20%以下が好ましく、また、15%以下がより好ましい。
Retained austenite phase: 5% or more and 25% or less in volume fraction In the present invention, in addition to the ferrite phase, the austenite phase (retained austenite phase) is precipitated as the second phase. The presence of the retained austenite phase, which has excellent ductility and low-temperature toughness, improves the ductility and low-temperature toughness of the steel as a whole. In order to obtain such effects of improving ductility and low-temperature toughness while ensuring desired strength, the retained austenite phase is precipitated at a volume ratio of 5% or more in the entire steel pipe. On the other hand, precipitation of a large amount of austenite phase exceeding 25% in volume fraction cannot ensure desired strength because austenite has lower strength than martensite phase and ferrite phase. Therefore, the volume fraction of the retained austenite phase is set to 5% or more and 25% or less. The volume fraction of the retained austenite phase is preferably over 10%, preferably 20% or less, and more preferably 15% or less.
 上記した本発明の各組織は、次の方法で測定することができる。
まず、組織観察用試験片を管軸方向に直交する断面の肉厚の中央部から採取し、ビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食して走査型電子顕微鏡(倍率:1000倍)で組織を撮像し、画像解析装置を用いて、フェライト相の組織分率(面積%)を算出し、この面積率を体積率%として扱う。
Each tissue of the present invention described above can be measured by the following method.
First, a test piece for tissue observation was taken from the central portion of the wall thickness of a cross section perpendicular to the tube axis direction, and corroded with a Villella reagent (picric acid, hydrochloric acid, and ethanol mixed in proportions of 2 g, 10 ml, and 100 ml, respectively). Then, the structure is imaged with a scanning electron microscope (magnification: 1000 times), the structure fraction (area %) of the ferrite phase is calculated using an image analyzer, and this area ratio is treated as the volume ratio %.
 そして、X線回折用試験片を、管軸方向に直交する断面(C断面)が測定面となるように、研削および研磨し、X線回折法を用いて残留オーステナイト(γ)量を測定する。残留オーステナイト量は、γの(220)面、α(フェライト)の(211)面、の回折X線積分強度を測定し、次式を用いて換算する。
γ(体積率)=100/(1+(IαRγ/IγRα))
ここで、Iα:αの積分強度、Rα:αの結晶学的理論計算値、Iγ:γの積分強度、Rγ:γの結晶学的理論計算値である。
Then, the X-ray diffraction test piece is ground and polished so that the cross section (C cross section) perpendicular to the tube axis direction becomes the measurement surface, and the amount of retained austenite (γ) is measured using the X-ray diffraction method. . The amount of retained austenite is obtained by measuring the diffraction X-ray integrated intensity of the (220) plane of γ and the (211) plane of α (ferrite) and converting it using the following formula.
γ (volume ratio) = 100/(1 + (IαRγ/IγRα))
Here, Iα: integrated intensity of α, Rα: theoretical crystallographically calculated value of α, Iγ: integrated intensity of γ, and Rγ: theoretically calculated crystallographic value of γ.
 また、焼戻マルテンサイト相の分率(体積率)は、フェライト相および残留γ相以外の残部とする。 In addition, the fraction (volume ratio) of the tempered martensite phase is the remainder other than the ferrite phase and the residual γ phase.
 ここで、本発明の上記の組織は、後述する特定条件の熱処理(焼入れ処理および焼戻処理)により調整することができる。 Here, the above structure of the present invention can be adjusted by heat treatment (quenching treatment and tempering treatment) under specific conditions, which will be described later.
 以上説明したように、本発明では、上記した成分の含有範囲とし、かつ、(1)式および(2)式を満たす特定の成分組成とし、かつ、体積率で、45%以上の焼戻マルテンサイト相と、20~40%のフェライト相と、5%以上25%以下の残留オーステナイト相とからなる組織に調整することによって、本発明で目的とする上記した各特性が得られる。 As described above, in the present invention, the content range of the above-described components, the specific component composition satisfying the formulas (1) and (2), and the volume fraction of tempered marten of 45% or more By adjusting the structure to consist of a site phase, 20 to 40% ferrite phase, and 5% to 25% retained austenite phase, the above-mentioned properties aimed at in the present invention can be obtained.
 次に、本発明のステンレス鋼管の製造方法の好ましい一実施形態について、説明する。ここでは、ステンレス鋼管として油井用高強度ステンレス継目無鋼管を製造する方法について説明する。 Next, a preferred embodiment of the method for manufacturing a stainless steel pipe of the present invention will be described. Here, a method for producing a high-strength seamless stainless steel pipe for oil wells as a stainless steel pipe will be described.
 本発明では、上記した成分組成を有する鋼管素材を出発素材とする。出発素材である鋼管素材の製造方法は、特に限定しない。例えば、上記した成分組成の溶鋼を、転炉等の溶製方法で溶製し、連続鋳造法あるいは造塊-分塊圧延法等の鋳造方法で、ビレット等の鋳片(鋼管素材)とすることが好ましい。なお、鋼管素材の製造方法は、この方法に限定されない。
鋳片にさらに熱間圧延を施し、所望の寸法形状とした鋼片を鋼管素材として用いてもよい。
In the present invention, a steel pipe material having the chemical composition described above is used as a starting material. The method of manufacturing the steel pipe material, which is the starting material, is not particularly limited. For example, the molten steel having the above composition is melted by a melting method such as a converter, and cast into a billet (steel pipe material) by a casting method such as a continuous casting method or an ingot-slabbing-rolling method. is preferred. In addition, the manufacturing method of a steel pipe material is not limited to this method.
The slab may be further subjected to hot rolling to obtain a steel slab having desired dimensions and shape, and the resulting slab may be used as a steel pipe material.
 次いで、この鋼管素材に加熱を施す(加熱工程)。 Next, the steel pipe material is heated (heating process).
 加熱工程では、鋼管素材(例えばビレット)の加熱温度は1100~1350℃の範囲の温度とする。加熱温度が1100℃未満では、ビレットの熱間加工性が低下し、造管時に疵が多発する。一方、加熱温度が1350℃を超えて高温となると、結晶粒が粗大化し、低温靭性が低下する。このため、加熱工程における加熱温度は、1100~1350℃の範囲の温度とする。加熱温度は、好ましくは1150℃以上とし、好ましくは1300℃以下とする。 In the heating process, the steel pipe material (for example, billet) is heated to a temperature in the range of 1100-1350°C. If the heating temperature is less than 1100° C., the hot workability of the billet deteriorates, and defects occur frequently during pipe making. On the other hand, if the heating temperature exceeds 1350° C., the crystal grains become coarse and the low-temperature toughness decreases. Therefore, the heating temperature in the heating step is set to a temperature in the range of 1100 to 1350.degree. The heating temperature is preferably 1150° C. or higher and preferably 1300° C. or lower.
 なお、本発明における「熱間加工性が低下」とは、後述する実施例に記載するように、ビレットから採取した平行部径10mmの丸棒形状の丸棒試験片を用い、グリーブル試験機にて1250℃に加熱し、100秒間保持後、1℃/secで1000℃まで冷却し、10秒間保持した後、破断するまで引っ張り、断面減少率(%)を測定して評価するものであり、この断面減少率が70%未満の場合をいうものとする。 It should be noted that, as described in the examples below, the term "decreased hot workability" in the present invention means that a round bar test piece having a parallel part diameter of 10 mm was taken from a billet and tested with a Gleeble tester. After heating to 1250 ° C., holding for 100 seconds, cooling at 1 ° C./sec to 1000 ° C., holding for 10 seconds, pulling until it breaks, and evaluating by measuring the cross-sectional reduction rate (%) The cross-sectional reduction rate is less than 70%.
 次いで、加熱された鋼管素材は、熱間造管工程で熱間加工を施されて、所定形状の継目無鋼管とされる。熱間造管工程は、マンネスマン-プラグミル方式あるいはマンネスマン-マンドレルミル方式の熱間造管工程とすることが好ましい。なお、プレス方式による熱間押出で継目無鋼管としてもよい。熱間造管工程では、所定形状の継目無鋼管が製造できればよく、とくにその条件は規定しない。 The heated steel pipe material is then subjected to hot working in a hot pipe making process to form a seamless steel pipe of a predetermined shape. The hot tube-making process is preferably a Mannesmann-plug mill system or Mannesmann-mandrel mill system hot tube-making process. Alternatively, a seamless steel pipe may be produced by hot extrusion using a press method. In the hot pipe-making process, it is sufficient that a seamless steel pipe having a predetermined shape can be produced, and no particular conditions are defined.
 上記の熱間造管工程後は、得られた継目無鋼管に冷却処理を施してもよい(冷却工程)。冷却工程は、とくに限定する必要はない。本発明の成分組成範囲であれば熱間造管工程での熱間加工後、空冷程度の冷却速度で室温まで冷却することにより、鋼管の組織がマルテンサイト相を主相とする組織とすることができる。 After the above hot pipe-making process, the obtained seamless steel pipe may be subjected to a cooling treatment (cooling process). The cooling step need not be particularly limited. Within the composition range of the present invention, after hot working in the hot pipe making process, the steel pipe is cooled to room temperature at a cooling rate similar to that of air cooling, so that the structure of the steel pipe has a martensite phase as the main phase. can be done.
 次いで、本発明では、継目無鋼管に、焼入れ処理および焼戻処理からなる熱処理を施す。
焼入れ処理は、継目無鋼管を850~1150℃の範囲の温度(加熱温度)に再加熱し、所定時間保持した後、空冷以上の冷却速度で継目無鋼管の表面温度が50℃以下0℃超えの温度(冷却停止温度)となるまで冷却する処理とする。
Next, in the present invention, the seamless steel pipe is subjected to heat treatment including quenching treatment and tempering treatment.
In the quenching treatment, the seamless steel pipe is reheated to a temperature (heating temperature) in the range of 850 to 1150°C, held for a predetermined time, and then cooled at a cooling rate higher than air cooling so that the surface temperature of the seamless steel pipe is 50°C or lower and exceeds 0°C. (cooling stop temperature).
 焼入れ処理の加熱温度が850℃未満では、Ac3点以下となるため、マルテンサイトからオーステナイトへの逆変態が起こらない。また、焼入れ処理での冷却時にオーステナイトからマルテンサイトへの変態が起こらない。その結果、本発明で目的とする強度を確保できない。一方、焼入れ処理の加熱温度が1150℃を超えて高温となると、結晶粒が粗大化する。その結果、低温靭性値が低下する。このため、焼入れ処理の加熱温度は、850~1150℃の範囲の温度とする。該加熱温度は、好ましくは900℃以上とする。該加熱温度は、好ましくは1000℃以下とする。 If the heating temperature of the quenching treatment is less than 850° C., the Ac 3 point or less is achieved, so reverse transformation from martensite to austenite does not occur. Also, transformation from austenite to martensite does not occur during cooling in the quenching process. As a result, it is not possible to ensure the desired strength in the present invention. On the other hand, when the heating temperature of the quenching treatment exceeds 1150° C. and becomes high, the crystal grains become coarse. As a result, the low temperature toughness value decreases. Therefore, the heating temperature for the quenching treatment is set to a temperature in the range of 850 to 1150.degree. The heating temperature is preferably 900° C. or higher. The heating temperature is preferably 1000° C. or lower.
 焼入れ処理では、継目無鋼管を上記の加熱温度に加熱した後、所定時間保持する。継目無鋼管の肉厚方向における温度を均一化し、材質の変動を防止するために、均熱時間は5~40分(min)とすることが好ましい。均熱時間は、より好ましくは10分以上とする。 In the quenching process, the seamless steel pipe is heated to the above heating temperature and then held for a predetermined time. The soaking time is preferably 5 to 40 minutes (min) in order to uniformize the temperature in the wall thickness direction of the seamless steel pipe and prevent fluctuations in the material quality. The soaking time is more preferably 10 minutes or more.
 焼入れ処理の冷却停止温度が50℃超えであると、オーステナイトからマルテンサイトへの変態が十分に起こらず、その結果、オーステナイト相の分率が過剰となる。一方、焼入れ処理の冷却停止温度が0℃以下であると、マルテンサイト相への変態が過剰に起こり、本発明で必要なオーステナイト相の分率を得ることができない。このため、本発明では、焼入れ処理における冷却での冷却停止温度は50℃以下0℃超えとする。該冷却停止温度は、好ましくは10℃以上とする。該冷却停止温度は、好ましくは40℃以下とする。 When the cooling stop temperature of the quenching treatment exceeds 50°C, the transformation from austenite to martensite does not occur sufficiently, resulting in an excessive austenite phase fraction. On the other hand, if the cooling stop temperature of the quenching treatment is 0° C. or less, excessive transformation to the martensite phase occurs, and the austenite phase fraction required in the present invention cannot be obtained. For this reason, in the present invention, the cooling stop temperature in cooling in the quenching treatment is set at 50°C or lower and higher than 0°C. The cooling stop temperature is preferably 10° C. or higher. The cooling stop temperature is preferably 40° C. or lower.
 ここで、「空冷以上の冷却速度」とは、平均冷却速度で0.01℃/sec以上である。 Here, the "cooling rate equal to or higher than air cooling" means an average cooling rate of 0.01°C/sec or higher.
 次いで、焼入れ処理を施された継目無鋼管に、焼戻処理を施す。
焼戻処理は、継目無鋼管を500~650℃の範囲の温度(焼戻温度)に加熱した後、所定時間保持し、放冷する処理とする。放冷は、空冷である。
Next, the quenched seamless steel pipe is tempered.
The tempering process is a process in which the seamless steel pipe is heated to a temperature (tempering temperature) in the range of 500 to 650° C., held for a predetermined time, and allowed to cool. Air cooling is air cooling.
 焼戻温度が500℃未満では、低温すぎて所望の焼戻効果が期待できなくなる。一方、焼戻温度が650℃を超える高温では、焼入れままのマルテンサイト相が生成し、本発明で目的とする高強度、高靭性(すなわち、優れた低温靭性)および優れた耐食性を兼備させることができなくなる。このため、焼戻温度は500~650℃の範囲の温度とする。焼戻温度は、好ましくは520℃以上とし、より好ましくは550℃以上する。焼戻温度は、好ましくは630℃以下とし、より好ましくは600℃以下する。 If the tempering temperature is less than 500°C, the desired tempering effect cannot be expected because the temperature is too low. On the other hand, when the tempering temperature exceeds 650°C, the as-quenched martensite phase is generated, and the high strength, high toughness (that is, excellent low-temperature toughness) and excellent corrosion resistance that are the objectives of the present invention are achieved. I can't do it. Therefore, the tempering temperature should be in the range of 500 to 650°C. The tempering temperature is preferably 520°C or higher, more preferably 550°C or higher. The tempering temperature is preferably 630°C or lower, more preferably 600°C or lower.
 焼戻処理では、継目無鋼管を焼戻温度で加熱した後、所定時間保持する。継目無鋼管の肉厚方向における温度を均一化し、かつ、材質の変動を防止するために、均熱時間(保持時間)は5~90分(min)とすることが好ましい。均熱時間(保持時間)は、より好ましくは15分以上とする。均熱時間(保持時間)は、より好ましくは60分以下とする。 In the tempering process, the seamless steel pipe is heated at the tempering temperature and then held for a predetermined time. The soaking time (holding time) is preferably 5 to 90 minutes (min) in order to uniformize the temperature in the wall thickness direction of the seamless steel pipe and to prevent the material from fluctuating. The soaking time (holding time) is more preferably 15 minutes or longer. The soaking time (holding time) is more preferably 60 minutes or less.
 継目無鋼管に上記した熱処理(焼入れ処理および焼戻処理)を施すことにより、得られる鋼管の組織は、上述のように焼戻マルテンサイト相を主相とし、フェライト相および残留オーステナイト相からなる組織となる。これにより、本発明で目的とする高強度、高靭性および優れた耐食性を兼ね備えた油井用高強度ステンレス継目無鋼管とすることができる。 By subjecting the seamless steel pipe to the above heat treatment (quenching treatment and tempering treatment), the structure of the steel pipe obtained has a tempered martensite phase as the main phase as described above, and a structure composed of a ferrite phase and a retained austenite phase. becomes. As a result, the high-strength seamless stainless steel pipe for oil wells having high strength, high toughness and excellent corrosion resistance, which is the object of the present invention, can be obtained.
 以上に説明したとおり、本発明により得られるステンレス鋼管は、降伏強さ(YS)が758MPa以上であり、優れた低温靭性と、優れた耐食性を有する。降伏強さは、好ましくは800MPa以上である。降伏強さは、好ましくは1034MPa以下である。 As explained above, the stainless steel pipe obtained by the present invention has a yield strength (YS) of 758 MPa or more, excellent low-temperature toughness, and excellent corrosion resistance. Yield strength is preferably 800 MPa or more. The yield strength is preferably 1034 MPa or less.
 以下、実施例に基づき、本発明を説明する。なお、本発明は以下の実施例に限定されない。 The present invention will be described below based on examples. In addition, the present invention is not limited to the following examples.
 表1に示す成分組成の溶鋼を真空溶解で溶製し、得られた鋼管素材(鋳片)を表2に示す加熱温度で加熱する加熱工程を施した。 A heating process was performed in which molten steel having the chemical composition shown in Table 1 was melted by vacuum melting, and the obtained steel pipe material (slab) was heated at the heating temperature shown in Table 2.
 次いで、熱間造管工程では、加熱された鋼管素材に、シームレス圧延機を用いて熱間加工を施し、継目無鋼管(外径×肉厚が297mmφ×34mmの形状)とし、該継目無鋼管を室温(25℃)まで空冷した。 Next, in the hot pipe-making process, the heated steel pipe material is hot-worked using a seamless rolling mill to form a seamless steel pipe (outer diameter x thickness = 297mmφ x 34mm). was air-cooled to room temperature (25° C.).
 次いで、得られた継目無鋼管から試験材を切り出し、該試験材に、表2に示す条件で熱処理(焼入れ処理および焼戻処理)を施した。該試験材は、試験片長手方向が管軸方向となるように採取した。焼入れ処理時の水冷での平均冷却速度は11℃/secであり、焼戻処理時の空冷(放冷)での平均冷却速度は、0.04℃/secであった。
なお、表1の「成分組成」における「-」は、意図的に添加しないことを表しており、含有しない(0%)の場合だけでなく、不可避的に含有する場合も含むものとした。
Next, a test material was cut out from the obtained seamless steel pipe, and the test material was subjected to heat treatment (quenching treatment and tempering treatment) under the conditions shown in Table 2. The test material was sampled so that the longitudinal direction of the test piece was aligned with the tube axis direction. The average cooling rate in water cooling during quenching treatment was 11° C./sec, and the average cooling rate in air cooling (air cooling) during tempering treatment was 0.04° C./sec.
In addition, "-" in "Component composition" in Table 1 indicates that it is not intentionally added, and includes not only the case of not containing (0%) but also the case of unavoidably containing.
 次いで、得られた熱処理済みの試験材から試験片を採取し、試験片を用いて組織観察、引張試験、衝撃試験および耐食性試験を実施した。各試験などの方法は、次の通りとした。 Next, a test piece was taken from the obtained heat-treated test material, and a structure observation, tensile test, impact test, and corrosion resistance test were performed using the test piece. The methods for each test were as follows.
 (1)組織観察
 得られた熱処理済み試験材から、管軸方向断面が観察面となるように組織観察用試験片を採取した。得られた組織観察用試験片をビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食して走査型電子顕微鏡(倍率:1000倍)で組織を撮像し、画像解析装置を用いて、フェライト相の組織分率(面積%)を算出した。この面積率を体積率%として扱うものとした。
(1) Observation of structure From the obtained heat-treated test material, a specimen for observation of structure was taken so that the cross section in the pipe axial direction was the observation surface. The specimen for tissue observation obtained was corroded with Vilera's reagent (picric acid, hydrochloric acid and ethanol mixed at a ratio of 2 g, 10 ml and 100 ml, respectively), and the tissue was imaged with a scanning electron microscope (magnification: 1000 times). Then, an image analyzer was used to calculate the ferrite phase structure fraction (area %). This area ratio was treated as volume ratio %.
 また、得られた熱処理済み試験材から、X線回折用試験片を採取し、管軸方向に直交する断面(C断面)が測定面となるように、研削および研磨し、X線回折法を用いて残留オーステナイト(γ)量を測定した。残留オーステナイト量は、γの(220)面、α(フェライト)の(211)面、の回折X線積分強度を測定し、次式を用いて換算した。
γ(体積率)=100/(1+(IαRγ/IγRα))
ここで、Iα:αの積分強度、Rα:αの結晶学的理論計算値、Iγ:γの積分強度、Rγ:γの結晶学的理論計算値、とした。
In addition, an X-ray diffraction test piece is taken from the obtained heat-treated test material, ground and polished so that the cross section (C section) perpendicular to the tube axis direction becomes the measurement surface, and the X-ray diffraction method is performed. was used to measure the amount of retained austenite (γ). The amount of retained austenite was obtained by measuring the diffraction X-ray integrated intensity of the (220) plane of γ and the (211) plane of α (ferrite) and converting it using the following formula.
γ (volume ratio) = 100/(1 + (IαRγ/IγRα))
Here, Iα: integrated intensity of α, Rα: theoretical crystallographically calculated value of α, Iγ: integrated intensity of γ, and Rγ: theoretically calculated crystallographic value of γ.
 なお、焼戻マルテンサイト相の分率(体積率)は、フェライト相および残留γ相以外の残部であった。 The fraction (volume ratio) of the tempered martensite phase was the remainder other than the ferrite phase and the residual γ phase.
 (2)引張試験
 得られた熱処理済み試験材から、管軸方向が引張方向となるように、API(American Petroleum Institute)弧状引張試験片を採取し、APIの規定に準拠して引張試験を実施し、引張特性(降伏強さ(YS)および引張強さ(TS))を求めた。
ここでは、降伏強さ(YS)が758MPa以上のものを高強度であるとし、合格と評価した。一方、降伏強さが758MPa未満のものは不合格と評価した。
(2) Tensile test An API (American Petroleum Institute) arc-shaped tensile test piece is taken from the obtained heat-treated test material so that the tube axis direction is the tensile direction, and a tensile test is performed in accordance with API regulations. and tensile properties (yield strength (YS) and tensile strength (TS)) were determined.
Here, those with a yield strength (YS) of 758 MPa or more were considered to have high strength and were evaluated as acceptable. On the other hand, those with a yield strength of less than 758 MPa were evaluated as unacceptable.
 (3)衝撃試験
 得られた熱処理済み試験材から、JIS Z 2242(2018年)の規定に準拠して、試験片長手方向が管軸方向となるように、Vノッチ試験片(10mm厚)を採取し、シャルピー衝撃試験を実施した。試験温度は、-10℃とし、-10℃における吸収エネルギーvE-10を求め、低温靭性を評価した。なお、試験片は各3本とし、得られた値の算術平均を当該鋼管の吸収エネルギー(J)とした。
ここでは、-10℃における吸収エネルギーvE-10が40J以上のものを高靭性(優れた低温靭性)であるとし、合格と評価した。一方、vE-10が40J未満のものは不合格と評価した。
(3) Impact test From the obtained heat-treated test material, a V-notch test piece (10 mm thick) is made so that the longitudinal direction of the test piece is in the pipe axis direction in accordance with the provisions of JIS Z 2242 (2018). It was sampled and subjected to a Charpy impact test. The test temperature was −10° C., and the absorbed energy vE −10 at −10° C. was obtained to evaluate the low temperature toughness. Three test pieces were used, and the arithmetic mean of the obtained values was taken as the absorbed energy (J) of the steel pipe.
Here, those having an absorption energy vE -10 of 40 J or more at -10°C were considered to have high toughness (excellent low temperature toughness) and were evaluated as acceptable. On the other hand, those with a vE- 10 of less than 40J were evaluated as unacceptable.
 (4)耐食性試験
 ここでは、腐食試験片を用いて以下の通りに腐食試験を実施し、耐炭酸ガス腐食性および耐硫化物応力割れ性を評価した。
(4) Corrosion resistance test A corrosion test was performed using a corrosion test piece as follows to evaluate carbon dioxide corrosion resistance and sulfide stress cracking resistance.
 〔耐炭酸ガス腐食性の評価〕
 得られた熱処理済み試験材から、厚さが3mm、幅が30mm、長さが40mmであるサイズの腐食試験片を機械加工によって作製した。該腐食試験片を用いて以下の通りに腐食試験を実施した。
 (腐食試験A)
 腐食試験は、オートクレーブ中に保持された試験液:25質量%NaCl水溶液(液温:250℃、30気圧のCOガス雰囲気)中に、上記腐食試験片を浸漬し、浸漬期間を14日間(336時間)として実施した。腐食試験後の試験片について、重量を測定し、腐食試験前後の重量減から計算した腐食速度を求めた。
ここでは、腐食速度が0.125mm/y以下のものを合格と評価し、腐食速度が0.125mm/yを超えるものを不合格と評価した。
[Evaluation of carbon dioxide corrosion resistance]
A corrosion test piece having a thickness of 3 mm, a width of 30 mm, and a length of 40 mm was machined from the obtained heat-treated test material. A corrosion test was carried out as follows using the corrosion test piece.
(Corrosion test A)
In the corrosion test, the corrosion test piece was immersed in a test liquid: 25 mass% NaCl aqueous solution (liquid temperature: 250 ° C., 30 atm CO 2 gas atmosphere) held in an autoclave, and the immersion period was 14 days ( 336 hours). The weight of the test piece after the corrosion test was measured, and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained.
Here, a corrosion rate of 0.125 mm/y or less was evaluated as acceptable, and a corrosion rate exceeding 0.125 mm/y was evaluated as unacceptable.
 また、腐食試験後の試験片について、倍率:10倍のルーペを用いて試験片表面の孔食発生の有無を観察した。「孔食有り」とは、直径:0.2mm以上の孔食の発生があった場合をいう。「孔食無し」とは、孔食の発生が無かった場合、および、直径:0.2mm未満の孔食であった場合、をいう。ここでは、孔食の発生が無かったものを合格と評価し、孔食の発生が有ったものを不合格と評価した。 In addition, the presence or absence of pitting corrosion on the surface of the test piece was observed using a loupe with a magnification of 10 times for the test piece after the corrosion test. "Pitting corrosion present" refers to the case where pitting corrosion having a diameter of 0.2 mm or more occurs. "No pitting corrosion" means the case where no pitting corrosion occurs and the case where the pitting corrosion is less than 0.2 mm in diameter. Here, the samples without occurrence of pitting corrosion were evaluated as acceptable, and the samples with occurrence of pitting corrosion were evaluated as unacceptable.
 (腐食試験B)
 腐食試験は、オートクレーブ中に保持された試験液:0.01mol/L HSO水溶液(液温:250℃、30気圧のCOガス雰囲気)中に、上記腐食試験片を浸漬し、浸漬時間を14日間(336時間)として実施した。腐食試験後の試験片について、重量を測定し、腐食試験前後の重量減から計算した腐食速度を求めた。
ここでは、腐食速度が0.125mm/y以下のものを合格と評価し、腐食速度が0.125mm/yを超えるものを不合格と評価した。
(Corrosion test B)
The corrosion test was carried out by immersing the corrosion test piece in a test liquid: 0.01 mol/L H 2 SO 4 aqueous solution (liquid temperature: 250°C, 30 atm CO 2 gas atmosphere) held in an autoclave. A period of 14 days (336 hours) was performed. The weight of the test piece after the corrosion test was measured, and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained.
Here, a corrosion rate of 0.125 mm/y or less was evaluated as acceptable, and a corrosion rate exceeding 0.125 mm/y was evaluated as unacceptable.
 また、腐食試験後の試験片について、倍率:10倍のルーペを用いて試験片表面の孔食発生の有無を観察した。「孔食有り」とは、直径:0.2mm以上の孔食の発生があった場合をいう。「孔食無し」とは、孔食の発生が無かった場合、および、直径:0.2mm未満の孔食であった場合、をいう。ここでは、孔食の発生が無かったものを合格と評価し、孔食の発生が有ったものを不合格と評価した。 In addition, the presence or absence of pitting corrosion on the surface of the test piece was observed using a loupe with a magnification of 10 times for the test piece after the corrosion test. "Pitting corrosion present" refers to the case where pitting corrosion having a diameter of 0.2 mm or more occurs. "No pitting corrosion" means the case where no pitting corrosion occurs and the case where the pitting corrosion is less than 0.2 mm in diameter. Here, the samples without occurrence of pitting corrosion were evaluated as acceptable, and the samples with occurrence of pitting corrosion were evaluated as unacceptable.
 本実施例では、腐食試験Aの腐食速度が0.125mm/y以下であり上記孔食の発生が無かった場合、かつ、腐食試験Bの腐食速度が0.125mm/y以下であり上記孔食の発生が無かった場合を、優れた耐炭酸ガス腐食性を有すると評価した。 In this example, the corrosion rate in corrosion test A was 0.125 mm / y or less and the pitting corrosion did not occur, and the corrosion rate in corrosion test B was 0.125 mm / y or less and the pitting corrosion was evaluated as having excellent carbon dioxide gas corrosion resistance.
 〔耐硫化物応力割れ性の評価〕
 得られた熱処理済み試験材から、NACE(National Association of Corrosion and Engineers) TM0177 Method Aに準拠して、丸棒状の試験片(直径:6.4mmφ)を機械加工によって作製した。該丸棒状の試験片を用いて、以下の通りに耐硫化物応力割れ試験(耐SSC(Sulfide Stress Cracking)試験)を実施した。
[Evaluation of sulfide stress cracking resistance]
A round-bar-shaped test piece (diameter: 6.4 mmφ) was produced from the obtained heat-treated test material by machining according to NACE (National Association of Corrosion and Engineers) TM0177 Method A. A sulfide stress cracking resistance test (SSC (Sulfide Stress Cracking) resistance test) was carried out as follows using the round bar-shaped test piece.
 耐SSC試験は、試験液:5質量%NaCl水溶液(液温:25℃、CO:0.95気圧の雰囲気、HS:0.05気圧)に酢酸+酢酸Naを加えてpH:3.5に調整した水溶液中に、上記試験片を浸漬し、浸漬期間を720時間とし、降伏応力の90%を負荷応力として負荷して、実施した。耐SSC試験後の試験片について、割れの有無を観察した。
ここでは、割れの無かったものを合格と評価し、割れの有ったものを不合格と評価した。
The SSC resistance test was carried out by adding acetic acid + Na acetate to a test liquid: 5 mass% NaCl aqueous solution (liquid temperature: 25 ° C., CO 2 : atmosphere of 0.95 atm, H 2 S: 0.05 atm), pH: 3 The test piece was immersed in an aqueous solution adjusted to 0.5, the immersion period was set to 720 hours, and 90% of the yield stress was applied as the load stress. The presence or absence of cracks was observed for the test piece after the SSC resistance test.
Here, those without cracks were evaluated as acceptable, and those with cracks were evaluated as unacceptable.
 〔熱間加工性の評価〕
 熱間加工性の評価には、ビレットから採取した平行部径10mmの丸棒形状の丸棒試験片を用いた。該丸棒試験片を、グリーブル試験機にて1250℃に加熱し、100秒間保持後、平均冷却速度が1℃/secで1000℃まで冷却し、10秒間保持した後、破断するまで引っ張り、断面減少率(%)を測定した。
ここでは、断面減少率が70%以上の場合を、優れた熱間加工性を有するとみなして合格と評価した。一方、断面減少率が70%未満の場合を不合格と評価した。
[Evaluation of hot workability]
For the evaluation of hot workability, a round-bar-shaped test piece with a parallel part diameter of 10 mm taken from a billet was used. The round bar test piece is heated to 1250 ° C. with a Gleeble tester, held for 100 seconds, cooled to 1000 ° C. at an average cooling rate of 1 ° C./sec, held for 10 seconds, and then pulled until it breaks. Reduction rate (%) was measured.
Here, the case where the cross-sectional reduction rate was 70% or more was regarded as having excellent hot workability and was evaluated as acceptable. On the other hand, when the cross-sectional reduction rate was less than 70%, it was evaluated as unacceptable.
 得られた結果を表3に示した。 The results obtained are shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明例は、いずれも、降伏強さ(YS)が758MPa以上の高強度と、優れた低温靭性と、250℃以上という高温で、かつCO、Clを含む厳しい腐食環境下において優れた耐食性(優れた耐炭酸ガス腐食性および優れた耐硫化物応力割れ性)を有していた。 All of the examples of the present invention have high strength with a yield strength (YS) of 758 MPa or more, excellent low temperature toughness, and are excellent at high temperatures of 250 ° C. or more and in severe corrosive environments containing CO 2 and Cl - . It had corrosion resistance (excellent carbon dioxide corrosion resistance and excellent sulfide stress cracking resistance).
 一方、本発明の範囲を外れる比較例では、降伏強さ、低温靭性、耐炭酸ガス腐食性、および耐硫化物応力割れ性のうち少なくとも1つが、本発明で目的とする特性値を得られていなかった。 On the other hand, in the comparative examples outside the scope of the present invention, at least one of the yield strength, low-temperature toughness, carbon dioxide corrosion resistance, and sulfide stress cracking resistance did not achieve the desired characteristic value of the present invention. I didn't.

Claims (3)

  1.  質量%で、
     C :0.05%以下、
     Si:1.0%以下、
     Mn:0.10~2.0%、
     P :0.05%以下、
     S :0.005%未満、
     Cr:16.0%超え20.0%以下、
     Mo:0.6%超え1.4%未満、
     Ni:3.0%以上5.0%未満、
     Al:0.001~0.10%、
     N :0.010~0.100%、
     O :0.01%以下、
     Cu:0.3~3.5%
    を含有し、かつ式(1)および式(2)式を満足し、残部がFeおよび不可避的不純物からなる成分組成を有し、
     体積率で、45%以上の焼戻マルテンサイト相、20~40%のフェライト相、および5%以上25%以下の残留オーステナイト相からなる組織を有し、
     降伏強さが758MPa以上であり、
    -10℃における吸収エネルギーvE-10が40J以上である、ステンレス鋼管。
    Cr + 0.65× Ni + 0.6(Mo+ 0.5 × W) + 0.55 × Cu - 20 ×C ≧ 21.7 …(1)
    Cr +3.3 × (Mo +0.5 × W) - 17 × C ≧ 21.0 …(2)
    ここで、各式におけるCr、Ni、Mo、W、CuおよびCは、各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。
    in % by mass,
    C: 0.05% or less,
    Si: 1.0% or less,
    Mn: 0.10-2.0%,
    P: 0.05% or less,
    S: less than 0.005%,
    Cr: more than 16.0% and 20.0% or less,
    Mo: more than 0.6% and less than 1.4%,
    Ni: 3.0% or more and less than 5.0%,
    Al: 0.001 to 0.10%,
    N: 0.010 to 0.100%,
    O: 0.01% or less,
    Cu: 0.3-3.5%
    and satisfies the formulas (1) and (2), with the balance being Fe and unavoidable impurities,
    Having a structure consisting of a tempered martensite phase of 45% or more, a ferrite phase of 20 to 40%, and a retained austenite phase of 5% or more and 25% or less, in volume fraction,
    Yield strength is 758 MPa or more,
    A stainless steel pipe having an absorbed energy vE -10 at -10°C of 40 J or more.
    Cr+0.65×Ni+0.6(Mo+0.5×W)+0.55×Cu-20×C≧21.7 (1)
    Cr +3.3 × (Mo +0.5 × W) - 17 × C ≥ 21.0 (2)
    Here, Cr, Ni, Mo, W, Cu, and C in each formula represent the content (% by mass) of each element, and the content of elements not contained is zero.
  2.  前記成分組成に加えて、質量%で、以下のA群~E群のうちから選ばれた1群または2群以上を含有する、請求項1に記載のステンレス鋼管。
    A群:Ti:0.3%以下、Nb:0.5%以下、V:0.5%以下、Ta:0.5%以下のうちから選ばれた1種または2種以上
    B群:B:0.0050%以下、Ca:0.0050%以下、REM:0.010%以下のうちから選ばれた1種または2種以上
    C群:Mg:0.010%以下およびZr:0.2%以下のうちから選ばれた1種または2種
    D群:Sn:0.20%以下およびSb:0.20%以下のうちから選ばれた1種または2種
    E群:Co:1.0%以下およびW:3.0%以下のうちから選ばれた1種または2種
    2. The stainless steel pipe according to claim 1, which contains, in mass %, one or more groups selected from Groups A to E below, in addition to the component composition.
    Group A: One or more selected from Ti: 0.3% or less, Nb: 0.5% or less, V: 0.5% or less, Ta: 0.5% or less Group B: B : 0.0050% or less, Ca: 0.0050% or less, REM: 0.010% or less Group C: Mg: 0.010% or less and Zr: 0.2 1 or 2 selected from % or less Group D: 1 or 2 selected from Sn: 0.20% or less and Sb: 0.20% or less Group E: Co: 1.0 % or less and W: 1 or 2 selected from 3.0% or less
  3.  請求項1または2に記載のステンレス鋼管の製造方法であって、
     鋼管素材を、加熱温度:1100~1350℃の範囲の温度で加熱し、熱間加工を施して所定形状の継目無鋼管とし、
     前記熱間加工後に、前記継目無鋼管を850~1150℃の範囲の温度に再加熱し、空冷以上の冷却速度で表面温度が50℃以下0℃超えの冷却停止温度まで冷却する焼入れ処理を施し、
    その後、500~650℃の範囲の焼戻温度に加熱する焼戻処理を施す、ステンレス鋼管の製造方法。
    A method for manufacturing a stainless steel pipe according to claim 1 or 2,
    A steel pipe material is heated at a temperature in the range of 1100 to 1350° C. and subjected to hot working to form a seamless steel pipe of a predetermined shape,
    After the hot working, the seamless steel pipe is reheated to a temperature in the range of 850 to 1150°C, and subjected to a quenching treatment in which the surface temperature is cooled to a cooling stop temperature of 50°C or less and over 0°C at a cooling rate faster than air cooling. ,
    A method for manufacturing a stainless steel pipe, which is then subjected to a tempering treatment of heating to a tempering temperature in the range of 500 to 650°C.
PCT/JP2022/011814 2021-04-21 2022-03-16 Stainless steel pipe and manufacturing method thereof WO2022224640A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2023011826A MX2023011826A (en) 2021-04-21 2022-03-16 Stainless steel pipe and manufacturing method thereof.
JP2022536963A JP7279863B2 (en) 2021-04-21 2022-03-16 Stainless steel pipe and its manufacturing method
BR112023021507A BR112023021507A2 (en) 2021-04-21 2022-03-16 STAINLESS STEEL TUBE AND METHOD FOR MANUFACTURING THE SAME
EP22791420.7A EP4293133A1 (en) 2021-04-21 2022-03-16 Stainless steel pipe and manufacturing method thereof
US18/285,695 US20240191331A1 (en) 2021-04-21 2022-03-16 Stainless steel pipe and method for manufacturing the same
CN202280028088.0A CN117120653A (en) 2021-04-21 2022-03-16 Stainless steel pipe and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021071673 2021-04-21
JP2021-071673 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022224640A1 true WO2022224640A1 (en) 2022-10-27

Family

ID=83722822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011814 WO2022224640A1 (en) 2021-04-21 2022-03-16 Stainless steel pipe and manufacturing method thereof

Country Status (8)

Country Link
US (1) US20240191331A1 (en)
EP (1) EP4293133A1 (en)
JP (1) JP7279863B2 (en)
CN (1) CN117120653A (en)
AR (1) AR125711A1 (en)
BR (1) BR112023021507A2 (en)
MX (1) MX2023011826A (en)
WO (1) WO2022224640A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336595A (en) 2003-08-19 2005-12-08 Jfe Steel Kk High strength stainless steel pipe excellent in corrosion resistance for use in oil well and method for production thereof
JP2008081793A (en) 2006-09-28 2008-04-10 Jfe Steel Kk High-strength stainless steel pipe with high toughness and excellent corrosion resistance for oil well
WO2010050519A1 (en) 2008-10-30 2010-05-06 住友金属工業株式会社 High strength stainless steel piping having outstanding resistance to sulphide stress cracking and resistance to high temperature carbon dioxide corrosion
JP2010209402A (en) 2009-03-10 2010-09-24 Jfe Steel Corp High-strength stainless steel pipe having high toughness and excellent corrosion resistance for oil well
WO2010134498A1 (en) 2009-05-18 2010-11-25 住友金属工業株式会社 Stainless steel for oil well, stainless steel pipe for oil well, and process for production of stainless steel for oil well
JP2012149317A (en) 2011-01-20 2012-08-09 Jfe Steel Corp High strength martensitic stainless steel seamless pipe for oil well
WO2013146046A1 (en) 2012-03-26 2013-10-03 新日鐵住金株式会社 Stainless steel for oil wells and stainless steel pipe for oil wells
WO2016079922A1 (en) * 2014-11-18 2016-05-26 Jfeスチール株式会社 Method for producing high-strength stainless steel seamless pipe for oil wells
JP2017031493A (en) * 2015-08-05 2017-02-09 新日鐵住金株式会社 Manufacturing method of stainless steel pipe
JP2017039998A (en) * 2015-08-18 2017-02-23 Jfeスチール株式会社 Seamless stainless steel pipe for oil well and method for producing the same
JP2017048424A (en) * 2015-09-01 2017-03-09 新日鐵住金株式会社 Oil well tube
JP2019073789A (en) 2017-10-19 2019-05-16 新日鐵住金株式会社 Stainless steel and stainless steel pipe

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336595A (en) 2003-08-19 2005-12-08 Jfe Steel Kk High strength stainless steel pipe excellent in corrosion resistance for use in oil well and method for production thereof
JP2008081793A (en) 2006-09-28 2008-04-10 Jfe Steel Kk High-strength stainless steel pipe with high toughness and excellent corrosion resistance for oil well
WO2010050519A1 (en) 2008-10-30 2010-05-06 住友金属工業株式会社 High strength stainless steel piping having outstanding resistance to sulphide stress cracking and resistance to high temperature carbon dioxide corrosion
JP2010209402A (en) 2009-03-10 2010-09-24 Jfe Steel Corp High-strength stainless steel pipe having high toughness and excellent corrosion resistance for oil well
WO2010134498A1 (en) 2009-05-18 2010-11-25 住友金属工業株式会社 Stainless steel for oil well, stainless steel pipe for oil well, and process for production of stainless steel for oil well
JP2012149317A (en) 2011-01-20 2012-08-09 Jfe Steel Corp High strength martensitic stainless steel seamless pipe for oil well
WO2013146046A1 (en) 2012-03-26 2013-10-03 新日鐵住金株式会社 Stainless steel for oil wells and stainless steel pipe for oil wells
WO2016079922A1 (en) * 2014-11-18 2016-05-26 Jfeスチール株式会社 Method for producing high-strength stainless steel seamless pipe for oil wells
JP2017031493A (en) * 2015-08-05 2017-02-09 新日鐵住金株式会社 Manufacturing method of stainless steel pipe
JP2017039998A (en) * 2015-08-18 2017-02-23 Jfeスチール株式会社 Seamless stainless steel pipe for oil well and method for producing the same
JP2017048424A (en) * 2015-09-01 2017-03-09 新日鐵住金株式会社 Oil well tube
JP2019073789A (en) 2017-10-19 2019-05-16 新日鐵住金株式会社 Stainless steel and stainless steel pipe

Also Published As

Publication number Publication date
AR125711A1 (en) 2023-08-09
EP4293133A1 (en) 2023-12-20
BR112023021507A2 (en) 2023-12-19
JP7279863B2 (en) 2023-05-23
MX2023011826A (en) 2023-10-13
JPWO2022224640A1 (en) 2022-10-27
CN117120653A (en) 2023-11-24
US20240191331A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
JP6766887B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP6399259B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP6460229B2 (en) High strength stainless steel seamless steel pipe for oil well
JP6226081B2 (en) High strength stainless steel seamless pipe and method for manufacturing the same
WO2017138050A1 (en) High strength stainless steel seamless pipe for oil well and manufacturing method therefor
JP6369662B1 (en) Duplex stainless steel and manufacturing method thereof
JP6156609B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP5765036B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
WO2014097628A1 (en) High-strength stainless steel seamless pipe for oil wells and method for producing same
JP7156536B2 (en) Seamless stainless steel pipe and method for producing seamless stainless steel pipe
JP2014025145A (en) High strength stainless seamless pipe for oil well having excellent corrosion resistance, and method for producing the same
JP7315097B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP7156537B2 (en) Seamless stainless steel pipe and method for producing seamless stainless steel pipe
JP7201094B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP7226675B1 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
WO2016079920A1 (en) High-strength stainless steel seamless pipe for oil wells
JP5640777B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
JP6819837B1 (en) Stainless steel seamless steel pipe
JP7226571B2 (en) Seamless stainless steel pipe and manufacturing method thereof
JP7279863B2 (en) Stainless steel pipe and its manufacturing method
EP2843068B1 (en) A METHOD OF MAKING A Cr-CONTAINING STEEL PIPE FOR LINEPIPE EXCELLENT IN INTERGRANULAR STRESS CORROSION CRACKING RESISTANCE OF WELDED HEAT AFFECTED ZONE
JP7347714B1 (en) High strength seamless stainless steel pipe for oil wells
WO2023053743A1 (en) High-strength stainless steel seamless pipe for oil wells and method for manufacturing same
WO2024009565A1 (en) Seamless stainless steel pipe and production method therefor
WO2024009564A1 (en) Seamless stainless steel pipe and method for manufacturing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022536963

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791420

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022791420

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18285695

Country of ref document: US

Ref document number: MX/A/2023/011826

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2022791420

Country of ref document: EP

Effective date: 20230912

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023021507

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023021507

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231017