JP2017039998A - Seamless stainless steel pipe for oil well and method for producing the same - Google Patents
Seamless stainless steel pipe for oil well and method for producing the same Download PDFInfo
- Publication number
- JP2017039998A JP2017039998A JP2016132146A JP2016132146A JP2017039998A JP 2017039998 A JP2017039998 A JP 2017039998A JP 2016132146 A JP2016132146 A JP 2016132146A JP 2016132146 A JP2016132146 A JP 2016132146A JP 2017039998 A JP2017039998 A JP 2017039998A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- steel pipe
- stainless steel
- seamless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 86
- 239000010935 stainless steel Substances 0.000 title claims abstract description 86
- 239000003129 oil well Substances 0.000 title claims abstract description 81
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 49
- 239000010959 steel Substances 0.000 claims abstract description 49
- 238000001816 cooling Methods 0.000 claims abstract description 31
- 239000002244 precipitate Substances 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 13
- 238000009863 impact test Methods 0.000 claims abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 32
- 229910052804 chromium Inorganic materials 0.000 claims description 29
- 229910052721 tungsten Inorganic materials 0.000 claims description 27
- 229910052759 nickel Inorganic materials 0.000 claims description 26
- 229910052799 carbon Inorganic materials 0.000 claims description 25
- 229910052750 molybdenum Inorganic materials 0.000 claims description 24
- 229910052782 aluminium Inorganic materials 0.000 claims description 23
- 229910052802 copper Inorganic materials 0.000 claims description 23
- 229910052748 manganese Inorganic materials 0.000 claims description 21
- 229910052710 silicon Inorganic materials 0.000 claims description 21
- 238000010791 quenching Methods 0.000 claims description 19
- 230000000171 quenching effect Effects 0.000 claims description 19
- 238000005496 tempering Methods 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 11
- 229910001566 austenite Inorganic materials 0.000 claims description 10
- 229910000859 α-Fe Inorganic materials 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 abstract description 61
- 238000005260 corrosion Methods 0.000 abstract description 61
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 20
- 238000000034 method Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229910001039 duplex stainless steel Inorganic materials 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、油井管として使用するのに好適な、優れた耐食性と高強度、高靭性を兼ね備えた継目無ステンレス鋼管、およびそれを安定して得ることができる製造方法に関するものである。 The present invention relates to a seamless stainless steel pipe having excellent corrosion resistance, high strength and high toughness suitable for use as an oil well pipe, and a production method capable of stably obtaining the same.
近年、採掘が容易な化石燃料は枯渇しつつあり、採掘が困難な地域における油田の開発が進められている。特に高深度・高温環境の油井では、高強度かつ高靭性の油井管が求められる。また、CO2やCl-等を含有する石油資源を採掘するための油田においては、腐食が進行し易いので、耐食性の油井管が求められる。 In recent years, fossil fuels that can be easily mined have been depleted, and oil fields are being developed in areas where mining is difficult. In particular, oil wells with high strength and toughness are required for oil wells in a deep and high temperature environment. Moreover, CO 2 and Cl - in the oil field for mine oil resources containing such, because it is easy corrosion proceeds, OCTG corrosion resistance is required.
そのような厳しい環境で使用する油井管として、13質量%程度のCrを含有するマルテンサイト系ステンレス鋼(いわゆる13Cr鋼)の継目無鋼管が実用化されている。しかし、Cl-を多量に含有し、しかも100℃を超える高温の石油資源の採掘においては、13Cr鋼の継目無鋼管を用いても十分な強度と耐食性が得られないという問題がある。 As an oil well pipe used in such a severe environment, a martensitic stainless steel (so-called 13Cr steel) seamless steel pipe containing about 13% by mass of Cr has been put into practical use. However, Cl - and containing a large amount, moreover in the mining of hot oil resources exceeding 100 ° C., there is a problem that sufficient strength and corrosion resistance can not be obtained even by using a seamless steel pipe 13Cr steel.
高温の腐食環境で使用できる油井管としては、2相ステンレス鋼の継目無鋼管が開発されている。しかし2相ステンレス鋼は、合金元素を多量に添加するので、原料コストが増大するばかりでなく、継目無鋼管の製造工程における熱間加工性が劣ることから、生産性が低下し、その結果、継目無鋼管の製造コストが上昇するという問題がある。 As an oil well pipe that can be used in a high-temperature corrosive environment, a seamless stainless steel pipe of a duplex stainless steel has been developed. However, duplex stainless steel adds a large amount of alloying elements, which not only increases the raw material cost, but also deteriorates the hot workability in the manufacturing process of the seamless steel pipe, resulting in decreased productivity. There exists a problem that the manufacturing cost of a seamless steel pipe rises.
そこで、継目無鋼管の一般的な製造技術である傾斜圧延方式の穿孔圧延機から一連の工程を経て容易に安定して製造でき、かつ高温でも耐食性に優れ、しかも高強度と高靭性を兼ね備えた継目無ステンレス鋼管を得るための技術が検討されている。 Therefore, it can be easily and stably manufactured through a series of processes from a tilt rolling piercing mill, which is a general manufacturing technology for seamless steel pipes, and has excellent corrosion resistance even at high temperatures, and also has high strength and high toughness. Techniques for obtaining seamless stainless steel pipes are being studied.
たとえば特許文献1には、所定の成分を有するビレットを用いて、熱間加工で継目無鋼管とし、さらに焼入れ、焼戻しを施すことによって、耐食性に優れ、しかも高強度と高靭性を兼ね備えた継目無ステンレス鋼管を得る技術が開示されている。しかしこの技術は、焼戻しにおける加熱温度と保持時間に応じて継目無ステンレス鋼管の強度や靭性が変動するので、所望の強度を安定して得る観点から改善の余地が残されている。 For example, in Patent Document 1, a billet having a predetermined component is used to make a seamless steel pipe by hot working, and further, by quenching and tempering, it is excellent in corrosion resistance and has both high strength and high toughness. A technique for obtaining a stainless steel pipe is disclosed. However, since the strength and toughness of the seamless stainless steel pipe varies depending on the heating temperature and holding time in tempering, there is still room for improvement in this technique from the viewpoint of stably obtaining a desired strength.
特許文献2には、所定の成分を有するビレットを用いて、所定の圧下量の熱間加工を施して継目無鋼管とし、さらに焼入れ、焼戻しを行なって、耐食性に優れ、しかも高強度と高靭性を兼ね備えた継目無ステンレス鋼管を得る技術が開示されている。しかしこの技術は、焼入れにおける冷却停止温度に応じて継目無ステンレス鋼管の強度が変動するので、所望の強度を安定して得る観点から改善の余地が残されている。 In Patent Document 2, a billet having a predetermined component is used to perform a hot working of a predetermined reduction amount to make a seamless steel pipe, and further, quenching and tempering are performed to provide excellent corrosion resistance, and high strength and high toughness. A technique for obtaining a seamless stainless steel pipe having both of the above is disclosed. However, since the strength of the seamless stainless steel pipe fluctuates according to the cooling stop temperature in quenching, there is still room for improvement from the viewpoint of stably obtaining a desired strength.
本発明は、従来の技術の問題点を解消し、降伏強度が110ksi(=758MPa)以上の高強度、および、試験温度が−10℃のシャルピー衝撃試験にて吸収エネルギーVE-10が40J以上の高靭性を兼ね備え、しかも優れた耐食性を有する油井用継目無ステンレス鋼管、および、それを安定して得ることができる製造方法を提供することを目的とする。なお、ここでいう優れた耐食性とは、オートクレーブ中に保持された20質量%NaCl水溶液(液温230℃、3.0MPaのCO2ガスで飽和)中に14日間浸漬して腐食試験を行ない、腐食速度が0.127mm/年以下で、孔食がない場合をいう。 The present invention solves the problems of the prior art, and the absorbed energy V E -10 is 40 J or more in a Charpy impact test with a yield strength of 110 ksi (= 758 MPa) or higher and a test temperature of −10 ° C. It is an object of the present invention to provide a seamless stainless steel pipe for oil wells having high toughness and excellent corrosion resistance, and a production method capable of stably obtaining the same. The excellent corrosion resistance here refers to a corrosion test conducted by immersion for 14 days in a 20 mass% NaCl aqueous solution (liquid temperature 230 ° C, saturated with 3.0 MPa CO 2 gas) held in an autoclave. The case where the speed is 0.127 mm / year or less and there is no pitting corrosion.
本発明者は、焼入れ、焼戻しが継目無ステンレス鋼管の靭性に及ぼす影響について検討し、その結果、AlおよびNを多量に含む場合に、靭性の劣化が生じ易いことが分かった。そこで、AlおよびNの含有量が大きく、靭性が劣化した継目無ステンレス鋼管の組織を調査したところ、組織中に析出物が多量に析出しているのを見出した。 The inventor examined the influence of quenching and tempering on the toughness of seamless stainless steel pipes, and as a result, it was found that when a large amount of Al and N are contained, the toughness is likely to deteriorate. Then, when the structure of the seamless stainless steel pipe having a large content of Al and N and deteriorated toughness was investigated, it was found that a large amount of precipitates were precipitated in the structure.
さらに、観察された析出物を詳細に調査した。その結果、析出物について、
(a)主に見られる析出物はCr2N、Cr23C6、Fe3C、Nb(C,N)、AlNであり、特に粒径0.5μm以上の析出物の大部分はAlNである、
(b)粒径0.5μm以上の析出物の個数が継目無ステンレス鋼管の靭性に多大な影響を及ぼす、
(c)単位面積(mm2)あたりの粒径0.5μm以上の析出物の個数(以下、密度という)は、継目無ステンレス鋼管の濃度積[%Al]×[%N]に依存して変化する
という知見を得た(図1参照)。
Furthermore, the observed deposits were investigated in detail. As a result, about the precipitate,
(a) Precipitates mainly found are Cr 2 N, Cr 23 C 6 , Fe 3 C, Nb (C, N), AlN, and most of the precipitates having a particle size of 0.5 μm or more are particularly AlN. ,
(b) The number of precipitates having a particle size of 0.5 μm or more greatly affects the toughness of the seamless stainless steel pipe.
(c) The number of precipitates with a particle size of 0.5μm or more per unit area (mm 2 ) (hereinafter referred to as density) varies depending on the concentration product [% Al] x [% N] of the seamless stainless steel pipe The knowledge to do was acquired (refer FIG. 1).
つまり本発明の課題を解決して、所望の強度、靭性、耐食性を有する油井用継目無ステンレス鋼管を得るためには、粒径0.5μm以上の析出物を6×103個/mm2以下の密度にする必要があり、その組織を得るためには、油井用継目無ステンレス鋼管のAl含有量とN含有量の濃度積:[%Al]×[%N]が0.0020以下となるように、油井用継目無ステンレス鋼管の成分を調整する必要がある。そして、その油井用継目無ステンレス鋼管を安定して製造するためには、熱間加工性を改善するために成分設計を行なう必要がある。 That is, in order to solve the problems of the present invention and obtain a seamless stainless steel pipe for oil wells having desired strength, toughness, and corrosion resistance, a precipitate having a particle size of 0.5 μm or more is 6 × 10 3 pieces / mm 2 or less. In order to obtain its structure, the density product of Al content and N content of oil well seamless stainless steel pipe: [% Al] x [% N] is 0.0020 or less, It is necessary to adjust the composition of seamless stainless steel pipes for oil wells. In order to stably produce the oil well seamless stainless steel pipe, it is necessary to design the components in order to improve the hot workability.
本発明は、このような知見に基づいてなされたものである。
すなわち本発明は、C:0.005〜0.06質量%、Si:0.05〜0.5質量%、Mn:0.2〜1.8質量%、P:0.03質量%以下、S:0.005質量%以下、Cr:15.5〜18.0質量%、Ni:1.5〜5.0質量%、V:0.02〜0.2質量%、Al:0.002〜0.05質量%、N:0.01〜0.15質量%、O:0.006質量%以下を含有し、さらに、Mo:1.0〜3.5質量%、W:0.5〜3.0質量%、Cu:0.5〜3.5質量%の中から選ばれた1種または2種以上を含有し、残部がFeおよび不可避的不純物からなり、かつC、Si、Mn、Cr、Ni、Mo、W、Cu、Al、Nの含有量が下記の(1)式、(2)式および(3)式を満足する組成を有するビレットを1150〜1300℃の温度で100〜400分加熱し、さらに熱間加工を施して継目無鋼管とし、継目無鋼管を空冷以上の冷却速度で室温まで冷却した後に、継目無鋼管を850℃以上に加熱し、引き続き100℃以下まで空冷以上の冷却速度で室温まで冷却して焼入れを行ない、次いで700℃以下で焼戻しを行なうことで、10〜60体積%のフェライト相、0〜20体積%のオーステナイト相、および残部がマルテンサイト相からなり、組織中に析出した粒径0.5μm以上の析出物の密度が6×103個/mm2以下である組織を有し、降伏強さが758MPa以上、および、試験温度が−10℃のシャルピー衝撃試験にて吸収エネルギーVE-10が40J以上の油井用継目無ステンレス鋼管の製造方法である。
[%Cr]+0.65[%Ni]+0.6[%Mo]+0.3[%W]+0.55[%Cu]−20[%C]≧19.5 ・・・(1)
[%Cr]+[%Mo]+[%W]+0.3[%Si]−43.5[%C]−0.4[%Mn]−[%Ni]
−0.3[Cu]−9[%N]≧11.5 ・・・(2)
[%Al]×[%N]≦0.0020 ・・・(3)
[%C]、[%Si]、[%Mn]、[%Cr]、[%Ni]、[%Mo]、[%W]、[%Cu]、[%Al]、[%N]:それぞれの元素の含有量(質量%)であり、含有しない場合はゼロとする。
The present invention has been made based on such knowledge.
That is, the present invention is C: 0.005-0.06 mass%, Si: 0.05-0.5 mass%, Mn: 0.2-1.8 mass%, P: 0.03 mass% or less, S: 0.005 mass% or less, Cr: 15.5-18.0 mass% Ni: 1.5-5.0 mass%, V: 0.02-0.2 mass%, Al: 0.002-0.05 mass%, N: 0.01-0.15 mass%, O: 0.006 mass% or less, and Mo: 1.0-3.5 Contains one or more selected from mass%, W: 0.5 to 3.0 mass%, Cu: 0.5 to 3.5 mass%, with the balance being Fe and inevitable impurities, and C, Si, Mn , Cr, Ni, Mo, W, Cu, Al, N is a billet having a composition satisfying the following formulas (1), (2) and (3) at a temperature of 1150 to 1300 ° C. Heat for ~ 400 minutes, further hot work to make seamless steel pipe, cool the seamless steel pipe to room temperature at a cooling rate higher than air cooling, then heat the seamless steel pipe to 850 ° C or higher and continue to 100 ° C or lower Cool down to room temperature at a cooling rate higher than air cooling. By cooling and quenching, and then tempering at 700 ° C. or lower, 10 to 60% by volume of ferrite phase, 0 to 20% by volume of austenite phase, and the balance consisted of martensite phase and precipitated in the structure It has a structure in which the density of precipitates with a particle size of 0.5 μm or more is 6 × 10 3 particles / mm 2 or less, the yield strength is 758 MPa or more, and the absorbed energy in a Charpy impact test with a test temperature of −10 ° C. This is a method for producing seamless stainless steel pipes for oil wells having a V E -10 of 40 J or more.
[% Cr] +0.65 [% Ni] +0.6 [% Mo] +0.3 [% W] +0.55 [% Cu] -20 [% C] ≧ 19.5 (1)
[% Cr] + [% Mo] + [% W] +0.3 [% Si] −43.5 [% C] −0.4 [% Mn] − [% Ni]
−0.3 [Cu] −9 [% N] ≧ 11.5 (2)
[% Al] × [% N] ≦ 0.0020 (3)
[% C], [% Si], [% Mn], [% Cr], [% Ni], [% Mo], [% W], [% Cu], [% Al], [% N]: This is the content (% by mass) of each element.
本発明の油井用継目無ステンレス鋼管の製造方法においてはビレットが、前記した組成に加えて、Nb:0.2質量%以下、Ti:0.3質量%以下、Zr:0.2質量%以下、B:0.01質量%以下の中から選ばれた1種または2種以上を含有することが好ましく、さらにCa:0.01質量%以下を含有することが好ましい。 In the method for producing a seamless stainless steel pipe for oil wells of the present invention, billet is added to the above composition, Nb: 0.2 mass% or less, Ti: 0.3 mass% or less, Zr: 0.2 mass% or less, B: 0.01 mass% It is preferable to contain 1 type (s) or 2 or more types chosen from the following, and also it is preferable to contain Ca: 0.01 mass% or less.
また本発明は、C:0.005〜0.06質量%、Si:0.05〜0.5質量%、Mn:0.2〜1.8質量%、P:0.03質量%以下、S:0.005質量%以下、Cr:15.5〜18.0質量%、Ni:1.5〜5.0質量%、V:0.02〜0.2質量%、Al:0.002〜0.05質量%、N:0.01〜0.15質量%、O:0.006質量%以下を含有し、さらに、Mo:1.0〜3.5質量%、W:0.5〜3.0質量%、Cu:0.5〜3.5質量%の中から選ばれた1種または2種以上を含有し、残部がFeおよび不可避的不純物からなり、かつC、Si、Mn、Cr、Ni、Mo、W、Cu、Al、Nの含有量が下記の(1)式、(2)式および(3)式を満足する組成を有し、かつ10〜60体積%のフェライト相、0〜20体積%のオーステナイト相、および残部がマルテンサイト相からなり、組織中に析出した粒径0.5μm以上の析出物の密度が6×103個/mm2以下である組織を有し、降伏強さが758MPa以上、および、試験温度が−10℃のシャルピー衝撃試験にて吸収エネルギーVE-10が40J以上である油井用継目無ステンレス鋼管である。
[%Cr]+0.65[%Ni]+0.6[%Mo]+0.3[%W]+0.55[%Cu]−20[%C]≧19.5 ・・・(1)
[%Cr]+[%Mo]+[%W]+0.3[%Si]−43.5[%C]−0.4[%Mn]−[%Ni]
−0.3[Cu]−9[%N]≧11.5 ・・・(2)
[%Al]×[%N]≦0.0020 ・・・(3)
[%C]、[%Si]、[%Mn]、[%Cr]、[%Ni]、[%Mo]、[%W]、[%Cu]、[%Al]、[%N]:それぞれの元素の含有量(質量%)であり、含有しない場合はゼロとする。
In the present invention, C: 0.005 to 0.06 mass%, Si: 0.05 to 0.5 mass%, Mn: 0.2 to 1.8 mass%, P: 0.03 mass% or less, S: 0.005 mass% or less, Cr: 15.5 to 18.0 mass% Ni: 1.5-5.0 mass%, V: 0.02-0.2 mass%, Al: 0.002-0.05 mass%, N: 0.01-0.15 mass%, O: 0.006 mass% or less, and Mo: 1.0-3.5 Contains one or more selected from mass%, W: 0.5 to 3.0 mass%, Cu: 0.5 to 3.5 mass%, with the balance being Fe and inevitable impurities, and C, Si, Mn , Cr, Ni, Mo, W, Cu, Al, N content of ferrite satisfying the following formulas (1), (2) and (3), and 10-60% by volume of ferrite Phase, 0 to 20% by volume of austenite phase, and the balance is martensite phase, and the density of precipitates with a grain size of 0.5μm or more deposited in the structure is 6 × 10 3 pieces / mm 2 or less. Yield strength is 758 MPa or more and the test temperature Absorbed energy V E -10 at -10 ° C. Charpy impact test is oil well seamless stainless steel pipe is at least 40 J.
[% Cr] +0.65 [% Ni] +0.6 [% Mo] +0.3 [% W] +0.55 [% Cu] -20 [% C] ≧ 19.5 (1)
[% Cr] + [% Mo] + [% W] +0.3 [% Si] −43.5 [% C] −0.4 [% Mn] − [% Ni]
−0.3 [Cu] −9 [% N] ≧ 11.5 (2)
[% Al] × [% N] ≦ 0.0020 (3)
[% C], [% Si], [% Mn], [% Cr], [% Ni], [% Mo], [% W], [% Cu], [% Al], [% N]: This is the content (% by mass) of each element.
本発明の油井用継目無ステンレス鋼管においては、前記した組成に加えて、Nb:0.2質量%以下、Ti:0.3質量%以下、Zr:0.2質量%以下、B:0.01質量%以下の中から選ばれた1種または2種以上を含有することが好ましく、さらにCa:0.01質量%以下を含有することが好ましい。 In the seamless stainless steel pipe for oil well of the present invention, in addition to the above-mentioned composition, Nb: 0.2% by mass or less, Ti: 0.3% by mass or less, Zr: 0.2% by mass or less, B: 0.01% by mass or less It is preferable to contain 1 type (s) or 2 or more types, and also it is preferable to contain Ca: 0.01 mass% or less.
本発明によれば、高強度と高靭性を兼ね備え、しかも優れた耐食性を有する油井用継目無ステンレス鋼管を安定して得ることができるので、産業上格段の効果を奏する。 According to the present invention, a seamless stainless steel pipe for oil wells having high strength and high toughness and having excellent corrosion resistance can be stably obtained, so that it has a remarkable industrial effect.
まず、本発明の油井用継目無ステンレス鋼管の組成について説明する。一般に継目無鋼管はビレットを熱間加工して製造するものであるから、本発明の油井用継目無ステンレス鋼管の組成は、その素材となるビレットの組成と同じである。 First, the composition of the seamless stainless steel pipe for oil wells of the present invention will be described. Since the seamless steel pipe is generally manufactured by hot working a billet, the composition of the oil well seamless stainless steel pipe of the present invention is the same as the composition of the billet as the material.
C:0.005〜0.06質量%
Cは、油井用継目無ステンレス鋼管の強度を高める作用を有する元素であり、0.005質量%未満ではその効果が得られない。一方、0.06質量%を超えると、耐食性が著しく低下する。したがって、Cは0.005〜0.06質量%とする。好ましくは0.01〜0.04質量%である。
C: 0.005-0.06 mass%
C is an element having an action of increasing the strength of a seamless stainless steel pipe for oil wells, and if less than 0.005% by mass, the effect cannot be obtained. On the other hand, when it exceeds 0.06 mass%, corrosion resistance will fall remarkably. Therefore, C is 0.005 to 0.06 mass%. Preferably it is 0.01-0.04 mass%.
Si:0.05〜0.5質量%
Siは、油井用継目無ステンレス鋼管の原材料の溶鋼を溶製する過程で脱酸剤として機能する元素であり、0.05質量%未満ではその効果が得られない。一方、0.5質量%を超えると、CO2に起因する腐食が進行し易くなるばかりでなく、油井用継目無ステンレス鋼管の製造過程における熱間加工性が低下する。したがって、Siは0.05〜0.5質量%とする。好ましくは0.1〜0.4質量%である。
Si: 0.05-0.5% by mass
Si is an element that functions as a deoxidizer in the process of producing molten steel, which is a raw material of seamless stainless steel pipes for oil wells, and its effect cannot be obtained at less than 0.05% by mass. On the other hand, if it exceeds 0.5 mass%, not only corrosion due to CO 2 is likely to proceed, but also hot workability in the production process of oil well seamless stainless steel pipes is deteriorated. Therefore, Si is 0.05 to 0.5 mass%. Preferably it is 0.1-0.4 mass%.
Mn:0.2〜1.8質量%
Mnは、油井用継目無ステンレス鋼管の強度を高める作用を有する元素であり、0.2質量%未満では所望の強度が得られない。一方、1.8質量%を超えると、靭性が劣化する。したがって、Mnは0.2〜1.8質量%とする。好ましくは0.2〜0.8質量%である。
Mn: 0.2-1.8% by mass
Mn is an element that has an effect of increasing the strength of a seamless stainless steel pipe for oil wells, and if it is less than 0.2% by mass, a desired strength cannot be obtained. On the other hand, when it exceeds 1.8 mass%, toughness will deteriorate. Therefore, Mn is 0.2 to 1.8% by mass. Preferably it is 0.2-0.8 mass%.
P:0.03質量%以下
Pは、油井用継目無ステンレス鋼管の耐食性を低下させる元素であり、0.03質量%を超えると、耐食性が著しく低下する。したがって、Pは0.03質量%以下とする。ただしPを0.005質量%未満に低減するためには、溶鋼を溶製する過程で脱P処理に長時間を要し、油井用継目無ステンレス鋼管の製造コストの上昇を招く。したがって、Pは0.005質量%以上が好ましい。
P: 0.03 mass% or less
P is an element that lowers the corrosion resistance of seamless stainless steel pipes for oil wells, and when it exceeds 0.03% by mass, the corrosion resistance significantly decreases. Therefore, P is set to 0.03% by mass or less. However, in order to reduce P to less than 0.005% by mass, it takes a long time for de-P treatment in the process of melting molten steel, leading to an increase in the manufacturing cost of seamless stainless steel pipes for oil wells. Therefore, P is preferably 0.005% by mass or more.
S:0.005質量%以下
Sは、油井用継目無ステンレス鋼管の製造過程における熱間加工性を低下させる元素であり、0.005質量%を超えると、油井用継目無ステンレス鋼管の製造に支障を来す。したがって、Sは0.005質量%以下とする。ただしSを0.0005質量%未満に低減するためには、溶鋼を溶製する過程で脱S処理に長時間を要し、油井用継目無ステンレス鋼管の製造コストの上昇を招く。したがって、Sは0.0005質量%以上が好ましい。
S: 0.005 mass% or less
S is an element that decreases the hot workability in the production process of oil well seamless stainless steel pipes, and if it exceeds 0.005% by mass, it interferes with the production of oil well seamless stainless steel pipes. Therefore, S is 0.005 mass% or less. However, in order to reduce S to less than 0.0005 mass%, it takes a long time to remove S in the process of melting molten steel, leading to an increase in the production cost of seamless stainless steel pipes for oil wells. Therefore, S is preferably 0.0005% by mass or more.
Cr:15.5〜18.0質量%
Crは、油井用継目無ステンレス鋼管の耐食性を向上する作用を有する元素であり、特に高温環境におけるCO2に起因する腐食の防止に寄与する。Crが15.5質量%未満では、その効果が得られない。一方、18.0質量%を超えると、油井用継目無ステンレス鋼管の製造過程における熱間加工性が低下し、しかも油井用継目無ステンレス鋼管の強度が低下する。したがって、Crは15.5〜18.0質量%とする。好ましくは16.0〜17.5質量%であり、より好ましくは16.5〜17.0質量%である。
Cr: 15.5-18.0% by mass
Cr is an element having an effect of improving the corrosion resistance of seamless stainless steel pipes for oil wells, and contributes to prevention of corrosion caused by CO 2 in a high temperature environment. If Cr is less than 15.5% by mass, the effect cannot be obtained. On the other hand, if it exceeds 18.0% by mass, the hot workability in the production process of the oil well seamless stainless steel pipe decreases, and the strength of the oil well seamless stainless steel pipe decreases. Therefore, Cr is 15.5 to 18.0% by mass. Preferably it is 16.0-17.5 mass%, More preferably, it is 16.5-17.0 mass%.
Ni:1.5〜5.0質量%
Niは、油井用継目無ステンレス鋼管の耐食性を向上し、かつ強度を高める作用を有する元素である。Niが1.5質量%未満では、その効果が得られない。一方、5.0質量%を超えると、マルテンサイト相が生成され難くなり、油井用継目無ステンレス鋼管の強度が低下する。したがって、Niは1.5〜5.0質量%とする。好ましくは3.0〜4.5質量%である。
Ni: 1.5-5.0 mass%
Ni is an element that has the effect of improving the corrosion resistance and increasing the strength of seamless stainless steel pipes for oil wells. If Ni is less than 1.5% by mass, the effect cannot be obtained. On the other hand, if it exceeds 5.0% by mass, a martensite phase is hardly generated, and the strength of a seamless stainless steel pipe for oil wells is lowered. Therefore, Ni is 1.5 to 5.0% by mass. Preferably it is 3.0-4.5 mass%.
V:0.02〜0.2質量%
Vは、油井用継目無ステンレス鋼管の耐食性を向上し、かつ強度を高める作用を有する元素である。Vが0.02質量%未満では、その効果が得られない。一方、0.2質量%を超えると、靭性が劣化する。したがって、Vは0.02〜0.2質量%とする。好ましくは0.03〜0.08質量%である。
V: 0.02-0.2 mass%
V is an element that has the effects of improving the corrosion resistance and increasing the strength of seamless stainless steel pipes for oil wells. If V is less than 0.02% by mass, the effect cannot be obtained. On the other hand, when it exceeds 0.2 mass%, toughness will deteriorate. Therefore, V is 0.02 to 0.2 mass%. Preferably it is 0.03-0.08 mass%.
Al:0.002〜0.05質量%
Alは、油井用継目無ステンレス鋼管の原材料の溶鋼を溶製する過程で脱酸剤として機能する元素であり、0.002質量%未満ではその効果が得られない。一方、0.05質量%を超えると、アルミナ系介在物が析出し易くなり、油井用継目無ステンレス鋼管の製造過程における熱間加工性が低下し、しかも靭性が劣化する。したがって、Alは0.002〜0.05質量%とする。好ましくは0.01〜0.04質量%である。
Al: 0.002 to 0.05 mass%
Al is an element that functions as a deoxidizer in the process of melting molten steel, which is a raw material for seamless wells for oil wells, and the effect cannot be obtained at less than 0.002% by mass. On the other hand, if it exceeds 0.05% by mass, alumina inclusions are likely to precipitate, the hot workability in the production process of the oil well seamless stainless steel pipe is lowered, and the toughness is deteriorated. Therefore, Al is 0.002 to 0.05 mass%. Preferably it is 0.01-0.04 mass%.
N:0.01〜0.15質量%
Nは、油井用継目無ステンレス鋼管の耐食性を向上する作用を有する元素であり、0.01質量%未満ではその効果が得られない。一方、0.15質量%を超えると、種々の元素と結合して窒化物を析出するので、油井用継目無ステンレス鋼管の靭性が劣化する。したがって、Nは0.01〜0.15質量%とする。
N: 0.01-0.15 mass%
N is an element having an action of improving the corrosion resistance of seamless stainless steel pipes for oil wells, and if less than 0.01% by mass, the effect cannot be obtained. On the other hand, if it exceeds 0.15% by mass, it binds to various elements and precipitates nitrides, so that the toughness of seamless stainless steel pipes for oil wells deteriorates. Therefore, N is set to 0.01 to 0.15 mass%.
AlおよびNの含有量が上記の範囲内であっても、既に説明した通り、析出物が組織中に析出すると、油井用継目無ステンレス鋼管の靭性が劣化する。そこで、濃度積が下記の(3)式を満たすように、油井用継目無ステンレス鋼管のAlおよびNの含有量を調整する。
[%Al]×[%N]≦0.0020 ・・・(3)
[%Al]、[%N]:それぞれの元素の含有量(質量%)であり、含有しない場合はゼロとする。
Even if the contents of Al and N are within the above ranges, as already explained, when precipitates are precipitated in the structure, the toughness of the oil well seamless stainless steel pipe deteriorates. Therefore, the contents of Al and N in the oil well seamless stainless steel pipe are adjusted so that the concentration product satisfies the following formula (3).
[% Al] × [% N] ≦ 0.0020 (3)
[% Al], [% N]: Content of each element (% by mass), and zero if not contained.
O:0.006質量%以下
Oは、油井用継目無ステンレス鋼管中に酸化物として存在し、熱間加工性のみならず靭性、耐食性に悪影響を及ぼす元素であり、0.006質量%を超えると、熱間加工性の低下、靭性の劣化、耐食性の低下を引き起こす。したがって、Oは0.006質量%以下とする。好ましくは0.004質量%以下である。
O: 0.006% by mass or less
O exists as an oxide in seamless stainless steel pipes for oil wells and is an element that adversely affects not only hot workability but also toughness and corrosion resistance. If it exceeds 0.006% by mass, hot workability decreases and toughness Cause deterioration of corrosion resistance. Therefore, O is 0.006 mass% or less. Preferably it is 0.004 mass% or less.
Ca:0.01質量%以下
Caは、硫化物系介在物を球状化する作用を有する元素である。硫化物系介在物を球状化することによって、その周辺の格子歪が小さくなるので、水素原子のトラップを抑制し、引いては油井用継目無ステンレス鋼管の耐食性の向上に寄与する。しかし、Caが0.01質量%を超えると、酸化物系介在物が増加し、耐食性が低下する。したがって、Caは0.01質量%以下が好ましい。一方、0.0005質量%未満では、耐食性を向上する効果が得られないので、0.0005〜0.01質量%がより好ましい。
Ca: 0.01% by mass or less
Ca is an element having an action of spheroidizing sulfide inclusions. By spheroidizing sulfide inclusions, the lattice strain around them is reduced, so that trapping of hydrogen atoms is suppressed, which in turn contributes to the improvement of the corrosion resistance of oil well seamless stainless steel pipes. However, when Ca exceeds 0.01 mass%, oxide inclusions increase and corrosion resistance decreases. Therefore, Ca is preferably 0.01% by mass or less. On the other hand, if it is less than 0.0005% by mass, the effect of improving the corrosion resistance cannot be obtained, so 0.0005 to 0.01% by mass is more preferable.
Mo:1.0〜3.5質量%、W:0.5〜3.0質量%、Cu:0.5〜3.5質量%の中から選ばれた1種または2種
Moは、油井用継目無ステンレス鋼管の耐食性を向上する作用を有する元素であり、特にCl-に起因する孔食の防止に寄与する。Moが1.0質量%未満では、その効果が得られない。一方、3.5質量%を超えると、強度が低下し、しかも靭性が劣化する。また、油井用継目無ステンレス鋼管の製造コストの上昇を招く。したがって、Moを含有する場合は1.0〜3.5質量%とする。好ましくは1.5〜3.0質量%である。
One or two selected from Mo: 1.0 to 3.5% by mass, W: 0.5 to 3.0% by mass, Cu: 0.5 to 3.5% by mass
Mo is an element having an effect of improving the corrosion resistance of the oil well seamless stainless steel pipe, especially Cl - contributing to due to the prevention of pitting. If Mo is less than 1.0% by mass, the effect cannot be obtained. On the other hand, if it exceeds 3.5% by mass, the strength decreases and the toughness deteriorates. Moreover, the manufacturing cost of the seamless stainless steel pipe for oil wells is increased. Therefore, when it contains Mo, it is 1.0-3.5 mass%. Preferably it is 1.5-3.0 mass%.
Wは、Moと同様に、油井用継目無ステンレス鋼管の耐食性を向上する作用を有する元素であり、特にClに起因する孔食の防止に寄与する。しかし、Wが3.0質量%を超えると、油井用継目無ステンレス鋼管の靭性が劣化する。したがって、Wを含有する場合は、3.0質量%以下とする。一方、0.5質量%未満では、耐食性を向上する効果が得られないので、0.5〜3.0質量%とする。好ましくは0.5〜2.5質量%である。 W, like Mo, is an element that has the effect of improving the corrosion resistance of seamless stainless steel pipes for oil wells, and contributes particularly to the prevention of pitting corrosion caused by Cl. However, if W exceeds 3.0% by mass, the toughness of seamless stainless steel pipes for oil wells deteriorates. Therefore, when it contains W, it is 3.0 mass% or less. On the other hand, if it is less than 0.5% by mass, the effect of improving the corrosion resistance cannot be obtained. Preferably it is 0.5-2.5 mass%.
Cuは、油井用継目無ステンレス鋼管中に水素が侵入するのを抑制する作用を有する元素であり、耐食性の向上に寄与する。しかし、Cuが3.5質量%を超えると、油井用継目無ステンレス鋼管の製造過程における熱間加工性が低下する。したがって、Cuを含有する場合は、3.5質量%以下とする。一方、0.5質量%未満では、耐食性を向上する効果が得られないので、0.5〜3.5質量%とする。好ましくは0.5〜2.5質量%である。 Cu is an element that has an action of suppressing the penetration of hydrogen into a seamless stainless steel pipe for oil wells, and contributes to an improvement in corrosion resistance. However, when Cu exceeds 3.5 mass%, the hot workability in the production process of a seamless stainless steel pipe for oil wells is lowered. Therefore, when it contains Cu, it is 3.5 mass% or less. On the other hand, if it is less than 0.5% by mass, the effect of improving the corrosion resistance cannot be obtained. Preferably it is 0.5-2.5 mass%.
これらの元素に加えて、Nb:0.2質量%以下、Ti:0.3質量%以下、Zr:0.2質量%以下、B:0.01質量%以下の中から選ばれた1種または2種以上を含有しても良い。 In addition to these elements, Nb: 0.2% by mass or less, Ti: 0.3% by mass or less, Zr: 0.2% by mass or less, B: 0.01% by mass or less Also good.
Nb、Ti、Zr、Bは、いずれも油井用継目無ステンレス鋼管の強度を高める作用を有する元素であり、必要に応じて添加しても良い。しかし含有量が大き過ぎると、油井用継目無ステンレス鋼管の靭性が劣化する。したがって、Nb:0.2質量%以下、Ti:0.3質量%以下、Zr:0.2質量%以下、B:0.01質量%以下が好ましい。一方、含有量が小さ過ぎると、強度を高める効果が得られない。したがって、Nb:0.02質量%以上、Ti:0.04質量%以上、Zr:0.02質量%以上、B:0.001質量%以上がより好ましい。
上記した成分以外の残部は、Feおよび不可避的不純物である。
Nb, Ti, Zr, and B are all elements that have the effect of increasing the strength of seamless stainless steel pipes for oil wells, and may be added as necessary. However, if the content is too large, the toughness of the oil well seamless stainless steel pipe deteriorates. Therefore, Nb: 0.2% by mass or less, Ti: 0.3% by mass or less, Zr: 0.2% by mass or less, and B: 0.01% by mass or less are preferable. On the other hand, if the content is too small, the effect of increasing the strength cannot be obtained. Therefore, Nb: 0.02 mass% or more, Ti: 0.04 mass% or more, Zr: 0.02 mass% or more, and B: 0.001 mass% or more are more preferable.
The balance other than the above components is Fe and inevitable impurities.
そして、C、Si、Mn、Cr、Ni、Mo、W、Cuの含有量が下記の(1)式および(2)式を満足するように、それぞれの元素の含有量を上記した範囲内で調整する。なお、(1)式および(2)式において、[%C]、[%Si]、[%Mn]、[%Cr]、[%Ni]、[%Mo]、[%W]、[%Cu]は、それぞれの元素の含有量(質量%)であり、含有しない場合はゼロとする。
[%Cr]+0.65[%Ni]+0.6[%Mo]+0.3[%W]+0.55[%Cu]−20[%C]≧19.5 ・・・(1)
[%Cr]+[%Mo]+[%W]+0.3[%Si]−43.5[%C]−0.4[%Mn]−[%Ni]
−0.3[%Cu]−9[%N]≧11.5 ・・・(2)
Cr、Ni、Mo、W、Cu、Cの含有量が(1)式を満足すれば、CO2とCl-を含有する腐食環境において、230℃まで十分な耐食性を有する油井用継目無ステンレス鋼管を得ることができる。なお、耐食性のさらなる向上を図る観点から、下記の(4)式を満足するように成分を調整することが好ましい。
[%Cr]+0.65[%Ni]+0.6[%Mo]+0.3[%W]+0.55[%Cu]−20[%C]≧20.0 ・・・(4)
また、Cr、Mo、W、Si、C、Mn、Ni、Cu、Nの含有量が(2)式を満足すれば、油井用継目無ステンレス鋼管の製造過程において、十分な熱間加工性を得ることができる。なお、熱間加工性のさらなる向上を図る観点から、下記の(5)式を満足するように成分を調整することが好ましい。
[%Cr]+[%Mo]+[%W]+0.3[%Si]−43.5[%C]−0.4[%Mn]−[%Ni]
−0.3[%Cu]−9[%N]≧12.5 ・・・(5)
次に、油井用継目無ステンレス鋼管を製造する手順について説明する。
油井用継目無ステンレス鋼管の原材料である溶鋼を溶製する手段は、特に限定せず、通常の技術(たとえば転炉、電気炉等)を使用する。さらに、必要に応じて脱ガス処理を施しても良い。
Then, the content of each element is within the above range so that the content of C, Si, Mn, Cr, Ni, Mo, W, Cu satisfies the following formulas (1) and (2): adjust. In the formulas (1) and (2), [% C], [% Si], [% Mn], [% Cr], [% Ni], [% Mo], [% W], [% Cu] is the content (% by mass) of each element, and is zero when not contained.
[% Cr] +0.65 [% Ni] +0.6 [% Mo] +0.3 [% W] +0.55 [% Cu] -20 [% C] ≧ 19.5 (1)
[% Cr] + [% Mo] + [% W] +0.3 [% Si] −43.5 [% C] −0.4 [% Mn] − [% Ni]
−0.3 [% Cu] −9 [% N] ≧ 11.5 (2)
Cr, Ni, Mo, W, Cu, to satisfy the content of C is a (1), CO 2 and Cl - in corrosive environments containing, oil well seamless stainless steel pipe having a sufficient corrosion resistance to 230 ° C. Can be obtained. From the viewpoint of further improving the corrosion resistance, it is preferable to adjust the components so as to satisfy the following formula (4).
[% Cr] +0.65 [% Ni] +0.6 [% Mo] +0.3 [% W] +0.55 [% Cu] -20 [% C] ≧ 20.0 (4)
Also, if the content of Cr, Mo, W, Si, C, Mn, Ni, Cu, N satisfies the formula (2), sufficient hot workability can be achieved in the production process of seamless stainless steel pipes for oil wells. Can be obtained. From the viewpoint of further improving the hot workability, it is preferable to adjust the components so as to satisfy the following formula (5).
[% Cr] + [% Mo] + [% W] +0.3 [% Si] −43.5 [% C] −0.4 [% Mn] − [% Ni]
−0.3 [% Cu] −9 [% N] ≧ 12.5 (5)
Next, a procedure for producing a seamless stainless steel pipe for an oil well will be described.
The means for melting the molten steel, which is a raw material of the oil well seamless stainless steel pipe, is not particularly limited, and ordinary techniques (for example, a converter, an electric furnace, etc.) are used. Furthermore, you may perform a degassing process as needed.
そして、既に説明した成分を有する溶鋼を溶製した後、通常の技術(たとえば連続鋳造、造塊等)で鋳込んだ鋼塊に圧延を施してビレットとする。そのビレットが油井用継目無ステンレス鋼管の素材となる。 And after melting the molten steel which has already demonstrated the component, the steel ingot cast | cast with the usual technique (for example, continuous casting, ingot-making, etc.) is rolled, and it is set as a billet. The billet is the material of the oil well seamless stainless steel pipe.
ビレットから油井用継目無ステンレス鋼管を製造する工程は、従来から知られている熱間加工(たとえばマンネスマン−プラグミル方式の熱間圧延、マンネスマン−マンドレルミル方式の熱間圧延等)を施した後に、空冷以上の冷却速度で室温まで冷却することによって、油井用継目無ステンレス鋼管を得る。なお、空冷以上の冷却速度の冷却は、冷媒(たとえば冷却水等)を用いた強制的な冷却(たとえば浸漬、噴射等)、または空冷を意味する。具体的には0.1℃/秒以上とする。より好ましくは、0.3℃/秒以上である。 The process of producing a seamless stainless steel pipe for oil wells from a billet is performed after conventionally known hot working (eg, Mannesmann-plug mill hot rolling, Mannesmann-mandrel mill hot rolling, etc.) An oil well seamless stainless steel pipe is obtained by cooling to room temperature at a cooling rate higher than air cooling. Note that cooling at a cooling rate equal to or higher than air cooling means forced cooling (for example, immersion, jetting, etc.) using a refrigerant (for example, cooling water) or air cooling. Specifically, it is set to 0.1 ° C./second or more. More preferably, it is 0.3 ° C./second or more.
熱間加工に先立つビレットの加熱温度が低すぎると、ビレットの変形抵抗が大きくなるので、穿孔圧延機(たとえばピアサーミル等)に過大な負荷が加わり、設備故障の原因となる。一方、加熱温度が高すぎると、ビレットの結晶粒が粗大化するので、その後の工程を経て得られた油井用継目無ステンレス鋼管も結晶粒が粗大化し、靭性が劣化する。しかも、スケールロスが増加するので、歩留りの低下を招く。したがって、ビレットの加熱温度は1150〜1300℃とする。より好ましくは1200〜1280℃である。また、加熱時間が100分未満では、加熱前に存在していた析出物が十分に溶解せず、その後の工程を経て得られた油井用継目無ステンレス鋼管にも析出物が多く残存し、靭性が劣化する。また、加熱時間が400分を超えるとビレットの結晶粒が粗大化するので、その後の工程を経て得られた油井用継目無ステンレス鋼管も結晶粒が粗大化し、靭性が劣化する。したがって、ビレットの加熱時間は100〜400分とする。 If the heating temperature of the billet prior to hot working is too low, the deformation resistance of the billet increases, and an excessive load is applied to the piercing mill (for example, a piercer mill), causing equipment failure. On the other hand, if the heating temperature is too high, the billet crystal grains become coarse, so that the oil well seamless stainless steel pipe obtained through the subsequent steps also becomes coarse and the toughness deteriorates. In addition, the scale loss increases, resulting in a decrease in yield. Therefore, the heating temperature of the billet is 1150 to 1300 ° C. More preferably, it is 1200-1280 degreeC. Also, if the heating time is less than 100 minutes, the precipitate that existed before the heating does not dissolve sufficiently, and a lot of precipitate remains in the seamless stainless steel pipe for oil wells obtained through the subsequent steps, and the toughness Deteriorates. In addition, when the heating time exceeds 400 minutes, the billet crystal grains become coarse, so that the crystal grains of the oil well seamless stainless steel pipe obtained through the subsequent steps also become coarse and the toughness deteriorates. Therefore, the billet heating time is 100 to 400 minutes.
こうして加熱されたビレットは、穿孔圧延を含む熱間加工を施される。熱間加工としては、ピアサーミルからエロンゲーターミル、プラグミル、リーラーミルおよびサイジングミルを経て油井用継目無ステンレス鋼管を得るマンネスマン−プラグミル方式の熱間圧延、あるいはピアサーミルからマンドレルミルおよびレデューサーミルを経て油井用継目無ステンレス鋼管を得るマンネスマン−マンドミル方式の熱間圧延等に本発明を適用できる。 The billet thus heated is subjected to hot working including piercing and rolling. As hot working, Mannesmann-plug mill type hot rolling to obtain seamless stainless steel pipe for oil well through piercer mill, elongator mill, plug mill, reeler mill and sizing mill, or oil well seam from piercer mill through mandrel mill and reducer mill. The present invention can be applied to Mannesmann-Mandmill type hot rolling or the like to obtain a stainless steel pipe.
熱間加工によって得られた油井用継目無ステンレス鋼管は、直ちに空冷以上の冷却速度で室温まで冷却される。その結果、油井用継目無ステンレス鋼管にマルテンサイト相が生成する。
室温まで冷却された油井用継目無ステンレス鋼管は、あらためて焼入れを施され、マルテンサイト相がさらに増加する。
The oil well seamless stainless steel pipe obtained by hot working is immediately cooled to room temperature at a cooling rate higher than air cooling. As a result, a martensite phase is formed in the seamless stainless steel pipe for oil wells.
The oil well seamless stainless steel pipe cooled to room temperature is re-quenched to further increase the martensite phase.
焼入れに先立つ加熱温度(以下、焼入れ温度という)が低すぎると、マルテンサイト相が十分に生成しないので、所望の強度を有する油井用継目無ステンレス鋼管が得られない。したがって、焼入れ温度は850℃以上とする。一方、焼入れ温度が高すぎると、マルテンサイト相が過剰に生成するので、所望の靭性を有する油井用継目無ステンレス鋼管が得られない。したがって、焼入れ温度は850〜1000℃が好ましい。より好ましくは920〜980℃である。 If the heating temperature prior to quenching (hereinafter referred to as quenching temperature) is too low, the martensite phase is not sufficiently formed, so that a seamless stainless steel pipe for oil wells having a desired strength cannot be obtained. Accordingly, the quenching temperature is 850 ° C. or higher. On the other hand, if the quenching temperature is too high, the martensite phase is excessively generated, so that a seamless stainless steel pipe for oil wells having desired toughness cannot be obtained. Therefore, the quenching temperature is preferably 850 to 1000 ° C. More preferably, it is 920-980 degreeC.
そして、所定の焼入れ温度に加熱された油井用継目無ステンレス鋼管を、空冷以上の冷却速度で100℃以下まで冷却することによって、焼入れを行なう。焼入れを停止する温度が100℃を超えると、オーステナイト相が十分にマルテンサイト相に変態せず、所望の強度が得られないので、好ましくない。 Then, quenching is performed by cooling the oil well seamless stainless steel pipe heated to a predetermined quenching temperature to 100 ° C. or less at a cooling rate of air cooling or higher. When the temperature at which quenching is stopped exceeds 100 ° C., the austenite phase is not sufficiently transformed into a martensite phase, and a desired strength cannot be obtained, which is not preferable.
焼入れの後、油井用継目無ステンレス鋼管に焼戻しを施す。焼戻しにおける加熱温度(以下、焼戻し温度という)が高すぎると、オーステナイト相の分率が増加し、所望の強度が得られなくなる。したがって、焼戻し温度は700℃以下とする。一方、焼戻し温度が低すぎると、焼入れによって劣化した靭性が十分に回復しない。したがって、焼戻し温度は400〜700℃が好ましい。加熱が終了した後は、空冷以上の冷却速度で室温まで冷却する。
なお、熱間加工によって得られた油井用継目無ステンレス鋼管を空冷以上の冷却速度で室温まで冷却した後、上記の焼入れを行なわず、焼戻しのみを行なっても良い。
After quenching, the oil well seamless stainless steel pipe is tempered. If the heating temperature in tempering (hereinafter referred to as tempering temperature) is too high, the austenite phase fraction increases and the desired strength cannot be obtained. Accordingly, the tempering temperature is 700 ° C. or lower. On the other hand, if the tempering temperature is too low, the toughness deteriorated by quenching cannot be sufficiently recovered. Therefore, the tempering temperature is preferably 400 to 700 ° C. After the heating is completed, it is cooled to room temperature at a cooling rate that is equal to or higher than air cooling.
The oil well seamless stainless steel pipe obtained by hot working may be cooled to room temperature at a cooling rate equal to or higher than air cooling, and then tempering may be performed without performing the quenching.
このようにして製造した油井用継目無ステンレス鋼管は、10〜60体積%のフェライト相、0〜20体積%のオーステナイト相、および残部がマルテンサイト相からなる組織を有する。フェライト相が、10体積%未満では油井用継目無ステンレス鋼管の熱間加工性が低下し、60体積%を超えると強度の低下および靭性の劣化を招く。オーステナイト相が20体積%を超えると、所望の強度を有する油井用継目無ステンレス鋼管が得られない。 The oil well seamless stainless steel pipe thus produced has a structure consisting of 10 to 60% by volume of a ferrite phase, 0 to 20% by volume of an austenite phase, and the balance consisting of a martensite phase. If the ferrite phase is less than 10% by volume, the hot workability of the oil well seamless stainless steel pipe decreases, and if it exceeds 60% by volume, the strength decreases and the toughness deteriorates. If the austenite phase exceeds 20% by volume, an oil well seamless stainless steel pipe having a desired strength cannot be obtained.
組織中には、粒径0.5μm以上の金属間化合物が6×103個/mm2以下の密度で析出する。このような析出物の析出を制御することによって、所望の強度、靭性、耐食性を有する油井用継目無ステンレス鋼管を得ることができる。しかも、素材となるビレットは熱間加工性を改善するために(2)式で規定された組成を有するので、熱間加工に先立つビレット加熱温度の制御により、油井用継目無ステンレス鋼管を安定して得ることができる。 In the structure, intermetallic compounds having a particle size of 0.5 μm or more are precipitated at a density of 6 × 10 3 pieces / mm 2 or less. By controlling the precipitation of such precipitates, an oil well seamless stainless steel pipe having desired strength, toughness, and corrosion resistance can be obtained. Moreover, since the billet used as a material has the composition defined by the formula (2) in order to improve hot workability, the control of the billet heating temperature prior to hot working stabilizes the seamless stainless steel pipe for oil wells. Can be obtained.
表1に示す組成を有する溶鋼を溶製し、さらに脱ガス処理を施し、引き続き造塊法でビレット(100kg鋼塊)を製造して、室温まで空冷した。次に、ビレットを加熱炉で加熱した後、ピアサーの実験機で穿孔圧延し、さらに水冷して継目無鋼管(外径83.8mm=3.3インチ、肉厚12.7mm=0.5インチ)とした。 Molten steel having the composition shown in Table 1 was melted, further degassed, billet (100 kg steel ingot) was subsequently produced by the ingot forming method, and air-cooled to room temperature. Next, the billet was heated in a heating furnace, then pierced and rolled with a Piercer experimental machine, and further water-cooled to obtain a seamless steel pipe (outer diameter 83.8 mm = 3.3 inch, wall thickness 12.7 mm = 0.5 inch).
表1に示す溶鋼(鋼記号A〜L、N〜X)の成分と、(1)式、(2)式、(3)式との関係は表2に示す通りである。 The relationship between the components of the molten steel (steel symbols A to L, N to X) shown in Table 1 and the formulas (1), (2), and (3) is as shown in Table 2.
得られた継目無鋼管の内面および外面を目視で観察し、熱間加工性を評価した。その結果を表4に示す。表4では、継目無鋼管の長さ5mm以上の割れが認められたものを「有」とし、それ以外のものを「無」として示す。 The inner and outer surfaces of the obtained seamless steel pipe were visually observed to evaluate hot workability. The results are shown in Table 4. In Table 4, those having cracks of 5 mm or more in length of seamless steel pipes are indicated as “present”, and those other than that are indicated as “absent”.
また、得られた継目無鋼管に焼入れおよび焼戻しを施した後に、試験片を採取して、組織、引張特性、靭性、耐食性を調査した。その調査方法は以下の通りである。なお、焼入れ、焼戻しの条件は表3に示す通りである。 Moreover, after quenching and tempering the obtained seamless steel pipe, specimens were collected, and the structure, tensile properties, toughness, and corrosion resistance were investigated. The investigation method is as follows. The conditions for quenching and tempering are as shown in Table 3.
(A)組織
焼入れおよび焼戻しを施した継目無鋼管の肉厚中央部から組織観察用試験片を採取し、肉厚方向断面を研磨した後に、ビレラエッチング液(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合)で腐食して、光学顕微鏡(100〜1000倍)を用いて組織写真を撮影した。その組織写真からマルテンサイト相(以下、M相と記す)、フェライト相(以下、α相と記す)、オーステナイト相(以下、γ相と記す)を判定し、α相の分率(体積率)を画像解析で算出した。それらの結果を表4に示す。
γ相の分率(体積率)は、X線回析法を用いて、γ相の(220)面とα相の(211)面の回析X線積分強度を測定し、下記の式で算出した。その結果を表4に示す。
γ相の体積率(%)=100/<1+{(Iα×Rγ)/(Iγ×Rα)}>
Iα:α相の積分強度
Iγ:γ相の積分強度
Rα:α相の結晶学的理論計算値
Rγ:γ相の結晶学的理論計算値
M相の分率(体積率)は、α相とγ相以外の残部として表4に示す。
(A) Microstructure Samples for microstructure observation were collected from the center of the thickness of the seamless steel pipe that had been quenched and tempered, and after polishing the cross section in the thickness direction, Virella etching solution (picric acid, hydrochloric acid, and ethanol were added respectively. 2g, mixed at a rate of 10ml and 100ml), and a tissue photograph was taken using an optical microscope (100 to 1000 times). The martensite phase (hereinafter referred to as M phase), ferrite phase (hereinafter referred to as α phase), and austenite phase (hereinafter referred to as γ phase) are judged from the structure photograph, and the fraction (volume fraction) of α phase. Was calculated by image analysis. The results are shown in Table 4.
The fraction (volume fraction) of the γ phase was determined by measuring the diffraction X-ray integrated intensity of the (220) plane of the γ phase and the (211) plane of the α phase using the X-ray diffraction method. Calculated. The results are shown in Table 4.
Volume ratio of γ phase (%) = 100 / <1 + {(Iα × Rγ) / (Iγ × Rα)}>
Iα: Integral intensity of α phase Iγ: Integral intensity of γ phase Rα: Crystallographic theoretical calculation value of α phase Rγ: Crystallographic theoretical calculation value of γ phase The fraction (volume fraction) of M phase is The remainder other than the γ phase is shown in Table 4.
次に、ビレラエッチング液で腐食した試験片の組織写真を、光学顕微鏡(2000倍)で撮影した。その組織写真から、組織中に析出した粒径0.5μm以上の金属間化合物の個数を計測した。その結果を、単位面積(mm2)あたりの個数として表4に示す。 Next, a structure photograph of the test piece corroded with the Virella etching solution was taken with an optical microscope (2000 times). From the structure photograph, the number of intermetallic compounds having a particle size of 0.5 μm or more precipitated in the structure was measured. The results are shown in Table 4 as the number per unit area (mm 2 ).
(B)引張特性
焼入れおよび焼戻しを施した継目無鋼管の肉厚中央部から、API−5CT規格に準拠して引張方向が管軸方向となるようにAPI弧状引張試験片を採取し、さらにAPI規格に準拠して引張試験を行なって、引張特性として降伏強さYS(MPa)、引張強さTS(MPa)を測定した。その結果を表4に示す。
(B) Tensile properties API arc-shaped tensile test specimens were collected from the center of the thickness of the seamless steel pipe that had been quenched and tempered so that the tensile direction was the pipe axis direction in accordance with the API-5CT standard. A tensile test was performed in accordance with the standard, and the yield strength YS (MPa) and the tensile strength TS (MPa) were measured as tensile properties. The results are shown in Table 4.
(C)靭性
焼入れおよび焼戻しを施した継目無鋼管の肉厚中央部から、ISO−11960規格に準拠して、円周方向が試験片長さとなるようにVノッチ試験片(厚さ10mm)を採取し、さらに試験温度を−10℃としてシャルピー衝撃試験を行なって、吸収エネルギーVE-10(J)を測定した。その結果を表4に示す。なお、試験片は、それぞれ3本とし、それらの算術平均値を表4に示す。
(C) Toughness V-notch specimens (
(D)耐食性
焼入れおよび焼戻しを施した継目無鋼管の肉厚中央部から腐食試験片(厚さ3mm、幅25mm、長さ50mm)を採取し、その重量を測定した。さらに、その試験片をオートクレーブ中に保持された20質量%NaCl水溶液(液温230℃、3.0MPaのCO2ガスで飽和)中に14日間浸漬して腐食試験を行なった。腐食試験が終了した後、腐食試験片の重量を測定して、腐食試験の前後の重量減少量を厚さに換算して、腐食速度(mm/年)を求めた。その結果を表4に示す。
(D) Corrosion resistance Corrosion test pieces (thickness 3 mm, width 25 mm, length 50 mm) were sampled from the center of the thickness of the seamless steel pipe that had been quenched and tempered, and the weight was measured. Further, the test piece was immersed in a 20 mass% NaCl aqueous solution (liquid temperature 230 ° C., saturated with 3.0 MPa CO 2 gas) held in an autoclave for 14 days for a corrosion test. After the corrosion test was completed, the weight of the corrosion test piece was measured, and the weight loss before and after the corrosion test was converted to a thickness to obtain the corrosion rate (mm / year). The results are shown in Table 4.
次に、腐食試験が終了した腐食試験片の表面をルーペ(50倍)で観察して、孔食の有無を調査した。その結果を表4に示す。表4では、継目無鋼管の表面に直径0.2mm以上の孔食が認められたものを「有」とし、それ以外のものを「無」として示す。 Next, the surface of the corrosion test piece after the corrosion test was observed with a magnifying glass (50 times) to investigate the presence or absence of pitting corrosion. The results are shown in Table 4. In Table 4, the case where pitting corrosion with a diameter of 0.2 mm or more was observed on the surface of the seamless steel pipe is indicated as “present”, and the other cases are indicated as “absent”.
表4から明らかなように、発明例(鋼管No.1〜7、16〜20)は、いずれもYSが758MPa(=110ksi)以上の高強度と、VE-10が40J以上の高靭性とを有しており、しかも高温のCO2およびCl-を含有する厳しい環境においても、腐食速度が0.127mm/年以下で、孔食もない優れた耐食性を有している。しかも、表面に割れは発生しておらず、優れた熱間加工性も有していることが分かる。
As is clear from Table 4, invention examples (Steel Tube Nanba1~7,16~20) are both high strength of YS is 758 MPa (= 110 ksi) or more, V E -10 and the more
これに対して比較例である鋼管No.8〜11、14、23は、(3)式を満たさず、M相に析出した粒径0.5μm以上の金属間化合物が6×103個/mm2を超えるので、VE-10が40Jを下回っている。また、鋼管No.15は、M相に析出した粒径0.5μm以上の金属間化合物が6×103個/mm2を超えないが、圧延前の加熱時間が長すぎたため、結晶粒が粗大化してVE-10が40Jを下回っている。 On the other hand, steel pipe Nos. 8 to 11, 14, and 23, which are comparative examples, do not satisfy the formula (3), and the number of intermetallic compounds having a particle size of 0.5 μm or more precipitated in the M phase is 6 × 10 3 pieces / mm. Since it exceeds 2 , V E -10 is below 40J. Steel tube No. 15 has an intermetallic compound with a grain size of 0.5 μm or more deposited in the M phase that does not exceed 6 × 10 3 pieces / mm 2 , but the heating time before rolling is too long, so the crystal grains are coarse. It turned into V E -10 and is lower than the 40J.
鋼管No.8、12および21は、(1)式を満たさず、耐食性向上に有効な元素の固溶量が不足したため、腐食速度が0.127mm/年を超えるとともに孔食が発生した。鋼管No.24は、耐食性向上に有効な元素であるVを含まないため、腐食速度が0.127mm/年を超えるとともに孔食が発生した。鋼管No.25は、耐食性向上に有効な元素であるMo、Cu、Wのいずれも含まないため、腐食速度が0.127mm/年を超えるとともに孔食が発生した。 Steel pipe Nos. 8, 12, and 21 did not satisfy the formula (1), and the amount of solid solution of elements effective for improving corrosion resistance was insufficient, so that the corrosion rate exceeded 0.127 mm / year and pitting corrosion occurred. Steel pipe No. 24 did not contain V, which is an element effective in improving corrosion resistance, so pitting corrosion occurred while the corrosion rate exceeded 0.127 mm / year. Steel pipe No. 25 does not contain any of Mo, Cu, and W, which are effective elements for improving corrosion resistance. Therefore, the corrosion rate exceeded 0.127 mm / year and pitting corrosion occurred.
また、鋼管No.26は、焼戻し温度が高すぎてオーステナイト分率が20%を超えたため、降伏強さが758MPaを下回っている。
さらに、鋼管No.9、13、22は、(2)式を満たさず、熱間圧延時のフェライト相の分率が不足したため、表面に割れが発生した。
Steel pipe No. 26 has a yield strength lower than 758 MPa because the tempering temperature is too high and the austenite fraction exceeds 20%.
Further, Steel Pipe Nos. 9, 13, and 22 did not satisfy the formula (2), and the surface was cracked because the ferrite phase fraction was insufficient during hot rolling.
Claims (6)
[%Cr]+0.65[%Ni]+0.6[%Mo] +0.3[%W]+0.55[%Cu]−20[%C]≧19.5 ・・・(1)
[%Cr]+[%Mo]+[%W] +0.3[%Si]−43.5[%C]−0.4[%Mn]−[%Ni]
−0.3[Cu]−9[%N]≧11.5 ・・・(2)
[%Al]×[%N]≦0.0020 ・・・(3)
[%C]、[%Si]、[%Mn]、[%Cr]、[%Ni]、[%Mo]、[%W]、[%Cu]、[%Al]、[%N]:それぞれの元素の含有量(質量%)であり、含有しない場合はゼロとする。 C: 0.005-0.06 mass%, Si: 0.05-0.5 mass%, Mn: 0.2-1.8 mass%, P: 0.03 mass% or less, S: 0.005 mass% or less, Cr: 15.5-18.0 mass%, Ni: 1.5- 5.0% by mass, V: 0.02 to 0.2% by mass, Al: 0.002 to 0.05% by mass, N: 0.01 to 0.15% by mass, O: 0.006% by mass or less, Mo: 1.0 to 3.5% by mass, W: It contains one or more selected from 0.5 to 3.0% by mass, Cu: 0.5 to 3.5% by mass, the balance is Fe and inevitable impurities, and the C, Si, Mn, Cr, Ni Billet having a composition satisfying the following formulas (1), (2) and (3) for Mo, W, Cu, Al and N is heated at a temperature of 1150 to 1300 ° C. for 100 to 400 minutes. Further, it is subjected to hot working to obtain a seamless steel pipe, and after cooling the seamless steel pipe to room temperature at a cooling rate of air cooling or higher, the seamless steel pipe is heated to 850 ° C. or higher, and subsequently air cooled to 100 ° C. or lower. Cool to room temperature with a cooling rate of By carrying out quenching and then tempering at 700 ° C. or less, the particle size of 0.5 to 10 vol% ferrite phase, 0 to 20 vol% austenite phase, and the balance consisting of martensite phase precipitated in the structure. It has a structure in which the density of precipitates of μm or more is 6 × 10 3 particles / mm 2 or less, the absorbed energy V E − in a Charpy impact test with a yield strength of 758 MPa or more and a test temperature of −10 ° C. A method for producing a seamless stainless steel pipe for oil wells, characterized in that 10 is a seamless steel pipe of 40J or more.
[% Cr] +0.65 [% Ni] +0.6 [% Mo] +0.3 [% W] +0.55 [% Cu] −20 [% C] ≧ 19.5 (1)
[% Cr] + [% Mo] + [% W] +0.3 [% Si] −43.5 [% C] −0.4 [% Mn] − [% Ni]
−0.3 [Cu] −9 [% N] ≧ 11.5 (2)
[% Al] × [% N] ≦ 0.0020 (3)
[% C], [% Si], [% Mn], [% Cr], [% Ni], [% Mo], [% W], [% Cu], [% Al], [% N]: This is the content (% by mass) of each element.
[%Cr]+0.65[%Ni]+0.6[%Mo]+0.3[%W]+0.55[%Cu]−20[%C]≧19.5 ・・・(1)
[%Cr]+[%Mo]+[%W]+0.3[%Si]−43.5[%C]−0.4[%Mn]−[%Ni]
−0.3[Cu]−9[%N]≧11.5 ・・・(2)
[%Al]×[%N]≦0.0020 ・・・(3)
[%C]、[%Si]、[%Mn]、[%Cr]、[%Ni]、[%Mo]、[%W]、[%Cu]、[%Al]、[%N]:それぞれの元素の含有量(質量%)であり、含有しない場合はゼロとする。 C: 0.005-0.06 mass%, Si: 0.05-0.5 mass%, Mn: 0.2-1.8 mass%, P: 0.03 mass% or less, S: 0.005 mass% or less, Cr: 15.5-18.0 mass%, Ni: 1.5- 5.0% by mass, V: 0.02 to 0.2% by mass, Al: 0.002 to 0.05% by mass, N: 0.01 to 0.15% by mass, O: 0.006% by mass or less, Mo: 1.0 to 3.5% by mass, W: It contains one or more selected from 0.5 to 3.0% by mass, Cu: 0.5 to 3.5% by mass, the balance is Fe and inevitable impurities, and the C, Si, Mn, Cr, Ni , Mo, W, Cu, Al, and N have a composition satisfying the following formulas (1), (2), and (3), and 10 to 60% by volume of a ferrite phase, 0 to It has a 20% by volume austenite phase and the balance is a martensite phase, and has a structure in which the density of precipitates with a grain size of 0.5 μm or more deposited in the structure is 6 × 10 3 pieces / mm 2 or less, and yield strength Is 758MPa or more, and the test temperature is -10 ℃ Oil well seamless stainless steel tube absorbed energy V E -10 in Charpy impact test is characterized in that at least 40 J.
[% Cr] +0.65 [% Ni] +0.6 [% Mo] +0.3 [% W] +0.55 [% Cu] -20 [% C] ≧ 19.5 (1)
[% Cr] + [% Mo] + [% W] +0.3 [% Si] −43.5 [% C] −0.4 [% Mn] − [% Ni]
−0.3 [Cu] −9 [% N] ≧ 11.5 (2)
[% Al] × [% N] ≦ 0.0020 (3)
[% C], [% Si], [% Mn], [% Cr], [% Ni], [% Mo], [% W], [% Cu], [% Al], [% N]: This is the content (% by mass) of each element.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015161030 | 2015-08-18 | ||
JP2015161030 | 2015-08-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017039998A true JP2017039998A (en) | 2017-02-23 |
JP6409827B2 JP6409827B2 (en) | 2018-10-24 |
Family
ID=58206345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016132146A Active JP6409827B2 (en) | 2015-08-18 | 2016-07-04 | Manufacturing method of seamless stainless steel pipe for oil well |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6409827B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3670693A4 (en) * | 2017-08-15 | 2020-08-12 | JFE Steel Corporation | High strength stainless seamless steel pipe for oil wells, and method for producing same |
CN111850422A (en) * | 2020-04-30 | 2020-10-30 | 中科益安医疗科技(北京)股份有限公司 | High-nitrogen nickel-free austenitic stainless steel seamless thin-walled tube and preparation method thereof |
JPWO2022009598A1 (en) * | 2020-07-06 | 2022-01-13 | ||
WO2022224640A1 (en) * | 2021-04-21 | 2022-10-27 | Jfeスチール株式会社 | Stainless steel pipe and manufacturing method thereof |
CN115298346A (en) * | 2020-04-01 | 2022-11-04 | 杰富意钢铁株式会社 | High-strength stainless steel seamless steel pipe for oil well and method for producing same |
WO2024209843A1 (en) * | 2023-04-06 | 2024-10-10 | Jfeスチール株式会社 | Seamless stainless steel pipe and production method therefor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111840659B (en) * | 2020-04-30 | 2022-02-08 | 中科益安医疗科技(北京)股份有限公司 | High-safety blood vessel support without nickel metal medicine elution and its making method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006016637A (en) * | 2004-06-30 | 2006-01-19 | Jfe Steel Kk | High-strength stainless steel pipe for oil well superior in corrosion resistance to carbon dioxide gas |
JP2008081793A (en) * | 2006-09-28 | 2008-04-10 | Jfe Steel Kk | High-strength stainless steel pipe with high toughness and excellent corrosion resistance for oil well |
JP2013249516A (en) * | 2012-05-31 | 2013-12-12 | Jfe Steel Corp | High-strength stainless steel seamless pipe for use as oil well piping, and method of manufacturing the same |
JP2015110822A (en) * | 2012-12-21 | 2015-06-18 | Jfeスチール株式会社 | High strength seamless stainless steel tube for oil well, having excellent corrosion resistance, and method for manufacturing the same |
JP2017031493A (en) * | 2015-08-05 | 2017-02-09 | 新日鐵住金株式会社 | Manufacturing method of stainless steel pipe |
JP6229794B2 (en) * | 2015-01-15 | 2017-11-15 | Jfeスチール株式会社 | Seamless stainless steel pipe for oil well and manufacturing method thereof |
-
2016
- 2016-07-04 JP JP2016132146A patent/JP6409827B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006016637A (en) * | 2004-06-30 | 2006-01-19 | Jfe Steel Kk | High-strength stainless steel pipe for oil well superior in corrosion resistance to carbon dioxide gas |
JP2008081793A (en) * | 2006-09-28 | 2008-04-10 | Jfe Steel Kk | High-strength stainless steel pipe with high toughness and excellent corrosion resistance for oil well |
JP2013249516A (en) * | 2012-05-31 | 2013-12-12 | Jfe Steel Corp | High-strength stainless steel seamless pipe for use as oil well piping, and method of manufacturing the same |
JP2015110822A (en) * | 2012-12-21 | 2015-06-18 | Jfeスチール株式会社 | High strength seamless stainless steel tube for oil well, having excellent corrosion resistance, and method for manufacturing the same |
JP6229794B2 (en) * | 2015-01-15 | 2017-11-15 | Jfeスチール株式会社 | Seamless stainless steel pipe for oil well and manufacturing method thereof |
JP2017031493A (en) * | 2015-08-05 | 2017-02-09 | 新日鐵住金株式会社 | Manufacturing method of stainless steel pipe |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3670693A4 (en) * | 2017-08-15 | 2020-08-12 | JFE Steel Corporation | High strength stainless seamless steel pipe for oil wells, and method for producing same |
US11286548B2 (en) | 2017-08-15 | 2022-03-29 | Jfe Steel Corporation | High-strength stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same |
CN115298346A (en) * | 2020-04-01 | 2022-11-04 | 杰富意钢铁株式会社 | High-strength stainless steel seamless steel pipe for oil well and method for producing same |
CN115298346B (en) * | 2020-04-01 | 2023-10-20 | 杰富意钢铁株式会社 | High-strength stainless steel seamless steel pipe for oil well and manufacturing method thereof |
CN111850422A (en) * | 2020-04-30 | 2020-10-30 | 中科益安医疗科技(北京)股份有限公司 | High-nitrogen nickel-free austenitic stainless steel seamless thin-walled tube and preparation method thereof |
JPWO2022009598A1 (en) * | 2020-07-06 | 2022-01-13 | ||
WO2022009598A1 (en) * | 2020-07-06 | 2022-01-13 | Jfeスチール株式会社 | Seamless stainless steel pipe and production method therefor |
JP7226571B2 (en) | 2020-07-06 | 2023-02-21 | Jfeスチール株式会社 | Seamless stainless steel pipe and manufacturing method thereof |
WO2022224640A1 (en) * | 2021-04-21 | 2022-10-27 | Jfeスチール株式会社 | Stainless steel pipe and manufacturing method thereof |
JPWO2022224640A1 (en) * | 2021-04-21 | 2022-10-27 | ||
WO2024209843A1 (en) * | 2023-04-06 | 2024-10-10 | Jfeスチール株式会社 | Seamless stainless steel pipe and production method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP6409827B2 (en) | 2018-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6409827B2 (en) | Manufacturing method of seamless stainless steel pipe for oil well | |
JP6399259B1 (en) | High strength stainless steel seamless steel pipe for oil well and method for producing the same | |
JP6358411B1 (en) | Duplex stainless steel and manufacturing method thereof | |
JP6227664B2 (en) | High strength stainless steel seamless steel pipe for oil well and method for producing the same | |
JP6369662B1 (en) | Duplex stainless steel and manufacturing method thereof | |
JP5488643B2 (en) | High strength stainless steel seamless pipe for oil country tubular goods and method for producing the same | |
JP6229794B2 (en) | Seamless stainless steel pipe for oil well and manufacturing method thereof | |
JP5861786B2 (en) | Stainless steel seamless steel pipe for oil well and manufacturing method thereof | |
JP6315159B1 (en) | Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same | |
WO2017138050A1 (en) | High strength stainless steel seamless pipe for oil well and manufacturing method therefor | |
JP6156609B1 (en) | High strength stainless steel seamless steel pipe for oil well and method for producing the same | |
JP5446335B2 (en) | Evaluation method of high strength stainless steel pipe for oil well | |
JP5765036B2 (en) | Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone | |
JPWO2017010036A1 (en) | High strength stainless steel seamless pipe and method for manufacturing the same | |
JP6237873B2 (en) | High strength stainless steel seamless steel pipe for oil well | |
JP2007332442A (en) | High-toughness ultrahigh-strength stainless steel pipe for oil well having excellent corrosion resistance, and its production method | |
JP5499575B2 (en) | Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same | |
WO2019225281A1 (en) | Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same | |
JP6672620B2 (en) | Stainless steel for oil well and stainless steel tube for oil well | |
JP2014043616A (en) | Duplex stainless steel, and manufacturing method thereof | |
JP4470617B2 (en) | High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance | |
WO2019225280A1 (en) | Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same | |
JP5640777B2 (en) | Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone | |
JP5040215B2 (en) | Stainless steel pipe for oil wells with excellent pipe expandability | |
JP7279863B2 (en) | Stainless steel pipe and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180425 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180828 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180910 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6409827 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |