JP2007332442A - High-toughness ultrahigh-strength stainless steel pipe for oil well having excellent corrosion resistance, and its production method - Google Patents

High-toughness ultrahigh-strength stainless steel pipe for oil well having excellent corrosion resistance, and its production method Download PDF

Info

Publication number
JP2007332442A
JP2007332442A JP2006167680A JP2006167680A JP2007332442A JP 2007332442 A JP2007332442 A JP 2007332442A JP 2006167680 A JP2006167680 A JP 2006167680A JP 2006167680 A JP2006167680 A JP 2006167680A JP 2007332442 A JP2007332442 A JP 2007332442A
Authority
JP
Japan
Prior art keywords
less
steel pipe
stainless steel
mass
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006167680A
Other languages
Japanese (ja)
Other versions
JP4978073B2 (en
Inventor
Mitsuo Kimura
光男 木村
Takeshi Shimamoto
健 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006167680A priority Critical patent/JP4978073B2/en
Publication of JP2007332442A publication Critical patent/JP2007332442A/en
Application granted granted Critical
Publication of JP4978073B2 publication Critical patent/JP4978073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-toughness ultrahigh-strength stainless steel pipe for an oil well having excellent corrosion resistance, and to provide its production method. <P>SOLUTION: A steel stock having a composition comprising, by mass, ≤0.05% C, 0.20 to 1.80% Mn, 14.0 to 18.0% Cr, 5.0 to 8.0% Ni, 1.5 to 3.5% Mo, 0.5 to 3.5% Cu, 0.005 to 0.15% N and ≤0.006% O, also satisfying Cr+2Ni+1.1Mo+0.7Cu≤32.5, and further comprising one or two selected from ≤0.20% Nb and ≤0.20% V so as to satisfy the condition of Nb+V≥0.05% is made into a pipe. The pipe is cooled to ≤150°C, and is thereafter subjected to tempering treatment where heating temperature T is 500 to 580°C, and also, T(20+logt) satisfies 15,200 to 16,800. In this way, a steel pipe having a YS of ≥965 MPa and vE<SB>-40</SB>of ≥50 J, and having excellent corrosion resistance in a CO<SB>2</SB>-containing high-temperature corrosive environment heated at ≥200°C can be obtained. It is also possible that, before the tempering treatment, the pipe is subjected to quenching treatment so as to be heated to an Ac<SB>3</SB>transformation point or above, and, successively, to be cooled at a cooling rate of air cooling or above. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、原油あるいは天然ガスの油井、ガス井に使用される油井用超高強度ステンレス鋼管に係り、とくに炭酸ガス(CO2)、塩素イオン(Cl-)などを含む、極めて厳しい腐食環境下における、耐食性と耐硫化物応力腐食割れ性の改善に関する。ここでいう「超高強度」とは、降伏強さ:965MPa(140ksi)以上のグレードのものをいう。 The present invention relates to oil wells for crude oil or natural gas, and ultra-high strength stainless steel pipes for oil wells used in gas wells, especially in extremely severe corrosive environments containing carbon dioxide (CO 2 ), chlorine ions (Cl ), etc. Relates to the improvement of corrosion resistance and resistance to sulfide stress corrosion cracking. The term “ultra-high strength” used herein refers to a grade having a yield strength of 965 MPa (140 ksi) or higher.

近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇化に対処するため、従来、省みられなかったような深層油田や、一旦は開発が放棄されていた腐食性の強いサワーガス田等に対する開発が、世界的規模で盛んになっている。このような油田、ガス田は一般に深度が極めて深く、またその雰囲気は高温でかつ、CO2、Cl-等を含む厳しい腐食環境となっている。したがってこのような油田、ガス田の採掘に使用される油井用鋼管としては、高強度で、しかも耐食性を兼ね備えた鋼管が要求される。また、最近では、寒冷地における油田開発も活発になってきており、高強度に加えて優れた低温靱性を有することが要求されることも多い。 In recent years, in order to cope with soaring crude oil prices and the depletion of petroleum resources expected in the near future, deep oil fields that have not been excluded in the past, or highly corrosive sour gas that had been abandoned once Developments for rice fields etc. are flourishing on a global scale. Such oil, gas fields are generally the depth is very deep, and its atmosphere and a high temperature, CO 2, Cl - has a severe corrosive environment and the like. Therefore, steel pipes for oil wells used for mining such oil fields and gas fields are required to have high strength and corrosion resistance. Recently, oil fields have been actively developed in cold regions, and it is often required to have excellent low temperature toughness in addition to high strength.

従来から、CO2、Cl-等を含む環境下の油田、ガス田では、油井用鋼管として、耐CO2腐食性に優れた13%Crマルテンサイト系ステンレス鋼菅が使用されるのが一般的であった。しかし、通常のマルテンサイト系ステンレス鋼は、高強度とすると、靭性が低下して、使用に耐えられなくなるという問題があった。そのため、高強度が要求される油井では、冷間加工を施した二相ステンレス鋼管が使用されてきた。しかし、二相ステンレス鋼管は、合金元素量が多く高価であり、熱間加工性が劣り特殊な熱間加工法でしか製造できないという問題があった。また、近年、寒冷地における油田開発も活発化し、高強度に加えて、優れた低温靭性を有することが要求されることが多い。このため、熱間加工性に優れ、安価である13%Crマルテンサイト系ステンレス鋼をベースとする、優れた耐CO2腐食性および高靭性を有する油井用高強度鋼管が強く望まれていた。 Conventionally, CO 2, Cl -, etc. oilfield environment including, in gas fields, as oil well steel pipes, common to 13% Cr martensitic stainless steel but having excellent CO 2 corrosion resistance is used Met. However, ordinary martensitic stainless steel has a problem that if it has a high strength, the toughness decreases and it cannot be used. For this reason, cold-worked duplex stainless steel pipes have been used in oil wells that require high strength. However, the duplex stainless steel pipe has a problem that it has a large amount of alloying elements and is expensive, has poor hot workability and can be produced only by a special hot working method. In recent years, oil field development in cold regions has also become active, and it is often required to have excellent low temperature toughness in addition to high strength. For this reason, a high strength steel pipe for oil wells having excellent CO 2 corrosion resistance and high toughness based on 13% Cr martensitic stainless steel, which is excellent in hot workability and inexpensive, has been strongly desired.

このような要求に対し、例えば、特許文献1、特許文献2、特許文献3には、13%Crマルテンサイト系ステンレス鋼の耐食性を改善した、改良型13%Crマルテンサイト系ステンレス鋼(鋼管)が提案されている。しかしながら、改良型13%Crマルテンサイト系ステンレス鋼管においては、170℃を超える環境では充分な耐食性を有していないうえ、得られる強度は高々降伏応力YS:758MPaグレードまでであり、最近、開発が始まっている高深度油井には対応できないという問題があった。   In response to such demands, for example, Patent Document 1, Patent Document 2, and Patent Document 3 describe an improved 13% Cr martensitic stainless steel (steel pipe) in which the corrosion resistance of 13% Cr martensitic stainless steel is improved. Has been proposed. However, the improved 13% Cr martensitic stainless steel pipe does not have sufficient corrosion resistance in environments exceeding 170 ° C, and the strength obtained is up to the yield stress YS: 758 MPa grade. There was a problem that it was not possible to cope with the deep wells that started.

また、特許文献4には、CO2、Cl-等を含む180℃を超える高温の腐食雰囲気下においても優れた耐CO2腐食性を有する油井用ステンレス鋼管が提案されている。特許文献4に記載されたステンレス鋼管は、Cr:14〜18%、Ni:5.0〜8.0%、Mo:1.5〜3.5%、Cu:0.5〜3.5%、を含み、かつCr、Ni、Mo、Cu、Cからなる特定関係およびCr、Mo、Si、C、Mn、Ni、Cu、Nからなる特定関係を満足するように含有する組成を有する鋼管であり、降伏強さ654MPa以上の高強度を確保でき、耐CO2腐食性に優れるとしている。
特開平8−120345号公報 特開平9−268349号公報 特開平10−1755号公報 再公表特許WO2004/001082公報
Further, Patent Document 4, CO 2, Cl - or the like for oil wells stainless steel tube having an excellent CO 2 corrosion resistance even in a high-temperature corrosive atmosphere exceeding 180 ° C. containing proposed. The stainless steel pipe described in Patent Document 4 contains Cr: 14-18%, Ni: 5.0-8.0%, Mo: 1.5-3.5%, Cu: 0.5-3.5%, and Cr, Ni, Mo, Cu Steel pipe with a composition that satisfies the specific relationship consisting of C, and the specific relationship consisting of Cr, Mo, Si, C, Mn, Ni, Cu, and N, ensuring a high strength of yield strength of 654 MPa or more. It is said to be excellent in CO 2 corrosion resistance.
JP-A-8-120345 JP-A-9-268349 Japanese Patent Laid-Open No. 10-1755 Republished patent WO2004 / 001082

しかしながら、特許文献4に記載された技術で製造された鋼管は、優れた耐CO2腐食性を有しているが、高々降伏強さ910MPaまでの高強度が確保できているにすぎず、更なる高深度の油井には対応できないという問題があった。
この発明は、上記した従来技術の問題を解決し、13%Crマルテンサイト系ステンレス鋼を基本組成とし、安価で、CO2、Cl-等を含む170℃以上の苛酷な腐食環境下においても優れた耐CO2腐食性を示すとともに、降伏強さ:965MPa以上の高強度と、−40℃におけるシャルピー吸収エネルギーvE-40が50J以上の高靭性とを兼備する、耐食性に優れた油井用高靭性超高強度ステンレス鋼管およびその製造方法を提供することを目的とする。
However, although the steel pipe manufactured by the technique described in Patent Document 4 has excellent CO 2 corrosion resistance, it can only ensure high strength up to a yield strength of 910 MPa. There was a problem that it could not cope with the deep oil well.
The present invention shows the above-mentioned resolved the problems of the prior art, and a basic composition of 13% Cr martensitic stainless steel, inexpensive, CO 2, Cl -, etc. excellent in severe corrosive environments than 170 ° C. containing were together shown resistance CO 2 corrosion resistance, yield strength: high strength above 965MPa, Charpy absorbed energy vE -40 to combine the more high toughness 50J at -40 ° C., excellent high toughness for oil well corrosion resistance An object is to provide an ultra-high strength stainless steel pipe and a method for producing the same.

発明者らは、上記した目的を達成するために、13%Cr系鋼を基本組成として、降伏強度およびCO2、Cl-を含む環境下での耐食性に及ぼす各種合金元素の影響について鋭意研究した。その結果、Cを従来より著しく低減し、さらにNi、Mo、Cuを含有させ、Cr、Ni、Mo、Cuを特定の関係を満足するように、さらにNb、Vを特定の関係を満足するように、それぞれ含有した組成とし、適切な熱処理を施すことにより、降伏強さ:965MPa以上の高強度と、−40℃におけるシャルピー吸収エネルギーvE-40が50J以上の高靭性とを兼備し、かつ良好な熱間加工性、耐食性が確保できることを見出した。 In order to achieve the above-mentioned object, the inventors have conducted intensive research on the influence of various alloy elements on the yield strength and the corrosion resistance in an environment containing CO 2 and Cl with 13% Cr steel as a basic composition. . As a result, C is remarkably reduced as compared with the prior art, Ni, Mo, and Cu are further contained so that Cr, Ni, Mo, and Cu satisfy a specific relationship, and Nb and V satisfy a specific relationship. In addition, by combining each composition and applying an appropriate heat treatment, the yield strength is 965MPa or more, and the Charpy absorbed energy vE- 40 at -40 ° C is 50J or more. It has been found that a good hot workability and corrosion resistance can be secured.

この発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、この発明の要旨は次のとおりである。
(1)mass%で、C:0.05%以下、Si:0.50%以下、Mn:0.20〜1.80%、P:0.03%以下、S:0.005%以下、Cr:14.0〜18.0%、Ni:5.0〜8.0%、Mo:1.5〜3.5%、Cu:0.5〜3.5%、N:0.005〜0.15%、O:0.006%以下を含み、かつCr、Ni、Mo、Cuを次(1)式
Cr+2Ni+1.1Mo+0.7Cu ≦ 32.5 ……(1)
(ここで、Cr、Ni、Mo、Cu :各元素の含有量(mass%))
を満足するように含有し、さらにNb:0.20%以下、V:0.20%以下のうちから選ばれた1種または2種を次(2)式
Nb+V ≧ 0.05% ……(2)
(ここで、Nb、V:各元素の含有量(mass%))
を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有し、マルテンサイト相を主相とし、第二相として体積率で3〜15%のオーステナイト相を含む組織を有し、降伏強さYSが965MPa以上、−40℃におけるシャルピー吸収エネルギーvE-40が50J以上であることを特徴とする耐食性に優れた油井用高靭性超高強度ステンレス鋼管。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.05% or less, Si: 0.50% or less, Mn: 0.20 to 1.80%, P: 0.03% or less, S: 0.005% or less, Cr: 14.0 to 18.0%, Ni: 5.0 to 8.0 %, Mo: 1.5 to 3.5%, Cu: 0.5 to 3.5%, N: 0.005 to 0.15%, O: 0.006% or less, and Cr, Ni, Mo, Cu are represented by the following formula (1)
Cr + 2Ni + 1.1Mo + 0.7Cu ≤ 32.5 (1)
(Here, Cr, Ni, Mo, Cu: content of each element (mass%))
In addition, Nb: 0.20% or less, V: 0.20% or less, one or two selected from the following formula (2)
Nb + V ≧ 0.05% (2)
(Where Nb, V: content of each element (mass%))
And having a composition comprising the balance Fe and inevitable impurities, having a martensite phase as the main phase, and having a structure containing an austenite phase of 3 to 15% by volume as the second phase, A high toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance, characterized by a yield strength YS of 965 MPa or more and a Charpy absorbed energy vE- 40 at −40 ° C. of 50 J or more.

(2)(1)において、前記組成に加えてさらに、mass%で、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下、W:3.0%以下のうちから選ばれた1種または2種以上を含有することを特徴とする油井用高靭性超高強度ステンレス鋼管。
(3)(1)または(2)において、前記組成に加えてさらに、mass%で、Ca:0.0005〜0.01%を含有することを特徴とする油井用高靭性超高強度ステンレス鋼管。
(2) In (1), in addition to the above composition, it is further selected in mass% from Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less, W: 3.0% or less Alternatively, a high toughness ultra-high strength stainless steel pipe for oil wells containing two or more kinds.
(3) In (1) or (2), in addition to the above composition, it further contains Ca: 0.0005 to 0.01% in mass%, and a high toughness ultra-high strength stainless steel pipe for oil wells.

(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、mass%で、Al:0.05%以下を含有することを特徴とする油井用高靭性超高強度ステンレス鋼管。
(5)mass%で、C:0.05%以下、Si:0.50%以下、Mn:0.20〜1.80%、P:0.03%以下、S:0.005%以下、Cr:14.0〜18.0%、Ni:5.0〜8.0%、Mo:1.5〜3.5%、Cu:0.5〜3.5%、N:0.005〜0.15%、O:0.006%以下を含み、かつCr、Ni、Mo、Cuを次(1)式
Cr+2Ni+1.1Mo+0.7Cu ≦ 32.5 ……(1)
(ここで、Cr、Ni、Mo、Cu :各元素の含有量(mass%))
を満足するように含有し、さらにNb:0.20%以下、V:0.20%以下のうちから選ばれた1種または2種を次(2)式
Nb+V ≧ 0.05% ……(2)
(ここで、Nb、V:各元素の含有量(mass%))
を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材を造管し鋼管とし150℃以下まで冷却したのち、ついで、該鋼管に、加熱温度Tを500〜580℃の範囲の温度とし、かつ加熱温度Tと加熱保持時間tとが次(3)式
15200 ≦ T(20+logt) ≦ 16800 ……(3)
(ここで、T:加熱温度(K)、t:加熱保持時間(h))
を満足する焼戻処理を施し、降伏強さYSが965MPa以上、−40℃におけるシャルピー吸収エネルギーvE-40が50J以上を有するステンレス鋼管とすることを特徴とする耐食性に優れた油井用高靭性超高強度ステンレス鋼管の製造方法。
(4) In any one of (1) to (3), in addition to the above-mentioned composition, it further includes mass: Al: 0.05% or less, and a high toughness ultra-high strength stainless steel pipe for oil wells.
(5) In mass%, C: 0.05% or less, Si: 0.50% or less, Mn: 0.20 to 1.80%, P: 0.03% or less, S: 0.005% or less, Cr: 14.0 to 18.0%, Ni: 5.0 to 8.0 %, Mo: 1.5 to 3.5%, Cu: 0.5 to 3.5%, N: 0.005 to 0.15%, O: 0.006% or less, and Cr, Ni, Mo, Cu are represented by the following formula (1)
Cr + 2Ni + 1.1Mo + 0.7Cu ≤ 32.5 (1)
(Here, Cr, Ni, Mo, Cu: content of each element (mass%))
In addition to Nb: 0.20% or less, V: 0.20% or less selected from the following formula (2)
Nb + V ≧ 0.05% (2)
(Where Nb, V: content of each element (mass%))
After forming a steel material having a composition composed of the balance Fe and inevitable impurities and cooling it to a temperature of 150 ° C. or lower, the steel tube is heated to a heating temperature T of 500 to 580 ° C. The temperature is within the range, and the heating temperature T and heating holding time t
15200 ≦ T (20 + logt) ≦ 16800 ...... (3)
(Where T: heating temperature (K), t: heating holding time (h))
Tempering that satisfies the above requirements, and a stainless steel pipe with a yield strength YS of 965 MPa or more and a Charpy absorbed energy vE- 40 at -40 ° C of 50 J or more. Manufacturing method of high strength stainless steel pipe.

(6)(5)において、前記造管後で、前記焼戻処理前に、前記鋼管に、800℃以上の温度に加熱し続いて空冷以上の冷却速度で150℃以下の温度まで冷却する焼入れ処理を施すことを特徴とする油井用高靭性超高強度ステンレス鋼管の製造方法。
(7)(5)または(6)において、前記組成に加えてさらに、mass%で、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下、W:3.0%以下のうちから選ばれた1種または2種以上を含有することを特徴とする油井用高靭性超高強度ステンレス鋼管の製造方法。
(6) In (5), after the pipe forming and before the tempering treatment, the steel pipe is heated to a temperature of 800 ° C. or higher and then cooled to a temperature of 150 ° C. or lower at a cooling rate of air cooling or higher. A method for producing a high toughness ultra-high strength stainless steel pipe for oil wells, characterized by performing treatment.
(7) In (5) or (6), in addition to the above composition, it is further selected in mass% from Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less, W: 3.0% or less A method for producing a high toughness ultra-high-strength stainless steel pipe for oil wells, characterized by containing one or more of them.

(8)(5)ないし(7)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ca:0.0005〜0.01%を含有することを特徴とする油井用高靭性超高強度ステンレス鋼管の製造方法。
(9)(5)ないし(8)のいずれかにおいて、前記組成に加えてさらに、mass%で、Al:0.05%以下を含有することを特徴とする油井用高靭性超高強度ステンレス鋼管。
(8) In any one of (5) to (7), in addition to the above-described composition, the mass% further includes Ca: 0.0005 to 0.01%. Production method.
(9) In any one of (5) to (8), in addition to the above-described composition, it further includes mass: Al: 0.05% or less, and a high toughness ultra-high strength stainless steel pipe for oil wells.

この発明によれば、CO2、Cl-等を含む170℃以上の苛酷な腐食環境下においても優れた耐CO2腐食性を示し、降伏強さ:965MPa以上の高強度と、−40℃におけるシャルピー吸収エネルギーvE-40が50J以上の高靭性とを兼備する、耐食性に優れた油井用高靭性超高強度ステンレス鋼管を、安価にしかも安定して製造でき、産業上格段の効果を奏する。また、この発明によれば、苛酷な環境下でも使用可能な油井管を安価にしかも安定して供給できるという効果もある。 According to the present invention, CO 2, Cl -, etc. also exhibit excellent resistance to CO 2 corrosion under 170 ° C. or more severe corrosive environments containing, yield strength: and more high strength 965MPa, at -40 ℃ High-toughness ultra-high-strength stainless steel pipes for oil wells with excellent corrosion resistance, with Charpy absorbed energy vE- 40 of 50J or higher, can be manufactured at low cost and have a remarkable industrial effect. Further, according to the present invention, there is an effect that an oil well pipe that can be used even in a severe environment can be supplied at low cost and stably.

まず、この発明の油井用高靭性超高強度ステンレス鋼管の組成限定の理由について説明する。なお、以下、とくに断らないかぎり、mass%は単に%で記す。
C:0.05%以下
Cは、マルテンサイト系ステンレス鋼の強度に関係する重要な元素であるが、0.05%を超えて含有すると、Ni含有による焼戻時の鋭敏化が起こりやすくなる。この焼戻し時の鋭敏化を防止する観点から、この発明ではCは0.05%以下に限定した。また、耐食性からもできるだけ少ないほうが好ましい。なお、好ましくは0.01〜0.03%である。
First, the reason for the composition limitation of the high toughness ultra high strength stainless steel pipe for oil wells of this invention will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.
C: 0.05% or less C is an important element related to the strength of martensitic stainless steel, but if it exceeds 0.05%, sensitization during Ni tempering tends to occur. From the viewpoint of preventing sensitization during tempering, C is limited to 0.05% or less in the present invention. Also, it is preferable that the amount is as small as possible in view of corrosion resistance. In addition, Preferably it is 0.01 to 0.03%.

Si:0.50%以下
Siは、脱酸剤として作用する元素であり、この発明では0.05%以上含有することが好ましいが、0.50%を超える含有は、耐CO2腐食性を低下させ、さらには熱間加工性も低下させる。このため、Siは0.50%以下に限定した。なお、好ましくは0.1〜0.3%である。
Mn:0.20〜1.80%
Mnは、強度を増加させる元素であり、この発明における所望の強度を確保するために0.20%以上の含有を必要とするが、1.80%を超える含有は、靭性に悪影響を及ぼす。このため、Mnは0.20〜1.80%の範囲に限定した。なお、好ましくは0.20〜1.0%である。
Si: 0.50% or less
Si is an element that acts as a deoxidizer. In this invention, it is preferably contained in an amount of 0.05% or more. However, if it exceeds 0.50%, the CO 2 corrosion resistance is reduced, and hot workability is also reduced. Let For this reason, Si was limited to 0.50% or less. In addition, Preferably it is 0.1 to 0.3%.
Mn: 0.20 to 1.80%
Mn is an element that increases the strength and needs to be contained in an amount of 0.20% or more in order to ensure the desired strength in the present invention. However, the content exceeding 1.80% adversely affects toughness. For this reason, Mn was limited to the range of 0.20 to 1.80%. In addition, Preferably it is 0.20 to 1.0%.

P:0.03%以下
Pは、耐CO2腐食性、耐CO2応力腐食割れ性、耐孔食性および耐硫化物応力腐食割れ性をともに低下させる元素であり、この発明では可及的に低減することが望ましいが、極端な低減は製造コストの上昇を招く。工業的に比較的安価に実施可能でかつ耐CO2腐食性、耐CO2応力腐食割れ性、耐孔食性および耐硫化物応力腐食割れ性を低下させない範囲として、Pは0.03%以下に限定した。なお、好ましくは0.02%以下である。
P: 0.03% or less P is an element that reduces both CO 2 corrosion resistance, CO 2 stress corrosion cracking resistance, pitting corrosion resistance and sulfide stress corrosion cracking resistance, and is reduced as much as possible in this invention. Although desirable, extreme reduction leads to increased manufacturing costs. P is limited to 0.03% or less as a range that can be implemented industrially at a relatively low cost and does not reduce CO 2 corrosion resistance, CO 2 stress corrosion cracking resistance, pitting corrosion resistance and sulfide stress corrosion cracking resistance. . In addition, Preferably it is 0.02% or less.

S:0.005%以下
Sは、パイプ製造過程において鋼の熱間加工性を著しく劣化させる元素であり、可及的に少なくすることが望ましいが、0.005%以下に低減すれば通常工程でのパイプ製造が可能となることから、Sは0.005%以下に限定した。なお、好ましくは0.003%以下である。
Cr:14.0〜18.0%
Crは、保護被膜を形成して耐食性を向上させる元素であり、とくに耐CO2腐食性、耐CO2応力腐食割れ性の向上に寄与する主要な元素であり、特に高温における耐食性の観点からは14.0%以上の含有を必要とする。一方、18.0%を超える含有は、熱間加工性および強度を低下させる。このため、Crは14.0〜18.0%に限定した。
S: 0.005% or less S is an element that significantly deteriorates the hot workability of steel in the pipe manufacturing process. It is desirable to reduce it as much as possible, but if it is reduced to 0.005% or less, pipe manufacturing in the normal process Therefore, S is limited to 0.005% or less. In addition, Preferably it is 0.003% or less.
Cr: 14.0 to 18.0%
Cr is to form a protective coating is an element for improving corrosion resistance, particularly resistance CO 2 corrosion is a major element contributing to the improvement of the resistance to CO 2 stress corrosion cracking resistance, from the viewpoint of corrosion resistance, especially at elevated temperatures It needs to contain 14.0% or more. On the other hand, if the content exceeds 18.0%, the hot workability and strength are lowered. For this reason, Cr was limited to 14.0 to 18.0%.

Ni:5.0〜8.0%
Niは、保護被膜を強固にして、耐CO2腐食性、耐CO2応力腐食割れ性、耐孔食性および耐硫化物応力腐食割れ性を高める作用を有するとともに、さらに固溶強化により鋼の強度を増加させる元素である。このような効果は、この発明が対象としている使用環境下では、5.0%以上の含有で得られるが、8.0%を超える含有はマルテンサイト組織の安定性を損ない、強度を低下させる。このため、Niは5.0〜8.0%の範囲に限定した。
Ni: 5.0-8.0%
Ni is to strengthen the protective film, resistance to CO 2 corrosion resistance and CO 2 stress corrosion cracking resistance, and has a function of improving pitting resistance and sulfide stress corrosion cracking resistance, further by solid solution strengthening of the steel strength Is an element that increases. Such an effect is obtained at a content of 5.0% or more under the usage environment targeted by the present invention, but a content exceeding 8.0% impairs the stability of the martensite structure and lowers the strength. For this reason, Ni was limited to the range of 5.0 to 8.0%.

Mo:1.5〜3.5%
Moは、Cl-による孔食に対する抵抗性を増加させる元素であり、この発明では、1.5%以上の含有を必要とする。Moの含有量が1.5%未満ではこの発明が対象としている高温の苛酷な腐食環境下での耐食性が充分とはいえない。一方、3.5%を超える含有は、多量のフェライトの発生を招き、耐CO2腐食性、耐CO2応力腐食割れ性および熱間加工性が低下するとともに、材料コストの高騰を招く。このため、Moは1.5〜3.5%の範囲に限定した。
Mo: 1.5-3.5%
Mo is, Cl - is an element that increases resistance to pitting, in the present invention, the content thereof needs to be 1.5% or more. If the Mo content is less than 1.5%, the corrosion resistance under the high-temperature and severe corrosive environment targeted by the present invention is not sufficient. On the other hand, if the content exceeds 3.5%, a large amount of ferrite is generated, CO 2 corrosion resistance, CO 2 stress corrosion cracking resistance and hot workability are deteriorated, and material costs are increased. For this reason, Mo was limited to the range of 1.5 to 3.5%.

Cu:0.5〜3.5%
Cuは、保護皮膜を強固にして、鋼中への水素の侵入を抑制し、耐硫化物応力腐食割れ性を高める元素であり、0.5%以上の含有を必要とする。一方、3.5%を超える含有は、高温でのCuSの粒界析出を招き、熱間加工性が低下する。このため、Cuは0.5〜3.5%の範囲に限定した。なお、好ましくは0.5〜2.5%である。
Cu: 0.5-3.5%
Cu is an element that strengthens the protective film, suppresses hydrogen intrusion into the steel, and improves the resistance to sulfide stress corrosion cracking, and needs to be contained at 0.5% or more. On the other hand, if the content exceeds 3.5%, grain boundary precipitation of CuS occurs at a high temperature, and the hot workability decreases. For this reason, Cu was limited to the range of 0.5 to 3.5%. In addition, Preferably it is 0.5 to 2.5%.

N:0.005〜0.15%
Nは、耐孔食性を著しく向上させる元素であるが、このような効果は0.005%以上の含有で認められるが、0.15%を超える含有は、種々の窒化物を形成して靭性を劣化させる。このため、Nは0.005〜0.15%の範囲に限定した。なお、好ましくは0.01〜0.08%、より好ましくは0.02〜0.06%である。
N: 0.005-0.15%
N is an element that remarkably improves the pitting corrosion resistance. Such an effect is recognized when the content is 0.005% or more. However, when the content exceeds 0.15%, various nitrides are formed to deteriorate toughness. For this reason, N was limited to the range of 0.005 to 0.15%. In addition, Preferably it is 0.01 to 0.08%, More preferably, it is 0.02 to 0.06%.

O:0.006%以下
Oは、鋼中では各種酸化物として存在し、各種特性に悪影響を及ぼすため、できるだけ低減することが、特性向上の観点から望ましい。とくに、0.006%を超えて多くなると、熱間加工性、耐CO2応力腐食割れ性、耐孔食性、耐硫化物応力腐食割れ性および靭性を著しく低下させる。このため、Oは0.006%以下に限定した。
O: 0.006% or less O exists as various oxides in steel and adversely affects various properties. Therefore, it is desirable to reduce as much as possible from the viewpoint of improving properties. In particular, if it exceeds 0.006%, hot workability, CO 2 stress corrosion cracking resistance, pitting corrosion resistance, sulfide stress corrosion cracking resistance and toughness are significantly reduced. For this reason, O was limited to 0.006% or less.

Nb:0.20%以下、V:0.20%以下のうちから選ばれた1種または2種を、次(2)式
Nb+V ≧ 0.05%……(2)
を満足するように含有する。
Nb、Vはいずれも、鋼の強度を増加させる作用を有する元素であり、この発明で目標とする高強度を得るために、上記した(2)式を満足させるように、Nb、Vを単独もしくは両方で0.05%以上含有させる。なお、Nb、Vそれぞれを、0.2%超えて含有すると、靱性が低下し、この発明の目標である高靭性を確保できなくなる。このため、Nb、Vはそれぞれ0.20%以下に限定した。
One or two selected from Nb: 0.20% or less, V: 0.20% or less, the following formula (2)
Nb + V ≧ 0.05% …… (2)
Is contained so as to satisfy.
Nb and V are both elements that have the effect of increasing the strength of steel. In order to obtain the target high strength in the present invention, Nb and V are singly used so as to satisfy the above-described formula (2). Or, it is made to contain 0.05% or more in both. If each of Nb and V is contained in excess of 0.2%, the toughness is lowered and the high toughness that is the target of the present invention cannot be secured. For this reason, Nb and V are limited to 0.20% or less, respectively.

また、本発明では、Cr、Ni、Mo、Cuを、上記した範囲で、かつ次(1)式
Cr+2Ni+1.1Mo+0.7Cu ≦ 32.5 ……(1)
を満足するように調整して含有させる。本発明では、所望の高強度を得るために、マルテンサイト相を主相とする組織を確保する必要があり、Cr、Ni、Mo、Cuを(1)式が満足されるように含有させる。(1)式が満足されない場合には、組織がマルテンサイト相を主相とする組織とならず、所望の高強度が得られない。なお、ここで、「マルテンサイト相を主相とする組織」とは、マルテンサイト相が体積率で80%以上である場合をいうものとする。
Further, in the present invention, Cr, Ni, Mo, and Cu are within the above-mentioned range and the following formula (1)
Cr + 2Ni + 1.1Mo + 0.7Cu ≤ 32.5 (1)
The content is adjusted so as to satisfy. In the present invention, in order to obtain a desired high strength, it is necessary to secure a structure having a martensite phase as a main phase, and Cr, Ni, Mo, and Cu are contained so that the formula (1) is satisfied. When the formula (1) is not satisfied, the structure does not become a structure having a martensite phase as a main phase, and a desired high strength cannot be obtained. Here, “a structure having a martensite phase as a main phase” means that the martensite phase is 80% or more by volume.

Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下、W:3.0%以下のうちから選ばれた1種または2種以上
Ti、Zr、B、Wはいずれも、強度を増加させ、耐応力腐食割れ性を改善する作用を有する元素であり、必要に応じて選択して1種または2種を含有することができる。このような効果を得るためには、Ti:0.01%、Zr:0.01%、B:0.0005%、W:0.1%それぞれ以上含有することが望ましいが、Ti:0.3%、Zr:0.2%、B:0.01%,W:3.0%をそれぞれ超える含有は、靱性を低下させる。このため、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下、W:3.0%以下に限定することが好ましい。
One or more selected from Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less, W: 3.0% or less
Ti, Zr, B, and W are all elements that have the effect of increasing the strength and improving the resistance to stress corrosion cracking, and can be selected to contain one or two as required. In order to obtain such effects, it is desirable to contain Ti: 0.01%, Zr: 0.01%, B: 0.0005%, W: 0.1% or more respectively, but Ti: 0.3%, Zr: 0.2%, B: Inclusions exceeding 0.01% and W: 3.0% respectively reduce toughness. For this reason, it is preferable to limit to Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less, and W: 3.0% or less.

Ca:0.0005〜0.01%
Caは、SをCaSとして固定しS系介在物を球状化することにより、介在物の周囲のマトリックスの格子歪を小さくして、水素のトラップ能を低下する作用を有する元素であり、必要に応じて含有できる。このような効果を得るためには、0.0005%以上の含有することが好ましい。一方、0.01%を超える含有は、CaOの増加を招き、耐CO2腐食性、耐孔食性を低下させる。このため、Caは0.0005〜0.01%に限定することが好ましい。なお、より好ましくは0.001〜0.005%である。また、Caに代えてREMを含有してもよい。
Ca: 0.0005 to 0.01%
Ca is an element that has the action of fixing S as CaS and spheroidizing S-based inclusions to reduce the lattice strain of the matrix surrounding the inclusions and lower the hydrogen trapping ability. Can be contained depending on the case. In order to acquire such an effect, it is preferable to contain 0.0005% or more. On the other hand, a content exceeding 0.01% causes an increase in CaO and decreases the resistance to CO 2 corrosion and pitting corrosion. For this reason, it is preferable to limit Ca to 0.0005 to 0.01%. In addition, More preferably, it is 0.001 to 0.005%. Further, REM may be contained instead of Ca.

Al:0.05%以下
Alは、強力な脱酸作用を有する元素であり、このような効果を確保するためには、0.005%以上含有することが望ましいが、0.05%を超える含有は、靭性に悪影響を及ぼす。このため、Alは0.05%以下に限定することが好ましい。
上記した成分以外の残部は、Feおよび不可避的不純物からなる。
Al: 0.05% or less
Al is an element having a strong deoxidizing action, and in order to secure such an effect, it is desirable to contain 0.005% or more, but inclusion exceeding 0.05% adversely affects toughness. For this reason, Al is preferably limited to 0.05% or less.
The balance other than the components described above consists of Fe and inevitable impurities.

本発明のステンレス鋼管は、上記した組成を有し、かつ、マルテンサイト相を主相とし、第二相として体積率で3〜15%のオーステナイト相を含む組織を有する。マルテンサイト相を主相とする組織とすることにより、所望の高強度を有する鋼管となる。なお、ここでいう「主相」とは、体積率で80%以上を占める相をいうものとする。
本発明の鋼管の組織は、第二相をオーステナイト相とし、マルテンサイト相中に、オーステナイト相が析出した組織とする。オーステナイト相が、3%未満では、所望の高靭性を確保できなくなる。一方、オーステナイト相が15%を超えると、オーステナイト量が多くなりすぎて、所望の強度を確保できなくなる。このため、本発明の鋼管の組織は、マルテンサイト相を主相とし、第二相が体積率で3〜15%のオーステナイト相からなる組織とした。なお、本発明では、体積率で5%以下のフェライト相を含んでもよい。
The stainless steel pipe of the present invention has the above-described composition, and has a structure including a martensite phase as a main phase and a second phase as an austenite phase having a volume ratio of 3 to 15%. By making the structure having a martensite phase as a main phase, a steel pipe having a desired high strength is obtained. Here, the “main phase” means a phase occupying 80% or more by volume ratio.
The structure of the steel pipe of the present invention is a structure in which the second phase is an austenite phase and an austenite phase is precipitated in the martensite phase. If the austenite phase is less than 3%, the desired high toughness cannot be ensured. On the other hand, if the austenite phase exceeds 15%, the amount of austenite becomes too large to secure the desired strength. For this reason, the structure of the steel pipe of the present invention is a structure in which the martensite phase is the main phase and the second phase is an austenite phase having a volume ratio of 3 to 15%. In the present invention, a ferrite phase having a volume ratio of 5% or less may be included.

つぎに、本発明鋼管の好ましい製造方法について説明する。
上記した組成を有する溶鋼を、転炉、電気炉、真空溶解炉等の通常の溶製方法で溶製し、連続鋳造法、造塊−分塊圧延法等の通常の方法でビレット等の鋼管素材とすることが好ましい。ついで、これら鋼管素材を加熱し、通常のマンネスマン−プラグミル方式、あるいはマンネスマン−マンドレルミル方式の製造工程を用いて熱間加工し造管して、所望の寸法の継目無鋼管とする。造管後、継目無鋼管は、空冷以上の冷却速度で150℃以下の温度まで冷却することが好ましい。
Below, the preferable manufacturing method of this invention steel pipe is demonstrated.
Molten steel having the above composition is melted by a normal melting method such as a converter, an electric furnace, a vacuum melting furnace, etc., and a steel pipe such as a billet by a normal method such as a continuous casting method or an ingot-bundling rolling method. It is preferable to use a raw material. Subsequently, these steel pipe materials are heated and hot-worked and piped using a normal Mannesmann-plug mill system or Mannesmann-Mandrel mill system manufacturing process to obtain seamless steel pipes of desired dimensions. After pipe making, the seamless steel pipe is preferably cooled to a temperature of 150 ° C. or lower at a cooling rate of air cooling or higher.

上記したこの発明範囲の組成を有する継目無鋼管であれば、熱間加工後、空冷以上の冷却速度で150℃以下の温度まで冷却することにより、マルテンサイト相を主相とする組織とすることができるが、造管後、空冷以上の冷却速度での冷却に続いて、さらに800℃以上の温度に加熱し続いて空冷以上の冷却速度で150℃以下の温度まで冷却する焼入れ処理を施すことが好ましい。これにより、高強度化が達成できる。
なお、上記した範囲の組成を有する鋼素材を用いて、通常の工程に従い、電縫鋼管、UOE鋼管を製造し、油井用鋼管とすることも可能である。この場合は、造管後の鋼管に、800℃以上の温度に再加熱した後、空冷以上の冷却速度で150℃以下の温度まで冷却する焼入れ処理を施すことが好ましい。
If it is a seamless steel pipe having the composition of the above-mentioned scope of the present invention, after hot working, it is cooled to a temperature of 150 ° C. or lower at a cooling rate of air cooling or higher, thereby forming a structure having a martensite phase as a main phase. However, after pipe forming, after cooling at a cooling rate higher than air cooling, it is further heated to a temperature of 800 ° C or higher and then cooled to a temperature of 150 ° C or lower at a cooling rate higher than air cooling. Is preferred. Thereby, high strength can be achieved.
It is also possible to produce ERW steel pipe and UOE steel pipe by using a steel material having the composition in the above-described range according to a normal process, and to make an oil well steel pipe. In this case, it is preferable to subject the steel pipe after pipe formation to reheating to a temperature of 800 ° C. or higher and then quenching to a temperature of 150 ° C. or lower at a cooling rate of air cooling or higher.

造管後、150℃以下の温度まで冷却された鋼管、あるいは焼入れ処理を施され150℃以下の温度まで冷却された鋼管は、ついで、加熱温度Tを500〜580℃の範囲の温度とし、かつ加熱温度Tと加熱保持時間tとが次(3)式
15200 ≦ T(20+logt) ≦ 16800 ……(3)
(ここで、T:加熱温度(K)、t:加熱保持時間(h))
を満足する焼戻処理を施される。
After the pipe making, the steel pipe cooled to a temperature of 150 ° C. or lower, or the steel pipe which has been subjected to quenching treatment and cooled to a temperature of 150 ° C. or lower is then heated to a temperature in the range of 500 to 580 ° C., and The heating temperature T and the heating holding time t are the following formula
15200 ≦ T (20 + logt) ≦ 16800 ...... (3)
(Where T: heating temperature (K), t: heating holding time (h))
A tempering treatment that satisfies

造管後あるいは焼入れ処理後の鋼管温度が150℃を超える温度のまま焼戻処理を行なうと、組織が十分にマルテンサイト化しないため、所望の高強度を確保することができない。このため、鋼管を、造管後あるいは焼入れ処理時に、150℃以下の温度になるまで冷却するものとする。
焼戻処理の加熱温度Tが、500℃未満では、焼戻が不十分となり所望の高靭性が確保できない。一方、加熱温度Tが、580℃を超えて高温となると、強度が低下し、所望の高強度を確保できなくなる。このため、焼戻処理の加熱温度Tは500〜580℃の範囲の温度とすることが好ましい。
If the tempering process is performed with the steel pipe temperature after pipe forming or after quenching exceeding 150 ° C., the structure does not sufficiently martensite, and thus a desired high strength cannot be ensured. For this reason, a steel pipe shall be cooled until it becomes the temperature of 150 degrees C or less after pipe forming or at the time of hardening process.
If the heating temperature T in the tempering treatment is less than 500 ° C., the tempering is insufficient and the desired high toughness cannot be ensured. On the other hand, when the heating temperature T exceeds 580 ° C. and becomes a high temperature, the strength decreases, and a desired high strength cannot be secured. For this reason, it is preferable that the heating temperature T of the tempering treatment is set to a temperature in the range of 500 to 580 ° C.

焼戻処理の加熱温度T(K)が、上記した範囲内の温度でかつ、保持時間t(h)との関係式:T(20+logt)が15200未満では、析出物が十分に析出しないため、所望の高強度を確保することができない。一方、T(20+logt)が16800を超えて大きくなると、マルテンサイトの強度が低下し、所望の高強度を確保できなくなる。このため、焼戻処理は、(3)式を満足する加熱温度、保持時間の範囲内で行なうこととした。   When the heating temperature T (K) in the tempering process is a temperature within the above-described range and the relational expression with the holding time t (h): T (20 + logt) is less than 15200, the precipitate is not sufficiently precipitated. The desired high strength cannot be ensured. On the other hand, if T (20 + logt) is larger than 16800, the strength of martensite is lowered, and a desired high strength cannot be secured. For this reason, the tempering treatment is performed within the range of the heating temperature and the holding time that satisfy the expression (3).

さらに、実施例に基づき本発明をさらに詳細に説明する。   Furthermore, based on an Example, this invention is demonstrated still in detail.

表1に示す組成の溶鋼を、真空溶解炉で溶製し、十分に脱ガスした後、100キロ鋼塊とし、研究用モデルシームレス圧延機により造管し、造管後、表2に示す温度まで空冷し、継目無鋼管(外径3.3in×肉厚0.5in)とした。
次いで各鋼管から試験片素材(長さ300mm)を切り出し、該試験片素材に表2に示す条件で焼入れ処理および焼戻処理を施した。なお、一部は、焼入れ処理を行なわなかった。
Molten steel having the composition shown in Table 1 is melted in a vacuum melting furnace, fully degassed, made into a 100 kg steel ingot, piped by a model seamless rolling mill for research, and after the pipe making, the temperatures shown in Table 2 Air-cooled to a seamless steel pipe (outer diameter 3.3in x wall thickness 0.5in).
Next, a test piece material (300 mm in length) was cut out from each steel pipe, and the test piece material was subjected to quenching treatment and tempering treatment under the conditions shown in Table 2. Some of the samples were not quenched.

上記した処理を施された試験片素材から、APIの規定に準拠して、引張試験片(弧状試験片)を採取し、APIの規定に準拠して、引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を求めた。
また、上記した処理を施された試験片素材から、JIS Z 2242の規定に準拠して、シャルピー衝撃試験片(Vノッチ試験片)を採取し、JIS Z 2242 の規定に準拠して、−40℃での吸収エネルギーvE-40(J)を求め、靭性を評価した。なお、vE-40は試験片3本の平均値とした。
Tensile test specimens (arc-shaped specimens) are collected from the specimen material that has been subjected to the above treatment in accordance with the API regulations, tensile tests are conducted in accordance with the API regulations, and tensile properties (yield) Strength YS and tensile strength TS) were determined.
In addition, Charpy impact test specimens (V-notch test specimens) are collected from the test specimen materials subjected to the above treatment in accordance with the provisions of JIS Z 2242 and −40 in accordance with the provisions of JIS Z 2242. Absorbed energy vE -40 (J) at ° C was determined to evaluate toughness. In addition, vE- 40 was made into the average value of three test pieces.

また、上記した処理を施された試験片素材から、腐食試験片(厚さ3mm×幅30mm×長さ40mm)を機械加工により採取した。腐食試験は、オートクレーブ中に保持された試験液:20%NaCl水溶液(液温:200℃、30気圧のCO2ガス雰囲気)に腐食試験片を浸漬し、浸漬期間を2週間として実施した。腐食試験後、試験片重量を測定し、腐食試験による重量減を求め、腐食速度を算出した。また、腐食試験後の試験片表面について10倍のルーペ観察を行い、孔食発生の有無を調査した。得られた腐食速度および孔食発生の有無で、耐CO2腐食性を評価した。 Further, corrosion test pieces (thickness 3 mm × width 30 mm × length 40 mm) were collected from the test piece material subjected to the above-described treatment by machining. The corrosion test was performed by immersing the corrosion test piece in a test solution: 20% NaCl aqueous solution (liquid temperature: 200 ° C., CO 2 gas atmosphere of 30 atm) held in the autoclave, and setting the immersion period to 2 weeks. After the corrosion test, the weight of the test piece was measured, the weight loss by the corrosion test was determined, and the corrosion rate was calculated. In addition, the surface of the test piece after the corrosion test was observed with a magnifying glass 10 times to investigate the occurrence of pitting corrosion. The CO 2 corrosion resistance was evaluated based on the obtained corrosion rate and the presence or absence of pitting corrosion.

得られた結果を表2に示す。   The obtained results are shown in Table 2.

Figure 2007332442
Figure 2007332442

Figure 2007332442
Figure 2007332442

本発明例はいずれも、降伏強さ:965MPa以上の超高強度を有し、vE-40:50J以上の高靭性を示し、かつ炭酸ガスを含む200℃での高温腐食環境においても、腐食速度は小さく、また、孔食の発生もなく、優れた耐CO2腐食性を有していることがわかる。一方、本発明の範囲を外れる比較例は、降伏応力が965MPa未満であるか、vE-40が50J未満であるか、腐食速度が大きく、孔食の発生も見られ耐CO2腐食性が低下しているか、である。 Each of the inventive examples has an ultra-high strength of yield strength: 965 MPa or more, high toughness of vE- 40 : 50 J or more, and corrosion rate even in a high temperature corrosion environment at 200 ° C. containing carbon dioxide gas. Is small, does not cause pitting, and has excellent CO 2 corrosion resistance. On the other hand, in the comparative example out of the scope of the present invention, the yield stress is less than 965 MPa, the vE- 40 is less than 50 J, the corrosion rate is high, the occurrence of pitting corrosion is observed, and the CO 2 corrosion resistance is lowered. Is it?

このように、本発明になる鋼管は、降伏強さ:965MPa以上の超高強度、vE-40:50J以上の高靱性を有し、かつ炭酸ガスを含む200℃までの高温腐食環境下でも優れた耐CO2腐食性を有する鋼管である。したがって、本発明になる鋼管は、炭酸ガスを含む200℃までの高温油井環境でも油井用鋼管として十分使用可能であることがわかる。 Thus, the steel pipe according to the present invention has an ultra-high yield strength of 965 MPa or more, a high toughness of vE -40 : 50 J or more, and is excellent even in a high-temperature corrosion environment up to 200 ° C. containing carbon dioxide gas. It is a steel pipe with CO 2 corrosion resistance. Therefore, it can be seen that the steel pipe according to the present invention can be sufficiently used as an oil well steel pipe even in a high temperature oil well environment containing carbon dioxide gas up to 200 ° C.

Claims (9)

mass%で、
C:0.05%以下、 Si:0.50%以下、
Mn:0.20〜1.80%、 P:0.03%以下、
S:0.005%以下、 Cr:14.0〜18.0%、
Ni:5.0〜8.0%、 Mo:1.5〜3.5%、
Cu:0.5〜3.5%、 N:0.005〜0.15%、
O:0.006%以下
を含み、かつCr、Ni、Mo、Cuを下記(1)式を満足するように含有し、さらにNb:0.20%以下、V:0.20%以下のうちから選ばれた1種または2種を下記(2)式を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有し、マルテンサイト相を主相とし、第二相として体積率で3〜15%のオーステナイト相を含む組織を有し、降伏強さYSが965MPa以上、−40℃におけるシャルピー吸収エネルギーvE-40が50J以上であることを特徴とする耐食性に優れた油井用高靭性超高強度ステンレス鋼管。

Cr+2Ni+1.1Mo+0.7Cu ≦ 32.5 ……(1)
Nb+V ≧ 0.05% ……(2)
ここで、Cr、Ni、Mo、Cu 、Nb、V:各元素の含有量(mass%)
mass%
C: 0.05% or less, Si: 0.50% or less,
Mn: 0.20 to 1.80%, P: 0.03% or less,
S: 0.005% or less, Cr: 14.0 to 18.0%,
Ni: 5.0-8.0%, Mo: 1.5-3.5%,
Cu: 0.5 to 3.5%, N: 0.005 to 0.15%,
O: 0.006% or less, Cr, Ni, Mo, Cu is contained so as to satisfy the following formula (1), and Nb: 0.20% or less, V: 0.20% or less Or 2 types are contained so that the following (2) formula may be satisfied, it has the composition which consists of remainder Fe and an unavoidable impurity, makes a martensite phase the main phase and is 3 to 15% by volume as a 2nd phase. High-toughness ultra-high-strength stainless steel pipe for oil wells with excellent corrosion resistance, characterized by having a structure containing an austenite phase, yield strength YS of 965 MPa or more, and Charpy absorbed energy vE- 40 at -40 ° C of 50 J or more .
Record
Cr + 2Ni + 1.1Mo + 0.7Cu ≤ 32.5 (1)
Nb + V ≧ 0.05% (2)
Here, Cr, Ni, Mo, Cu, Nb, V: Content of each element (mass%)
前記組成に加えてさらに、mass%で、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下、W:3.0%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1に記載の油井用高靭性超高強度ステンレス鋼管。   In addition to the above-described composition, it may further contain at least one selected from mass%, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less, W: 3.0% or less. The high-toughness ultra-high-strength stainless steel pipe for oil wells according to claim 1. 前記組成に加えてさらに、mass%で、Ca:0.0005〜0.01%を含有することを特徴とする請求項1または2に記載の油井用高靭性超高強度ステンレス鋼管。   The high-toughness ultra-high-strength stainless steel pipe for oil wells according to claim 1 or 2, further comprising Ca: 0.0005 to 0.01% in mass% in addition to the composition. 前記組成に加えてさらに、mass%で、Al:0.05%以下を含有することを特徴とする請求項1ないし3のいずれかに記載の油井用高靭性超高強度ステンレス鋼管。   The high toughness ultra-high-strength stainless steel pipe for oil wells according to any one of claims 1 to 3, further comprising, in addition to the composition, mass% and Al: 0.05% or less. mass%で、
C:0.05%以下、 Si:0.50%以下、
Mn:0.20〜1.80%、 P:0.03%以下、
S:0.005%以下、 Cr:14.0〜18.0%、
Ni:5.0〜8.0%、 Mo:1.5〜3.5%、
Cu:0.5〜3.5%、 N:0.005〜0.15%、
O:0.006%以下
を含み、かつCr、Ni、Mo、Cuを下記(1)式を満足するように含有し、さらにNb:0.20%以下、V:0.20%以下のうちから選ばれた1種または2種を下記(2)式を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材を造管し鋼管とし150℃以下まで冷却したのち、ついで、該鋼管に、加熱温度Tを500〜580℃の範囲の温度とし、かつ加熱温度Tと加熱保持時間tとが下記(3)式を満足する焼戻処理を施し、降伏強さYSが965MPa以上、−40℃におけるシャルピー吸収エネルギーvE-40が50J以上を有するステンレス鋼管とすることを特徴とする耐食性に優れた油井用高靭性超高強度ステンレス鋼管の製造方法。

Cr+2Ni+1.1Mo+0.7Cu ≦ 32.5 ……(1)
ここで、Cr、Ni、Mo、Cu :各元素の含有量(mass%)
Nb+V ≧ 0.05% ……(2)
ここで、Nb、V:各元素の含有量(mass%)
15200 ≦ T(20+logt) ≦ 16800 ……(3)
ここで、T:加熱温度(K)、t:加熱保持時間(h)
mass%
C: 0.05% or less, Si: 0.50% or less,
Mn: 0.20 to 1.80%, P: 0.03% or less,
S: 0.005% or less, Cr: 14.0 to 18.0%,
Ni: 5.0-8.0%, Mo: 1.5-3.5%,
Cu: 0.5 to 3.5%, N: 0.005 to 0.15%,
O: 0.006% or less, Cr, Ni, Mo, Cu is contained so as to satisfy the following formula (1), and Nb: 0.20% or less, V: 0.20% or less Alternatively, two types are contained so as to satisfy the following formula (2), a steel material having a composition composed of the remaining Fe and unavoidable impurities is formed into a steel pipe, cooled to 150 ° C. or lower, and then, to the steel pipe, The heating temperature T is set to a temperature in the range of 500 to 580 ° C., and the tempering treatment is performed so that the heating temperature T and the heating holding time t satisfy the following expression (3). The yield strength YS is 965 MPa or more, −40 ° C. A stainless steel pipe having a Charpy absorbed energy vE- 40 of 50 J or more in the production method of a high toughness ultra-high strength stainless steel pipe for oil wells excellent in corrosion resistance.
Record
Cr + 2Ni + 1.1Mo + 0.7Cu ≤ 32.5 (1)
Here, Cr, Ni, Mo, Cu: Content of each element (mass%)
Nb + V ≧ 0.05% (2)
Here, Nb, V: Content of each element (mass%)
15200 ≦ T (20 + logt) ≦ 16800 ...... (3)
Where T: heating temperature (K), t: heating holding time (h)
前記造管後で、前記焼戻処理前に、前記鋼管に、800℃以上の温度に加熱し続いて空冷以上の冷却速度で150℃以下の温度まで冷却する焼入れ処理を施すことを特徴とする請求項5に記載の油井用高靭性超高強度ステンレス鋼管の製造方法。   After the pipe making and before the tempering treatment, the steel pipe is subjected to a quenching treatment in which the steel pipe is heated to a temperature of 800 ° C. or higher and subsequently cooled to a temperature of 150 ° C. or lower at a cooling rate of air cooling or higher. The manufacturing method of the high toughness ultra-high-strength stainless steel pipe for oil wells of Claim 5. 前記組成に加えてさらに、mass%で、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下、W:3.0%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項5または6に記載の油井用高靭性超高強度ステンレス鋼管の製造方法。   In addition to the above composition, it may further contain at least one selected from mass%, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less, W: 3.0% or less. The method for producing a high toughness ultra-high strength stainless steel pipe for oil wells according to claim 5 or 6. 前記組成に加えてさらに、mass%で、Ca:0.0005〜0.01%を含有することを特徴とする請求項5ないし7のいずれかに記載の油井用高靭性超高強度ステンレス鋼管の製造方法。   The method for producing a high toughness ultra-high strength stainless steel pipe for oil wells according to any one of claims 5 to 7, further comprising Ca: 0.0005 to 0.01% in mass% in addition to the composition. 前記組成に加えてさらに、mass%で、Al:0.05%以下を含有することを特徴とする請求項5ないし8のいずれかに記載の油井用高靭性超高強度ステンレス鋼管。   The high toughness ultra-high strength stainless steel pipe for oil wells according to any one of claims 5 to 8, further comprising, in addition to the composition, mass% and Al: 0.05% or less.
JP2006167680A 2006-06-16 2006-06-16 High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same Active JP4978073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167680A JP4978073B2 (en) 2006-06-16 2006-06-16 High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167680A JP4978073B2 (en) 2006-06-16 2006-06-16 High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007332442A true JP2007332442A (en) 2007-12-27
JP4978073B2 JP4978073B2 (en) 2012-07-18

Family

ID=38932193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167680A Active JP4978073B2 (en) 2006-06-16 2006-06-16 High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4978073B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119048A1 (en) 2008-03-28 2009-10-01 住友金属工業株式会社 Stainless steel for use in oil well tube
WO2010050519A1 (en) 2008-10-30 2010-05-06 住友金属工業株式会社 High strength stainless steel piping having outstanding resistance to sulphide stress cracking and resistance to high temperature carbon dioxide corrosion
JP2010242162A (en) * 2009-04-06 2010-10-28 Jfe Steel Corp Cr-CONTAINING STEEL PIPE FOR CARBON DIOXIDE GAS INJECTION AT SUPER CRITICAL-PRESSURE
WO2010134498A1 (en) 2009-05-18 2010-11-25 住友金属工業株式会社 Stainless steel for oil well, stainless steel pipe for oil well, and process for production of stainless steel for oil well
WO2011136175A1 (en) 2010-04-28 2011-11-03 住友金属工業株式会社 High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well
CN102534418A (en) * 2012-02-29 2012-07-04 宝山钢铁股份有限公司 Martensitic stainless steel for oil casing and manufacturing method thereof
JP2012136742A (en) * 2010-12-27 2012-07-19 Jfe Steel Corp High-strength martensitic-stainless steel seamless pipe for oil well
CN103233180A (en) * 2013-05-17 2013-08-07 宝山钢铁股份有限公司 High-strength dual-phase stainless steel tube and preparation method thereof
WO2013146046A1 (en) 2012-03-26 2013-10-03 新日鐵住金株式会社 Stainless steel for oil wells and stainless steel pipe for oil wells
WO2017038178A1 (en) * 2015-08-28 2017-03-09 新日鐵住金株式会社 Stainless steel pipe and method for producing same
WO2018079111A1 (en) 2016-10-25 2018-05-03 Jfeスチール株式会社 Seamless pipe of martensitic stainless steel for oil well pipe, and method for producing seamless pipe
WO2019065114A1 (en) 2017-09-29 2019-04-04 Jfeスチール株式会社 Oil well pipe martensitic stainless seamless steel pipe and production method for same
WO2019065116A1 (en) 2017-09-29 2019-04-04 Jfeスチール株式会社 Oil well pipe martensitic stainless seamless steel pipe and production method for same
EP3380641A4 (en) * 2015-11-25 2019-06-05 Questek Innovations LLC Grain boundary cohesion enhanced sulfide stress cracking (ssc)-resistant steel alloys
WO2019225280A1 (en) 2018-05-25 2019-11-28 Jfeスチール株式会社 Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
WO2019225281A1 (en) 2018-05-25 2019-11-28 Jfeスチール株式会社 Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
WO2021218932A1 (en) * 2020-04-30 2021-11-04 宝山钢铁股份有限公司 High strength, high-temperature corrosion resistant martensitic stainless steel and manufacturing method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107198A (en) * 1999-10-07 2001-04-17 Nippon Steel Corp Martensitic stainless steel linepipe excellent in ssc resistance and its producing method
JP2002004009A (en) * 2000-06-19 2002-01-09 Kawasaki Steel Corp High strength martensitic stainless steel tube for oil well and its production method
WO2004001082A1 (en) * 2002-06-19 2003-12-31 Jfe Steel Corporation Stainless-steel pipe for oil well and process for producing the same
JP2004107773A (en) * 2002-09-20 2004-04-08 Jfe Steel Kk Stainless steel pipe for line pipe having excellent corrosion resistance
JP2005105357A (en) * 2003-09-30 2005-04-21 Jfe Steel Kk High-strength stainless steel pipe superior in corrosion resistance for oil well
JP2005336599A (en) * 2003-10-31 2005-12-08 Jfe Steel Kk High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107198A (en) * 1999-10-07 2001-04-17 Nippon Steel Corp Martensitic stainless steel linepipe excellent in ssc resistance and its producing method
JP2002004009A (en) * 2000-06-19 2002-01-09 Kawasaki Steel Corp High strength martensitic stainless steel tube for oil well and its production method
WO2004001082A1 (en) * 2002-06-19 2003-12-31 Jfe Steel Corporation Stainless-steel pipe for oil well and process for producing the same
JP2004107773A (en) * 2002-09-20 2004-04-08 Jfe Steel Kk Stainless steel pipe for line pipe having excellent corrosion resistance
JP2005105357A (en) * 2003-09-30 2005-04-21 Jfe Steel Kk High-strength stainless steel pipe superior in corrosion resistance for oil well
JP2005336599A (en) * 2003-10-31 2005-12-08 Jfe Steel Kk High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256225A4 (en) * 2008-03-28 2017-01-04 Nippon Steel & Sumitomo Metal Corporation Stainless steel for use in oil well tube
WO2009119048A1 (en) 2008-03-28 2009-10-01 住友金属工業株式会社 Stainless steel for use in oil well tube
WO2010050519A1 (en) 2008-10-30 2010-05-06 住友金属工業株式会社 High strength stainless steel piping having outstanding resistance to sulphide stress cracking and resistance to high temperature carbon dioxide corrosion
US8608872B2 (en) 2008-10-30 2013-12-17 Nippon Steel & Sumitomo Metal Corporation High-strength stainless steel pipe excellent in sulfide stress cracking resistance and high-temperature carbonic-acid gas corrosion resistance
JP2010242162A (en) * 2009-04-06 2010-10-28 Jfe Steel Corp Cr-CONTAINING STEEL PIPE FOR CARBON DIOXIDE GAS INJECTION AT SUPER CRITICAL-PRESSURE
US9109268B2 (en) 2009-05-18 2015-08-18 Nippon Steel & Sumitomo Metal Corporation Stainless steel for oil well, stainless steel pipe for oil well, and method of manufacturing stainless steel for oil well
WO2010134498A1 (en) 2009-05-18 2010-11-25 住友金属工業株式会社 Stainless steel for oil well, stainless steel pipe for oil well, and process for production of stainless steel for oil well
JP4930654B2 (en) * 2009-05-18 2012-05-16 住友金属工業株式会社 Stainless steel for oil well, stainless steel pipe for oil well, and method for producing stainless steel for oil well
AU2010250501B2 (en) * 2009-05-18 2013-07-25 Nippon Steel Corporation Stainless steel for oil well, stainless steel pipe for oil well, and process for production of stainless steel for oil well
US9322087B2 (en) 2009-05-18 2016-04-26 Nippon Steel & Sumitomo Metal Corporation Stainless steel for oil well, stainless steel pipe for oil well, and method of manufacturing stainless steel for oil well
WO2011136175A1 (en) 2010-04-28 2011-11-03 住友金属工業株式会社 High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well
US9303296B2 (en) 2010-04-28 2016-04-05 Nippon Steel & Sumitomo Metal Corporation High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well
JP2012136742A (en) * 2010-12-27 2012-07-19 Jfe Steel Corp High-strength martensitic-stainless steel seamless pipe for oil well
CN102534418A (en) * 2012-02-29 2012-07-04 宝山钢铁股份有限公司 Martensitic stainless steel for oil casing and manufacturing method thereof
US9783876B2 (en) 2012-03-26 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Stainless steel for oil wells and stainless steel pipe for oil wells
WO2013146046A1 (en) 2012-03-26 2013-10-03 新日鐵住金株式会社 Stainless steel for oil wells and stainless steel pipe for oil wells
CN103233180A (en) * 2013-05-17 2013-08-07 宝山钢铁股份有限公司 High-strength dual-phase stainless steel tube and preparation method thereof
WO2017038178A1 (en) * 2015-08-28 2017-03-09 新日鐵住金株式会社 Stainless steel pipe and method for producing same
JPWO2017038178A1 (en) * 2015-08-28 2017-12-07 新日鐵住金株式会社 Stainless steel pipe and manufacturing method thereof
CN107849658A (en) * 2015-08-28 2018-03-27 新日铁住金株式会社 Stainless steel tube and its manufacture method
CN107849658B (en) * 2015-08-28 2020-02-18 日本制铁株式会社 Stainless steel pipe and method for manufacturing same
EP3380641A4 (en) * 2015-11-25 2019-06-05 Questek Innovations LLC Grain boundary cohesion enhanced sulfide stress cracking (ssc)-resistant steel alloys
WO2018079111A1 (en) 2016-10-25 2018-05-03 Jfeスチール株式会社 Seamless pipe of martensitic stainless steel for oil well pipe, and method for producing seamless pipe
WO2019065114A1 (en) 2017-09-29 2019-04-04 Jfeスチール株式会社 Oil well pipe martensitic stainless seamless steel pipe and production method for same
WO2019065116A1 (en) 2017-09-29 2019-04-04 Jfeスチール株式会社 Oil well pipe martensitic stainless seamless steel pipe and production method for same
US11401570B2 (en) 2017-09-29 2022-08-02 Jfe Steel Corporation Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
US11827949B2 (en) 2017-09-29 2023-11-28 Jfe Steel Corporation Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
WO2019225280A1 (en) 2018-05-25 2019-11-28 Jfeスチール株式会社 Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
WO2019225281A1 (en) 2018-05-25 2019-11-28 Jfeスチール株式会社 Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
US11773461B2 (en) 2018-05-25 2023-10-03 Jfe Steel Corporation Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
WO2021218932A1 (en) * 2020-04-30 2021-11-04 宝山钢铁股份有限公司 High strength, high-temperature corrosion resistant martensitic stainless steel and manufacturing method therefor

Also Published As

Publication number Publication date
JP4978073B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4978073B2 (en) High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same
JP5145793B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP4893196B2 (en) High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance
JP5092204B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability
EP2947167B1 (en) Stainless steel seamless tube for use in oil well and manufacturing process therefor
JP5446335B2 (en) Evaluation method of high strength stainless steel pipe for oil well
JP5765036B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
WO2005017222A1 (en) High strength stainless steel pipe excellent in corrosion resistance for use in oil well and method for production thereof
JPWO2004001082A1 (en) Stainless steel pipe for oil well and manufacturing method thereof
WO2013190834A1 (en) High-strength stainless steel seamless pipe having excellent corrosion resistance for oil well, and method for manufacturing same
JP4462005B2 (en) High strength stainless steel pipe for line pipe with excellent corrosion resistance and method for producing the same
JP5582307B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
WO2018079111A1 (en) Seamless pipe of martensitic stainless steel for oil well pipe, and method for producing seamless pipe
JP6237873B2 (en) High strength stainless steel seamless steel pipe for oil well
WO2005042793A1 (en) High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
JP7315097B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
CN112166205A (en) Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing same
WO2015033518A1 (en) Method for producing high-strength stainless steel pipe, and high-strength stainless steel pipe
JP4978070B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability
JP4470617B2 (en) High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance
JP5162820B2 (en) Stainless steel pipe for oil well pipes with excellent pipe expandability
WO2006117926A1 (en) Stainless steel pipe for oil well excellent in enlarging characteristics
JP2002004009A (en) High strength martensitic stainless steel tube for oil well and its production method
JP4289109B2 (en) High strength stainless steel pipe for oil well with excellent corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4978073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250