JP2010242162A - Cr-CONTAINING STEEL PIPE FOR CARBON DIOXIDE GAS INJECTION AT SUPER CRITICAL-PRESSURE - Google Patents

Cr-CONTAINING STEEL PIPE FOR CARBON DIOXIDE GAS INJECTION AT SUPER CRITICAL-PRESSURE Download PDF

Info

Publication number
JP2010242162A
JP2010242162A JP2009092054A JP2009092054A JP2010242162A JP 2010242162 A JP2010242162 A JP 2010242162A JP 2009092054 A JP2009092054 A JP 2009092054A JP 2009092054 A JP2009092054 A JP 2009092054A JP 2010242162 A JP2010242162 A JP 2010242162A
Authority
JP
Japan
Prior art keywords
carbon dioxide
less
steel pipe
composition
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009092054A
Other languages
Japanese (ja)
Inventor
Mitsuo Kimura
光男 木村
Takeshi Shimamoto
健 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009092054A priority Critical patent/JP2010242162A/en
Publication of JP2010242162A publication Critical patent/JP2010242162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel pipe superior in high-pressure carbon dioxide gas corrosion resistance. <P>SOLUTION: The steel pipe includes by mass%, 0.05% or less C, 0.50% or less Si, 0.10-1.80% Mn, 0.03% or less P, 0.005% or less S, 11.5-16.0% Cr, 2.5-6.5% Ni, 0.5-3.0% Mo, 0.05% or less Al and 0.15% or less N while adjusting Cr, Ni, Mo and Cu so as to satisfy Cr+0.2Ni+3Mo+0.3Cu≥15.5, and adjusting Cr, Ni, Mo, Cu and C according to the used atmosphere so as to satisfy Cr+Ni+2.5Mo+0.5Cu-10C≥log�[Cl<SP>-</SP>]×(P<SB>CO2</SB>)}×T/60, wherein [Cl<SP>-</SP>] represents chloride ion concentration (mass ppm) in the used atmosphere; P<SB>CO2</SB>represents the partial pressure (MPa) of carbon dioxide gas in the used atmosphere; and T represents temperature (°C) of the used atmosphere. The steel pipe can further include a predetermined amount of Cu, Nb, V, Ti and Ca. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭酸ガスインジェクション用素材として好適な、Cr含有鋼管に係り、とくに180℃以下の温度で、かつ10〜100MPa(100超〜1000気圧)という高い分圧の超臨界圧炭酸ガスを含む厳しい腐食環境用として好適な、耐高圧炭酸ガス腐食性に優れたCr含有鋼管に関する。   The present invention relates to a Cr-containing steel pipe suitable as a carbon dioxide injection material, and particularly includes supercritical carbon dioxide at a temperature of 180 ° C. or lower and a high partial pressure of 10 to 100 MPa (over 100 to 1000 atm). The present invention relates to a Cr-containing steel pipe excellent in high-pressure carbon dioxide gas corrosion resistance suitable for use in severe corrosive environments.

近年、大気中の炭酸ガスの増加が地球の温暖化に繋がるという考えから、地球環境の保全のために、炭酸ガスの排出量の削減が叫ばれている。そして最近では、排出された炭酸ガスを海洋や、使用済みの油井、岩塩の廃坑等の地中に注入し、貯留(貯蔵)することが検討されている。炭酸ガスの地中への注入は、単なる貯留(貯蔵)以外にも、原油の回収率向上や、石灰層からのメタンガス回収など、石油や天然ガスの回収のために利用が検討されている。   In recent years, from the idea that an increase in carbon dioxide in the atmosphere leads to global warming, reduction of carbon dioxide emissions has been sought for the preservation of the global environment. Recently, it has been studied to inject and store (store) discharged carbon dioxide into the ocean, used oil wells, grounds such as abandoned salt mine. In addition to simple storage (storage), carbon dioxide injection into the ground is being investigated for use in recovering oil and natural gas, such as improving the recovery rate of crude oil and recovering methane gas from the limestone layer.

例えば、特許文献1には、投棄二酸化炭素を熱源とする天然ガス採取方法が提案されている。特許文献1に記載された技術は、海底または永久凍土域に存在する天然ガスハイドレイト層に投棄二酸化炭素を圧入し、投棄二酸化炭素をガスハイドレイトとして固定するとともに、二酸化炭素の顕熱および潜熱により天然ガスハイドレイトから天然ガスを解離させて採取する方法である。   For example, Patent Document 1 proposes a natural gas collection method using dumped carbon dioxide as a heat source. The technique described in Patent Document 1 presses discarded carbon dioxide into a natural gas hydrate layer existing on the seabed or permafrost, fixes the discarded carbon dioxide as a gas hydrate, and sensible heat and latent heat of carbon dioxide. Is a method of dissociating and collecting natural gas from natural gas hydrate.

地中への炭酸ガスの注入は、いずれにしろ、その目的から少なくとも1000mを超える深い位置までの注入を必要とすることが多く、炭酸ガスを高圧にして注入することになる。単純に乾燥した炭酸ガスを注入するだけであれば、たとえ高圧であっても腐食の問題は生じないが、操業条件の変化等により結露が生じる場合がある。このような場合には、高圧の炭酸ガスの存在により激しい炭酸ガス腐食が生じるという問題がある。   In any case, injection of carbon dioxide into the ground often requires injection to a deep position exceeding at least 1000 m for the purpose, and carbon dioxide is injected at a high pressure. If the dry carbon dioxide gas is simply injected, there will be no corrosion problem even at high pressure, but condensation may occur due to changes in operating conditions. In such a case, there is a problem that severe carbon dioxide corrosion occurs due to the presence of high-pressure carbon dioxide.

通常、原油や天然ガスの採掘する坑井では、油井管として13Cr系鋼管が主として使用されている。しかし、このような坑井では、含まれる炭酸ガスの量は不純物程度で、炭酸ガス分圧で高々5MPa程度である。   Normally, 13Cr steel pipes are mainly used as wells in wells where crude oil and natural gas are mined. However, in such a well, the amount of carbon dioxide contained is about impurities, and the carbon dioxide partial pressure is about 5 MPa at most.


特開平5−25986号公報JP-A-5-25986

しかしながら、炭酸ガスの地中への注入に際しては、10MPaを超える高圧の炭酸ガスが使用される。例えば現状で油井管として使用されている13Cr系鋼管を、炭酸ガス注入用の圧入管として利用すると、高圧の炭酸ガスにより圧入管の腐食が大きな問題となることが推察できる。このようなことから、炭酸ガスの地中への注入を行うにあたっては、高圧の炭酸ガス雰囲気中でも耐腐食性を有する、耐高圧炭酸ガス腐食性に優れた鋼管が熱望されていた。   However, when carbon dioxide is injected into the ground, high-pressure carbon dioxide exceeding 10 MPa is used. For example, if a 13Cr steel pipe currently used as an oil well pipe is used as a press-fit pipe for injecting carbon dioxide, it can be inferred that the corrosion of the press-in pipe becomes a major problem due to high-pressure carbon dioxide. For this reason, when injecting carbon dioxide into the ground, a steel pipe having corrosion resistance even in a high-pressure carbon dioxide atmosphere and excellent in high-pressure carbon dioxide corrosion resistance has been eagerly desired.

本発明は、かかる従来技術の問題を解決し、温度が180℃以下で、高い炭酸ガス分圧の雰囲気中でも使用可能な、耐高圧炭酸ガス腐食性に優れた鋼管を提供することを目的とする。ここでいう「耐高圧炭酸ガス腐食性に優れた」とは、温度が180℃以下で、炭酸ガス分圧が10MPa以上、好ましくは50MPa以上である高い炭酸ガス分圧を有する高圧炭酸ガス雰囲気中での耐腐食性に優れることを意味する。なお、ここでいう「高圧炭酸ガス雰囲気」は、炭酸ガスに加えて、地中に岩塩等が存在することを考慮して、濃度:10〜120000mass ppm程度の塩素イオン[Cl]を含むものとする。 An object of the present invention is to solve the problems of the prior art, and to provide a steel pipe excellent in high-pressure carbon dioxide corrosion resistance that can be used in an atmosphere having a high carbon dioxide partial pressure at a temperature of 180 ° C. or lower. . The term “excellent in high-pressure carbon dioxide corrosion resistance” as used herein means that the temperature is 180 ° C. or less and the carbon dioxide partial pressure is 10 MPa or more, preferably 50 MPa or more in a high-pressure carbon dioxide atmosphere having a high carbon dioxide partial pressure. It means excellent corrosion resistance. The “high-pressure carbon dioxide atmosphere” mentioned here includes chlorine ions [Cl ] having a concentration of about 10 to 120,000 mass ppm in consideration of the presence of rock salt and the like in the ground in addition to carbon dioxide. .

本発明者らは、上記した目的を達成するために、13Cr系Cr含有鋼管の組成を基準として、高圧の炭酸ガスを含みかつ塩素イオンを含む雰囲気下で、耐食性に及ぼす合金元素の種類およびその含有量について鋭意研究した。その結果、Cr含有鋼管の組成を、C含有量を0.05mass%以下とする低C系で、かつMo、Niを必須含有させ、さらにCr,Ni,Mo,Cu,Cの含有量を、使用雰囲気中の炭酸ガス分圧、塩素イオン濃度に応じて、特定の関係式を満足するように、調整することにより、炭酸ガス分圧が50MPa以上となる厳しい高圧炭酸ガス腐食雰囲気下においてもなお、優れた耐高圧炭酸ガス腐食性を有し、炭酸ガスインジェクション用素材として好適な鋼管となることを見出した。   In order to achieve the above-mentioned object, the present inventors, based on the composition of the 13Cr-based Cr-containing steel pipe, as a standard, the types of alloy elements that affect corrosion resistance under an atmosphere containing high-pressure carbon dioxide and chlorine ions, and their The content was studied earnestly. As a result, the composition of the Cr-containing steel pipe is a low C system in which the C content is 0.05 mass% or less, Mo and Ni are essentially contained, and further Cr, Ni, Mo, Cu, and C contents are used. Depending on the carbon dioxide partial pressure and chlorine ion concentration in the atmosphere, by adjusting to satisfy a specific relational expression, even under severe high-pressure carbon dioxide corrosive atmosphere where the carbon dioxide partial pressure is 50 MPa or more, It has been found that the steel pipe has excellent high-pressure carbon dioxide gas corrosion resistance and is suitable as a material for carbon dioxide gas injection.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)mass%で、C:0.05%以下、Si:0.50%以下、Mn:0.10〜1.80%、P:0.03%以下、S:0.005%以下、Cr:11.5〜16.0%、Ni:2.5〜6.5%、Mo:0.5〜3.0%、Al:0.05%以下、N:0.15%以下を含有し、さらにCr、Ni、Mo、Cuが次(1)式
Cr+0.2Ni+3Mo+0.3Cu≧15.5 ‥‥(1)
(ここで、Cr、Ni、Mo、Cu、C:各合金元素の含有量(mass%))
を満足し、かつCr、Ni、Mo、Cu、Cが、使用雰囲気に応じて次(2)式
Cr+Ni+2.5Mo+0.5Cu−10C≧log{[Cl]×(PCO2)}×T/60 ‥‥(2)
(ここで、Cr、Ni、Mo、Cu、C:各合金元素の含有量(mass%)、[Cl]:使用雰囲気中の塩素イオン濃度(mass ppm)、PCO2:使用雰囲気中の炭酸ガス分圧(MPa)、T:使用雰囲気温度(℃))
を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成を有し、耐高圧炭酸ガス腐食性に優れることを特徴とする炭酸ガスインジェクション用Cr含有鋼管。
(2)(1)において、前記組成に加えてさらに、mass%で、Cu:1.5%以下を含有する組成とすることを特徴とするCr含有鋼管。
(3)(1)または(2)において、前記組成に加えてさらに、mass%で、Nb:0.20%以下、V:0.20%以下、Ti:0.20%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とするCr含有鋼管。
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ca:0.0005〜0.01%を含有する組成とすることを特徴とするCr含有鋼管。
(5)(1)ないし(4)のいずれかに記載のCr含有鋼管を使用してなる炭酸ガスインジェクション用部材。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.05% or less, Si: 0.50% or less, Mn: 0.10 to 1.80%, P: 0.03% or less, S: 0.005% or less, Cr: 11.5 to 16.0%, Ni: 2.5 to 6.5 %, Mo: 0.5-3.0%, Al: 0.05% or less, N: 0.15% or less, and Cr, Ni, Mo and Cu are represented by the following formula (1)
Cr + 0.2Ni + 3Mo + 0.3Cu ≧ 15.5 (1)
(Here, Cr, Ni, Mo, Cu, C: Content of each alloy element (mass%))
And Cr, Ni, Mo, Cu, and C are expressed by the following formula (2) according to the usage atmosphere.
Cr + Ni + 2.5Mo + 0.5Cu- 10C ≧ log {[Cl -] × (P CO2)} × T / 60 ‥‥ (2)
(Where Cr, Ni, Mo, Cu, C: content of each alloy element (mass%), [Cl ]: chlorine ion concentration in the working atmosphere (mass ppm), P CO2 : carbonic acid in the working atmosphere Gas partial pressure (MPa), T: Operating ambient temperature (° C)
A Cr-containing steel pipe for carbon dioxide injection having a composition comprising the balance Fe and unavoidable impurities and being excellent in high-pressure carbon dioxide corrosion resistance.
(2) A Cr-containing steel pipe according to (1), characterized in that, in addition to the above composition, the composition further includes mass: Cu: 1.5% or less.
(3) In (1) or (2), in addition to the above-mentioned composition, mass%, Nb: 0.20% or less, V: 0.20% or less, Ti: 0.20% or less Cr-containing steel pipe characterized by having a composition containing more than seeds.
(4) The Cr-containing steel pipe according to any one of (1) to (3), further comprising a composition containing Ca: 0.0005 to 0.01% in mass% in addition to the above composition.
(5) A carbon dioxide injection member using the Cr-containing steel pipe according to any one of (1) to (4).

本発明によれば、温度が180℃以下で、10MPa以上、好ましくは50MPa以上の高い炭酸ガス分圧と塩素イオン濃度が10〜120000 mass ppmである高温の厳しい腐食雰囲気中でも使用可能な、耐高圧炭酸ガス腐食性に優れたCr含有鋼管を、容易にしかも安価に製造でき産業上格段の効果を奏する。また、本発明になるCr含有鋼管は、耐高圧炭酸ガス腐食性に優れ、炭酸ガスインジェクション用部材として好適であり、また本発明によれば、熱間加工性にも優れ、通常の製造工程を変更することなく、耐高圧炭酸ガス腐食性に優れた鋼管を製造できるという効果もある。   According to the present invention, a high pressure resistance that can be used in a severe corrosive atmosphere at a high temperature of 180 ° C. or less, a high carbon dioxide partial pressure of 10 MPa or more, preferably 50 MPa or more, and a chlorine ion concentration of 10 to 120,000 mass ppm. Cr-containing steel pipes with excellent carbon dioxide corrosiveness can be manufactured easily and at a low cost, and there are remarkable industrial effects. Further, the Cr-containing steel pipe according to the present invention is excellent in high-pressure carbon dioxide gas corrosion resistance and is suitable as a member for carbon dioxide injection, and according to the present invention, it is excellent in hot workability and has a normal manufacturing process. There is also an effect that a steel pipe excellent in high-pressure carbon dioxide gas corrosion resistance can be produced without change.

まず、本発明のCr含有鋼管の組成限定理由について説明する。なお、以下、mass%は、とくに断わらない限り単に%で記す。
C:0.05%以下
Cは、鋼の強度を増加させる元素であり、所望の強度を確保するために本発明では、0.005%以上含有することが望ましいが、0.05%を超える含有は、Cr、Mo等と炭化物を形成し耐食性を低下させる。とくに、高温の使用雰囲気ではこの傾向が強くなる。このため、本発明ではCは0.05%以下に限定した。なお、好ましくは、0.005〜0.03%である。
First, the reasons for limiting the composition of the Cr-containing steel pipe of the present invention will be described. In the following, mass% is simply expressed as% unless otherwise specified.
C: 0.05% or less C is an element that increases the strength of steel. In the present invention, it is preferable to contain 0.005% or more in order to ensure a desired strength. It forms a carbide with etc. and reduces the corrosion resistance. This tendency is particularly strong in high-temperature use atmospheres. For this reason, in the present invention, C is limited to 0.05% or less. In addition, Preferably, it is 0.005-0.03%.

Si:0.50%以下
Siは、脱酸剤として作用する元素であり、このような効果を得るためには0.10%以上含有することが望ましいが、0.50%を超える含有は、耐炭酸ガス腐食性を低下させるとともに、熱間加工性をも低下させる。このため、Siは0.50%以下に限定した。なお、好ましくは0.40%以下である。
Si: 0.50% or less
Si is an element that acts as a deoxidizing agent. In order to obtain such an effect, it is desirable to contain 0.10% or more. However, if it exceeds 0.50%, the corrosion resistance of carbon dioxide gas is deteriorated and heat resistance is reduced. Also reduces the workability. For this reason, Si was limited to 0.50% or less. In addition, Preferably it is 0.40% or less.

Mn:0.10〜1.80%
Mnは、鋼の強度を増加させる元素であり、所望の強度を確保するために本発明では、0.10%以上含有する。一方、1.80%を超える含有は、靭性に悪影響を及ぼす。このため、Mnは0.10〜1.80%の範囲に限定した。なお、好ましくは0.30〜1.00%である。
P:0.03%以下
Pは、耐食性、とくに耐炭酸ガス腐食性、耐炭酸ガス応力腐食割れ性、耐孔食性および耐硫化物応力腐食割れ性をともに劣化させる元素であり、可能なかぎり低減することが望ましいが、極端な低減は製造コストの高騰を招く。このため、本発明では、工業的に実施可能な範囲でかつ安価で、しかも耐炭酸ガス腐食性、耐炭酸ガス応力腐食割れ性、耐孔食性、耐硫化物応力腐食割れ性を劣化させない範囲である、0.03%をPの上限値とした。なお、好ましくは0.02%以下である。
Mn: 0.10 to 1.80%
Mn is an element that increases the strength of steel. In the present invention, Mn is contained in an amount of 0.10% or more in order to ensure a desired strength. On the other hand, the content exceeding 1.80% adversely affects toughness. For this reason, Mn was limited to the range of 0.10 to 1.80%. In addition, Preferably it is 0.30-1.00%.
P: 0.03% or less P is an element that degrades corrosion resistance, particularly carbon dioxide corrosion resistance, carbon dioxide stress corrosion cracking resistance, pitting corrosion resistance and sulfide stress corrosion cracking resistance, and should be reduced as much as possible. However, an extreme reduction leads to an increase in manufacturing costs. For this reason, in the present invention, it is an industrially feasible range, is inexpensive, and does not degrade the carbon dioxide corrosion resistance, carbon dioxide stress corrosion cracking resistance, pitting corrosion resistance, and sulfide stress corrosion cracking resistance. The upper limit of P was 0.03%. In addition, Preferably it is 0.02% or less.

S:0.005%以下
Sは、熱間加工性を著しく低下させる元素であり、可能なかぎり低減することが望ましいが、0.005%以下に低減すれば通常工程での鋼管の製造が可能であることから、0.005%をSの上限値とした。なお、好ましくは0.003%以下である。
Cr:11.5〜16.0%
Crは、耐食性を向上させる作用を有する元素であり、とくに耐炭酸ガス腐食性、耐炭酸ガス応力腐食割れ性を保持するために必要な元素である。このような効果を得るためには11.5%以上の含有を必要とする。一方、16.0%を超える含有は、熱間加工性を低下させる。このため、Crは11.5〜16.0%の範囲に限定した。なお、好ましくは12.0〜15.5%である。
S: 0.005% or less S is an element that significantly reduces hot workability, and it is desirable to reduce it as much as possible. 0.005% was taken as the upper limit of S. In addition, Preferably it is 0.003% or less.
Cr: 11.5 to 16.0%
Cr is an element having an action of improving the corrosion resistance, and is particularly an element necessary for maintaining carbon dioxide gas corrosion resistance and carbon dioxide gas stress corrosion cracking resistance. In order to obtain such an effect, the content of 11.5% or more is required. On the other hand, the content exceeding 16.0% decreases the hot workability. For this reason, Cr was limited to the range of 11.5 to 16.0%. In addition, Preferably it is 12.0 to 15.5%.

Ni:2.5〜6.5%
Niは、保護皮膜を強固にして、耐食性、とくに耐炭酸ガス腐食性、耐炭酸ガス応力腐食割れ性、耐孔食性および耐硫化物応力腐食割れ性を向上させる元素であり、このような効果を得るためには、2.5%以上含有する必要がある。一方、6.5%を超えて含有すると、オーステナイトが安定化し、強度が低下する。このため、Niは2.5〜6.5%の範囲に限定した。なお、好ましくは3.5〜6.0%である。
Ni: 2.5-6.5%
Ni is an element that strengthens the protective film and improves corrosion resistance, especially carbon dioxide corrosion resistance, carbon dioxide stress corrosion cracking resistance, pitting corrosion resistance and sulfide stress corrosion cracking resistance. In order to obtain it, it is necessary to contain 2.5% or more. On the other hand, if the content exceeds 6.5%, austenite is stabilized and the strength is lowered. For this reason, Ni was limited to the range of 2.5 to 6.5%. In addition, Preferably it is 3.5 to 6.0%.

Mo:0.5〜3.0%
Moは、耐食性、とくに耐孔食性を向上させる元素であり、高温、高塩素イオン環境下での耐食性向上に大きく寄与する。このような効果を得るためには、0.5%以上の含有を必要とする。一方、3.0%を超えて含有しても、効果が飽和し含有量に見合う効果を期待できなくなり経済的に不利となる。このため、Moは0.5〜3.0%の範囲に限定した。なお、好ましくは0.8〜2.5%である。
Mo: 0.5-3.0%
Mo is an element that improves corrosion resistance, particularly pitting corrosion resistance, and greatly contributes to improvement of corrosion resistance under high temperature and high chlorine ion environment. In order to acquire such an effect, 0.5% or more of content is required. On the other hand, if the content exceeds 3.0%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, Mo was limited to the range of 0.5 to 3.0%. In addition, Preferably it is 0.8 to 2.5%.

Al:0.05%以下
Alは、強力な脱酸剤として作用する元素であり、このような効果を得るためには、Alを0.01%以上含有することが望ましいが、0.05%を超えて含有すると、靭性が低下する場合がある。このため、Alは0.05%以下に限定した。
N:0.15%以下
Nは、耐孔食性を著しく向上させる作用を有する元素であり、本発明では0.01%以上含有することが望ましい。一方、0.15%を超えて含有すると、種々の窒化物を形成し、靭性を低下させる。このため、Nは0.15%以下に限定した。なお、好ましくは0.01〜0.08%である。
Al: 0.05% or less
Al is an element that acts as a strong deoxidizer. To obtain such effects, it is desirable to contain 0.01% or more of Al. However, if it exceeds 0.05%, toughness decreases. There is. For this reason, Al was limited to 0.05% or less.
N: 0.15% or less N is an element having a function of remarkably improving the pitting corrosion resistance. In the present invention, N is preferably contained in an amount of 0.01% or more. On the other hand, if the content exceeds 0.15%, various nitrides are formed and the toughness is lowered. For this reason, N was limited to 0.15% or less. In addition, Preferably it is 0.01 to 0.08%.

上記した成分が基本の組成であるが、必要に応じて選択元素として、上記した基本組成に加えてさらに、Cu:1.5%以下、および/または、Nb:0.20%以下、V:0.20%以下、Ti:0.20%以下のうちから選ばれた1種または2種以上、および/または、Ca:0.0005〜0.01%を含有することができる。
Cu:1.5%以下
Cuは、保護皮膜を強固にして、鋼中への水素の侵入を抑制し、耐硫化物応力腐食割れ性を向上させる元素であり、必要に応じて含有できる。上記した効果を確保するためには、0.3%以上含有することが望ましいが、1.5%を超えて含有すると、高温でCuSが結晶粒界に析出し、熱間加工性が低下する。このため、含有する場合には、Cuは1.5%以下に限定することが好ましい。なお、より好ましくは0.3〜1.2%である。
The above-described components have a basic composition, but if necessary, in addition to the basic composition described above, Cu: 1.5% or less, and / or Nb: 0.20% or less, V: 0.20% or less, One or two or more selected from Ti: 0.20% or less and / or Ca: 0.0005-0.01% can be contained.
Cu: 1.5% or less
Cu is an element that strengthens the protective film, suppresses the penetration of hydrogen into the steel, and improves the resistance to sulfide stress corrosion cracking, and can be contained as necessary. In order to ensure the above effect, it is desirable to contain 0.3% or more. However, if it exceeds 1.5%, CuS precipitates at the crystal grain boundary at a high temperature, and hot workability deteriorates. For this reason, when it contains, it is preferable to limit Cu to 1.5% or less. More preferably, it is 0.3 to 1.2%.

Nb:0.20%以下、V:0.20%以下、Ti:0.20%以下の1種または2種以上
Nb、V、Tiはいずれも、鋼の強度を増加させる作用を有する元素であり、必要に応じ1種または2種以上選択して含有できる。
Nbは、鋼の強度を増加させる作用を有する元素であり、このような効果を得るためには0.01%以上含有することが望ましいが、0.20%を超える含有は靭性を低下させる。このため、含有する場合には、Nbは0.20%以下に限定することが好ましい。なお、より好ましくは0.01〜0.15%である。
One or more of Nb: 0.20% or less, V: 0.20% or less, Ti: 0.20% or less
Nb, V, and Ti are all elements that have the effect of increasing the strength of steel, and can be selected and contained as needed, if necessary.
Nb is an element that has the effect of increasing the strength of steel. In order to obtain such an effect, Nb is desirably contained in an amount of 0.01% or more, but the content exceeding 0.20% lowers the toughness. For this reason, when it contains, it is preferable to limit Nb to 0.20% or less. In addition, More preferably, it is 0.01 to 0.15%.

Vは、鋼の強度を増加させる作用を有するとともに、耐応力腐食割れ性を改善させる作用をも有する。このような効果を得るためには0.01%以上含有することが望ましいが、0.20%を超える含有は靭性を低下させる。このため、含有する場合には、Vは0.20%以下に限定することが好ましい。なお、より好ましくは0.01〜0.15%である。
Tiは、鋼の強度を増加させる作用を有する元素であり、このような効果を得るためには0.01%以上含有することが望ましいが、0.20%を超える含有は靭性を低下させる。このため、含有する場合には、Tiは0.20%以下に限定することが好ましい。なお、より好ましくは0.01〜0.15%である。
V has the effect of increasing the strength of the steel and also has the effect of improving the stress corrosion cracking resistance. In order to acquire such an effect, it is desirable to contain 0.01% or more, but inclusion exceeding 0.20% reduces toughness. For this reason, when contained, V is preferably limited to 0.20% or less. In addition, More preferably, it is 0.01 to 0.15%.
Ti is an element having an action of increasing the strength of steel. In order to obtain such an effect, Ti is desirably contained in an amount of 0.01% or more, but inclusion exceeding 0.20% reduces toughness. For this reason, when it contains, it is preferable to limit Ti to 0.20% or less. In addition, More preferably, it is 0.01 to 0.15%.

Ca:0.0005〜0.01%
Caは、Sと結合して、SをCaSとして固定するとともに、硫化物系介在物の形態を球状化し、介在物の周辺のマトリックスの格子歪を減少させて、水素のトラップ能を低下させる作用を有する元素であり、必要に応じて含有できる。このような効果を得るためには0.0005%以上の含有を必要とする。一方、0.01%を超えて含有すると、CaOの増加を招き、耐炭酸ガス腐食性、耐孔食性が低下する。このため、含有する場合には、Caは0.0005〜0.01%の範囲に限定することが好ましい。なお、より好ましくは0.0005〜0.005%である。
Ca: 0.0005 to 0.01%
Ca binds to S, fixes S as CaS, spheroidizes the shape of sulfide inclusions, reduces the lattice strain of the matrix around the inclusions, and reduces the trapping ability of hydrogen It can be contained as necessary. In order to acquire such an effect, 0.0005% or more needs to be contained. On the other hand, if the content exceeds 0.01%, CaO is increased, and the carbon dioxide corrosion resistance and pitting corrosion resistance are reduced. For this reason, when it contains, it is preferable to limit Ca to 0.0005 to 0.01% of range. In addition, More preferably, it is 0.0005 to 0.005%.

また、本発明では、Cr、Ni、Mo、あるいはさらにCuの含有量を、上記した含有範囲でかつ、次(1)式
Cr+0.2Ni+3Mo+0.3Cu≧15.5 ‥‥(1)
(ここで、Cr、Ni、Mo、Cu、C:各合金元素の含有量(mass%))
を満足するように調整する。Cr、Ni、Mo、あるいはさらにCuの含有量が、(1)式を満足するように調整することにより、耐孔食性が顕著に改善される。とくに、高温高圧炭酸ガス雰囲気中で塩素イオンが存在すると、孔食の発生が顕著となる。このため、本発明では、Cr、Ni、Mo、あるいはさらにCu含有量が、(1)式を満足するように調整することとした。なお、(1)式を計算するにあたり、選択元素であるCuは、含有しない場合には、(1)式中のCu含有量を零として計算するものとする。
In the present invention, the content of Cr, Ni, Mo, or even Cu is within the above-described content range, and the following formula (1)
Cr + 0.2Ni + 3Mo + 0.3Cu ≧ 15.5 (1)
(Here, Cr, Ni, Mo, Cu, C: Content of each alloy element (mass%))
Adjust to satisfy. By adjusting the content of Cr, Ni, Mo, or even Cu to satisfy the formula (1), the pitting corrosion resistance is remarkably improved. In particular, when chlorine ions are present in a high-temperature and high-pressure carbon dioxide atmosphere, the occurrence of pitting corrosion becomes significant. For this reason, in this invention, it decided to adjust so that Cr, Ni, Mo, or also Cu content might satisfy Formula (1). When calculating the formula (1), Cu, which is a selective element, is calculated assuming that the Cu content in the formula (1) is zero.

さらに、本発明では、上記した(1)式を満足することに加えて、さらにC、Cr、Ni、Mo、あるいはさらにCuの含有量を、上記した含有範囲でかつ、次(2)式
Cr+Ni+2.5Mo+0.5Cu−10C≧log{[Cl]×(PCO2)}×T/60 ‥‥(2)
(ここで、Cr、Ni、Mo、Cu、C:各合金元素の含有量(mass%)、[Cl]:使用雰囲気中の塩素イオン濃度(mass ppm)、PCO2:使用雰囲気中の炭酸ガス分圧(MPa)、T:使用雰囲気温度(℃))
を満足するように、調整する。なお、(2)式を計算するにあたり、選択元素であるCuは、含有しない場合には、(2)式中のCu含有量を零として計算するものとする。また、使用雰囲気中の[Cl]が10ppm以下である場合には、[Cl]=10ppmとして(1)式を計算するものとする。
Further, in the present invention, in addition to satisfying the above-described formula (1), the content of C, Cr, Ni, Mo, or Cu is further within the above-described content range and the following formula (2)
Cr + Ni + 2.5Mo + 0.5Cu- 10C ≧ log {[Cl -] × (P CO2)} × T / 60 ‥‥ (2)
(Where Cr, Ni, Mo, Cu, C: content of each alloy element (mass%), [Cl ]: chlorine ion concentration in the working atmosphere (mass ppm), P CO2 : carbonic acid in the working atmosphere Gas partial pressure (MPa), T: Operating ambient temperature (° C)
Make adjustments to satisfy When calculating the formula (2), Cu, which is a selective element, is calculated when the Cu content in the formula (2) is zero. When [Cl ] in the use atmosphere is 10 ppm or less, equation (1) is calculated assuming that [Cl ] = 10 ppm.

Cr、Ni、Mo、Cuは、耐高圧炭酸ガス腐食性の向上に有効な元素であるが、CはCr炭化物を形成して有効Cr量を低減させるため耐高圧炭酸ガス腐食性には悪影響を及ぼす。一方、使用雰囲気中のClは、不動態皮膜を破壊し孔食を発生させ、耐食性を劣化させる作用を有する。また、使用雰囲気中の炭酸ガスは、pHを低下させて腐食を促進する作用がある。また、雰囲気温度が高温となれば腐食が促進される。このような耐高圧炭酸ガス腐食性に及ぼす各元素、各要因の作用から、鋭意研究して、耐高圧炭酸ガス腐食性の向上の指標として(2)式を見出した。 Cr, Ni, Mo, and Cu are effective elements for improving the high-pressure carbon dioxide corrosion resistance, but C has a negative effect on the high-pressure carbon dioxide corrosion resistance because it forms Cr carbide to reduce the effective Cr content. Effect. On the other hand, Cl in the use atmosphere has an action of destroying the passive film and generating pitting corrosion and deteriorating corrosion resistance. Further, carbon dioxide in the use atmosphere has an action of promoting corrosion by lowering the pH. Further, if the ambient temperature becomes high, corrosion is promoted. From the action of each element and each factor affecting the high-pressure carbon dioxide gas corrosion resistance, we have intensively studied and found the equation (2) as an index for improving the high-pressure carbon dioxide gas corrosion resistance.

C、Cr、Ni、Mo、あるいはさらにCuの含有量を、使用雰囲気中の塩素イオン濃度、炭酸ガス分圧、温度に対応して、(2)式を満足するように調整することにより、耐高圧炭酸ガス腐食性が向上し、炭酸ガスインジェクション用素材として好適な鋼管となる。
上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、O:0.008%以下が許容できる。
By adjusting the content of C, Cr, Ni, Mo, or even Cu in accordance with the chlorine ion concentration, carbon dioxide partial pressure, and temperature in the working atmosphere so as to satisfy the formula (2), High-pressure carbon dioxide corrosiveness is improved, and the steel pipe is suitable as a material for carbon dioxide injection.
The balance other than the components described above consists of Fe and inevitable impurities. As an inevitable impurity, O: 0.008% or less is acceptable.

上記した組成を有するCr含有鋼管は、耐高圧炭酸ガス腐食性に優れることから、高圧の炭酸ガスを注入する炭酸ガスインジェクション用部材として好適であり、炭酸ガスインジェクション用圧入管等に適用しても、激しい炭酸ガス腐食を生じることなく使用が可能となり、炭酸ガスインジェクション用部材の耐久性を大幅に向上させることができる。
本発明鋼管は、上記した組成を有すれば、継目無鋼管、溶接鋼管のいずれもが好適である。
The Cr-containing steel pipe having the above-described composition is excellent as a high-pressure carbon dioxide gas corrosion resistance, and is therefore suitable as a member for carbon dioxide injection for injecting high-pressure carbon dioxide, and can be applied to a press-fit pipe for carbon dioxide injection. It can be used without causing severe carbon dioxide corrosion, and the durability of the carbon dioxide injection member can be greatly improved.
The steel pipe of the present invention is preferably a seamless steel pipe or a welded steel pipe as long as it has the above-described composition.

つぎに、本発明鋼管の好ましい製造方法について説明する。
まず、上記した組成を有する溶鋼を、転炉、電気炉、真空溶解炉等の常用の溶製方法で溶製し、連続鋳造法、造塊−分塊圧延等の常用の方法でスラブ、ビレット等の鋼素材とすることが好ましい。
ついで、鋼素材を加熱し、常用の製造工程を用いて熱間加工して、さらに造管して所望の寸法を有する鋼管とする。継目無鋼管であれば、加熱された鋼素材を、常用の、マンネスマン−プラグミル方式あるいはマンネスマン−マンドレルミル方式の製造工程を用いて、熱間加工、造管して所望寸法の継目無鋼管とする。
Below, the preferable manufacturing method of this invention steel pipe is demonstrated.
First, molten steel having the above composition is melted by a conventional melting method such as a converter, an electric furnace, a vacuum melting furnace, etc., and a slab or billet is obtained by a conventional method such as a continuous casting method or ingot-bundling rolling. It is preferable to use a steel material such as
Next, the steel material is heated, hot-worked using a conventional manufacturing process, and further piped to obtain a steel pipe having a desired dimension. If it is a seamless steel pipe, the heated steel material is hot-worked and piped into a seamless steel pipe of the desired dimensions using a conventional Mannesmann-plug mill method or Mannesmann-Mandrel mill manufacturing process. .

得られた鋼管は、造管ままでもよいが、さらに焼戻処理、あるいは焼入れ−焼戻処理を施すことが好ましい。焼入れ処理は、800℃以上の温度に再加熱し、該温度に好ましくは5min以上保持したのち、空冷以上の冷却速度で、200℃以下、好ましくは室温まで冷却することが好ましい。焼入れ処理の加熱温度が800℃未満では、十分な焼入れ組織(マルテンサイト組織)とすることができないため、所望の強度を確保できない場合がある。   The obtained steel pipe may be as it is, but it is preferable to further perform a tempering treatment or a quenching-tempering treatment. In the quenching treatment, it is preferable to reheat to a temperature of 800 ° C. or higher, hold at that temperature, preferably 5 min or higher, and then cool to 200 ° C. or lower, preferably room temperature, at a cooling rate of air cooling or higher. If the heating temperature in the quenching treatment is less than 800 ° C., a sufficient quenched structure (martensite structure) cannot be obtained, and thus a desired strength may not be ensured.

また、焼戻処理は、Ac1変態点を超える温度に加熱し、冷却する処理とすることが好ましい。焼戻処理の加熱温度を、Ac1変態点を超える温度とすることにより、オーステナイト、あるいは焼入れマルテンサイトが生成し、所望の強度を確保できる。
なお、本発明の鋼管は、S、Si、Al、さらにはOを著しく低減した組成としているため、通常の製造工程を変更することなく製造できるという利点もある。
Moreover, it is preferable that the tempering process is a process of heating and cooling to a temperature exceeding the A c1 transformation point. By setting the heating temperature of the tempering treatment to a temperature exceeding the A c1 transformation point, austenite or quenched martensite is generated, and a desired strength can be secured.
In addition, since the steel pipe of this invention is made into the composition which reduced S, Si, Al, and also O remarkably, there also exists an advantage that it can manufacture without changing a normal manufacturing process.

以下、さらに実施例に基づいて本発明について説明する。   Hereinafter, the present invention will be described based on examples.

表1に示す組成の溶鋼を真空溶解炉で溶製し、さらに脱ガス処理を施したのち、100キロ鋼塊とした。ついで、これら鋼塊を加熱し、研究用モデルシームレス圧延機により、外径3.3 in.×肉厚0.5in.の継目無鋼管とした。
得られた鋼管から、試験用素材を切り出し、該試験用素材に、焼入れ焼戻処理を施した。なお、焼入れ処理は、950℃×20min加熱・保持した後、空冷する処理とし、焼戻処理は、580〜600℃×30min加熱・保持したのち空冷する処理とした。
Molten steel having the composition shown in Table 1 was melted in a vacuum melting furnace, further degassed, and then made into a 100 kg steel ingot. Subsequently, these steel ingots were heated and made into seamless steel pipes having an outer diameter of 3.3 in. × wall thickness of 0.5 in. Using a research model seamless rolling mill.
A test material was cut out from the obtained steel pipe, and the test material was subjected to quenching and tempering treatment. The quenching process was a process of air cooling after heating and holding at 950 ° C. for 20 minutes, and the tempering process was a cooling process of heating and holding after 580 to 600 ° C. for 30 min.

得られた試験用素材から、試験片を採取し、腐食試験、引張試験を実施した。試験方法は次のとおりである。
(1)腐食試験
得られた試験用素材から、腐食試験片(大きさ:板厚3mm×25mm×50mm)を採取し、腐食試験を実施した。腐食試験は、オートクレーブ中に保持された試験液:NaCl水溶液(液温:50~180℃、塩素イオン濃度:50000〜120000masppm、炭酸ガス分圧:50〜100MPaのガス雰囲気) 中に、腐食試験片を浸漬し、浸漬期間を2週間として実施した。使用した腐食雰囲気中の塩素イオン濃度、炭酸ガス分圧、温度を表2に示す。腐食試験後の試験片について、重量を測定し、腐食試験前後の重量減から計算した腐食速度を求めた。また、試験後の腐食試験片について倍率:10倍のルーペを用いて試験片表面の孔食発生の有無を観察した。なお、腐食速度が0.127mm/y以下の場合を耐高圧炭酸ガス腐食性に優れるとした。
(2)引張試験
得られた試験用素材から、API 弧状引張試験片を採取し、引張試験を実施し引張特性(降伏強さYS、引張強さTS)を求めた。
Test pieces were sampled from the obtained test materials and subjected to corrosion tests and tensile tests. The test method is as follows.
(1) Corrosion test A corrosion test piece (size: plate thickness 3 mm x 25 mm x 50 mm) was sampled from the obtained test material and subjected to a corrosion test. Corrosion test is performed in a test solution retained in the autoclave: NaCl aqueous solution (liquid temperature: 50 to 180 ° C, chlorine ion concentration: 50000-120000masppm, carbon dioxide partial pressure: 50-100MPa gas atmosphere) Was immersed, and the immersion period was 2 weeks. Table 2 shows the chlorine ion concentration, carbon dioxide partial pressure, and temperature in the corrosive atmosphere used. The test piece after the corrosion test was weighed, and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained. Moreover, about the corrosion test piece after a test, the presence or absence of pitting corrosion on the test piece surface was observed using a magnifying glass with a magnification of 10 times. In addition, when the corrosion rate is 0.127 mm / y or less, the high-pressure carbon dioxide gas corrosion resistance is considered excellent.
(2) Tensile test From the obtained test material, API arc-shaped tensile test pieces were sampled and subjected to a tensile test to determine tensile properties (yield strength YS, tensile strength TS).

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 2010242162
Figure 2010242162

Figure 2010242162
Figure 2010242162

本発明例はいずれも、高い炭酸ガス分圧で塩素イオンを含む腐食環境下においても、耐食性(耐高圧炭酸ガス腐食性)に優れた鋼管であり、炭酸ガスインジェクション用部材向けとして好適に使用しうることがわかる。一方、本発明の範囲を外れる比較例は、腐食速度が大きくまた孔食も発生し耐食性が低下して、所望の耐高圧炭酸ガス腐食性を確保できていない。   All of the examples of the present invention are steel pipes excellent in corrosion resistance (high-pressure carbon dioxide gas corrosion resistance) even in a corrosive environment containing chlorine ions at a high carbon dioxide partial pressure, and are suitably used for carbon dioxide gas injection members. I can understand. On the other hand, the comparative example which is out of the scope of the present invention has a high corrosion rate and also generates pitting corrosion, which deteriorates the corrosion resistance, and cannot secure the desired high-pressure carbon dioxide gas corrosion resistance.

Claims (5)

mass%で、
C:0.05%以下、 Si:0.50%以下、
Mn:0.10〜1.80%、 P:0.03%以下、
S:0.005%以下、 Cr:11.5〜16.0%、
Ni:2.5〜6.5%、 Mo:0.5〜3.0%、
Al:0.05%以下、 N:0.15%以下
を含有し、さらにCr、Ni、Mo、Cuが下記(1)式を満足し、かつCr、Ni、Mo、Cu、Cが、使用雰囲気に応じて下記(2)式を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成を有し、耐高圧炭酸ガス腐食性に優れることを特徴とする炭酸ガスインジェクション用Cr含有鋼管。

Cr+0.2Ni+3Mo+0.3Cu≧15.5 ‥‥(1)
Cr+Ni+2.5Mo+0.5Cu−10C≧log{[Cl]×(PCO2)}×T/60 ‥‥(2)
ここで、Cr、Ni、Mo、Cu、C:各合金元素の含有量(mass%)、
[Cl]:使用雰囲気中の塩素イオン濃度(mass ppm)、
CO2:使用雰囲気中の炭酸ガス分圧(MPa)、
T:使用雰囲気温度(℃)
mass%
C: 0.05% or less, Si: 0.50% or less,
Mn: 0.10 to 1.80%, P: 0.03% or less,
S: 0.005% or less, Cr: 11.5 to 16.0%,
Ni: 2.5-6.5%, Mo: 0.5-3.0%,
Al: 0.05% or less, N: 0.15% or less, Cr, Ni, Mo, Cu satisfy the following formula (1), and Cr, Ni, Mo, Cu, C depending on the use atmosphere A Cr-containing steel pipe for carbon dioxide injection, characterized in that it comprises a composition comprising the balance Fe and inevitable impurities, and is excellent in high-pressure carbon dioxide corrosion resistance.
Record
Cr + 0.2Ni + 3Mo + 0.3Cu ≧ 15.5 (1)
Cr + Ni + 2.5Mo + 0.5Cu- 10C ≧ log {[Cl -] × (P CO2)} × T / 60 ‥‥ (2)
Here, Cr, Ni, Mo, Cu, C: content of each alloy element (mass%),
[Cl ]: Chlorine ion concentration (mass ppm) in the working atmosphere
P CO2 : Carbon dioxide partial pressure (MPa) in the working atmosphere,
T: Operating ambient temperature (° C)
前記組成に加えてさらに、mass%で、Cu:1.5%以下を含有する組成とすることを特徴とする請求項1に記載のCr含有鋼管。   In addition to the said composition, it is set as the composition which contains Cu: 1.5% or less by mass%, The Cr containing steel pipe of Claim 1 characterized by the above-mentioned. 前記組成に加えてさらに、mass%で、Nb:0.20%以下、V:0.20%以下、Ti:0.20%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1または2に記載のCr含有鋼管。   In addition to the above composition, the composition further comprises one or two or more kinds selected from mass%, Nb: 0.20% or less, V: 0.20% or less, Ti: 0.20% or less. The Cr-containing steel pipe according to claim 1 or 2. 前記組成に加えてさらに、mass%で、Ca:0.0005〜0.01%を含有する組成とすることを特徴とする請求項1ないし3のいずれかに記載のCr含有鋼管。   The Cr-containing steel pipe according to any one of claims 1 to 3, further comprising a composition containing Ca: 0.0005 to 0.01% in mass% in addition to the composition. 請求項1ないし4のいずれかに記載のCr含有鋼管を使用してなる炭酸ガスインジェクション用部材。   A carbon dioxide injection member using the Cr-containing steel pipe according to any one of claims 1 to 4.
JP2009092054A 2009-04-06 2009-04-06 Cr-CONTAINING STEEL PIPE FOR CARBON DIOXIDE GAS INJECTION AT SUPER CRITICAL-PRESSURE Pending JP2010242162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009092054A JP2010242162A (en) 2009-04-06 2009-04-06 Cr-CONTAINING STEEL PIPE FOR CARBON DIOXIDE GAS INJECTION AT SUPER CRITICAL-PRESSURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009092054A JP2010242162A (en) 2009-04-06 2009-04-06 Cr-CONTAINING STEEL PIPE FOR CARBON DIOXIDE GAS INJECTION AT SUPER CRITICAL-PRESSURE

Publications (1)

Publication Number Publication Date
JP2010242162A true JP2010242162A (en) 2010-10-28

Family

ID=43095493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009092054A Pending JP2010242162A (en) 2009-04-06 2009-04-06 Cr-CONTAINING STEEL PIPE FOR CARBON DIOXIDE GAS INJECTION AT SUPER CRITICAL-PRESSURE

Country Status (1)

Country Link
JP (1) JP2010242162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169409A (en) * 2015-03-12 2016-09-23 Jfeスチール株式会社 MANUFACTURING METHOD OF SEAMLESS STEEL PIPE OF MARTENSITIC HIGH Cr STEEL
WO2021015141A1 (en) 2019-07-24 2021-01-28 日本製鉄株式会社 Martensitic stainless steel pipe, and method for manufacturing martensitic stainless steel pipe

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743958A (en) * 1980-08-30 1982-03-12 Nippon Steel Corp Steel material for line pipe with excellent carbon dioxide corrosion resistance
JPH07179943A (en) * 1993-12-22 1995-07-18 Nippon Steel Corp Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JPH08120345A (en) * 1994-08-23 1996-05-14 Nippon Steel Corp Production of martensitic stainless steel seamless tube excellent in corrosion resistance
JPH10503809A (en) * 1994-07-21 1998-04-07 新日本製鐵株式会社 Martensitic stainless steel with sulfide stress cracking resistance with excellent hot workability
JPH10130787A (en) * 1996-10-29 1998-05-19 Kawasaki Steel Corp High strength martensitic stainless steel for oil well pipe, excellent in stress corrosion cracking resistance and high temperature tensile characteristic
JP2002030392A (en) * 2000-07-13 2002-01-31 Nippon Steel Corp HIGH Cr MARTENSTIC STAINLESS STEEL EXCELLENT IN CORROSION RESISTANCE, AND ITS MANUFACTURING METHOD
JP2007321181A (en) * 2006-05-31 2007-12-13 Jfe Steel Kk Method for forming martenstic stainless steel material welded part
JP2007332442A (en) * 2006-06-16 2007-12-27 Jfe Steel Kk High-toughness ultrahigh-strength stainless steel pipe for oil well having excellent corrosion resistance, and its production method
JP2010111930A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp Cr-CONTAINING STEEL PIPE HAVING EXCELLENT HIGH PRESSURE CARBON DIOXIDE CORROSION RESISTANCE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743958A (en) * 1980-08-30 1982-03-12 Nippon Steel Corp Steel material for line pipe with excellent carbon dioxide corrosion resistance
JPH07179943A (en) * 1993-12-22 1995-07-18 Nippon Steel Corp Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JPH10503809A (en) * 1994-07-21 1998-04-07 新日本製鐵株式会社 Martensitic stainless steel with sulfide stress cracking resistance with excellent hot workability
JPH08120345A (en) * 1994-08-23 1996-05-14 Nippon Steel Corp Production of martensitic stainless steel seamless tube excellent in corrosion resistance
JPH10130787A (en) * 1996-10-29 1998-05-19 Kawasaki Steel Corp High strength martensitic stainless steel for oil well pipe, excellent in stress corrosion cracking resistance and high temperature tensile characteristic
JP2002030392A (en) * 2000-07-13 2002-01-31 Nippon Steel Corp HIGH Cr MARTENSTIC STAINLESS STEEL EXCELLENT IN CORROSION RESISTANCE, AND ITS MANUFACTURING METHOD
JP2007321181A (en) * 2006-05-31 2007-12-13 Jfe Steel Kk Method for forming martenstic stainless steel material welded part
JP2007332442A (en) * 2006-06-16 2007-12-27 Jfe Steel Kk High-toughness ultrahigh-strength stainless steel pipe for oil well having excellent corrosion resistance, and its production method
JP2010111930A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp Cr-CONTAINING STEEL PIPE HAVING EXCELLENT HIGH PRESSURE CARBON DIOXIDE CORROSION RESISTANCE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169409A (en) * 2015-03-12 2016-09-23 Jfeスチール株式会社 MANUFACTURING METHOD OF SEAMLESS STEEL PIPE OF MARTENSITIC HIGH Cr STEEL
WO2021015141A1 (en) 2019-07-24 2021-01-28 日本製鉄株式会社 Martensitic stainless steel pipe, and method for manufacturing martensitic stainless steel pipe

Similar Documents

Publication Publication Date Title
JP5092204B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability
US10151011B2 (en) High-strength stainless steel seamless tube or pipe for oil country tubular goods, and method of manufacturing the same
JP6540922B1 (en) Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing the same
JP5505100B2 (en) Cr-containing steel pipe for carbon dioxide injection parts
US10240221B2 (en) Stainless steel seamless pipe for oil well use and method for manufacturing the same
JP5145793B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP4893196B2 (en) High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance
JP6315159B1 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP5640762B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
JP5446335B2 (en) Evaluation method of high strength stainless steel pipe for oil well
JP6540921B1 (en) Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing the same
JP5582307B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP6540920B1 (en) Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing the same
JP6237873B2 (en) High strength stainless steel seamless steel pipe for oil well
JP6743992B1 (en) Martensitic stainless seamless steel pipe for oil country tubular goods and method for producing the same
JP4978070B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability
JP2008297602A (en) Stainless steel pipe having superior pipe expandability for oil well, and manufacturing method therefor
JP2006016637A (en) High-strength stainless steel pipe for oil well superior in corrosion resistance to carbon dioxide gas
JP4289109B2 (en) High strength stainless steel pipe for oil well with excellent corrosion resistance
JP2010242162A (en) Cr-CONTAINING STEEL PIPE FOR CARBON DIOXIDE GAS INJECTION AT SUPER CRITICAL-PRESSURE
JP5401931B2 (en) Member for high pressure carbon dioxide injection
JP5407508B2 (en) Cr-containing steel pipe for supercritical carbon dioxide injection
JP3852207B2 (en) Cr-containing steel pipe for oil wells excellent in carbon dioxide gas corrosion resistance and sour resistance and method for producing the same
JP2008050646A (en) Stainless steel pipe superior in pipe expandability for oil well

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120223

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130710

A977 Report on retrieval

Effective date: 20130926

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Effective date: 20131122

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131224