JP3852207B2 - Cr-containing steel pipe for oil wells excellent in carbon dioxide gas corrosion resistance and sour resistance and method for producing the same - Google Patents

Cr-containing steel pipe for oil wells excellent in carbon dioxide gas corrosion resistance and sour resistance and method for producing the same Download PDF

Info

Publication number
JP3852207B2
JP3852207B2 JP07253798A JP7253798A JP3852207B2 JP 3852207 B2 JP3852207 B2 JP 3852207B2 JP 07253798 A JP07253798 A JP 07253798A JP 7253798 A JP7253798 A JP 7253798A JP 3852207 B2 JP3852207 B2 JP 3852207B2
Authority
JP
Japan
Prior art keywords
less
resistance
corrosion resistance
steel pipe
sour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07253798A
Other languages
Japanese (ja)
Other versions
JPH11269608A (en
Inventor
光男 木村
由紀夫 宮田
高明 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP07253798A priority Critical patent/JP3852207B2/en
Publication of JPH11269608A publication Critical patent/JPH11269608A/en
Application granted granted Critical
Publication of JP3852207B2 publication Critical patent/JP3852207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
この発明は、原油あるいは天然ガスの油井、ガス井に使用される油井管用の鋼材に関し、特に炭酸ガス(CO2 )、塩素イオン(Cl- )、硫化水素(H2S )などを含む極めて腐食環境の厳しい油井、ガス井で使用するに適した、優れた耐食性(特に耐CO2 腐食性)と耐応力腐食われ性(特に耐硫化物応力腐食われ性)を有するCr含有鋼管に関するものである。
【0002】
【従来の技術】
近年に至り、原油価格の高騰や近い将来に予想される石油資源の枯渇化を目前にして、従来はかえりみられなかったような深層油田や、開発が一旦は放棄されていた腐食性の強いサワーガス田等に対する開発が、世界的規模で盛んになっている。このような油田、ガス田は一般に、CO2 、Cl- 、H2S 等を含む厳しい腐食環境となっている場合が多い。したがってこのような油田、ガス田の採掘に使用される油井鋼管としては耐食性、耐応力腐食割れ性を兼ね備えた材質が要求される。
【0003】
一般にCO2 、Cl- を含む環境下では耐CO2 腐食性、耐CO2 応力腐食割れ性、耐孔食性の優れた13%Crマルテンサイト系ステンレス鋼管が使用されるのが普通である。しかし、さらにH2S が共存する環境では13%Crマルテンサイト系ステンレス鋼は耐硫化物応力腐食われ性(耐SSCC性)が低いことから、高価な2相ステンレス鋼が用いられているのが実情である。このため、耐CO2 腐食性、耐SSCC性を兼ね備えた安価な油井管用Cr含有鋼管の開発が強く望まれていた。
【0004】
【発明が解決しようとする課題】
この発明は以上の事情を背景としてなされたもので、前述のようにCO2 、Cl- 、H2S 等を含む苛酷な腐食環境下において優れた耐CO2 腐食性、耐SSCC性を有する安価な油井鋼管を提供することを目的とするものである。すなわち、耐CO2 腐食性に効果のあるCrを適量添加し、さらにNb、V添加と熱処理条件の適正化によって耐SSCC性を十分に改善し、耐CO2 腐食性、耐SSCC性に優れたCr含有鋼管およびその製造方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明者らは上述のような目的を達成するべく、油井用高強度マルテンサイト系ステンレス鋼管をベースとし、種々の合金成分について、CO2 、Cl- 、H2S を含む環境下での耐SSCC性を調べるための各種の実験、検討を重ねた。その結果、Cr量コントロールと熱処理条件の適正化によって、耐CO2 腐食性に加えて、耐SSCC性が著しく改善されることを見出し、この発明をなすに至ったのである。なお、この発明では、H2S を含む環境下での耐SSCC性を「耐サワー性」と称する。
【0006】
すなわち、この発明は、
mass%で、
C:0.30%以下、 Si:0.60%以下、 Mn:0.30〜1.50%、
P:0.03%以下、 S:0.005 %以下、 Cr:3.0 〜9.0 %(ただし、7.0 %以上を除く)、
Al:0.01〜0.10%を含有し、
さらにNb:0.30%以下、V:0.50%以下を2種あわせて0.03%以上含有し、
あるいはさらに、
Cu:0.14〜1.5 %、 Ni:2.5 %以下、 Mo:2.0 %以下、
Ti:0.50%以下、 Zr:0.20%以下、 B:0.0005〜0.01%、
W:2.0 %以下、 Ca:0.01%以下から選ばれた1種または2種以上を含有し、
残部がFeおよび不可避的不純物よりなる組成を有する降伏強度551 〜654MPaの耐炭酸ガス腐食性、耐サワー性に優れる油井用Cr含有鋼管であり、
また、前記組成を有する鋼を鋼管に熱間圧延後、850 ℃以上1100℃以下に加熱し、300 ℃以下まで1℃/s以上の速度で冷却し、さらに800 ℃以下の温度で焼戻ことを特徴とする降伏強度551 〜654MPaの耐炭酸ガス腐食性、耐サワー性に優れる油井用Cr含有鋼管の製造方法である。
【0007】
【発明の実施の形態】
以下この発明のCr含有鋼管について更に詳細に説明する。
まずこの発明における鋼成分限定理由について説明する。
C:0.30%以下
Cは鋼の強度に関係する重要な元素であるが、0.30%を超えた添加は靱性の低下を引き起こし、かつCr炭化物を生成させて耐食性を低下させるので0.30%以下とした。
Si:0.60%以下
Siは通常の製鋼過程において脱酸剤として必要な元素であるが、0.60%を超えると耐CO2 腐食性を低下させ、さらに熱間加工性も低下させることから、Siは0.60%以下とした。
Mn:0.30〜1.50%
Mnは油井管用鋼としての強度を確保するためには0.30%以上必要であるが、1.50%を超えると靱性に悪影響を及ぼすことから、Mnは0.30〜1.50%とした。
P:0.03%以下
Pは耐CO2 腐食性および耐サワー性をともに劣化させる元素であり、その含有量は可及的に少ないことが望ましいが、極端な低減は製造コストの上昇を招く。工業的に比較的安価に実施可能でかつ耐CO2 腐食性および耐サワー性を劣化させない範囲でPは0.03%以下とした。
S:0.005 %以下
Sはパイプ製造過程においてその熱間加工性を著しく劣化させる元素であり、可及的に少ないことが望ましいが、0.005 %以下に低減すれば通常の工程でのパイプ製造が可能となることから、Sはその上限を0.005 %とした。
Cr:3.0 〜9.0 %(ただし、7.0 %以上を除く)
Crは耐CO2 腐食性を保持するために主要な元素であり、耐食性の観点からは3.0 %以上必要である。しかし、9.0 %を超えると耐サワー性が劣化することから、Crは3.0 〜9.0 %(ただし、7.0 %以上を除く)とした。
Al:0.01〜0.10%
Alは強力な脱酸作用を有し、0.01%未満ではその効果が十分でなく、0.10%を超えると靱性に悪影響を及ぼすことから、Alは0.01〜0.10%とした。
Nb:0.30%以下、V:0.50%以下の2種あわせて0.03%以上
Nb、Vは高温における強度を上昇させる効果、および耐サワー性を改善する効果があり、これらの効果を発揮させるために、合計で0.03%以上添加する。また、Nbは0.30%、Vは0.50%を超えて添加すると靱性を劣化させるため、それぞれ0.30%以下、0.50%以下に制限する。
Cu:0.14〜1.5 %
Cuは保護被膜を強固にして、鋼中へ水素の浸入を抑制し、耐サワー性を高める元素であるが、1.5 %を超えると高温でCuS が粒界折出し、熱間加工性が低下することから、Cuは1.5 %以下とした。なお、0.14%以上である。
Ni:2.5 %以下
Niは保護被膜を強固にして、耐CO2 腐食性および耐サワー性を高める効果があるが、2.5 %を超えて添加してもあまり特性に改善がみられず、かつ高コストとなることから、Niは2.5 %以下とした。
Mo:2.0 %以下
Moは耐食性、耐孔食性に有効であり、かつ鋼中へ水素浸入を抑制して耐サワー性を向上させる元素である。しかし、2.0 %を超えた添加はあまり特性に改善がみられず、かつ高コストとなることから、Moは2.0 %以下とした。
Ca:0.01%以下
CaはSをCaS として固定しS系介在物を球状化することにより、介在物の周囲のマトリックスの格子歪を小さくして、水素のトラップ能を下げる作用がある。そのため耐サワー性向上に効果がある。しかし、0.01%を超えるとCaO の増加を招き、耐CO2 腐食性が低下することから、Caは0.01%以下とした。
Ti:0.50%以下、Zr:0.20%以下、B:0.0005〜0.01%、W:2.0 %以下
Ti、Zr、B、Wは強度を上昇させる効果、および耐応力腐食われ性を改善する効果があるが、Tiは0.50%を超えて、Zrは0.20%を超えて、Wは2.0 %を超えて添加するといずれも靱性を劣化させるため、また、Bは0.0005%未満では効果がなく、0.01%を超えた添加は靱性を劣化させるため、それぞれTi:0.50%以下、Zr:0.20 %以下、B:0.0005〜0.01%、W:2.0 %以下とした。
【0008】
この発明の鋼は以上のような成分組成を有するが、耐食性、耐応力腐食われ性改善のために熱処理条件を規定した。つまり、熱間圧延後、850 ℃以上1100℃以下に加熱し、300 ℃以下まで1℃/s以上の速度で冷却して、さらに800 ℃以下の温度で焼戻すこととした。この熱処理により、耐SSCC性をさらに改善できる。
【0009】
【実施例】
本発明要件を満たす鋼管(実施例)及び本発明要件を外れる鋼管(比較例)の化学成分、熱処理条件を表1に示す。実施例、比較例とも熱間圧延造管後熱処理により降伏強度80ksi grade(80〜95ksi 551 654MPa) に調整し、耐CO2 腐食性および耐サワー性を評価した。
【0010】
耐CO2 腐食性は、鋼管から切り出した厚さ3mm、幅30mm、長さ40mmの腐食試験片を5%NaCl水溶液を満たしたオートクレーブ中に2週間浸漬する炭酸ガス腐食試験を行い、重量減から腐食速度を読み取って評価指標とした。オートクレーブ中の炭酸ガス分圧は1MPa 、温度は100 ℃とした。
耐サワー性は、NACE-TM0177-96 method Aに準拠した定荷重試験(SSC試験)を行い、割れ発生の有無で評価した。試験液にはSolutionA(pH:2.7)を用い、付加応力は496MPa(80ksi gradeの90%SMYS(Specified Minimum Yield Strength)とした。
【0011】
腐食速度およびSSC試験結果を表1に示す。表1より、比較例では腐食速度とSSC試験結果のいずれか一方または両方が不十分であるのに対し、実施例ではこれら両方がそろって十分なレベルにあり、この発明の鋼管が炭酸ガス腐食性、耐サワー性に優れることが明らかである。
このように、この発明のCr含有鋼管は、CO2 、H2S を含む油井環境で油井鋼管として十分使用可能である。
【0012】
【表1】
【0013】
【発明の効果】
以上のように、この発明のCr含有鋼管は、Cr含有量を従来より低減しさらにNb、Vを決められた範囲で添加し、さらに熱処理条件を制限することにより、CO2 、H2S 、Cl- を含む厳しい腐食環境下において十分な耐食性および耐硫化物応力腐食割れ性を発揮し、したがってかかる苛酷な環境に置かれる油井鋼管として好適に使用し得るという格段の効果を奏する。
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to oil wells for crude oil or natural gas, and steel materials for oil well pipes used in gas wells, and in particular, extremely corrosive containing carbon dioxide (CO 2 ), chlorine ions (Cl ), hydrogen sulfide (H 2 S), etc. It is related to Cr-containing steel pipes with excellent corrosion resistance (especially CO 2 corrosion resistance) and stress corrosion resistance (especially sulfide stress corrosion resistance) suitable for use in severe oil and gas wells. .
[0002]
[Prior art]
In recent years, in the face of rising crude oil prices and the depletion of petroleum resources expected in the near future, deep oil fields that have not been recaptured in the past, and highly corrosive sour gas that had been abandoned once Developments for rice fields etc. are flourishing on a global scale. Such oil fields and gas fields generally have severe corrosive environments including CO 2 , Cl , H 2 S and the like. Accordingly, a material having both corrosion resistance and stress corrosion cracking resistance is required for an oil well steel pipe used for mining such oil and gas fields.
[0003]
Generally CO 2, Cl - resistant CO 2 corrosion resistance in an environment containing, resistant CO 2 stress corrosion cracking resistance, it is usual pitting corrosion resistance superior 13% Cr martensitic stainless steel pipe is used. However, in an environment where H 2 S coexists, 13% Cr martensitic stainless steel has low resistance to sulfide stress corrosion (SSCC resistance), so expensive duplex stainless steel is used. It is a fact. For this reason, development of an inexpensive Cr-containing steel pipe for oil well pipes that has both CO 2 corrosion resistance and SSCC resistance has been strongly desired.
[0004]
[Problems to be solved by the invention]
This invention was made against the background of the above circumstances, and as described above, it has excellent CO 2 corrosion resistance and SSCC resistance in a severe corrosive environment containing CO 2 , Cl , H 2 S, etc. The purpose is to provide an oil well steel pipe. In other words, an appropriate amount of Cr, which has an effect on CO 2 corrosion resistance, was added, and SSCC resistance was sufficiently improved by adding Nb and V and optimizing heat treatment conditions, resulting in excellent CO 2 corrosion resistance and SSCC resistance. A Cr-containing steel pipe and a method for producing the same are provided.
[0005]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors are based on a high-strength martensitic stainless steel pipe for oil wells, and various alloy components are resistant to an environment containing CO 2 , Cl , H 2 S. Various experiments and examinations were conducted to investigate SSCC properties. As a result, the present inventors have found that SSCC resistance is remarkably improved in addition to CO 2 corrosion resistance by controlling Cr amount and optimizing heat treatment conditions. In the present invention, SSCC resistance in an environment containing H 2 S is referred to as “sour resistance”.
[0006]
That is, this invention
mass%
C: 0.30% or less, Si: 0.60% or less, Mn: 0.30 to 1.50%,
P: 0.03% or less, S: 0.005% or less, Cr: 3.0 ~9.0% (excluding the 7 0% or more.),
Al: 0.01 to 0.10% contained,
In addition, Nb: 0.30% or less, V: 0.50% or less in combination of 0.03% or more,
Or in addition,
Cu: 0.14-1.5%, Ni: 2.5% or less, Mo: 2.0% or less,
Ti: 0.50% or less, Zr: 0.20% or less, B: 0.0005 to 0.01%,
W: 2.0% or less, Ca: contain one or more selected from 0.01% or less,
It is a Cr-containing steel pipe for oil wells with a carbon dioxide gas corrosion resistance and a sour resistance with a yield strength of 551 to 654 MPa, the balance of which is composed of Fe and inevitable impurities.
Further, after hot rolling a steel having the composition in steel tube, heated to 850 ° C. or higher 1100 ° C. or less, then cooled at 1 ° C. / s or faster to 300 ° C. or less, to tempering at further 800 ° C. below the temperature This is a method for producing a Cr-containing steel pipe for oil wells having a yield strength of 551 to 654 MPa, which is excellent in carbon dioxide corrosion resistance and sour resistance.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the Cr-containing steel pipe of the present invention will be described in more detail.
First, the reasons for limiting the steel components in the present invention will be described.
C: 0.30% or less C is an important element related to the strength of steel, but addition exceeding 0.30% causes a decrease in toughness, and also produces Cr carbides and decreases the corrosion resistance. .
Si: 0.60% or less
Si is an element necessary as a deoxidizer in the normal steelmaking process, but if it exceeds 0.60%, it will reduce the CO 2 corrosion resistance and also the hot workability, so Si was made 0.60% or less. .
Mn: 0.30 to 1.50%
Mn is required to be 0.30% or more in order to ensure the strength as oil well pipe steel, but if it exceeds 1.50%, the toughness is adversely affected, so Mn was made 0.30 to 1.50%.
P: 0.03% or less P is an element that deteriorates both the CO 2 corrosion resistance and the sour resistance, and its content is preferably as low as possible, but an extreme reduction leads to an increase in manufacturing cost. P can be 0.03% or less as long as it can be industrially implemented at a relatively low cost and does not deteriorate the CO 2 corrosion resistance and sour resistance.
S: 0.005% or less S is an element that significantly deteriorates the hot workability in the pipe manufacturing process, and it is desirable that it be as small as possible, but if it is reduced to 0.005% or less, pipes can be manufactured in the normal process. Therefore, the upper limit of S is 0.005%.
Cr: 3.0 ~9.0% (excluding the 7 0% or more.)
Cr is a major element for maintaining CO 2 corrosion resistance, and is required to be 3.0% or more from the viewpoint of corrosion resistance. However, since the deterioration of the souring resistance exceeds 9.0%, Cr is 3.0 to 9.0% (however, 7. Excluding 0%) was.
Al: 0.01-0.10%
Al has a strong deoxidizing action, and if it is less than 0.01%, the effect is not sufficient, and if it exceeds 0.10%, the toughness is adversely affected, so Al was made 0.01 to 0.10%.
Nb: 0.30% or less, V: 0.50% or less, 0.03% or more
Nb and V have the effect of increasing strength at high temperatures and the effect of improving sour resistance. In order to exhibit these effects, a total of 0.03% or more is added. Further, when Nb is added in an amount exceeding 0.30% and V exceeds 0.50%, the toughness is deteriorated. Therefore, the content is limited to 0.30% or less and 0.50% or less, respectively.
Cu: 0.14-1.5%
Cu is an element that strengthens the protective coating and suppresses the ingress of hydrogen into the steel and improves the sour resistance. However, when it exceeds 1.5%, CuS breaks off at high temperatures and the hot workability decreases. Therefore, Cu was made 1.5% or less. In addition, it is 0.14% or more.
Ni: 2.5% or less
Ni strengthens the protective film and has the effect of increasing CO 2 corrosion resistance and sour resistance. However, even if added over 2.5%, the characteristics are not improved so much and the cost increases. , Ni was 2.5% or less.
Mo: 2.0% or less
Mo is effective for corrosion resistance and pitting corrosion resistance, and is an element that improves sour resistance by suppressing hydrogen penetration into steel. However, the addition of over 2.0% does not improve the characteristics so much and the cost is high, so Mo was made 2.0% or less.
Ca: 0.01% or less
Ca fixes S as CaS and spheroidizes S-based inclusions, thereby reducing the lattice strain of the matrix surrounding the inclusions and lowering the hydrogen trapping ability. Therefore, it is effective in improving sour resistance. However, if it exceeds 0.01%, CaO is increased and the CO 2 corrosion resistance decreases, so Ca was made 0.01% or less.
Ti: 0.50% or less, Zr: 0.20% or less, B: 0.0005 to 0.01%, W: 2.0% or less
Ti, Zr, B, and W have the effect of increasing strength and improving stress corrosion resistance, but Ti exceeds 0.50%, Zr exceeds 0.20%, and W exceeds 2.0% If added in any amount, the toughness deteriorates, and if B is less than 0.0005%, there is no effect. If adding over 0.01% deteriorates the toughness, Ti: 0.50% or less, Zr: 0.20% or less, B : 0.0005 to 0.01%, W: 2.0% or less.
[0008]
The steel of the present invention has the above component composition, but heat treatment conditions are defined for improving corrosion resistance and stress corrosion resistance. That is, after hot rolling, it was heated to 850 ° C. or higher and 1100 ° C. or lower, cooled to 300 ° C. or lower at a rate of 1 ° C./s or higher, and further tempered at a temperature of 800 ° C. or lower. This heat treatment can further improve the SSCC resistance.
[0009]
【Example】
Table 1 shows chemical components and heat treatment conditions of a steel pipe (Example) that satisfies the requirements of the present invention and a steel pipe (Comparative Example) that deviates from the requirements of the present invention. In both Examples and Comparative Examples, the yield strength was adjusted to 80 ksi grade (80 to 95 ksi = 551 to 654 MPa ) by heat treatment after hot rolling pipe forming , and the CO 2 corrosion resistance and sour resistance were evaluated.
[0010]
For CO 2 corrosion resistance, a carbon dioxide corrosion test is conducted by immersing a 3 mm thick, 30 mm wide, 40 mm long corrosion test piece cut from a steel pipe in an autoclave filled with 5% NaCl aqueous solution for 2 weeks. The corrosion rate was read and used as an evaluation index. The carbon dioxide partial pressure in the autoclave was 1 MPa, and the temperature was 100 ° C.
The sour resistance was evaluated by the presence or absence of cracking by performing a constant load test (SSC test) based on NACE-TM0177-96 method A. Solution A (pH: 2.7) was used as the test solution, and the applied stress was 496 MPa (80 ksi grade 90% SMYS (Specified Minimum Yield Strength).
[0011]
The corrosion rate and SSC test results are shown in Table 1. Table 1 shows that either or both of the corrosion rate and the SSC test result are insufficient in the comparative example, whereas both of them are at a sufficient level in the example, and the steel pipe of the present invention has carbon dioxide corrosion. It is clear that it has excellent resistance and sour resistance.
Thus, the Cr-containing steel pipe of the present invention can be sufficiently used as an oil well steel pipe in an oil well environment containing CO 2 and H 2 S.
[0012]
[Table 1]
[0013]
【The invention's effect】
As described above, the Cr-containing steel pipe of the present invention has a lower Cr content than that of the prior art, and Nb and V are added within a predetermined range, and further, heat treatment conditions are restricted, so that CO 2 , H 2 S, Cl - exhibits sufficient corrosion resistance and sulfide stress corrosion cracking in severe corrosive environments containing, thus achieves the remarkable effect that can be suitably used as an oil well steel pipe to be placed in such a harsh environment.

Claims (3)

mass%で、
C:0.30%以下、 Si:0.60%以下、 Mn:0.30〜1.50%、
P:0.03%以下、 S:0.005 %以下、 Cr:3.0 〜9.0 %(ただし、7.0 %以上を除く)、
Al:0.01〜0.10%を含有し、
さらに、
Nb:0.30%以下、V:0.50%以下を2種あわせて0.03%以上含有し、
残部がFeおよび不可避的不純物よりなる組成を有する降伏強度551 〜654MPaの耐炭酸ガス腐食性、耐サワー性に優れる油井用Cr含有鋼管。
mass%
C: 0.30% or less, Si: 0.60% or less, Mn: 0.30 to 1.50%,
P: 0.03% or less, S: 0.005% or less, Cr: 3.0 ~9.0% (excluding the 7 0% or more.),
Al: 0.01 to 0.10% contained,
further,
Contains Nb: 0.30% or less, V: 0.50% or less in combination of 0.03% or more,
A Cr-containing steel pipe for oil wells with a yield strength of 551 to 654 MPa, the balance of which is composed of Fe and unavoidable impurities, and excellent corrosion resistance and sour resistance.
mass%で、
C:0.30%以下、 Si:0.60%以下、 Mn:0.30〜1.50%、
P:0.03%以下、 S:0.005 %以下、 Cr:3.0 〜9.0 %(ただし、7.0 %以上を除く)、
Al:0.01〜0.10%を含有し、
さらに、
Nb:0.30%以下、V:0.50%以下を2種あわせて0.03%以上含有し、
さらに、
Cu:0.14〜1.5 %、 Ni:2.5 %以下、 Mo:2.0 %以下、
Ti:0.50%以下、 Zr:0.20%以下、 B:0.0005〜0.01%、
W:2.0 %以下、 Ca:0.01%以下から選ばれた1種または2種以上を含有し、
残部がFeおよび不可避的不純物よりなる組成を有する降伏強度551 〜654MPaの耐炭酸ガス腐食性、耐サワー性に優れる油井用Cr含有鋼管。
mass%
C: 0.30% or less, Si: 0.60% or less, Mn: 0.30 to 1.50%,
P: 0.03% or less, S: 0.005% or less, Cr: 3.0 ~9.0% (excluding the 7 0% or more.),
Al: 0.01 to 0.10% contained,
further,
Contains Nb: 0.30% or less, V: 0.50% or less in combination of 0.03% or more,
further,
Cu: 0.14-1.5%, Ni: 2.5% or less, Mo: 2.0% or less,
Ti: 0.50% or less, Zr: 0.20% or less, B: 0.0005 to 0.01%,
W: 2.0% or less, Ca: contain one or more selected from 0.01% or less,
A Cr-containing steel pipe for oil wells with a yield strength of 551 to 654 MPa, the balance of which is composed of Fe and unavoidable impurities, and excellent corrosion resistance and sour resistance.
請求項1又は2記載の組成を有する鋼を鋼管に熱間圧延後、850 ℃以上1100℃以下に加熱し、300 ℃以下まで1℃/s以上の速度で冷却し、さらに800 ℃以下の温度で焼戻ことを特徴とする降伏強度551 〜654MPaの耐炭酸ガス腐食性、耐サワー性に優れる油井用Cr含有鋼管の製造方法。The steel having the composition according to claim 1 or 2 is hot-rolled into a steel pipe, heated to 850 ° C or higher and 1100 ° C or lower, cooled to 300 ° C or lower at a rate of 1 ° C / s or higher, and further at a temperature of 800 ° C or lower. in耐炭acid gas corrosion of yield strength 551 ~654MPa, characterized in that to tempering method for oil well for Cr-containing steel superior in sour resistance.
JP07253798A 1998-03-20 1998-03-20 Cr-containing steel pipe for oil wells excellent in carbon dioxide gas corrosion resistance and sour resistance and method for producing the same Expired - Fee Related JP3852207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07253798A JP3852207B2 (en) 1998-03-20 1998-03-20 Cr-containing steel pipe for oil wells excellent in carbon dioxide gas corrosion resistance and sour resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07253798A JP3852207B2 (en) 1998-03-20 1998-03-20 Cr-containing steel pipe for oil wells excellent in carbon dioxide gas corrosion resistance and sour resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11269608A JPH11269608A (en) 1999-10-05
JP3852207B2 true JP3852207B2 (en) 2006-11-29

Family

ID=13492212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07253798A Expired - Fee Related JP3852207B2 (en) 1998-03-20 1998-03-20 Cr-containing steel pipe for oil wells excellent in carbon dioxide gas corrosion resistance and sour resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3852207B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952708B2 (en) * 2008-12-19 2012-06-13 住友金属工業株式会社 Martensitic stainless steel and method for producing the same
CN102373372B (en) * 2010-08-23 2014-06-04 宝山钢铁股份有限公司 High temperature resistant steel for oil well pipe and its manufacturing method

Also Published As

Publication number Publication date
JPH11269608A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
JP4893196B2 (en) High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance
JP4978073B2 (en) High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same
JP5092204B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability
JP5145793B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP6315159B1 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP5487689B2 (en) Manufacturing method of martensitic stainless steel seamless pipe for oil well pipe
WO2005017222A1 (en) High strength stainless steel pipe excellent in corrosion resistance for use in oil well and method for production thereof
JP5446335B2 (en) Evaluation method of high strength stainless steel pipe for oil well
JPWO2004001082A1 (en) Stainless steel pipe for oil well and manufacturing method thereof
JP3608743B2 (en) Martensitic stainless steel with excellent hot workability and resistance to sulfide stress cracking
US5167731A (en) Martensitic stainless steel for an oil well
EP0565117B1 (en) Martensitic stainless steel for use in oil wells
JP6540920B1 (en) Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing the same
JP4289109B2 (en) High strength stainless steel pipe for oil well with excellent corrosion resistance
JP5582307B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
JPWO2019065114A1 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP4449174B2 (en) Manufacturing method of high strength martensitic stainless steel pipe for oil well
JP5162820B2 (en) Stainless steel pipe for oil well pipes with excellent pipe expandability
JP4978070B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability
JP4552268B2 (en) How to connect high strength martensitic stainless steel pipes for oil wells
JP5245238B2 (en) Stainless steel pipe for oil well pipe excellent in pipe expandability and manufacturing method thereof
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP3752857B2 (en) Cr-containing seamless steel pipe for oil wells
JP3852207B2 (en) Cr-containing steel pipe for oil wells excellent in carbon dioxide gas corrosion resistance and sour resistance and method for producing the same
JP6743992B1 (en) Martensitic stainless seamless steel pipe for oil country tubular goods and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees