WO2022009598A1 - Seamless stainless steel pipe and production method therefor - Google Patents

Seamless stainless steel pipe and production method therefor Download PDF

Info

Publication number
WO2022009598A1
WO2022009598A1 PCT/JP2021/022014 JP2021022014W WO2022009598A1 WO 2022009598 A1 WO2022009598 A1 WO 2022009598A1 JP 2021022014 W JP2021022014 W JP 2021022014W WO 2022009598 A1 WO2022009598 A1 WO 2022009598A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
content
temperature
seamless steel
Prior art date
Application number
PCT/JP2021/022014
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 加茂
正雄 柚賀
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202180043643.2A priority Critical patent/CN115917028A/en
Priority to MX2022016143A priority patent/MX2022016143A/en
Priority to EP21838618.3A priority patent/EP4123037A1/en
Priority to JP2021549667A priority patent/JP7226571B2/en
Priority to US18/010,518 priority patent/US20230340632A1/en
Priority to BR112022025826A priority patent/BR112022025826A2/en
Publication of WO2022009598A1 publication Critical patent/WO2022009598A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a stainless seamless steel pipe suitable for use in oil wells and gas wells (hereinafter, simply referred to as oil wells).
  • the present invention is particularly carbon dioxide (CO 2), chlorine ions - improvement under severe corrosive environment and high temperatures including, corrosion resistance under the environment like containing hydrogen sulfide (H 2 S), and the strength at high temperatures (Cl) Regarding the stainless steel seamless steel pipe that was made.
  • 13Cr martensitic stainless steel pipes have been generally used as steel pipes for oil wells used for oil wells in oil fields and gas fields in an environment containing CO 2 and Cl ⁇ .
  • 13Cr martensitic stainless steel pipes may have insufficient corrosion resistance.
  • steel pipes for oil wells that can be used even in such an environment and have high corrosion resistance.
  • Patent Document 1 describes in terms of mass%, C: 0.05% or less, Si: 1.0% or less, Mn: 0.01 to 1.0%, P: 0.05% or less, S: 0.002. %, Cr: 16-18%, Mo: 1.8-3%, Cu: 1.0-3.5%, Ni: 3.0-5.5%, Co: 0.01-1.0 %, Al: 0.001 to 0.1%, O: 0.05% or less, and N: 0.05% or less, and Cr, Ni, Mo, Cu satisfy a specific relationship.
  • the stainless steel for oil wells to have is described.
  • Patent Document 2 in mass%, C: 0.05% or less, Si: 1.0% or less, Mn: 0.1 to 0.5%, P: 0.05% or less, S: 0. Less than .005%, Cr: 15.0% or more and 19.0% or less, Mo: 2.0% or more and 3.0% or less, Cu: 0.3 to 3.5%, Ni: 3.0% or more 5 Less than 0.0%, W: 0.1 to 3.0%, Nb: 0.07 to 0.5%, V: 0.01 to 0.5%, Al: 0.001 to 0.1%, N : 0.010 to 0.100%, O: 0.01% or less, Nb, Ta, C, N, Cu have a composition satisfying a specific relationship, and 45% or more by volume.
  • a high-strength stainless seamless steel tube for an oil well having a structure consisting of a tempered martensite phase, a ferrite phase of 20 to 40%, and a residual austenite phase of more than 10% and not more than 25% is described.
  • a high-strength stainless steel seamless steel pipe for oil wells that has a yield strength (YS) of 862 MPa or more and sufficient corrosion resistance even in a high-temperature severe corrosion environment containing CO 2 , Cl ⁇ , and H 2 S.
  • Patent Document 3 in terms of mass%, C: 0.005 to 0.05%, Si: 0.05 to 0.50%, Mn: 0.20 to 1.80%, P: 0.030. % Or less, S: 0.005% or less, Cr: 12.0 to 17.0%, Ni: 4.0 to 7.0%, Mo: 0.5 to 3.0%, Al: 0.005 to It contains 0.10%, V: 0.005 to 0.20%, Co: 0.01 to 1.0%, N: 0.005 to 0.15%, O: 0.010% or less, and Cr. , Ni, Mo, Cu, C, Si, Mn, N are described as high-strength stainless steel seamless pipes for oil wells having a composition satisfying a specific relationship.
  • Patent Document 4 in terms of mass%, C: 0.05% or less, Si: 0.5% or less, Mn: 0.15 to 1.0%, P: 0.030% or less, S: 0. .005% or less, Cr: 14.5 to 17.5%, Ni: 3.0 to 6.0%, Mo: 2.7 to 5.0%, Cu: 0.3 to 4.0%, W : 0.1 to 2.5%, V: 0.02 to 0.20%, Al: 0.10% or less, N: 0.15% or less, C, Si, Mn, Cr, Ni, Mo, Cu, N, W have a composition that satisfies a specific relationship, and in terms of volume ratio, martensite phase is more than 45% as the main phase, ferrite phase is 10 to 45% as the second phase, and residual austenite phase.
  • a high-strength stainless steel seamless steel tube for oil wells having a structure containing 30% or less of is described.
  • YS yield strength
  • Patent Document 5 in terms of mass%, C: 0.05% or less, Si: 0.5% or less, Mn: 0.15 to 1.0%, P: 0.030% or less, S: 0. .005% or less, Cr: 14.5 to 17.5%, Ni: 3.0 to 6.0%, Mo: 2.7 to 5.0%, Cu: 0.3 to 4.0%, W : 0.1 to 2.5%, V: 0.02 to 0.20%, Al: 0.10% or less, N: 0.15% or less, B: 0.0005 to 0.0100% , C, Si, Mn, Cr, Ni, Mo, Cu, N, W have a composition that satisfies a specific relationship, and in terms of volume ratio, the martensite phase as the main phase exceeds 45%, and the second phase Described are high-strength stainless seamless steel pipes for oil wells having a structure containing 10 to 45% of a ferrite phase and 30% or less of a retained austenite phase.
  • the ratio of the yield stress (0.2% proof stress) at 200 ° C. to the yield stress (0.2% proof stress) at room temperature is 0.85 or more.
  • Patent Documents 1 to 5 disclose stainless steels having improved corrosion resistance, but there are cases where it is not sufficient to combine high temperature corrosion resistance, high sulfide stress cracking resistance, and high high temperature strength. there were.
  • the present invention solves such a problem of the prior art, and has a high strength of yield strength: 758 MPa (110 ksi) or more, excellent corrosion resistance, and excellent high temperature strength.
  • the purpose is to provide.
  • excellent corrosion resistance means a case of having "excellent carbon dioxide gas corrosion resistance” and “excellent sulfide stress cracking resistance”.
  • excellent carbon dioxide corrosion resistance means that the test piece is placed in a test solution held in an autoclave: a 20 mass% NaCl aqueous solution (liquid temperature: 200 ° C., CO 2 gas atmosphere at 30 atm). It means a case where the corrosion rate is 0.127 mm / y or less when the immersion is carried out with the immersion time set to 336 hours.
  • excellent sulfide stress cracking resistance means a test solution held in an autoclave: a 0.165 mass% NaCl aqueous solution (liquid temperature: 25 ° C., 0.99 atm) CO 2 gas. the H 2 S atmosphere) of 0.01 atm, the addition of acetic acid + sodium acetate pH: the test piece was immersed in an aqueous solution adjusted to 3.0, exposed for 720 hours in a state loaded with 90% of yield stress, It shall be the case where the test piece is not broken or cracked after the test.
  • excellent high temperature strength means a yield stress (0.2%) at room temperature after conducting a tensile test in accordance with JIS Z 2241 and a high temperature tensile test in accordance with JIS G 0567.
  • the ratio of the yield stress (0.2% proof stress) at 200 ° C. to the proof stress) is 0.85 or more. The method of each test described above is also described in detail in Examples described later.
  • the present inventors have diligently studied various factors affecting the high temperature strength and corrosion resistance of stainless steel in order to achieve the above-mentioned object. As a result, excellent high-temperature strength was obtained by containing V in a predetermined amount or more. Further, by containing Cr, Mo, and Cu in a predetermined amount or more and setting the Mn content to a certain amount or less, excellent corrosion resistance (excellent carbon dioxide gas corrosion resistance and excellent sulfide stress cracking resistance). was gotten.
  • the present invention has been completed with further studies based on such findings. That is, the gist of the present invention is as follows. [1] By mass%, C: 0.06% or less, Si: 1.0% or less, Mn: 0.01% or more and 0.90% or less, P: 0.05% or less, S: 0.005% or less, Cr: 15.70% or more and 18.00% or less, Mo: 1.60% or more and 3.80% or less, Cu: 1.10% or more and 4.00% or less, Ni: 3.0% or more and 6.0% or less, Al: 0.10% or less, N: 0.10% or less, O: 0.010% or less, V: Contains 0.120% or more and 1.000% or less, Moreover, C, Si, Mn, Cr, Ni, Mo, Cu, and N satisfy the following formula (1).
  • the balance has a component composition consisting of Fe and unavoidable impurities, It has a structure containing a martensite phase of 30% or more, a ferrite phase of 60% or less, and a retained austenite phase of 40% or less by volume.
  • C, Si, Mn, Cr, Ni, Mo, Cu, and N are the contents (mass%) of each element, and if they are not contained, they are set to zero.
  • Group A W: 3.0% or less
  • Group B Nb: less than 0.10%
  • Group C B: 0.010% or less, Ta: 0.3% or less, Co: 1.5% or less, Ti: 0 .1 or 2 or more selected from 3% or less, Zr: 0.3% or less
  • Group D Ca: 0.01% or less, REM: 0.3% or less, Mg: 0.01% or less , Sn: 1.0% or less, Sb: 1.0% or less, one type or two or more types selected from [4] [1] to [3]. It is a manufacturing method of The steel pipe material having the above-mentioned composition is heated at a heating temperature in the range of 1100 to 1350 ° C. and hot-worked to obtain a seamless steel pipe.
  • the seamless steel pipe is reheated to a heating temperature in the range of 850 to 1150 ° C., and subjected to quenching treatment to cool it to a cooling stop temperature of 50 ° C. or lower at a cooling rate equal to or higher than air cooling.
  • a method for manufacturing a stainless seamless steel pipe which is subjected to a tempering process of heating to a temperature in the range of tempering temperature: 500 to 650 ° C.
  • a stainless seamless steel pipe having a high yield strength of 758 MPa (110 ksi) or more, excellent corrosion resistance, and excellent high temperature strength, and a method for manufacturing the same can be obtained.
  • the stainless seamless steel tube of the present invention has a mass% of C: 0.06% or less, Si: 1.0% or less, Mn: 0.01% or more and 0.90% or less, P: 0.05% or less, S: 0.005% or less, Cr: 15.70% or more and 18.00% or less, Mo: 1.60% or more and 3.80% or less, Cu: 1.10% or more and 4.00% or less, Ni: 3 It contains 0.0% or more and 6.0% or less, Al: 0.10% or less, N: 0.10% or less, O: 0.010% or less, V: 0.120% or more and 1.000% or less.
  • C, Si, Mn, Cr, Ni, Mo, Cu, and N satisfy the following formula (1), the balance has a component composition consisting of Fe and unavoidable impurities, and the volume ratio is 30% or more. It has a structure containing a martensite phase, a ferrite phase of 60% or less, and a retained austenite phase of 40% or less, and has a yield strength of 758 MPa or more. 13.0 ⁇ -5.9 x (7.82 + 27C-0.91Si + 0.21Mn-0.9Cr + Ni-1.1Mo + 0.2Cu + 11N) ⁇ 50.0 ...
  • C, Si, Mn, Cr, Ni, Mo, Cu, and N are the contents (mass%) of each element, and if they are not contained, they are set to zero.
  • C 0.06% or less C is an element inevitably contained in the steelmaking process. If C is contained in excess of 0.06%, the corrosion resistance is lowered. Therefore, the C content is 0.06% or less.
  • the C content is preferably 0.05% or less, more preferably 0.04% or less, still more preferably 0.03% or less. Considering the decarburization cost, the lower limit of the C content is preferably 0.002%, more preferably 0.003% or more.
  • Si 1.0% or less Si is an element that acts as a deoxidizing agent. However, if Si is contained in excess of 1.0%, hot workability and corrosion resistance are deteriorated. Therefore, the Si content is set to 1.0% or less.
  • the Si content is preferably 0.7% or less, more preferably 0.5% or less, still more preferably 0.4% or less. A lower limit is not set as long as the deoxidizing effect can be obtained, but the Si content is preferably 0.03% or more, more preferably 0.05% or more for the purpose of obtaining a sufficient deoxidizing effect. be.
  • Mn 0.01% or more and 0.90% or less
  • Mn is an element that acts as a deoxidizing material and a desulfurizing material and improves hot workability.
  • the Mn content is 0.01% or more.
  • the Mn content is set to 0.01% or more and 0.90% or less.
  • the Mn content is preferably 0.03% or more, more preferably 0.05% or more.
  • the Mn content is preferably 0.7% or less, more preferably 0.5% or less, still more preferably 0.4% or less.
  • P 0.05% or less
  • P is an element that reduces carbon dioxide gas corrosion resistance and sulfide stress cracking resistance, and is preferably reduced as much as possible in the present invention, but 0.05% or less is acceptable. .. Therefore, the P content is set to 0.05% or less.
  • the P content is preferably 0.04% or less, more preferably 0.03% or less, and further preferably 0.02% or less.
  • S 0.005% or less
  • S is an element that significantly reduces hot workability and hinders stable operation of the hot pipe making process. Further, S exists as a sulfide-based inclusion in steel and lowers the sulfide stress cracking resistance. Therefore, it is preferable to reduce S as much as possible, but it is acceptable if it is 0.005% or less. Therefore, the S content is set to 0.005% or less. The S content is preferably 0.004% or less, more preferably 0.003% or less, still more preferably 0.002% or less.
  • Cr 15.70% or more and 18.00% or less Cr is an element that forms a protective film on the surface of steel pipes and contributes to improvement of corrosion resistance. If the Cr content is less than 15.70%, desired carbon dioxide gas corrosion resistance It is not possible to ensure resistance and sulfide stress cracking resistance. Therefore, the content of Cr of 15.70% or more is required. On the other hand, if the content of Cr exceeds 18.00%, the ferrite fraction becomes too high and the desired strength cannot be secured. Therefore, the Cr content is 15.70% or more and 18.00% or less.
  • the Cr content is preferably 16.00% or more, more preferably 16.30% or more.
  • the Cr content is preferably 17.50% or less, more preferably 17.00% or less.
  • Mo 1.60% or more 3.80% or less Mo is a protective coating of the steel pipe surface is stabilized, Cl - and low pH increases the resistance to pitting, ⁇ acid gas corrosion resistance and sulfide Increases stress corrosion cracking. In order to obtain the desired corrosion resistance, it is necessary to contain 1.60% or more of Mo. On the other hand, if Mo is added in excess of 3.80%, the ferrite fraction becomes too high and the desired strength cannot be secured. Therefore, the Mo content is 1.60% or more and 3.80% or less. The Mo content is preferably 1.80% or more, more preferably 2.00% or more. The Mo content is preferably 3.5% or less, more preferably 3.0% or less, and further preferably 2.8% or less.
  • Cu 1.10% or more and 4.00% or less
  • Cu has the effect of strengthening the protective film on the surface of the steel pipe and enhancing the carbon dioxide gas corrosion resistance and the sulfide stress cracking resistance.
  • it is necessary to contain 1.10% or more of Cu.
  • the Cu content is set to 4.00% or less. Therefore, the Cu content is 1.10% or more and 4.00% or less.
  • the Cu content is preferably 1.80% or more, more preferably 2.00% or more.
  • the Cu content is preferably 3.20% or less, more preferably 3.00% or less, still more preferably 2.7% or less.
  • Ni 3.0% or more and 6.0% or less Ni increases the strength of steel by solid solution strengthening and improves the toughness of steel. In order to secure the toughness required for oil country tubular goods, it is necessary to contain 3.0% or more of Ni. On the other hand, if the content of Ni exceeds 6.0%, the stability of the martensite phase is lowered and the strength is lowered. Therefore, the Ni content is set to 3.0% or more and 6.0% or less.
  • the Ni content is preferably 3.5% or more, more preferably 4.0% or more, still more preferably 4.5% or more.
  • the Ni content is preferably 5.5% or less, more preferably 5.2% or less.
  • Al 0.10% or less
  • Al is an element that acts as a deoxidizing agent. However, if Al is contained in an amount of more than 0.10%, the corrosion resistance is lowered. Therefore, the Al content is set to 0.10% or less.
  • the Al content is preferably 0.07% or less, more preferably 0.05% or less, still more preferably 0.04% or less.
  • the lower limit is not set as long as the deoxidizing effect can be obtained, but the Al content is preferably 0.005% or more, more preferably 0.01% or more, for the purpose of obtaining a sufficient deoxidizing effect. be.
  • N 0.10% or less
  • N is an element that is inevitably contained in the steelmaking process, but it is also an element that enhances the strength of steel. However, if N is contained in excess of 0.10%, a nitride is formed and the corrosion resistance is lowered. Therefore, the N content is set to 0.10% or less.
  • the N content is preferably 0.08% or less, more preferably 0.05% or less, still more preferably 0.03% or less. Although the lower limit of the N content is not particularly set, an extreme reduction in the N content leads to an increase in steelmaking cost. Therefore, the N content is preferably 0.002% or more, and more preferably 0.003% or more.
  • O 0.010% or less
  • O oxygen
  • the O content is preferably 0.005% or less.
  • V 0.120% or more and 1.000% or less
  • V is an important element in the present invention for improving high temperature strength.
  • V forms a carbonitride, and high strength can be obtained not only at room temperature but also at high temperature by strengthening precipitation.
  • V is contained in an amount of 0.120% or more.
  • the V content is set to 0.120% or more and 1.000% or less.
  • the V content is preferably 0.180% or more, more preferably 0.250% or more, and further preferably 0.300% or more.
  • the V content is preferably 0.500% or less, more preferably 0.400% or less, and further preferably 0.300% or less.
  • C, Si, Mn, Cr, Ni, Mo, Cu, and N are further contained so as to satisfy the following formula (1). 13.0 ⁇ -5.9 x (7.82 + 27C-0.91Si + 0.21Mn-0.9Cr + Ni-1.1Mo + 0.2Cu + 11N) ⁇ 50.0 ...
  • C, Si, Mn, Cr, Ni, Mo, Cu, and N are the contents (mass%) of each element, and if they are not contained, they are set to zero.
  • the lower limit of the lvalue is 13.0 and the upper limit of the rvalue is 50.0.
  • the lvalue which is the lower limit of the equation (1) defined in the present invention, is preferably 15.0, more preferably 20.0.
  • the rvalue is preferably 45.0, more preferably 40.0. That is, the value of the polynomial in the center of Eq. (1) is 13.0 or more and 50.0 or less. It is preferably 15.0 or more and 45.0 or less. More preferably, it is 20.0 or more and 40.0 or less.
  • the balance other than the above-mentioned component composition is composed of Fe and unavoidable impurities.
  • the stainless seamless steel pipe of the present invention can obtain the desired characteristics.
  • the following selective elements W, Nb, B, Ta, Co, Ti, Zr, Ca
  • REM, Mg, Sn, Sb may be contained alone or in combination of two or more.
  • W 3.0% or less can be contained in addition to the above-mentioned component composition.
  • Nb less than 0.10% can be contained in addition to the above-mentioned component composition.
  • B 0.010% or less, Ta: 0.3% or less, Co: 1.5% or less, Ti: 0.3% or less and Zr: 0. It can contain one or more selected from 3% or less.
  • Ca 0.01% or less, REM: 0.3% or less, Mg: 0.01% or less, Sn: 1.0% or less, and Sb: 1. It can contain one or more selected from 0% or less.
  • W 3.0% or less W is an element that contributes to improving the strength of steel and stabilizes the protective film on the surface of steel pipes to enhance carbon dioxide gas corrosion resistance and sulfide stress crack resistance. ..
  • W is contained in combination with Mo, the corrosion resistance is remarkably improved. W can be contained as needed in order to obtain the above effects. On the other hand, even if W is contained in excess of 3.0%, the effect is saturated. Therefore, when W is contained, the W content is preferably 3.0% or less.
  • the W content is more preferably less than 1.5%, still more preferably 1.0% or less.
  • the W content is more preferably 0.05% or more, still more preferably 0.10% or more.
  • Nb Less than 0.10% Nb is an element that increases strength and improves corrosion resistance, and can be contained as needed. On the other hand, if 0.10% or more of Nb is contained, the desired high-temperature strength may not be obtained. Therefore, when Nb is contained, the Nb content is preferably less than 0.10%. The Nb content is more preferably 0.05% or less, still more preferably 0.03% or less. The Nb content is more preferably 0.005% or more, still more preferably 0.010% or more.
  • B 0.010% or less
  • B is an element that increases the strength and can be contained as needed.
  • B also contributes to the improvement of hot workability and has the effect of suppressing the occurrence of cracks and cracks in the pipe making process.
  • the B content is preferably 0.010% or less.
  • the B content is more preferably 0.008% or less, still more preferably 0.007% or less.
  • the B content is more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • Ta 0.3% or less
  • Ta is an element that increases strength and improves corrosion resistance, and can be contained as needed. In order to obtain such an effect, it is preferable to contain 0.001% or more of Ta. On the other hand, even if Ta is contained in excess of 0.3%, the effect is saturated. Therefore, when Ta is contained, it is preferable to limit the Ta content to 0.3% or less.
  • the Ta content is more preferably 0.25% or less, further preferably 0.06% or less, still more preferably 0.050% or less, still more preferably 0.025% or less. More preferably, it is 0.005% or more.
  • Co 1.5% or less
  • Co is an element that increases the strength and can be contained as needed. Co has an effect of improving corrosion resistance in addition to the above-mentioned effect. In order to obtain such an effect, it is preferable to contain 0.0005% or more of Co.
  • the Co content is more preferably 0.005% or more, still more preferably 0.010% or more. On the other hand, even if Co is contained in excess of 1.5%, the effect is saturated. Therefore, when Co is contained, it is preferable to limit the Co content to 1.5% or less.
  • the Co content is more preferably less than 0.150%.
  • Ti 0.3% or less Ti is an element that increases the strength and can be contained as needed. In order to obtain such an effect, it is preferable to contain 0.0005% or more of Ti. On the other hand, if Ti is contained in excess of 0.3%, the toughness is lowered. Therefore, when Ti is contained, it is preferable to limit the Ti content to 0.3% or less.
  • Zr 0.3% or less
  • Zr is an element that increases the strength and can be contained as needed.
  • Zr also has an effect of improving sulfide stress cracking resistance.
  • Zr even if Zr is contained in excess of 0.3%, the effect is saturated. Therefore, when Zr is contained, it is preferable to limit the Zr content to 0.3% or less.
  • Ca 0.01% or less Ca is an element that contributes to the improvement of sulfide stress cracking resistance through morphological control of sulfide, and can be contained as needed. In order to obtain such an effect, it is preferable to contain 0.0005% or more of Ca. On the other hand, even if Ca is contained in an amount of more than 0.01%, the effect is saturated and the effect commensurate with the content cannot be expected. Therefore, when Ca is contained, it is preferable to limit the Ca content to 0.01% or less.
  • REM 0.3% or less REM (rare earth metal) is an element that contributes to the improvement of sulfide stress cracking resistance through morphological control of sulfide, and can be contained as needed. In order to obtain such an effect, it is preferable to contain 0.0005% or more of REM. On the other hand, even if REM is contained in an amount of more than 0.3%, the effect is saturated and the effect commensurate with the content cannot be expected. Therefore, when REM is contained, it is preferable to limit the REM content to 0.3% or less.
  • the REM referred to in the present invention includes scandium (Sc) having an atomic number of 21 and yttrium (Y) having an atomic number of 39, and lanthanum (La) having an atomic number of 57 to lutetium (Lu) having an atomic number of 71. It is a lanthanoid.
  • the REM concentration in the present invention is the total content of one or more elements selected from the above-mentioned REMs.
  • Mg 0.01% or less Mg is an element that improves corrosion resistance and can be contained as needed. In order to obtain such an effect, it is preferable that Mg is contained in an amount of 0.0005% or more. On the other hand, even if Mg is contained in an amount of more than 0.01%, the effect is saturated and the effect commensurate with the content cannot be expected. Therefore, when Mg is contained, it is preferable to limit the Mg content to 0.01% or less.
  • Sn 1.0% or less Sn is an element that improves corrosion resistance and can be contained as needed. In order to obtain such an effect, it is preferable to contain Sn in 0.001% or more. On the other hand, even if Sn is contained in an amount of more than 1.0%, the effect is saturated and the effect commensurate with the content cannot be expected. Therefore, when Sn is contained, it is preferable to limit the Sn content to 1.0% or less.
  • Sb 1.0% or less
  • Sb is an element that improves corrosion resistance and can be contained as needed. In order to obtain such an effect, it is preferable to contain 0.001% or more of Sb. On the other hand, even if Sb is contained in an amount of more than 1.0%, the effect is saturated and the effect commensurate with the content cannot be expected. Therefore, when Sb is contained, it is preferable to limit the Sb content to 1.0% or less.
  • the stainless seamless steel pipe of the present invention has the above-mentioned composition and has a structure containing a martensite phase of 30% or more, a ferrite phase of 60% or less, and a residual austenite phase of 40% or less in terms of volume ratio. Have.
  • the martensite phase is set to 30% or more by volume in order to secure the desired strength.
  • the martensite phase is preferably 40% or more.
  • the martensite phase is preferably 70% or less, more preferably 65% or less.
  • a ferrite phase having a volume fraction of 60% or less is contained.
  • the growth of sulfide stress cracking can be suppressed and excellent corrosion resistance can be obtained.
  • the ferrite phase has a volume fraction of 5% or more. More preferably, it is 10% or more.
  • the ferrite phase has a volume fraction of 50% or less. More preferably, it is 45% or less.
  • an austenite phase (residual austenite phase) having a volume fraction of 40% or less is contained.
  • the presence of the retained austenite phase improves ductility and toughness.
  • the retained austenite phase is set to 40% or less by volume.
  • the retained austenite phase is 5% or more by volume.
  • the retained austenite phase has a volume fraction of 35% or less. More preferably, the retained austenite phase is 30% or less by volume.
  • the above-mentioned structure of the stainless seamless steel pipe of the present invention can be measured by the following method.
  • a bilera reagent a reagent in which picrinic acid, hydrochloric acid and ethanol are mixed at a ratio of 2 g, 10 ml and 100 ml, respectively
  • the microstructure fraction (area ratio (%)) of the ferrite phase is calculated using an image analyzer. This area ratio is defined as the volume fraction (%) of the ferrite phase.
  • the X-ray diffraction test piece is ground and polished so that the cross section (C cross section) orthogonal to the tube axis direction becomes the measurement surface, and the structural component of the retained austenite ( ⁇ ) phase is used by the X-ray diffraction method. Measure the rate.
  • the structure fraction of the retained austenite phase is converted by measuring the diffraction X-ray integrated intensity of the (220) plane of ⁇ and the (211) plane of ⁇ (ferrite) and using the following equation.
  • the balance other than the ferrite phase and the residual ⁇ phase obtained by the above measurement method is used as the fraction of the martensite phase.
  • the molten steel having the above-mentioned composition is melted by a usual melting method such as a converter, and used as a steel pipe material such as a billet by a usual method such as a continuous casting method, an ingot-block rolling method or the like.
  • the heating temperature of the steel pipe material before hot working is preferably 1100 to 1350 ° C. This makes it possible to achieve both hot workability during pipe making and low temperature toughness of the final product.
  • the obtained steel pipe material is hot-processed using a pipe-making process of a Mannesmann-plug mill method or a Mannesmann-mandrel mill method, which is a generally known pipe-making method, and the desired dimensions are obtained.
  • a seamless steel pipe having the above-mentioned composition After the hot working, a cooling treatment may be performed.
  • This cooling process does not need to be particularly limited. Within the above-mentioned component composition range of the present invention, it is preferable to cool to room temperature at a cooling rate of about air cooling after hot working.
  • the obtained seamless steel pipe is further subjected to a heat treatment including a quenching treatment and a tempering treatment.
  • the quenching treatment is a treatment in which the heating temperature is reheated to a temperature in the range of 850 to 1150 ° C., and then the cooling is performed at a cooling rate higher than that of air cooling.
  • the cooling stop temperature at this time is 50 ° C. or less at the surface temperature of the seamless steel pipe.
  • the heating temperature of the quenching treatment is set to a temperature in the range of 850 to 1150 ° C.
  • the heating temperature of the quenching treatment is 900 ° C. or higher.
  • the heating temperature of the quenching treatment is 1100 ° C. or lower.
  • the cooling shutdown temperature during cooling in the quenching process is set to 50 ° C. or lower.
  • the "cooling rate of air cooling or higher” is 0.01 ° C./s or higher.
  • the soaking time is preferably 5 to 30 minutes in order to make the temperature uniform in the wall thickness direction and prevent the material from fluctuating.
  • the tempering process is a process in which a seamless steel pipe that has been quenched is heated to a tempering temperature of 500 to 650 ° C. Further, after this heating, it can be allowed to cool.
  • the tempering temperature is set to a temperature in the range of 500 to 650 ° C.
  • the tempering temperature is 520 ° C. or higher.
  • the tempering temperature is 630 ° C. or lower.
  • the holding time (soaking heat holding time) is preferably 5 to 90 minutes in order to make the temperature uniform in the wall thickness direction and prevent the material from fluctuating.
  • the structure of the seamless steel pipe becomes a structure containing a martensite phase, a ferrite phase and a retained austenite phase specified by a predetermined volume ratio. This makes it possible to obtain a stainless seamless steel pipe having desired strength and excellent corrosion resistance.
  • the stainless seamless steel pipe obtained by the present invention is a high-strength steel pipe having a yield strength of 758 MPa or more, and has excellent corrosion resistance and high-temperature strength.
  • the yield strength is 862 MPa or more.
  • the yield strength is 1034 MPa or less.
  • the stainless seamless steel pipe of the present invention can be a stainless seamless steel pipe for oil wells (high-strength stainless seamless steel pipe for oil wells).
  • a steel pipe material was cast using molten steel having the composition shown in Table 1-1 and Table 1-2. Then, the steel pipe material was heated and formed by hot working using a model seamless rolling mill to obtain a seamless steel pipe having an outer diameter of 83.8 mm and a wall thickness of 12.7 mm, which was air-cooled. At this time, the heating temperature of the steel pipe material before hot working was set to 1250 ° C.
  • the test piece material was cut out from the obtained seamless steel pipe, reheated to a heating temperature of 960 ° C., the soaking time was set to 20 minutes, and quenching treatment was performed to cool (water-cool) to a cooling shutdown temperature of 30 ° C. .. Further, the soaking time is 20 minutes at the heating temperature (tempering temperature) 575 ° C., or the soaking time is 20 minutes at the heating temperature (tempering temperature) 525 ° C., or the heating temperature (tempering temperature) is 620 ° C. The soaking heat retention time was set to 40 minutes, and then an air-cooling tempering treatment was performed.
  • the cooling rate for water cooling during the quenching treatment was 11 ° C./s, and the cooling rate for air cooling (leaving cooling) during the tempering treatment was 0.04 ° C./s.
  • the blanks in Table 1-1 and Table 1-2 indicate that they are not intentionally added, and include not only the case where they are not contained (0%) but also the cases where they are unavoidably contained.
  • test piece was collected from the obtained heat-treated test piece material (seamless steel pipe) and subjected to microstructure observation, tensile test, high-temperature tensile test, and corrosion resistance test.
  • the test method was as follows.
  • a test piece for X-ray diffraction is collected from the obtained heat-treated test material, ground and polished so that the cross section (C cross section) orthogonal to the tube axis direction becomes the measurement surface, and the X-ray diffraction method is performed.
  • the tissue fraction of the retained austenite ( ⁇ ) phase was measured using.
  • the microstructure fraction of the retained austenite phase was converted by measuring the diffraction X-ray integrated intensity of the (220) plane of ⁇ and the (211) plane of ⁇ (ferrite) and using the following equation.
  • ⁇ (volume fraction) 100 / (1+ (I ⁇ R ⁇ / I ⁇ R ⁇ ))
  • the integrated intensity of I ⁇ : ⁇ the crystallographic theoretically calculated value of R ⁇ : ⁇
  • the integrated intensity of I ⁇ : ⁇ the crystallographic theoretically calculated value of R ⁇ : ⁇
  • the fraction of the martensite phase is the balance other than the ferrite phase and the residual ⁇ phase.
  • Corrosion resistance test carbon dioxide gas corrosion resistance test and sulfide stress cracking resistance test
  • the corrosion test piece was immersed in a test solution held in an autoclave: a 20 mass% NaCl aqueous solution (liquid temperature: 200 ° C., CO 2 gas atmosphere at 30 atm). The immersion period was 14 days (336 hours). The weight of the test piece after the test was measured, and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained. Those having a corrosion rate of 0.127 mm / y or less were rejected, and those having a corrosion rate of more than 0.127 mm / y were rejected.
  • a round bar-shaped test piece (diameter: 3.81 mm) was manufactured from the obtained test piece material by machining, and a sulfide stress cracking resistance test (SSC (Sulfide Stress Cracking) test) was carried out.
  • SSC Sulfide Stress Cracking
  • the SSC resistance test was carried out by adding acetic acid to a test solution held in an autoclave: 0.165 mass% NaCl aqueous solution (liquid temperature: 25 ° C., 0.99 atm CO 2 gas, 0.01 atm H 2 S atmosphere). Immerse the test piece in an aqueous solution adjusted to pH: 3.0 by adding + sodium acetate, expose it for 720 hours with 90% of the breakdown stress applied, and observe the presence or absence of breakage or cracking in the test piece after the test. did. Those without breakage or cracking are accepted (indicated by the symbol " ⁇ " in Table 2-1 and Table 2-2), and those with breakage or cracking are rejected (in Table 2-1 and Table 2-2, the symbol " ⁇ "). It is indicated by "x").
  • all of the examples of the present invention have a high yield strength of YS: 758 MPa or more and a high temperature corrosion environment of 200 ° C. containing CO 2 and Cl ⁇ . It was a stainless seamless steel tube having excellent corrosion resistance (carbon dioxide corrosion resistance), excellent sulfide stress cracking resistance, and excellent high temperature strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Provided is a seamless stainless steel pipe and a production method therefor. The seamless stainless steel pipe of the present invention has a component composition containing, by mass%, not more than 0.06% C, not more than 1.0% Si, 0.01-0.90% Mn, not more than 0.05% P, not more than 0.005% S, 15.70-18.00% Cr, 1.60-3.80% Mo, 1.10-4.00% Cu, 3.0-6.0% Ni, not more than 0.10% Al, not more than 0.10% N, not more than 0.010% O, and 0.120-1.000% V, wherein the C, Si, Mn, Cr, Ni, Mo, Cu, and N satisfy a prescribed formula, and the remainder is composed of Fe and unavoidable impurities. The seamless stainless steel pipe has a structure including, by volume ratio, 30% or more of a martensite phase, 60% or less of a ferrite phase, and 40% or less of a retained austenite phase, and the yield strength of the seamless stainless steel pipe is 758 MPa or greater.

Description

ステンレス継目無鋼管およびその製造方法Stainless steel seamless pipe and its manufacturing method
 本発明は、油井およびガス井(以下、単に油井と称する)での利用に好適な、ステンレス継目無鋼管に関する。本発明は、とくに炭酸ガス(CO)、塩素イオン(Cl)を含む高温の厳しい腐食環境下や、硫化水素(HS)を含む環境下等における耐食性、および高温での強度を向上させたステンレス継目無鋼管に関する。 The present invention relates to a stainless seamless steel pipe suitable for use in oil wells and gas wells (hereinafter, simply referred to as oil wells). The present invention is particularly carbon dioxide (CO 2), chlorine ions - improvement under severe corrosive environment and high temperatures including, corrosion resistance under the environment like containing hydrogen sulfide (H 2 S), and the strength at high temperatures (Cl) Regarding the stainless steel seamless steel pipe that was made.
 近年、近い将来に予想されるエネルギー資源の枯渇という観点から、従来、省みられなかったような、高深度の油田や炭酸ガスを含む環境下、およびサワー環境と呼ばれる硫化水素を含む環境下など、厳しい腐食環境の油井の開発が盛んに行われている。このような環境下で使用される油井用鋼管には、高強度かつ高い耐食性を有することが要求される。 In recent years, from the viewpoint of the depletion of energy resources expected in the near future, under the environment containing deep oil fields and carbon dioxide gas, which has not been omitted in the past, and the environment containing hydrogen sulfide called sour environment, etc. , Oil wells in severely corroded environments are being actively developed. Steel pipes for oil wells used in such an environment are required to have high strength and high corrosion resistance.
 従来から、COおよびCl等を含む環境下にある油田およびガス田では、採掘に使用する油井用鋼管として13Crマルテンサイト系ステンレス鋼管が一般的に使用されてきた。しかし、最近では、更なる高温(200℃までの高温)の油井の開発が進められ、13Crマルテンサイト系ステンレス鋼管では耐食性が不足する場合があった。このような環境下でも使用できる、高い耐食性を有する油井用鋼管が要望されている。 Conventionally, 13Cr martensitic stainless steel pipes have been generally used as steel pipes for oil wells used for oil wells in oil fields and gas fields in an environment containing CO 2 and Cl −. However, recently, the development of oil wells with higher temperatures (high temperatures up to 200 ° C.) has been promoted, and 13Cr martensitic stainless steel pipes may have insufficient corrosion resistance. There is a demand for steel pipes for oil wells that can be used even in such an environment and have high corrosion resistance.
 このような要望に対し、例えば、特許文献1~特許文献5に挙げる技術がある。特許文献1には、質量%で、C:0.05%以下、Si:1.0%以下、Mn:0.01~1.0%、P:0.05%以下、S:0.002%未満、Cr:16~18%、Mo:1.8~3%、Cu:1.0~3.5%、Ni:3.0~5.5%、Co:0.01~1.0%、Al:0.001~0.1%、O:0.05%以下、及び、N:0.05%以下を含有し、Cr、Ni、Mo、Cuが特定の関係を満足する組成を有する油井用ステンレス鋼が記載されている。 In response to such a request, for example, there are technologies listed in Patent Documents 1 to 5. Patent Document 1 describes in terms of mass%, C: 0.05% or less, Si: 1.0% or less, Mn: 0.01 to 1.0%, P: 0.05% or less, S: 0.002. %, Cr: 16-18%, Mo: 1.8-3%, Cu: 1.0-3.5%, Ni: 3.0-5.5%, Co: 0.01-1.0 %, Al: 0.001 to 0.1%, O: 0.05% or less, and N: 0.05% or less, and Cr, Ni, Mo, Cu satisfy a specific relationship. The stainless steel for oil wells to have is described.
 また、特許文献2には、質量%で、C:0.05%以下、Si:1.0%以下、Mn:0.1~0.5%、P:0.05%以下、S:0.005%未満、Cr:15.0%超え19.0%以下、Mo:2.0%超え3.0%以下、Cu:0.3~3.5%、Ni:3.0%以上5.0%未満、W:0.1~3.0%、Nb:0.07~0.5%、V:0.01~0.5%、Al:0.001~0.1%、N:0.010~0.100%、O:0.01%以下を含有し、Nb、Ta、C、N、Cuが特定の関係を満足する組成を有し、さらに体積率で、45%以上の焼戻マルテンサイト相と、20~40%のフェライト相と、10%超え25%以下の残留オーステナイト相と、からなる組織を有する、油井用高強度ステンレス継目無鋼管が記載されている。これにより、降伏強さ(YS)862MPa以上の強度と、CO、Cl、HSを含む高温の厳しい腐食環境においても十分な耐食性を示す油井用高強度ステンレス継目無鋼管を得られるとしている。 Further, in Patent Document 2, in mass%, C: 0.05% or less, Si: 1.0% or less, Mn: 0.1 to 0.5%, P: 0.05% or less, S: 0. Less than .005%, Cr: 15.0% or more and 19.0% or less, Mo: 2.0% or more and 3.0% or less, Cu: 0.3 to 3.5%, Ni: 3.0% or more 5 Less than 0.0%, W: 0.1 to 3.0%, Nb: 0.07 to 0.5%, V: 0.01 to 0.5%, Al: 0.001 to 0.1%, N : 0.010 to 0.100%, O: 0.01% or less, Nb, Ta, C, N, Cu have a composition satisfying a specific relationship, and 45% or more by volume. A high-strength stainless seamless steel tube for an oil well having a structure consisting of a tempered martensite phase, a ferrite phase of 20 to 40%, and a residual austenite phase of more than 10% and not more than 25% is described. As a result, it is possible to obtain a high-strength stainless steel seamless steel pipe for oil wells that has a yield strength (YS) of 862 MPa or more and sufficient corrosion resistance even in a high-temperature severe corrosion environment containing CO 2 , Cl , and H 2 S. There is.
 また、特許文献3には、質量%で、C:0.005~0.05%、Si:0.05~0.50%、Mn:0.20~1.80%、P:0.030%以下、S:0.005%以下、Cr:12.0~17.0%、Ni:4.0~7.0%、Mo:0.5~3.0%、Al:0.005~0.10%、V:0.005~0.20%、Co:0.01~1.0%、N:0.005~0.15%、O:0.010%以下を含有し、Cr、Ni、Mo、Cu、C、Si、Mn、Nが特定の関係を満足する組成を有する油井用高強度ステンレス継目無鋼管が記載されている。 Further, in Patent Document 3, in terms of mass%, C: 0.005 to 0.05%, Si: 0.05 to 0.50%, Mn: 0.20 to 1.80%, P: 0.030. % Or less, S: 0.005% or less, Cr: 12.0 to 17.0%, Ni: 4.0 to 7.0%, Mo: 0.5 to 3.0%, Al: 0.005 to It contains 0.10%, V: 0.005 to 0.20%, Co: 0.01 to 1.0%, N: 0.005 to 0.15%, O: 0.010% or less, and Cr. , Ni, Mo, Cu, C, Si, Mn, N are described as high-strength stainless steel seamless pipes for oil wells having a composition satisfying a specific relationship.
 また、特許文献4には、質量%で、C:0.05%以下、Si:0.5%以下、Mn:0.15~1.0%、P:0.030%以下、S:0.005%以下、Cr:14.5~17.5%、Ni:3.0~6.0%、Mo:2.7~5.0%、Cu:0.3~4.0%、W:0.1~2.5%、V:0.02~0.20%、Al:0.10%以下、N:0.15%以下を含有し、C、Si、Mn、Cr、Ni、Mo、Cu、N、Wが特定の関係を満足する組成を有し、さらに体積率で、主相としてマルテンサイト相を45%超、第二相としてフェライト相を10~45%、残留オーステナイト相を30%以下含有する組織を有する、油井用高強度ステンレス継目無鋼管が記載されている。これにより、降伏強さ(YS)862MPa以上の強度と、CO、Cl、HSを含む高温の厳しい腐食環境においても十分な耐食性を示す油井用高強度ステンレス継目無鋼管を得られるとしている。 Further, in Patent Document 4, in terms of mass%, C: 0.05% or less, Si: 0.5% or less, Mn: 0.15 to 1.0%, P: 0.030% or less, S: 0. .005% or less, Cr: 14.5 to 17.5%, Ni: 3.0 to 6.0%, Mo: 2.7 to 5.0%, Cu: 0.3 to 4.0%, W : 0.1 to 2.5%, V: 0.02 to 0.20%, Al: 0.10% or less, N: 0.15% or less, C, Si, Mn, Cr, Ni, Mo, Cu, N, W have a composition that satisfies a specific relationship, and in terms of volume ratio, martensite phase is more than 45% as the main phase, ferrite phase is 10 to 45% as the second phase, and residual austenite phase. A high-strength stainless steel seamless steel tube for oil wells having a structure containing 30% or less of is described. As a result, it is possible to obtain a high-strength stainless steel seamless steel pipe for oil wells that has a yield strength (YS) of 862 MPa or more and sufficient corrosion resistance even in a high-temperature severe corrosion environment containing CO 2 , Cl , and H 2 S. There is.
 また、特許文献5には、質量%で、C:0.05%以下、Si:0.5%以下、Mn:0.15~1.0%、P:0.030%以下、S:0.005%以下、Cr:14.5~17.5%、Ni:3.0~6.0%、Mo:2.7~5.0%、Cu:0.3~4.0%、W:0.1~2.5%、V:0.02~0.20%、Al:0.10%以下、N:0.15%以下、B:0.0005~0.0100%を含有し、C、Si、Mn、Cr、Ni、Mo、Cu、N、Wが特定の関係を満足する組成を有し、さらに体積率で、主相としてマルテンサイト相を45%超、第二相としてフェライト相を10~45%、残留オーステナイト相を30%以下含有する組織を有する、油井用高強度ステンレス継目無鋼管が記載されている。これにより、降伏強さ(YS)862MPa以上の強度と、CO、Cl、HSを含む高温の厳しい腐食環境においても十分な耐食性を示す油井用高強度ステンレス継目無鋼管を得られるとしている。 Further, in Patent Document 5, in terms of mass%, C: 0.05% or less, Si: 0.5% or less, Mn: 0.15 to 1.0%, P: 0.030% or less, S: 0. .005% or less, Cr: 14.5 to 17.5%, Ni: 3.0 to 6.0%, Mo: 2.7 to 5.0%, Cu: 0.3 to 4.0%, W : 0.1 to 2.5%, V: 0.02 to 0.20%, Al: 0.10% or less, N: 0.15% or less, B: 0.0005 to 0.0100% , C, Si, Mn, Cr, Ni, Mo, Cu, N, W have a composition that satisfies a specific relationship, and in terms of volume ratio, the martensite phase as the main phase exceeds 45%, and the second phase Described are high-strength stainless seamless steel pipes for oil wells having a structure containing 10 to 45% of a ferrite phase and 30% or less of a retained austenite phase. As a result, it is possible to obtain a high-strength stainless steel seamless steel pipe for oil wells that has a yield strength (YS) of 862 MPa or more and sufficient corrosion resistance even in a high-temperature severe corrosion environment containing CO 2 , Cl , and H 2 S. There is.
国際公開第2013/146046号International Publication No. 2013/146046 国際公開第2017/138050号International Publication No. 2017/138050 国際公開第2017/168874号International Publication No. 2017/1687874 国際公開第2018/020886号International Publication No. 2018-020886 国際公開第2018/155041号International Publication No. 2018/155041
 前述したように、更なる高温での油井の開発が進められることにより、油井用鋼管には、高強度と、高温で、かつ、COおよびClを含む厳しい腐食環境下における優れた耐炭酸ガス腐食性と、さらに、優れた耐硫化物応力割れ性(耐SSC性)を兼備することが要望されるようになっている。 As described above, by the development of oil wells in a further high temperature proceeds, the oil well steel pipe, and high strength at elevated temperature, and, CO 2 and Cl - Excellent耐炭acid under severe corrosive environments containing It is required to have both gas corrosion resistance and excellent sulfide stress cracking resistance (SSC resistance).
 また、高温で使用される場合には、高温での強度(高温強度)も求められることがある。具体的には、室温における降伏応力(0.2%耐力)に対する200℃における降伏応力(0.2%耐力)の割合が0.85以上であることを求められることがある。 In addition, when used at high temperature, strength at high temperature (high temperature strength) may also be required. Specifically, it may be required that the ratio of the yield stress (0.2% proof stress) at 200 ° C. to the yield stress (0.2% proof stress) at room temperature is 0.85 or more.
 特許文献1~5には、耐食性を改善したステンレス鋼が開示されているが、高温での耐食性と、高い耐硫化物応力割れ性と、高い高温強度とを兼備することが十分なされない場合があった。 Patent Documents 1 to 5 disclose stainless steels having improved corrosion resistance, but there are cases where it is not sufficient to combine high temperature corrosion resistance, high sulfide stress cracking resistance, and high high temperature strength. there were.
 本発明は、このような従来技術の問題を解決するものであり、降伏強さ:758MPa(110ksi)以上という高強度、優れた耐食性、ならびに優れた高温強度を有するステンレス継目無鋼管およびその製造方法を提供することを目的とする。 The present invention solves such a problem of the prior art, and has a high strength of yield strength: 758 MPa (110 ksi) or more, excellent corrosion resistance, and excellent high temperature strength. The purpose is to provide.
 なお、ここでいう「優れた耐食性」とは、「優れた耐炭酸ガス腐食性」および「優れた耐硫化物応力割れ性」を有する場合をいうものとする。 The term "excellent corrosion resistance" as used herein means a case of having "excellent carbon dioxide gas corrosion resistance" and "excellent sulfide stress cracking resistance".
 ここでいう「優れた耐炭酸ガス腐食性」とは、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:200℃、30気圧のCOガス雰囲気)中に、試験片を浸漬し、浸漬時間を336時間として実施した際の腐食速度が0.127mm/y以下の場合をいうものとする。 The term "excellent carbon dioxide corrosion resistance" as used herein means that the test piece is placed in a test solution held in an autoclave: a 20 mass% NaCl aqueous solution (liquid temperature: 200 ° C., CO 2 gas atmosphere at 30 atm). It means a case where the corrosion rate is 0.127 mm / y or less when the immersion is carried out with the immersion time set to 336 hours.
 また、ここでいう「優れた耐硫化物応力割れ性」とは、オートクレーブ中に保持された試験液:0.165質量%NaCl水溶液(液温:25℃、0.99気圧のCOガス、0.01気圧のHS雰囲気)に、酢酸+酢酸ナトリウムを加えてpH:3.0に調整した水溶液中に試験片を浸漬し、降伏応力の90%を負荷した状態で720時間晒し、試験後に試験片に破断および割れを生じていない場合をいうものとする。 The term "excellent sulfide stress cracking resistance" as used herein means a test solution held in an autoclave: a 0.165 mass% NaCl aqueous solution (liquid temperature: 25 ° C., 0.99 atm) CO 2 gas. the H 2 S atmosphere) of 0.01 atm, the addition of acetic acid + sodium acetate pH: the test piece was immersed in an aqueous solution adjusted to 3.0, exposed for 720 hours in a state loaded with 90% of yield stress, It shall be the case where the test piece is not broken or cracked after the test.
 また、ここでいう「優れた高温強度」とは、JIS Z 2241の規定に準拠した引張試験、およびJIS G 0567の規定に準拠した高温引張試験を実施し、室温における降伏応力(0.2%耐力)に対する200℃における降伏応力(0.2%耐力)の割合が0.85以上である場合をいうものとする。
 なお、上記した各試験の方法は、後述する実施例においても詳述している。
The term "excellent high temperature strength" as used herein means a yield stress (0.2%) at room temperature after conducting a tensile test in accordance with JIS Z 2241 and a high temperature tensile test in accordance with JIS G 0567. The ratio of the yield stress (0.2% proof stress) at 200 ° C. to the proof stress) is 0.85 or more.
The method of each test described above is also described in detail in Examples described later.
 本発明者らは、上記した目的を達成するために、ステンレス鋼の高温強度、耐食性に及ぼす各種要因について鋭意検討した。その結果、Vを所定量以上含有させることで、優れた高温強度が得られた。また、Cr、Mo、Cuを所定量以上含有させることに加えてMn含有量を一定量以下とすることで、優れた耐食性(優れた耐炭酸ガス腐食性および優れた耐硫化物応力割れ性)が得られた。 The present inventors have diligently studied various factors affecting the high temperature strength and corrosion resistance of stainless steel in order to achieve the above-mentioned object. As a result, excellent high-temperature strength was obtained by containing V in a predetermined amount or more. Further, by containing Cr, Mo, and Cu in a predetermined amount or more and setting the Mn content to a certain amount or less, excellent corrosion resistance (excellent carbon dioxide gas corrosion resistance and excellent sulfide stress cracking resistance). was gotten.
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
[1] 質量%で、
 C:0.06%以下、
 Si:1.0%以下、
 Mn:0.01%以上0.90%以下、
 P:0.05%以下、
 S:0.005%以下、
 Cr:15.70%以上18.00%以下、
 Mo:1.60%以上3.80%以下、
 Cu:1.10%以上4.00%以下、
 Ni:3.0%以上6.0%以下、
 Al:0.10%以下、
 N:0.10%以下、
 O:0.010%以下、
 V:0.120%以上1.000%以下
 を含有し、
かつC、Si、Mn、Cr、Ni、Mo、Cu、およびNが以下の式(1)を満足し、
残部がFeおよび不可避的不純物からなる成分組成を有し、
 体積率で、30%以上のマルテンサイト相、60%以下のフェライト相、および40%以下の残留オーステナイト相を含む組織を有し、
 降伏強さが758MPa以上である、ステンレス継目無鋼管。
                 記
13.0 ≦ -5.9×(7.82+27C-0.91Si+0.21Mn-0.9Cr+Ni-1.1Mo+0.2Cu+11N)≦50.0‥‥(1)
ここで、C、Si、Mn、Cr、Ni、Mo、Cu、およびN:各元素の含有量(質量%)であり、含有しない場合はゼロとする。
[2] 前記マルテンサイト相が体積率で40%以上、前記残留オーステナイト相が体積率で30%以下であり、降伏強さが862MPa以上である、[1]に記載のステンレス継目無鋼管。
[3] 前記成分組成に加えてさらに、質量%で、下記A群~D群のうちから選ばれた1群または2群以上を含有する、[1]または[2]に記載のステンレス継目無鋼管。
A群:W:3.0%以下
B群:Nb:0.10%未満
C群:B:0.010%以下、Ta:0.3%以下、Co:1.5%以下、Ti:0.3%以下、Zr:0.3%以下のうちから選ばれた1種または2種以上
D群:Ca:0.01%以下、REM:0.3%以下、Mg:0.01%以下、Sn:1.0%以下、Sb:1.0%以下のうちから選ばれた1種または2種以上
[4] [1]~[3]のいずれか1つに記載のステンレス継目無鋼管の製造方法であって、
 前記成分組成を有する鋼管素材を、加熱温度:1100~1350℃の範囲の温度で加熱し、熱間加工を施して継目無鋼管とし、
 次いで、前記継目無鋼管を加熱温度:850~1150℃の範囲の温度に再加熱し、空冷以上の冷却速度で50℃以下の冷却停止温度まで冷却する焼入れ処理を施し、
その後、焼戻し温度:500~650℃の範囲の温度に加熱する焼戻処理を施す、ステンレス継目無鋼管の製造方法。
The present invention has been completed with further studies based on such findings. That is, the gist of the present invention is as follows.
[1] By mass%,
C: 0.06% or less,
Si: 1.0% or less,
Mn: 0.01% or more and 0.90% or less,
P: 0.05% or less,
S: 0.005% or less,
Cr: 15.70% or more and 18.00% or less,
Mo: 1.60% or more and 3.80% or less,
Cu: 1.10% or more and 4.00% or less,
Ni: 3.0% or more and 6.0% or less,
Al: 0.10% or less,
N: 0.10% or less,
O: 0.010% or less,
V: Contains 0.120% or more and 1.000% or less,
Moreover, C, Si, Mn, Cr, Ni, Mo, Cu, and N satisfy the following formula (1).
The balance has a component composition consisting of Fe and unavoidable impurities,
It has a structure containing a martensite phase of 30% or more, a ferrite phase of 60% or less, and a retained austenite phase of 40% or less by volume.
Stainless steel seamless steel pipe with yield strength of 758 MPa or more.
Record
13.0 ≤ -5.9 x (7.82 + 27C-0.91Si + 0.21Mn-0.9Cr + Ni-1.1Mo + 0.2Cu + 11N) ≤ 50.0 ... (1)
Here, C, Si, Mn, Cr, Ni, Mo, Cu, and N: are the contents (mass%) of each element, and if they are not contained, they are set to zero.
[2] The stainless seamless steel pipe according to [1], wherein the martensite phase has a volume fraction of 40% or more, the retained austenite phase has a volume fraction of 30% or less, and the yield strength is 862 MPa or more.
[3] The stainless steel seamless according to [1] or [2], which further contains one group or two or more groups selected from the following groups A to D in mass% in addition to the component composition. Steel pipe.
Group A: W: 3.0% or less Group B: Nb: less than 0.10% Group C: B: 0.010% or less, Ta: 0.3% or less, Co: 1.5% or less, Ti: 0 .1 or 2 or more selected from 3% or less, Zr: 0.3% or less Group D: Ca: 0.01% or less, REM: 0.3% or less, Mg: 0.01% or less , Sn: 1.0% or less, Sb: 1.0% or less, one type or two or more types selected from [4] [1] to [3]. It is a manufacturing method of
The steel pipe material having the above-mentioned composition is heated at a heating temperature in the range of 1100 to 1350 ° C. and hot-worked to obtain a seamless steel pipe.
Next, the seamless steel pipe is reheated to a heating temperature in the range of 850 to 1150 ° C., and subjected to quenching treatment to cool it to a cooling stop temperature of 50 ° C. or lower at a cooling rate equal to or higher than air cooling.
Then, a method for manufacturing a stainless seamless steel pipe, which is subjected to a tempering process of heating to a temperature in the range of tempering temperature: 500 to 650 ° C.
 本発明によれば、降伏強さ:758MPa(110ksi)以上という高強度と、優れた耐食性と、優れた高温強度とを有するステンレス継目無鋼管およびその製造方法が得られる。 According to the present invention, a stainless seamless steel pipe having a high yield strength of 758 MPa (110 ksi) or more, excellent corrosion resistance, and excellent high temperature strength, and a method for manufacturing the same can be obtained.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明のステンレス継目無鋼管は、質量%で、C:0.06%以下、Si:1.0%以下、Mn:0.01%以上0.90%以下、P:0.05%以下、S:0.005%以下、Cr:15.70%以上18.00%以下、Mo:1.60%以上3.80%以下、Cu:1.10%以上4.00%以下、Ni:3.0%以上6.0%以下、Al:0.10%以下、N:0.10%以下、O:0.010%以下、V:0.120%以上1.000%以下を含有し、かつC、Si、Mn、Cr、Ni、Mo、Cu、およびNが以下の式(1)を満足し、残部がFeおよび不可避的不純物からなる成分組成を有し、体積率で、30%以上のマルテンサイト相、60%以下のフェライト相、および40%以下の残留オーステナイト相を含む組織を有し、降伏強さが758MPa以上である。
13.0 ≦ -5.9×(7.82+27C-0.91Si+0.21Mn-0.9Cr+Ni-1.1Mo+0.2Cu+11N)≦50.0‥‥(1)
ここで、C、Si、Mn、Cr、Ni、Mo、Cu、およびN:各元素の含有量(質量%)であり、含有しない場合はゼロとする。
The stainless seamless steel tube of the present invention has a mass% of C: 0.06% or less, Si: 1.0% or less, Mn: 0.01% or more and 0.90% or less, P: 0.05% or less, S: 0.005% or less, Cr: 15.70% or more and 18.00% or less, Mo: 1.60% or more and 3.80% or less, Cu: 1.10% or more and 4.00% or less, Ni: 3 It contains 0.0% or more and 6.0% or less, Al: 0.10% or less, N: 0.10% or less, O: 0.010% or less, V: 0.120% or more and 1.000% or less. Moreover, C, Si, Mn, Cr, Ni, Mo, Cu, and N satisfy the following formula (1), the balance has a component composition consisting of Fe and unavoidable impurities, and the volume ratio is 30% or more. It has a structure containing a martensite phase, a ferrite phase of 60% or less, and a retained austenite phase of 40% or less, and has a yield strength of 758 MPa or more.
13.0 ≤ -5.9 x (7.82 + 27C-0.91Si + 0.21Mn-0.9Cr + Ni-1.1Mo + 0.2Cu + 11N) ≤ 50.0 ... (1)
Here, C, Si, Mn, Cr, Ni, Mo, Cu, and N: are the contents (mass%) of each element, and if they are not contained, they are set to zero.
 まず、本発明のステンレス継目無鋼管の成分組成の限定理由について説明する。以下、とくに断らない限り、「質量%」は単に「%」で記す。 First, the reason for limiting the component composition of the stainless seamless steel pipe of the present invention will be described. Hereinafter, unless otherwise specified, "mass%" is simply referred to as "%".
 C:0.06%以下
 Cは、製鋼過程で不可避に含有される元素である。0.06%を超えてCを含有すると、耐食性が低下する。このため、C含有量は0.06%以下とする。C含有量は、好ましくは0.05%以下であり、より好ましくは0.04%以下であり、さらに好ましくは0.03%以下である。脱炭コストを考慮すると、C含有量の好ましい下限は0.002%であり、より好ましくは0.003%以上である。
C: 0.06% or less C is an element inevitably contained in the steelmaking process. If C is contained in excess of 0.06%, the corrosion resistance is lowered. Therefore, the C content is 0.06% or less. The C content is preferably 0.05% or less, more preferably 0.04% or less, still more preferably 0.03% or less. Considering the decarburization cost, the lower limit of the C content is preferably 0.002%, more preferably 0.003% or more.
 Si:1.0%以下
 Siは、脱酸剤として作用する元素である。しかしながら、1.0%を超えてSiを含有すると、熱間加工性、耐食性が低下する。このため、Si含有量は1.0%以下とする。Si含有量は、好ましくは0.7%以下であり、より好ましくは0.5%以下であり、さらに好ましくは0.4%以下である。脱酸効果が得られれば良いので特に下限は設けないが、十分な脱酸効果を得る目的から、Si含有量は、好ましくは0.03%以上であり、より好ましくは0.05%以上である。
Si: 1.0% or less Si is an element that acts as a deoxidizing agent. However, if Si is contained in excess of 1.0%, hot workability and corrosion resistance are deteriorated. Therefore, the Si content is set to 1.0% or less. The Si content is preferably 0.7% or less, more preferably 0.5% or less, still more preferably 0.4% or less. A lower limit is not set as long as the deoxidizing effect can be obtained, but the Si content is preferably 0.03% or more, more preferably 0.05% or more for the purpose of obtaining a sufficient deoxidizing effect. be.
 Mn:0.01%以上0.90%以下
 Mnは、脱酸材および脱硫材として作用し、熱間加工性を向上させる元素である。脱酸素、脱硫の効果を得るとともに、強度を向上させるためには、Mn含有量は0.01%以上とする。一方、0.90%を超えてMnを含有すると耐硫化物応力割れ性が低下する。このため、Mn含有量は0.01%以上0.90%以下とする。Mn含有量は、好ましくは0.03%以上であり、より好ましくは0.05%以上である。また、Mn含有量は、好ましくは0.7%以下であり、より好ましくは0.5%以下であり、さらに好ましくは0.4%以下である。
Mn: 0.01% or more and 0.90% or less Mn is an element that acts as a deoxidizing material and a desulfurizing material and improves hot workability. In order to obtain the effects of deoxidation and desulfurization and to improve the strength, the Mn content is 0.01% or more. On the other hand, if Mn is contained in excess of 0.90%, the sulfide stress cracking resistance is lowered. Therefore, the Mn content is set to 0.01% or more and 0.90% or less. The Mn content is preferably 0.03% or more, more preferably 0.05% or more. The Mn content is preferably 0.7% or less, more preferably 0.5% or less, still more preferably 0.4% or less.
 P:0.05%以下
 Pは、耐炭酸ガス腐食性および耐硫化物応力割れ性を低下させる元素であり、本発明ではできるだけ低減することが好ましいが、0.05%以下であれば許容できる。このため、P含有量は0.05%以下とする。P含有量は、好ましくは0.04%以下であり、より好ましくは0.03%以下であり、さらに好ましくは0.02%以下である。
P: 0.05% or less P is an element that reduces carbon dioxide gas corrosion resistance and sulfide stress cracking resistance, and is preferably reduced as much as possible in the present invention, but 0.05% or less is acceptable. .. Therefore, the P content is set to 0.05% or less. The P content is preferably 0.04% or less, more preferably 0.03% or less, and further preferably 0.02% or less.
 S:0.005%以下
 Sは、熱間加工性を著しく低下させ、熱間造管工程の安定操業を阻害する元素である。また、Sは、鋼中では硫化物系介在物として存在し、耐硫化物応力割れ性を低下させる。そのため、Sはできるだけ低減することが好ましいが、0.005%以下であれば許容できる。このため、S含有量は0.005%以下とする。S含有量は、好ましくは0.004%以下であり、より好ましくは0.003%以下であり、さらに好ましくは0.002%以下である。
S: 0.005% or less S is an element that significantly reduces hot workability and hinders stable operation of the hot pipe making process. Further, S exists as a sulfide-based inclusion in steel and lowers the sulfide stress cracking resistance. Therefore, it is preferable to reduce S as much as possible, but it is acceptable if it is 0.005% or less. Therefore, the S content is set to 0.005% or less. The S content is preferably 0.004% or less, more preferably 0.003% or less, still more preferably 0.002% or less.
 Cr:15.70%以上18.00%以下
 Crは、鋼管表面の保護皮膜を形成して耐食性向上に寄与する元素であり、Cr含有量が15.70%未満では、所望の耐炭酸ガス腐食性および耐硫化物応力割れ性を確保することができない。このため、15.70%以上のCrの含有を必要とする。一方、18.00%を超えるCrの含有は、フェライト分率が高くなりすぎて、所望の強度を確保できなくなる。このため、Cr含有量は15.70%以上18.00%以下とする。Cr含有量は、好ましくは16.00%以上であり、より好ましくは16.30%以上である。また、Cr含有量は、好ましくは17.50%以下であり、より好ましくは17.00%以下である。
Cr: 15.70% or more and 18.00% or less Cr is an element that forms a protective film on the surface of steel pipes and contributes to improvement of corrosion resistance. If the Cr content is less than 15.70%, desired carbon dioxide gas corrosion resistance It is not possible to ensure resistance and sulfide stress cracking resistance. Therefore, the content of Cr of 15.70% or more is required. On the other hand, if the content of Cr exceeds 18.00%, the ferrite fraction becomes too high and the desired strength cannot be secured. Therefore, the Cr content is 15.70% or more and 18.00% or less. The Cr content is preferably 16.00% or more, more preferably 16.30% or more. The Cr content is preferably 17.50% or less, more preferably 17.00% or less.
 Mo:1.60%以上3.80%以下
 Moは、鋼管表面の保護皮膜を安定化させて、Clや低pHによる孔食に対する抵抗性を増加させ、耐炭酸ガス腐食性および耐硫化物応力割れ性を高める。所望の耐食性を得るためには、1.60%以上のMoを含有する必要がある。一方、3.80%超えてMoを添加するとフェライト分率が高くなりすぎて、所望の強度を確保できなくなる。このため、Mo含有量は1.60%以上3.80%以下とする。Mo含有量は、好ましくは1.80%以上であり、より好ましくは2.00%以上である。また、Mo含有量は、好ましくは3.5%以下であり、より好ましくは3.0%以下であり、さらに好ましくは2.8%以下である。
Mo: 1.60% or more 3.80% or less Mo is a protective coating of the steel pipe surface is stabilized, Cl - and low pH increases the resistance to pitting,耐炭acid gas corrosion resistance and sulfide Increases stress corrosion cracking. In order to obtain the desired corrosion resistance, it is necessary to contain 1.60% or more of Mo. On the other hand, if Mo is added in excess of 3.80%, the ferrite fraction becomes too high and the desired strength cannot be secured. Therefore, the Mo content is 1.60% or more and 3.80% or less. The Mo content is preferably 1.80% or more, more preferably 2.00% or more. The Mo content is preferably 3.5% or less, more preferably 3.0% or less, and further preferably 2.8% or less.
 Cu:1.10%以上4.00%以下
 Cuは、鋼管表面の保護皮膜を強固にし、耐炭酸ガス腐食性および耐硫化物応力割れ性を高める効果を有する。所望の強度および耐食性、特に耐炭酸ガス腐食性を得るためには、1.10%以上のCuを含有する必要がある。一方、含有量が多すぎれば鋼の熱間加工性が低下するため、Cu含有量は4.00%以下とする。このため、Cu含有量は1.10%以上4.00%以下とする。Cu含有量は、好ましくは1.80%以上であり、より好ましくは2.00%以上である。また、Cu含有量は、好ましくは3.20%以下であり、より好ましくは3.00%以下であり、さらに好ましくは2.7%以下である。
Cu: 1.10% or more and 4.00% or less Cu has the effect of strengthening the protective film on the surface of the steel pipe and enhancing the carbon dioxide gas corrosion resistance and the sulfide stress cracking resistance. In order to obtain the desired strength and corrosion resistance, particularly carbon dioxide corrosion resistance, it is necessary to contain 1.10% or more of Cu. On the other hand, if the content is too large, the hot workability of the steel is lowered, so the Cu content is set to 4.00% or less. Therefore, the Cu content is 1.10% or more and 4.00% or less. The Cu content is preferably 1.80% or more, more preferably 2.00% or more. The Cu content is preferably 3.20% or less, more preferably 3.00% or less, still more preferably 2.7% or less.
 Ni:3.0%以上6.0%以下
 Niは、固溶強化により鋼の強度を増加させるとともに、鋼の靭性を向上させる。油井管に求められる靭性を確保するためには、3.0%以上のNiの含有が必要である。一方、6.0%超えのNiの含有は、マルテンサイト相の安定性が低下し、強度が低下する。このため、Ni含有量は3.0%以上6.0%以下とする。Ni含有量は、好ましくは3.5%以上であり、より好ましくは4.0%以上であり、さらに好ましくは4.5%以上である。また、Ni含有量は、好ましくは5.5%以下であり、より好ましくは5.2%以下である。
Ni: 3.0% or more and 6.0% or less Ni increases the strength of steel by solid solution strengthening and improves the toughness of steel. In order to secure the toughness required for oil country tubular goods, it is necessary to contain 3.0% or more of Ni. On the other hand, if the content of Ni exceeds 6.0%, the stability of the martensite phase is lowered and the strength is lowered. Therefore, the Ni content is set to 3.0% or more and 6.0% or less. The Ni content is preferably 3.5% or more, more preferably 4.0% or more, still more preferably 4.5% or more. The Ni content is preferably 5.5% or less, more preferably 5.2% or less.
 Al:0.10%以下
 Alは、脱酸剤として作用する元素である。しかしながら、0.10%を超えてAlを含有すると、耐食性が低下する。このため、Al含有量は0.10%以下とする。Al含有量は、好ましくは0.07%以下であり、より好ましくは0.05%以下であり、さらに好ましくは0.04%以下である。脱酸効果が得られれば良いので特に下限は設けないが、十分な脱酸効果を得る目的から、Al含有量は、好ましくは0.005%以上であり、より好ましくは0.01%以上である。
Al: 0.10% or less Al is an element that acts as a deoxidizing agent. However, if Al is contained in an amount of more than 0.10%, the corrosion resistance is lowered. Therefore, the Al content is set to 0.10% or less. The Al content is preferably 0.07% or less, more preferably 0.05% or less, still more preferably 0.04% or less. The lower limit is not set as long as the deoxidizing effect can be obtained, but the Al content is preferably 0.005% or more, more preferably 0.01% or more, for the purpose of obtaining a sufficient deoxidizing effect. be.
 N:0.10%以下
 Nは製鋼過程で不可避に含有される元素であるが、鋼の強度を高める元素でもある。しかしながら、0.10%を超えてNを含有すると、窒化物を形成して耐食性を低下させる。このため、N含有量は0.10%以下とする。N含有量は、好ましくは0.08%以下であり、より好ましくは0.05%以下であり、さらに好ましくは0.03%以下である。N含有量の下限値は特に設けないが、極度のN含有量の低減は製鋼コストの増大を招く。そのため、N含有量は、好ましくは0.002%以上であり、より好ましくは0.003%以上である。
N: 0.10% or less N is an element that is inevitably contained in the steelmaking process, but it is also an element that enhances the strength of steel. However, if N is contained in excess of 0.10%, a nitride is formed and the corrosion resistance is lowered. Therefore, the N content is set to 0.10% or less. The N content is preferably 0.08% or less, more preferably 0.05% or less, still more preferably 0.03% or less. Although the lower limit of the N content is not particularly set, an extreme reduction in the N content leads to an increase in steelmaking cost. Therefore, the N content is preferably 0.002% or more, and more preferably 0.003% or more.
 O:0.010%以下
 O(酸素)は、鋼中では酸化物として存在するため、各種特性に悪影響を及ぼす。このため、本発明では、できるだけ低減することが望ましい。とくに、O含有量が0.010%を超えると、熱間加工性、耐食性が低下する。このため、O含有量は0.010%以下とする。O含有量は、好ましくは0.005%以下である。
O: 0.010% or less O (oxygen) exists as an oxide in steel and therefore adversely affects various properties. Therefore, in the present invention, it is desirable to reduce the amount as much as possible. In particular, when the O content exceeds 0.010%, the hot workability and corrosion resistance deteriorate. Therefore, the O content is 0.010% or less. The O content is preferably 0.005% or less.
 V:0.120%以上1.000%以下
 Vは、高温強度を向上させる、本発明において重要な元素である。Vは炭窒化物を形成し、析出強化により室温のみならず高温においても高強度が得られる。所望の高温強度を得るためには、Vを0.120%以上含有する。一方、Vを1.000%超えて含有させても効果が飽和する。よって、本発明では、V含有量を0.120%以上1.000%以下とする。また、V含有量は、好ましくは0.180%以上であり、より好ましくは0.250%以上であり、さらに好ましくは0.300%以上である。また、V含有量は、好ましくは0.500%以下であり、より好ましくは0.400%以下であり、さらに好ましくは0.300%以下である。
V: 0.120% or more and 1.000% or less V is an important element in the present invention for improving high temperature strength. V forms a carbonitride, and high strength can be obtained not only at room temperature but also at high temperature by strengthening precipitation. In order to obtain the desired high temperature strength, V is contained in an amount of 0.120% or more. On the other hand, even if V is contained in excess of 1.000%, the effect is saturated. Therefore, in the present invention, the V content is set to 0.120% or more and 1.000% or less. The V content is preferably 0.180% or more, more preferably 0.250% or more, and further preferably 0.300% or more. The V content is preferably 0.500% or less, more preferably 0.400% or less, and further preferably 0.300% or less.
 本発明では、上記成分組成を満足すると共に、さらにC、Si、Mn、Cr、Ni、Mo、Cu、およびNが次の(1)式を満足するように含有する。
13.0 ≦ -5.9×(7.82+27C-0.91Si+0.21Mn-0.9Cr+Ni-1.1Mo+0.2Cu+11N)≦50.0‥‥(1)
ここで、C、Si、Mn、Cr、Ni、Mo、Cu、およびN:各元素の含有量(質量%)であり、含有しない場合はゼロとする。
(1)式の「-5.9×(7.82+27C-0.91Si+0.21Mn-0.9Cr+Ni-1.1Mo+0.2Cu+11N)」(以下、単に「(1)式の中央の多項式」、あるいは「中央値」とも記す)は、フェライト相の生成傾向を示す指数として求めたものである。(1)式に示された合金元素を(1)式が満足するように調整して含有すれば、マルテンサイト相とフェライト相、あるいはさらに残留オーステナイト相からなる複合組織を安定して実現することができる。なお、(1)式に記載される合金元素を含有しない場合には、(1)式の中央の多項式の値は、当該元素の含有量を零%として扱うものとする。
In the present invention, while satisfying the above-mentioned component composition, C, Si, Mn, Cr, Ni, Mo, Cu, and N are further contained so as to satisfy the following formula (1).
13.0 ≤ -5.9 x (7.82 + 27C-0.91Si + 0.21Mn-0.9Cr + Ni-1.1Mo + 0.2Cu + 11N) ≤ 50.0 ... (1)
Here, C, Si, Mn, Cr, Ni, Mo, Cu, and N: are the contents (mass%) of each element, and if they are not contained, they are set to zero.
Eq. (1) "-5.9 x (7.82 + 27C-0.91Si + 0.21Mn-0.9Cr + Ni-1.1Mo + 0.2Cu + 11N)" (hereinafter, also simply referred to as "the central polynomial of Eq. (1)" or "median") Is obtained as an exponent indicating the formation tendency of the ferrite phase. If the alloying element represented by the formula (1) is adjusted and contained so as to satisfy the formula (1), a composite structure consisting of a martensite phase, a ferrite phase, or a retained austenite phase can be stably realized. Can be done. When the alloy element described in the formula (1) is not contained, the value of the polynomial in the center of the formula (1) shall treat the content of the element as 0%.
 上記の(1)式の中央の多項式の値が、13.0未満であると、熱間加工温度域においてフェライト相が少なくなり、製造時の歩留まりを低下させる。一方、上記の(1)式の中央の多項式の値が、50.0超えであると、フェライト相が体積率で60%を超え、所望の強度を確保できなくなる。このため、本発明で規定する(1)式は、下限となる左辺値を13.0とし、上限となる右辺値を50.0とする。本発明で規定する(1)式の下限となる左辺値は、好ましくは15.0であり、より好ましくは20.0である。また、上記右辺値は、好ましくは45.0であり、より好ましくは40.0である。すなわち、(1)式の中央の多項式の値は、13.0以上とし、50.0以下とする。好ましくは、15.0以上とし、45.0以下とする。より好ましくは、20.0以上とし、40.0以下とする。 When the value of the polynomial in the center of the above equation (1) is less than 13.0, the ferrite phase is reduced in the hot working temperature range, and the yield at the time of manufacturing is lowered. On the other hand, if the value of the polynomial in the center of the above equation (1) exceeds 50.0, the ferrite phase exceeds 60% in volume fraction, and the desired strength cannot be secured. Therefore, in the equation (1) specified in the present invention, the lower limit of the lvalue is 13.0 and the upper limit of the rvalue is 50.0. The lvalue, which is the lower limit of the equation (1) defined in the present invention, is preferably 15.0, more preferably 20.0. The rvalue is preferably 45.0, more preferably 40.0. That is, the value of the polynomial in the center of Eq. (1) is 13.0 or more and 50.0 or less. It is preferably 15.0 or more and 45.0 or less. More preferably, it is 20.0 or more and 40.0 or less.
 本発明では、上記した成分組成以外の残部は、Feおよび不可避的不純物からなる。 In the present invention, the balance other than the above-mentioned component composition is composed of Fe and unavoidable impurities.
 以上の必須元素で、本発明のステンレス継目無鋼管は目的とする特性が得られる。本発明では、特性をさらに向上させることを目的として、必要に応じて、上記した基本の成分組成に加えてさらに、下記の選択元素(W、Nb、B、Ta、Co、Ti、Zr、Ca、REM、Mg、Sn、Sb)を1種または2種以上含有してもよい。 With the above essential elements, the stainless seamless steel pipe of the present invention can obtain the desired characteristics. In the present invention, for the purpose of further improving the characteristics, if necessary, in addition to the above-mentioned basic composition, the following selective elements (W, Nb, B, Ta, Co, Ti, Zr, Ca) are further added. , REM, Mg, Sn, Sb) may be contained alone or in combination of two or more.
 具体的には、本発明では、上記した成分組成に加えて、W:3.0%以下を含有することができる。
また、本発明では、上記した成分組成に加えて、Nb:0.10%未満を含有することができる。
さらに、本発明では、上記した成分組成に加えて、B:0.010%以下、Ta:0.3%以下、Co:1.5%以下、Ti:0.3%以下およびZr:0.3%以下のうちから選ばれた1種または2種以上を含有することができる。
さらに、本発明では、上記した成分組成に加えて、Ca:0.01%以下、REM:0.3%以下、Mg:0.01%以下、Sn:1.0%以下およびSb:1.0%以下のうちから選ばれた1種または2種以上を含有することができる。
Specifically, in the present invention, W: 3.0% or less can be contained in addition to the above-mentioned component composition.
Further, in the present invention, Nb: less than 0.10% can be contained in addition to the above-mentioned component composition.
Further, in the present invention, in addition to the above-mentioned component composition, B: 0.010% or less, Ta: 0.3% or less, Co: 1.5% or less, Ti: 0.3% or less and Zr: 0. It can contain one or more selected from 3% or less.
Further, in the present invention, in addition to the above-mentioned component composition, Ca: 0.01% or less, REM: 0.3% or less, Mg: 0.01% or less, Sn: 1.0% or less, and Sb: 1. It can contain one or more selected from 0% or less.
 W:3.0%以下
 Wは、鋼の強度向上に寄与するとともに、鋼管表面の保護皮膜を安定化させて、耐炭酸ガス腐食性および耐硫化物応力割れ性を高めることができる元素である。Wは、Moと複合して含有することにより、とくに耐食性を顕著に向上させる。Wは、上記の効果を得るため、必要に応じて含有することができる。一方、3.0%を超えてWを含有しても効果が飽和する。このため、Wを含有する場合、W含有量は3.0%以下とすることが好ましい。W含有量は、より好ましくは1.5%未満であり、さらに好ましくは1.0%以下である。また、Wを含有させる場合には、W含有量は、より好ましくは0.05%以上であり、さらに好ましくは0.10%以上である。
W: 3.0% or less W is an element that contributes to improving the strength of steel and stabilizes the protective film on the surface of steel pipes to enhance carbon dioxide gas corrosion resistance and sulfide stress crack resistance. .. When W is contained in combination with Mo, the corrosion resistance is remarkably improved. W can be contained as needed in order to obtain the above effects. On the other hand, even if W is contained in excess of 3.0%, the effect is saturated. Therefore, when W is contained, the W content is preferably 3.0% or less. The W content is more preferably less than 1.5%, still more preferably 1.0% or less. When W is contained, the W content is more preferably 0.05% or more, still more preferably 0.10% or more.
 Nb:0.10%未満
 Nbは、強度を増加させる元素であるとともに、耐食性を向上させる元素であり、必要に応じて含有することができる。一方、0.10%以上のNbを含有させると、所望の高温強度を得られない場合がある。このため、Nbを含有する場合、Nb含有量は0.10%未満とすることが好ましい。Nb含有量は、より好ましくは0.05%以下であり、さらに好ましくは0.03%以下である。また、Nb含有量は、より好ましくは0.005%以上であり、さらに好ましくは0.010%以上である。
Nb: Less than 0.10% Nb is an element that increases strength and improves corrosion resistance, and can be contained as needed. On the other hand, if 0.10% or more of Nb is contained, the desired high-temperature strength may not be obtained. Therefore, when Nb is contained, the Nb content is preferably less than 0.10%. The Nb content is more preferably 0.05% or less, still more preferably 0.03% or less. The Nb content is more preferably 0.005% or more, still more preferably 0.010% or more.
 B:0.010%以下
 Bは、強度を増加させる元素であり、必要に応じて含有することができる。また、Bは熱間加工性の改善にも寄与し、造管過程において亀裂や割れの発生が抑制する効果も有する。一方、0.010%を超えてBを含有させても、熱間加工性の改善効果がほぼ現出しなくなるだけではなく、低温靭性が低下する。このため、Bを含有する場合、B含有量は0.010%以下とすることが好ましい。B含有量は、より好ましくは0.008%以下であり、さらに好ましくは0.007%以下である。また、B含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0010%以上である。
B: 0.010% or less B is an element that increases the strength and can be contained as needed. In addition, B also contributes to the improvement of hot workability and has the effect of suppressing the occurrence of cracks and cracks in the pipe making process. On the other hand, even if B is contained in an amount of more than 0.010%, not only the effect of improving the hot workability hardly appears, but also the low temperature toughness is lowered. Therefore, when B is contained, the B content is preferably 0.010% or less. The B content is more preferably 0.008% or less, still more preferably 0.007% or less. The B content is more preferably 0.0005% or more, still more preferably 0.0010% or more.
 Ta:0.3%以下
 Taは、強度を増加させる元素であるとともに、耐食性を向上させる元素であり、必要に応じて含有することができる。このような効果を得るためには、0.001%以上のTaを含有することが好ましい。一方、Taは0.3%を超えて含有させても効果が飽和する。このため、Taを含有する場合には、Ta含有量を0.3%以下に限定することが好ましい。Ta含有量は、より好ましくは0.25%以下、さらに好ましくは0.06%以下、より好ましくは0.050%以下、さらに好ましくは0.025%以下である。より好ましくは、0.005%以上である。
Ta: 0.3% or less Ta is an element that increases strength and improves corrosion resistance, and can be contained as needed. In order to obtain such an effect, it is preferable to contain 0.001% or more of Ta. On the other hand, even if Ta is contained in excess of 0.3%, the effect is saturated. Therefore, when Ta is contained, it is preferable to limit the Ta content to 0.3% or less. The Ta content is more preferably 0.25% or less, further preferably 0.06% or less, still more preferably 0.050% or less, still more preferably 0.025% or less. More preferably, it is 0.005% or more.
 Co:1.5%以下
 Coは、強度を増加させる元素であり、必要に応じて含有することができる。Coは、上記した効果に加えて、耐食性を改善する効果も有する。このような効果を得るためには、Coを0.0005%以上含有することが好ましい。Co含有量は、より好ましくは0.005%以上であり、さらに好ましくは0.010%以上である。一方、Coを1.5%超えて含有させても効果が飽和する。このため、Coを含有する場合には、Co含有量を1.5%以下に限定することが好ましい。Co含有量は、より好ましくは0.150%未満である。
Co: 1.5% or less Co is an element that increases the strength and can be contained as needed. Co has an effect of improving corrosion resistance in addition to the above-mentioned effect. In order to obtain such an effect, it is preferable to contain 0.0005% or more of Co. The Co content is more preferably 0.005% or more, still more preferably 0.010% or more. On the other hand, even if Co is contained in excess of 1.5%, the effect is saturated. Therefore, when Co is contained, it is preferable to limit the Co content to 1.5% or less. The Co content is more preferably less than 0.150%.
 Ti:0.3%以下
 Tiは、強度を増加させる元素であり、必要に応じて含有することができる。このような効果を得るためには、Tiを0.0005%以上含有することが好ましい。一方、Tiを0.3%超えて含有すると、靭性が低下する。このため、Tiを含有する場合には、Ti含有量を0.3%以下に限定することが好ましい。
Ti: 0.3% or less Ti is an element that increases the strength and can be contained as needed. In order to obtain such an effect, it is preferable to contain 0.0005% or more of Ti. On the other hand, if Ti is contained in excess of 0.3%, the toughness is lowered. Therefore, when Ti is contained, it is preferable to limit the Ti content to 0.3% or less.
 Zr:0.3%以下
 Zrは、強度を増加させる元素であり、必要に応じて含有することができる。Zrは、上記した効果に加えて、耐硫化物応力割れ性を改善する効果も有する。このような効果を得るためには、Zrを0.0005%以上含有することが好ましい。一方、Zrを0.3%を超えて含有させても効果が飽和する。このため、Zrを含有する場合には、Zr含有量を0.3%以下に限定することが好ましい。
Zr: 0.3% or less Zr is an element that increases the strength and can be contained as needed. In addition to the above-mentioned effects, Zr also has an effect of improving sulfide stress cracking resistance. In order to obtain such an effect, it is preferable to contain Zr in an amount of 0.0005% or more. On the other hand, even if Zr is contained in excess of 0.3%, the effect is saturated. Therefore, when Zr is contained, it is preferable to limit the Zr content to 0.3% or less.
 Ca:0.01%以下
 Caは、硫化物の形態制御を介して耐硫化物応力割れ性の改善に寄与する元素であり、必要に応じて含有できる。このような効果を得るためには、Caを0.0005%以上含有することが好ましい。一方、Caを0.01%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、Caを含有する場合には、Ca含有量を0.01%以下に限定することが好ましい。
Ca: 0.01% or less Ca is an element that contributes to the improvement of sulfide stress cracking resistance through morphological control of sulfide, and can be contained as needed. In order to obtain such an effect, it is preferable to contain 0.0005% or more of Ca. On the other hand, even if Ca is contained in an amount of more than 0.01%, the effect is saturated and the effect commensurate with the content cannot be expected. Therefore, when Ca is contained, it is preferable to limit the Ca content to 0.01% or less.
 REM:0.3%以下
 REM(希土類金属)は、硫化物の形態制御を介して耐硫化物応力割れ性の改善に寄与する元素であり、必要に応じて含有できる。このような効果を得るためには、REMを0.0005%以上含有することが好ましい。一方、REMを0.3%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、REMを含有する場合には、REM含有量を0.3%以下に限定することが好ましい。
なお、本発明でいうREMとは、原子番号21番のスカンジウム(Sc)と原子番号39番のイットリウム(Y)及び、原子番号57番のランタン(La)から71番のルテチウム(Lu)までのランタノイドである。本発明におけるREM濃度とは、上述のREMから選択された1種または2種以上の元素の総含有量である。
REM: 0.3% or less REM (rare earth metal) is an element that contributes to the improvement of sulfide stress cracking resistance through morphological control of sulfide, and can be contained as needed. In order to obtain such an effect, it is preferable to contain 0.0005% or more of REM. On the other hand, even if REM is contained in an amount of more than 0.3%, the effect is saturated and the effect commensurate with the content cannot be expected. Therefore, when REM is contained, it is preferable to limit the REM content to 0.3% or less.
The REM referred to in the present invention includes scandium (Sc) having an atomic number of 21 and yttrium (Y) having an atomic number of 39, and lanthanum (La) having an atomic number of 57 to lutetium (Lu) having an atomic number of 71. It is a lanthanoid. The REM concentration in the present invention is the total content of one or more elements selected from the above-mentioned REMs.
 Mg:0.01%以下
 Mgは、耐食性を向上させる元素であり、必要に応じて含有できる。このような効果を得るためには、Mgを0.0005%以上含有することが好ましい。一方、Mgを0.01%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、Mgを含有する場合には、Mg含有量を0.01%以下に限定することが好ましい。
Mg: 0.01% or less Mg is an element that improves corrosion resistance and can be contained as needed. In order to obtain such an effect, it is preferable that Mg is contained in an amount of 0.0005% or more. On the other hand, even if Mg is contained in an amount of more than 0.01%, the effect is saturated and the effect commensurate with the content cannot be expected. Therefore, when Mg is contained, it is preferable to limit the Mg content to 0.01% or less.
 Sn:1.0%以下
 Snは、耐食性を向上させる元素であり、必要に応じて含有できる。このような効果を得るためには、Snを0.001%以上含有することが好ましい。一方、Snを1.0%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、Snを含有する場合には、Sn含有量を1.0%以下に限定することが好ましい。
Sn: 1.0% or less Sn is an element that improves corrosion resistance and can be contained as needed. In order to obtain such an effect, it is preferable to contain Sn in 0.001% or more. On the other hand, even if Sn is contained in an amount of more than 1.0%, the effect is saturated and the effect commensurate with the content cannot be expected. Therefore, when Sn is contained, it is preferable to limit the Sn content to 1.0% or less.
 Sb:1.0%以下
 Sbは、耐食性を向上させる元素であり、必要に応じて含有できる。このような効果を得るためには、Sbを0.001%以上含有することが好ましい。一方、Sbを1.0%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、Sbを含有する場合には、Sb含有量を1.0%以下に限定することが好ましい。
Sb: 1.0% or less Sb is an element that improves corrosion resistance and can be contained as needed. In order to obtain such an effect, it is preferable to contain 0.001% or more of Sb. On the other hand, even if Sb is contained in an amount of more than 1.0%, the effect is saturated and the effect commensurate with the content cannot be expected. Therefore, when Sb is contained, it is preferable to limit the Sb content to 1.0% or less.
 次に、本発明のステンレス継目無鋼管の組織の限定理由について説明する。 Next, the reason for limiting the structure of the stainless seamless steel pipe of the present invention will be described.
 本発明のステンレス継目無鋼管は、上記した成分組成を有し、体積率で、30%以上のマルテンサイト相と、60%以下のフェライト相と、40%以下の残留オーステナイト相とを含む組織を有する。 The stainless seamless steel pipe of the present invention has the above-mentioned composition and has a structure containing a martensite phase of 30% or more, a ferrite phase of 60% or less, and a residual austenite phase of 40% or less in terms of volume ratio. Have.
 本発明のステンレス継目無鋼管では、所望の強度を確保するために、マルテンサイト相を体積率で30%以上とする。マルテンサイト相は、好ましくは40%以上とする。マルテンサイト相は、好ましくは70%以下とし、より好ましくは65%以下とする。 In the stainless seamless steel pipe of the present invention, the martensite phase is set to 30% or more by volume in order to secure the desired strength. The martensite phase is preferably 40% or more. The martensite phase is preferably 70% or less, more preferably 65% or less.
 また、本発明では、体積率で60%以下のフェライト相を含む。フェライト相を含有すると、硫化物応力割れの進展を抑制でき、優れた耐食性が得られる。一方、体積率で60%を超えて多量のフェライト相が析出すると、所望の強度を確保できなくなる場合がある。好ましくは、フェライト相は体積率で5%以上である。より好ましくは10%以上である。また、好ましくは、フェライト相は体積率で50%以下である。より好ましくは45%以下である。 Further, in the present invention, a ferrite phase having a volume fraction of 60% or less is contained. When a ferrite phase is contained, the growth of sulfide stress cracking can be suppressed and excellent corrosion resistance can be obtained. On the other hand, if a large amount of ferrite phase is deposited in excess of 60% by volume, it may not be possible to secure the desired strength. Preferably, the ferrite phase has a volume fraction of 5% or more. More preferably, it is 10% or more. Further, preferably, the ferrite phase has a volume fraction of 50% or less. More preferably, it is 45% or less.
 さらに、本発明では、マルテンサイト相とフェライト相に加えて、体積率で40%以下のオーステナイト相(残留オーステナイト相)を含む。残留オーステナイト相の存在により、延性、靭性が向上する。一方、体積率で40%を超える多量のオーステナイト相が析出すると、所望の強度を確保できなくなる。このため、残留オーステナイト相は体積率で40%以下とする。好ましくは、残留オーステナイト相は体積率で5%以上である。また、好ましくは、残留オーステナイト相は体積率で35%以下である。さらに好ましくは、残留オーステナイト相は体積率で30%以下である。 Further, in the present invention, in addition to the martensite phase and the ferrite phase, an austenite phase (residual austenite phase) having a volume fraction of 40% or less is contained. The presence of the retained austenite phase improves ductility and toughness. On the other hand, if a large amount of austenite phase exceeding 40% by volume is precipitated, the desired strength cannot be secured. Therefore, the retained austenite phase is set to 40% or less by volume. Preferably, the retained austenite phase is 5% or more by volume. Further, preferably, the retained austenite phase has a volume fraction of 35% or less. More preferably, the retained austenite phase is 30% or less by volume.
 ここで、本発明のステンレス継目無鋼管の上記の組織の測定は、次の方法で行うことができる。まず、組織観察用試験片をビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食して走査型電子顕微鏡(倍率:1000倍)で組織を撮像し、画像解析装置を用いて、フェライト相の組織分率(面積率(%))を算出する。この面積率をフェライト相の体積率(%)と定義する。 Here, the above-mentioned structure of the stainless seamless steel pipe of the present invention can be measured by the following method. First, the tissue observation test piece is corroded with a bilera reagent (a reagent in which picrinic acid, hydrochloric acid and ethanol are mixed at a ratio of 2 g, 10 ml and 100 ml, respectively), and the tissue is imaged with a scanning electron microscope (magnification: 1000 times). , The microstructure fraction (area ratio (%)) of the ferrite phase is calculated using an image analyzer. This area ratio is defined as the volume fraction (%) of the ferrite phase.
 そして、X線回折用試験片を、管軸方向に直交する断面(C断面)が測定面となるように、研削および研磨し、X線回折法を用いて残留オーステナイト(γ)相の組織分率を測定する。残留オーステナイト相の組織分率は、γの(220)面、α(フェライト)の(211)面、の回折X線積分強度を測定し、次式を用いて換算する。
γ(体積率)=100/(1+(IαRγ/IγRα))
ここで、Iα:αの積分強度、Rα:αの結晶学的理論計算値、Iγ:γの積分強度、Rγ:γの結晶学的理論計算値とする。
Then, the X-ray diffraction test piece is ground and polished so that the cross section (C cross section) orthogonal to the tube axis direction becomes the measurement surface, and the structural component of the retained austenite (γ) phase is used by the X-ray diffraction method. Measure the rate. The structure fraction of the retained austenite phase is converted by measuring the diffraction X-ray integrated intensity of the (220) plane of γ and the (211) plane of α (ferrite) and using the following equation.
γ (volume fraction) = 100 / (1+ (IαRγ / IγRα))
Here, the integrated intensity of Iα: α, the crystallographic theoretically calculated value of Rα: α, the integrated intensity of Iγ: γ, and the crystallographic theoretically calculated value of Rγ: γ are used.
 また、上記測定方法により求めたフェライト相および残留γ相以外の残部を、マルテンサイト相の分率とする。 Further, the balance other than the ferrite phase and the residual γ phase obtained by the above measurement method is used as the fraction of the martensite phase.
 以下に、本発明のステンレス継目無鋼管の好適な製造方法について説明する。 Hereinafter, a suitable manufacturing method for the stainless seamless steel pipe of the present invention will be described.
 上記した成分組成の溶鋼を、転炉等の常用の溶製方法で溶製し、連続鋳造法、造塊-分塊圧延法等、通常の方法でビレット等の鋼管素材とすることが好ましい。熱間加工前の鋼管素材の加熱温度は、好ましくは1100~1350℃である。これにより、造管の際の熱間加工性と最終製品の低温靭性との両立が可能である。
 ついで、得られた鋼管素材に対して、通常公知の造管方法である、マンネスマン-プラグミル方式、あるいはマンネスマン-マンドレルミル方式の造管工程を用いて、熱間加工して造管し、所望寸法の上記した組成を有する継目無鋼管とする。熱間加工後には、冷却処理を施してよい。この冷却処理(冷却工程)は、とくに限定する必要はない。上記した本発明の成分組成範囲であれば、熱間加工後、空冷程度の冷却速度で室温まで冷却することが好ましい。
It is preferable that the molten steel having the above-mentioned composition is melted by a usual melting method such as a converter, and used as a steel pipe material such as a billet by a usual method such as a continuous casting method, an ingot-block rolling method or the like. The heating temperature of the steel pipe material before hot working is preferably 1100 to 1350 ° C. This makes it possible to achieve both hot workability during pipe making and low temperature toughness of the final product.
Then, the obtained steel pipe material is hot-processed using a pipe-making process of a Mannesmann-plug mill method or a Mannesmann-mandrel mill method, which is a generally known pipe-making method, and the desired dimensions are obtained. A seamless steel pipe having the above-mentioned composition. After the hot working, a cooling treatment may be performed. This cooling process (cooling step) does not need to be particularly limited. Within the above-mentioned component composition range of the present invention, it is preferable to cool to room temperature at a cooling rate of about air cooling after hot working.
 本発明では、得られた継目無鋼管に対して、さらに焼入れ処理と焼戻処理とからなる熱処理を施す。 In the present invention, the obtained seamless steel pipe is further subjected to a heat treatment including a quenching treatment and a tempering treatment.
 焼入れ処理は、加熱温度:850~1150℃の範囲の温度に再加熱したのち、空冷以上の冷却速度で冷却する処理とする。この時の冷却停止温度は、継目無鋼管の表面温度で50℃以下である。 The quenching treatment is a treatment in which the heating temperature is reheated to a temperature in the range of 850 to 1150 ° C., and then the cooling is performed at a cooling rate higher than that of air cooling. The cooling stop temperature at this time is 50 ° C. or less at the surface temperature of the seamless steel pipe.
 加熱温度が850℃未満では、マルテンサイトからオーステナイトへの逆変態が起こらず、また冷却時にオーステナイトからマルテンサイトへの変態が起こらず、所望の強度を確保できない。一方、加熱温度が1150℃を超えて高温となると、結晶粒が粗大化する。このため、焼入れ処理の加熱温度は850~1150℃の範囲の温度とする。好ましくは、焼入れ処理の加熱温度は900℃以上である。好ましくは、焼入れ処理の加熱温度は1100℃以下である。また、冷却停止温度は50℃超えであると、オーステナイトからマルテンサイトへの変態が十分に起こらず、残留オーステナイト分率が過剰となる。そのため、本発明では、焼入れ処理における冷却での冷却停止温度は50℃以下とする。ここで、「空冷以上の冷却速度」とは、0.01℃/s以上である。 If the heating temperature is less than 850 ° C., the reverse transformation from martensite to austenite does not occur, and the transformation from austenite to martensite does not occur during cooling, so that the desired strength cannot be secured. On the other hand, when the heating temperature exceeds 1150 ° C. and becomes high, the crystal grains become coarse. Therefore, the heating temperature of the quenching treatment is set to a temperature in the range of 850 to 1150 ° C. Preferably, the heating temperature of the quenching treatment is 900 ° C. or higher. Preferably, the heating temperature of the quenching treatment is 1100 ° C. or lower. Further, when the cooling shutdown temperature exceeds 50 ° C., the transformation from austenite to martensite does not sufficiently occur, and the retained austenite fraction becomes excessive. Therefore, in the present invention, the cooling shutdown temperature during cooling in the quenching process is set to 50 ° C. or lower. Here, the "cooling rate of air cooling or higher" is 0.01 ° C./s or higher.
 また、焼入れ処理において、均熱時間は、肉厚方向における温度を均一化し、材質の変動を防止するために、5~30分とすることが好ましい。 Further, in the quenching treatment, the soaking time is preferably 5 to 30 minutes in order to make the temperature uniform in the wall thickness direction and prevent the material from fluctuating.
 焼戻処理は、焼入れ処理を施された継目無鋼管に、焼戻し温度:500~650℃に加熱する処理とする。また、この加熱の後、放冷することができる。 The tempering process is a process in which a seamless steel pipe that has been quenched is heated to a tempering temperature of 500 to 650 ° C. Further, after this heating, it can be allowed to cool.
 焼戻し温度が500℃未満では、低温すぎて所望の焼戻効果が期待できなくなる。一方、焼戻し温度が650℃を超える高温では、金属間化合物が析出し、優れた低温靭性が得られなくなる。このため、焼戻し温度は500~650℃の範囲の温度とする。好ましくは、焼戻し温度は520℃以上である。好ましくは、焼戻し温度は630℃以下である。 If the tempering temperature is less than 500 ° C, the temperature is too low and the desired tempering effect cannot be expected. On the other hand, at a high temperature where the tempering temperature exceeds 650 ° C., intermetallic compounds are precipitated and excellent low temperature toughness cannot be obtained. Therefore, the tempering temperature is set to a temperature in the range of 500 to 650 ° C. Preferably, the tempering temperature is 520 ° C. or higher. Preferably, the tempering temperature is 630 ° C. or lower.
 また、焼戻処理において、保持時間(均熱保持時間)は、肉厚方向における温度を均一化し、材質の変動を防止するために、5~90分とすることが好ましい。 Further, in the tempering treatment, the holding time (soaking heat holding time) is preferably 5 to 90 minutes in order to make the temperature uniform in the wall thickness direction and prevent the material from fluctuating.
 上記した熱処理(焼入れ処理および焼戻処理)を施すことにより、継目無鋼管の組織は、所定の体積率で特定されるマルテンサイト相とフェライト相と残留オーステナイト相とを含む組織となる。これにより、所望の強度と、優れた耐食性とを有するステンレス継目無鋼管とすることができる。 By performing the above heat treatment (quenching treatment and tempering treatment), the structure of the seamless steel pipe becomes a structure containing a martensite phase, a ferrite phase and a retained austenite phase specified by a predetermined volume ratio. This makes it possible to obtain a stainless seamless steel pipe having desired strength and excellent corrosion resistance.
 以上、本発明により得られるステンレス継目無鋼管は、降伏強さが758MPa以上となる高強度鋼管であり、優れた耐食性と高温強度を有する。好ましくは、降伏強さは862MPa以上である。好ましくは、降伏強さは1034MPa以下である。本発明のステンレス継目無鋼管は、油井用ステンレス継目無鋼管(油井用高強度ステンレス継目無鋼管)とすることができる。 As described above, the stainless seamless steel pipe obtained by the present invention is a high-strength steel pipe having a yield strength of 758 MPa or more, and has excellent corrosion resistance and high-temperature strength. Preferably, the yield strength is 862 MPa or more. Preferably, the yield strength is 1034 MPa or less. The stainless seamless steel pipe of the present invention can be a stainless seamless steel pipe for oil wells (high-strength stainless seamless steel pipe for oil wells).
 以下、実施例に基づき、さらに本発明について説明する。なお、本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be further described based on Examples. The present invention is not limited to the following examples.
 表1-1および表1-2に示す成分組成の溶鋼を用いて、鋼管素材を鋳造した。その後、鋼管素材を加熱し、モデルシームレス圧延機を用いる熱間加工により造管し、外径83.8mm×肉厚12.7mmの継目無鋼管とし、空冷した。このとき、熱間加工前の鋼管素材の加熱温度は1250℃とした。 A steel pipe material was cast using molten steel having the composition shown in Table 1-1 and Table 1-2. Then, the steel pipe material was heated and formed by hot working using a model seamless rolling mill to obtain a seamless steel pipe having an outer diameter of 83.8 mm and a wall thickness of 12.7 mm, which was air-cooled. At this time, the heating temperature of the steel pipe material before hot working was set to 1250 ° C.
 得られた継目無鋼管から、試験片素材を切り出し、加熱温度960℃に再加熱し、均熱保持時間を20分とし、30℃の冷却停止温度まで、冷却(水冷)する焼入れ処理を施した。そして、さらに加熱温度(焼戻し温度)575℃にて均熱保持時間を20分、または加熱温度(焼戻し温度)525℃にて均熱保持時間を20分、または加熱温度(焼戻し温度)620℃にて均熱保持時間40分とし、その後、空冷する焼戻処理を施した。焼入れ処理時の水冷での冷却速度は11℃/sであり、焼戻処理時の空冷(放冷)での冷却速度は、0.04℃/sであった。なお、表1-1および表1-2の空欄は、意図的に添加しないことを表しており、含有しない(0%)の場合だけでなく、不可避的に含有する場合も含む。 The test piece material was cut out from the obtained seamless steel pipe, reheated to a heating temperature of 960 ° C., the soaking time was set to 20 minutes, and quenching treatment was performed to cool (water-cool) to a cooling shutdown temperature of 30 ° C. .. Further, the soaking time is 20 minutes at the heating temperature (tempering temperature) 575 ° C., or the soaking time is 20 minutes at the heating temperature (tempering temperature) 525 ° C., or the heating temperature (tempering temperature) is 620 ° C. The soaking heat retention time was set to 40 minutes, and then an air-cooling tempering treatment was performed. The cooling rate for water cooling during the quenching treatment was 11 ° C./s, and the cooling rate for air cooling (leaving cooling) during the tempering treatment was 0.04 ° C./s. The blanks in Table 1-1 and Table 1-2 indicate that they are not intentionally added, and include not only the case where they are not contained (0%) but also the cases where they are unavoidably contained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた熱処理済みの試験片素材(継目無鋼管)から、各試験片を採取し、組織観察、引張試験、高温引張試験、および耐食性試験を実施した。試験方法はつぎの通りとした。 Each test piece was collected from the obtained heat-treated test piece material (seamless steel pipe) and subjected to microstructure observation, tensile test, high-temperature tensile test, and corrosion resistance test. The test method was as follows.
 (1)組織観察
 得られた熱処理済み試験材から、管軸方向に直交する断面が観察面となるように組織観察用試験片を採取した。得られた組織観察用試験片をビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食して走査型電子顕微鏡(倍率:1000倍)で組織を撮像し、画像解析装置を用いて、フェライト相の組織分率(面積率(%))を算出した。この面積率をフェライト相の体積率(%)とした。
(1) Structure observation From the obtained heat-treated test material, test pieces for structure observation were collected so that the cross section orthogonal to the tube axis direction became the observation surface. The obtained tissue observation test piece was corroded with a bilera reagent (a reagent in which picrinic acid, hydrochloric acid and ethanol were mixed at a ratio of 2 g, 10 ml and 100 ml, respectively), and the tissue was imaged with a scanning electron microscope (magnification: 1000 times). Then, the microstructure fraction (area ratio (%)) of the ferrite phase was calculated using an image analyzer. This area ratio was defined as the volume fraction (%) of the ferrite phase.
 また、得られた熱処理済み試験材から、X線回折用試験片を採取し、管軸方向に直交する断面(C断面)が測定面となるように、研削および研磨し、X線回折法を用いて残留オーステナイト(γ)相の組織分率を測定した。残留オーステナイト相の組織分率は、γの(220)面、α(フェライト)の(211)面、の回折X線積分強度を測定し、次式を用いて換算した。
γ(体積率)=100/(1+(IαRγ/IγRα))
ここで、Iα:αの積分強度、Rα:αの結晶学的理論計算値、Iγ:γの積分強度、Rγ:γの結晶学的理論計算値とする。
なお、マルテンサイト相の分率は、フェライト相および、残留γ相以外の残部である。
Further, a test piece for X-ray diffraction is collected from the obtained heat-treated test material, ground and polished so that the cross section (C cross section) orthogonal to the tube axis direction becomes the measurement surface, and the X-ray diffraction method is performed. The tissue fraction of the retained austenite (γ) phase was measured using. The microstructure fraction of the retained austenite phase was converted by measuring the diffraction X-ray integrated intensity of the (220) plane of γ and the (211) plane of α (ferrite) and using the following equation.
γ (volume fraction) = 100 / (1+ (IαRγ / IγRα))
Here, the integrated intensity of Iα: α, the crystallographic theoretically calculated value of Rα: α, the integrated intensity of Iγ: γ, and the crystallographic theoretically calculated value of Rγ: γ are used.
The fraction of the martensite phase is the balance other than the ferrite phase and the residual γ phase.
 (2)引張試験
 得られた熱処理済み試験材から、管軸方向が引張方向となるように棒状試験片を採取し、JIS Z 2241(2011年)の規定に準拠して引張試験を実施し、降伏応力(YS)を0.2%耐力として求めた。ここでは、降伏強さYSが758MPa以上のものを高強度であるとして合格とし、758MPa未満のものは不合格とした。
(2) Tensile test From the obtained heat-treated test material, rod-shaped test pieces were collected so that the pipe axis direction was the tensile direction, and a tensile test was conducted in accordance with JIS Z 2241 (2011). The yield stress (YS) was determined as 0.2% proof stress. Here, those having a yield strength YS of 758 MPa or more were regarded as high strength and accepted, and those having a yield strength of less than 758 MPa were rejected.
 (3)高温引張試験
 得られた熱処理済み試験材から、管軸方向が引張方向となるように棒状試験片を採取し、JIS G 0567(2012年)の規定に準拠して200℃における引張試験を実施し、降伏応力(YS)を0.2%耐力として求めた。ここでは、同一の鋼に対して同じ熱処理を施し、(2)の引張試験で得られた降伏応力(0.2%耐力)に対する200℃の0.2%耐力の割合が0.85以上である場合を合格とし、0.85未満のものは不合格とした。
(3) High-temperature tensile test From the obtained heat-treated test material, rod-shaped test pieces were collected so that the pipe axis direction was the tensile direction, and a tensile test at 200 ° C. was performed in accordance with JIS G 0567 (2012). Was carried out, and the yield stress (YS) was determined as 0.2% proof stress. Here, the same steel is subjected to the same heat treatment, and the ratio of the 0.2% proof stress at 200 ° C. to the yield stress (0.2% proof stress) obtained in the tensile test of (2) is 0.85 or more. In some cases, it was passed, and in the case of less than 0.85, it was rejected.
 (4)耐食性試験(耐炭酸ガス腐食性試験および耐硫化物応力割れ試験)
 得られた熱処理済み試験材から、厚さが3mm、幅が30mm、長さが40mmのサイズの腐食試験片を機械加工によって作製した。該腐食試験片を用いて、腐食試験を実施し、耐炭酸ガス腐食性を評価した。
(4) Corrosion resistance test (carbon dioxide gas corrosion resistance test and sulfide stress cracking resistance test)
From the obtained heat-treated test material, a corrosion test piece having a thickness of 3 mm, a width of 30 mm, and a length of 40 mm was produced by machining. A corrosion test was carried out using the corrosion test piece, and carbon dioxide corrosion resistance was evaluated.
 耐炭酸ガス腐食性を評価する腐食試験は、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:200℃、30気圧のCOガス雰囲気)中に、上記腐食試験片を浸漬し、浸漬期間を14日間(336時間)として実施した。試験後の試験片について、重量を測定し、腐食試験前後の重量減から計算した腐食速度を求めた。腐食速度が0.127mm/y以下のものを合格とし、0.127mm/y超えのものを不合格とした。 In the corrosion test to evaluate the carbon dioxide corrosion resistance, the corrosion test piece was immersed in a test solution held in an autoclave: a 20 mass% NaCl aqueous solution (liquid temperature: 200 ° C., CO 2 gas atmosphere at 30 atm). The immersion period was 14 days (336 hours). The weight of the test piece after the test was measured, and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained. Those having a corrosion rate of 0.127 mm / y or less were rejected, and those having a corrosion rate of more than 0.127 mm / y were rejected.
 さらに、得られた試験片素材から、丸棒状の試験片(直径:3.81mm)を機械加工によって作製し、耐硫化物応力割れ試験(耐SSC(Sulfide Stress Cracking)試験)を実施した。 Furthermore, a round bar-shaped test piece (diameter: 3.81 mm) was manufactured from the obtained test piece material by machining, and a sulfide stress cracking resistance test (SSC (Sulfide Stress Cracking) test) was carried out.
 耐SSC試験は、オートクレーブ中に保持された試験液:0.165質量%NaCl水溶液(液温:25℃、0.99気圧のCOガス、0.01気圧のHS雰囲気)に、酢酸+酢酸ナトリウムを加えてpH:3.0に調整した水溶液中に試験片を浸漬し、降伏応力の90%を負荷した状態で720時間晒し、試験後の試験片について破断または割れの有無を観察した。破断も割れも無いものを合格(表2-1および表2-2では記号「○」で示す)とし、破断または割れ有のものを不合格(表2-1および表2-2では記号「×」で示す)とした。 The SSC resistance test was carried out by adding acetic acid to a test solution held in an autoclave: 0.165 mass% NaCl aqueous solution (liquid temperature: 25 ° C., 0.99 atm CO 2 gas, 0.01 atm H 2 S atmosphere). Immerse the test piece in an aqueous solution adjusted to pH: 3.0 by adding + sodium acetate, expose it for 720 hours with 90% of the breakdown stress applied, and observe the presence or absence of breakage or cracking in the test piece after the test. did. Those without breakage or cracking are accepted (indicated by the symbol "○" in Table 2-1 and Table 2-2), and those with breakage or cracking are rejected (in Table 2-1 and Table 2-2, the symbol "○"). It is indicated by "x").
 得られた結果を表2-1および表2-2に示す。 The obtained results are shown in Table 2-1 and Table 2-2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2-1および表2-2に示すように、本発明例は、いずれも、降伏強さYS:758MPa以上の高強度と、CO、Clを含む200℃という高温の腐食環境下における優れた耐食性(耐炭酸ガス腐食性)と、優れた耐硫化物応力割れ性と、優れた高温強度とを有するステンレス継目無鋼管であった。 As shown in Table 2-1 and Table 2-2, all of the examples of the present invention have a high yield strength of YS: 758 MPa or more and a high temperature corrosion environment of 200 ° C. containing CO 2 and Cl −. It was a stainless seamless steel tube having excellent corrosion resistance (carbon dioxide corrosion resistance), excellent sulfide stress cracking resistance, and excellent high temperature strength.

Claims (4)

  1.  質量%で、
     C:0.06%以下、
     Si:1.0%以下、
     Mn:0.01%以上0.90%以下、
     P:0.05%以下、
     S:0.005%以下、
     Cr:15.70%以上18.00%以下、
     Mo:1.60%以上3.80%以下、
     Cu:1.10%以上4.00%以下、
     Ni:3.0%以上6.0%以下、
     Al:0.10%以下、
     N:0.10%以下、
     O:0.010%以下、
     V:0.120%以上1.000%以下
     を含有し、
    かつC、Si、Mn、Cr、Ni、Mo、Cu、およびNが以下の式(1)を満足し、
    残部がFeおよび不可避的不純物からなる成分組成を有し、
     体積率で、30%以上のマルテンサイト相、60%以下のフェライト相、および40%以下の残留オーステナイト相を含む組織を有し、
     降伏強さが758MPa以上である、ステンレス継目無鋼管。
    13.0 ≦ -5.9×(7.82+27C-0.91Si+0.21Mn-0.9Cr+Ni-1.1Mo+0.2Cu+11N)≦50.0‥‥(1)
    ここで、C、Si、Mn、Cr、Ni、Mo、Cu、およびN:各元素の含有量(質量%)であり、含有しない場合はゼロとする。
    By mass%,
    C: 0.06% or less,
    Si: 1.0% or less,
    Mn: 0.01% or more and 0.90% or less,
    P: 0.05% or less,
    S: 0.005% or less,
    Cr: 15.70% or more and 18.00% or less,
    Mo: 1.60% or more and 3.80% or less,
    Cu: 1.10% or more and 4.00% or less,
    Ni: 3.0% or more and 6.0% or less,
    Al: 0.10% or less,
    N: 0.10% or less,
    O: 0.010% or less,
    V: Contains 0.120% or more and 1.000% or less,
    Moreover, C, Si, Mn, Cr, Ni, Mo, Cu, and N satisfy the following formula (1).
    The balance has a component composition consisting of Fe and unavoidable impurities,
    It has a structure containing a martensite phase of 30% or more, a ferrite phase of 60% or less, and a retained austenite phase of 40% or less by volume.
    Stainless steel seamless steel pipe with yield strength of 758 MPa or more.
    13.0 ≤ -5.9 x (7.82 + 27C-0.91Si + 0.21Mn-0.9Cr + Ni-1.1Mo + 0.2Cu + 11N) ≤ 50.0 ... (1)
    Here, C, Si, Mn, Cr, Ni, Mo, Cu, and N: are the contents (mass%) of each element, and if they are not contained, they are set to zero.
  2.  前記マルテンサイト相が体積率で40%以上、前記残留オーステナイト相が体積率で30%以下であり、降伏強さが862MPa以上である、請求項1に記載のステンレス継目無鋼管。 The stainless seamless steel pipe according to claim 1, wherein the martensite phase has a volume fraction of 40% or more, the retained austenite phase has a volume fraction of 30% or less, and the yield strength is 862 MPa or more.
  3.  前記成分組成に加えてさらに、質量%で、下記A群~D群のうちから選ばれた1群または2群以上を含有する、請求項1または2に記載のステンレス継目無鋼管。
                     記
    A群:W:3.0%以下
    B群:Nb:0.10%未満
    C群:B:0.010%以下、Ta:0.3%以下、Co:1.5%以下、Ti:0.3%以下、Zr:0.3%以下のうちから選ばれた1種または2種以上
    D群:Ca:0.01%以下、REM:0.3%以下、Mg:0.01%以下、Sn:1.0%以下、Sb:1.0%以下のうちから選ばれた1種または2種以上
    The stainless seamless steel pipe according to claim 1 or 2, further comprising one group or two or more groups selected from the following groups A to D in mass% in addition to the component composition.
    Group A: W: 3.0% or less Group B: Nb: less than 0.10% Group C: B: 0.010% or less, Ta: 0.3% or less, Co: 1.5% or less, Ti: One or more selected from 0.3% or less, Zr: 0.3% or less Group D: Ca: 0.01% or less, REM: 0.3% or less, Mg: 0.01% Hereinafter, one or more selected from Sn: 1.0% or less and Sb: 1.0% or less.
  4.  請求項1~3のいずれか1項に記載のステンレス継目無鋼管の製造方法であって、
     前記成分組成を有する鋼管素材を、加熱温度:1100~1350℃の範囲の温度で加熱し、熱間加工を施して継目無鋼管とし、
     次いで、前記継目無鋼管を加熱温度:850~1150℃の範囲の温度に再加熱し、空冷以上の冷却速度で50℃以下の冷却停止温度まで冷却する焼入れ処理を施し、
    その後、焼戻し温度:500~650℃の範囲の温度に加熱する焼戻処理を施す、ステンレス継目無鋼管の製造方法。
    The method for manufacturing a stainless seamless steel pipe according to any one of claims 1 to 3.
    The steel pipe material having the above-mentioned composition is heated at a heating temperature in the range of 1100 to 1350 ° C. and hot-worked to obtain a seamless steel pipe.
    Next, the seamless steel pipe is reheated to a heating temperature in the range of 850 to 1150 ° C., and subjected to quenching treatment to cool it to a cooling stop temperature of 50 ° C. or lower at a cooling rate equal to or higher than air cooling.
    Then, a method for manufacturing a stainless seamless steel pipe, which is subjected to a tempering process of heating to a temperature in the range of tempering temperature: 500 to 650 ° C.
PCT/JP2021/022014 2020-07-06 2021-06-10 Seamless stainless steel pipe and production method therefor WO2022009598A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180043643.2A CN115917028A (en) 2020-07-06 2021-06-10 Stainless steel seamless steel pipe and method for manufacturing same
MX2022016143A MX2022016143A (en) 2020-07-06 2021-06-10 Seamless stainless steel pipe and production method therefor.
EP21838618.3A EP4123037A1 (en) 2020-07-06 2021-06-10 Seamless stainless steel pipe and production method therefor
JP2021549667A JP7226571B2 (en) 2020-07-06 2021-06-10 Seamless stainless steel pipe and manufacturing method thereof
US18/010,518 US20230340632A1 (en) 2020-07-06 2021-06-10 Stainless steel seamless pipe and method for manufacturing same
BR112022025826A BR112022025826A2 (en) 2020-07-06 2021-06-10 SEAMLESS STAINLESS STEEL TUBE AND METHOD FOR MANUFACTURING THIS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020116091 2020-07-06
JP2020-116091 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022009598A1 true WO2022009598A1 (en) 2022-01-13

Family

ID=79552469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022014 WO2022009598A1 (en) 2020-07-06 2021-06-10 Seamless stainless steel pipe and production method therefor

Country Status (8)

Country Link
US (1) US20230340632A1 (en)
EP (1) EP4123037A1 (en)
JP (1) JP7226571B2 (en)
CN (1) CN115917028A (en)
AR (1) AR122877A1 (en)
BR (1) BR112022025826A2 (en)
MX (1) MX2022016143A (en)
WO (1) WO2022009598A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136175A1 (en) * 2010-04-28 2011-11-03 住友金属工業株式会社 High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well
WO2013146046A1 (en) 2012-03-26 2013-10-03 新日鐵住金株式会社 Stainless steel for oil wells and stainless steel pipe for oil wells
WO2015178022A1 (en) * 2014-05-21 2015-11-26 Jfeスチール株式会社 High-strength stainless steel seamless pipe for oil well, and method for producing same
JP2017039998A (en) * 2015-08-18 2017-02-23 Jfeスチール株式会社 Seamless stainless steel pipe for oil well and method for producing the same
WO2017138050A1 (en) 2016-02-08 2017-08-17 Jfeスチール株式会社 High strength stainless steel seamless pipe for oil well and manufacturing method therefor
WO2017168874A1 (en) 2016-03-29 2017-10-05 Jfeスチール株式会社 High-strength seamless stainless-steel pipe for oil well
WO2018020886A1 (en) 2016-07-27 2018-02-01 Jfeスチール株式会社 High strength seamless stainless steel pipe for oil wells and production method therefor
WO2018131340A1 (en) * 2017-01-13 2018-07-19 Jfeスチール株式会社 High strength seamless stainless steel pipe and production method therefor
WO2018155041A1 (en) 2017-02-24 2018-08-30 Jfeスチール株式会社 High strength seamless stainless steel pipe for oil well and production method therefor
JP2018524472A (en) * 2015-06-29 2018-08-30 ヴァルレック オイル アンド ガス フランス Corrosion-resistant steel, production method and use of corrosion-resistant steel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6156609B1 (en) * 2016-02-08 2017-07-05 Jfeスチール株式会社 High strength stainless steel seamless steel pipe for oil well and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136175A1 (en) * 2010-04-28 2011-11-03 住友金属工業株式会社 High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well
WO2013146046A1 (en) 2012-03-26 2013-10-03 新日鐵住金株式会社 Stainless steel for oil wells and stainless steel pipe for oil wells
WO2015178022A1 (en) * 2014-05-21 2015-11-26 Jfeスチール株式会社 High-strength stainless steel seamless pipe for oil well, and method for producing same
JP2018524472A (en) * 2015-06-29 2018-08-30 ヴァルレック オイル アンド ガス フランス Corrosion-resistant steel, production method and use of corrosion-resistant steel
JP2017039998A (en) * 2015-08-18 2017-02-23 Jfeスチール株式会社 Seamless stainless steel pipe for oil well and method for producing the same
WO2017138050A1 (en) 2016-02-08 2017-08-17 Jfeスチール株式会社 High strength stainless steel seamless pipe for oil well and manufacturing method therefor
WO2017168874A1 (en) 2016-03-29 2017-10-05 Jfeスチール株式会社 High-strength seamless stainless-steel pipe for oil well
WO2018020886A1 (en) 2016-07-27 2018-02-01 Jfeスチール株式会社 High strength seamless stainless steel pipe for oil wells and production method therefor
WO2018131340A1 (en) * 2017-01-13 2018-07-19 Jfeスチール株式会社 High strength seamless stainless steel pipe and production method therefor
WO2018155041A1 (en) 2017-02-24 2018-08-30 Jfeスチール株式会社 High strength seamless stainless steel pipe for oil well and production method therefor

Also Published As

Publication number Publication date
US20230340632A1 (en) 2023-10-26
MX2022016143A (en) 2023-02-09
CN115917028A (en) 2023-04-04
AR122877A1 (en) 2022-10-12
JP7226571B2 (en) 2023-02-21
BR112022025826A2 (en) 2023-01-17
EP4123037A1 (en) 2023-01-25
JPWO2022009598A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP6766887B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP6399259B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP5967066B2 (en) High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
JP5924256B2 (en) High strength stainless steel seamless pipe for oil well with excellent corrosion resistance and manufacturing method thereof
WO2017138050A1 (en) High strength stainless steel seamless pipe for oil well and manufacturing method therefor
WO2018131340A1 (en) High strength seamless stainless steel pipe and production method therefor
JP6156609B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP7156536B2 (en) Seamless stainless steel pipe and method for producing seamless stainless steel pipe
JP7156537B2 (en) Seamless stainless steel pipe and method for producing seamless stainless steel pipe
JP7315097B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
CN115298346A (en) High-strength stainless steel seamless steel pipe for oil well and method for producing same
JP7111253B2 (en) Seamless stainless steel pipe and manufacturing method thereof
JP6819837B1 (en) Stainless steel seamless steel pipe
JP7226571B2 (en) Seamless stainless steel pipe and manufacturing method thereof
JP6915761B1 (en) Stainless steel seamless steel pipe and its manufacturing method
JP7347714B1 (en) High strength seamless stainless steel pipe for oil wells

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021549667

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021838618

Country of ref document: EP

Effective date: 20221020

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022025826

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022025826

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221216

NENP Non-entry into the national phase

Ref country code: DE