JP2008081793A - High-strength stainless steel pipe with high toughness and excellent corrosion resistance for oil well - Google Patents

High-strength stainless steel pipe with high toughness and excellent corrosion resistance for oil well Download PDF

Info

Publication number
JP2008081793A
JP2008081793A JP2006263704A JP2006263704A JP2008081793A JP 2008081793 A JP2008081793 A JP 2008081793A JP 2006263704 A JP2006263704 A JP 2006263704A JP 2006263704 A JP2006263704 A JP 2006263704A JP 2008081793 A JP2008081793 A JP 2008081793A
Authority
JP
Japan
Prior art keywords
less
steel pipe
stainless steel
strength
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006263704A
Other languages
Japanese (ja)
Other versions
JP4893196B2 (en
Inventor
Mitsuo Kimura
光男 木村
Takeshi Shimamoto
健 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006263704A priority Critical patent/JP4893196B2/en
Publication of JP2008081793A publication Critical patent/JP2008081793A/en
Application granted granted Critical
Publication of JP4893196B2 publication Critical patent/JP4893196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive high-strength stainless steel pipe for use in oil wells which has excellent hot workability and a high strength exceeding 654 MPa of YS, further exhibits excellent CO<SB>2</SB>corrosion resistance under severe high-temperature corrosive environment of ≥170°C containing CO<SB>2</SB>, Cl<SP>-</SP>, etc., and excellent SSC resistance even under H<SB>2</SB>S-containing environments, and has high toughness. <P>SOLUTION: The steel pipe has a composition containing, by mass, ≤0.04% C, ≤0.50% Si, 0.20 to 1.80% Mn, ≤0.03% P, ≤0.005% S, 15.5 to 17.5% Cr, 2.5 to 5.5% Ni, ≤0.20% V, 1.5 to 3.5% Mo, 0.50 to 3.0% W, ≤0.05% Al, ≤0.15% N and ≤0.006% O within the range simultaneously satisfying three correlation expressions. The steel pipe is preferably subjected to quenching-tempering treatment and preferably has a structure containing a martensite phase as a base phase and 10 to 50 vol.% ferrite phase. Moreover, one or more elements among Cu, Nb, Ti, Zr, W, B and Ca can be further contained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、原油あるいは天然ガスの油井、ガス井に使用される油井用鋼管に係り、とくに、炭酸ガス(CO2)、塩素イオン(Cl-)等を含み、極めて厳しい腐食環境の油井、ガス井用として好適な、優れた耐食性を有する油井用高強度ステンレス鋼管に関する。なお、この発明でいう「高強度ステンレス鋼管」とは、降伏強さ:654MPa(95ksi)を超える強度を有するステンレス鋼管をいうものとする。 The present invention relates to oil wells for crude oil or natural gas, and steel pipes for oil wells used for gas wells. In particular, the present invention includes carbon wells (CO 2 ), chlorine ions (Cl ), etc., and oil wells and gases with extremely severe corrosive environments. The present invention relates to a high-strength stainless steel pipe for oil wells having excellent corrosion resistance suitable for well use. The “high-strength stainless steel pipe” in the present invention refers to a stainless steel pipe having a yield strength exceeding 654 MPa (95 ksi).

近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇化に対処するために、従来、省みられなかったような深層油田や、開発が一旦は放棄されていた腐食性の強いサワーガス田等に対する開発が、世界的規模で盛んになっている。このような油田、ガス田は一般に深度が極めて深く、またその雰囲気も高温でかつ、CO2、Cl-等を含む厳しい腐食環境となっている。したがって、このような油田、ガス田の採掘に使用される油井用鋼管としては、高強度で、しかも耐食性に優れた鋼管が要求されている。 In recent years, in order to cope with soaring crude oil prices and the depletion of petroleum resources expected in the near future, deep oil fields that have not been excluded in the past, and highly corrosive once development has been abandoned Development on sour gas fields and the like has become active worldwide. Such oil, gas fields are generally the depth is very deep, and the atmosphere at a high temperature and, CO 2, Cl - has a severe corrosive environment and the like. Accordingly, steel pipes for oil wells used for mining such oil fields and gas fields are required to have high strength and excellent corrosion resistance.

従来から、CO2、Cl-等を含む環境下の油田、ガス田では、油井用鋼管として、耐CO2腐食性に優れた13%Crマルテンサイト系ステンレス鋼管が使用されてきた。しかし、通常の13%Crマルテンサイト系ステンレス鋼管は、Cl-を多量に含み100℃を超える高温の環境下では、使用に耐えられなくなるという問題があった。そのため、耐食性が要求される井戸では、二相ステンレス鋼管が用いられていた。しかし、二相ステンレス鋼管は、合金元素量が多く、熱間加工性が劣り特殊な熱間加工法でしか製造できず、高価であるという問題がある。また、従来の13%Crマルテンサイト系ステンレス鋼管では降伏強さが654MPaを超えると靭性の低下が著しくなり、使用に耐えなくなるという問題もあった。 Conventionally, 13% Cr martensitic stainless steel pipes excellent in CO 2 corrosion resistance have been used as oil well steel pipes in oil fields and gas fields in an environment containing CO 2 , Cl 2- , and the like. However, 13% Cr martensitic stainless steel pipe generally, Cl - at a high temperature environment exceeding comprises large amounts of 100 ° C., there is a problem that becomes intolerable use. Therefore, duplex stainless steel pipes have been used in wells that require corrosion resistance. However, the duplex stainless steel pipe has a problem that it has a large amount of alloy elements, is inferior in hot workability, and can be produced only by a special hot working method, and is expensive. In addition, the conventional 13% Cr martensitic stainless steel pipe has a problem that when the yield strength exceeds 654 MPa, the toughness is significantly lowered and it cannot be used.

また、近年、寒冷地における油田開発も活発になってきており、高強度に加えて、優れた低温靱性を有することが要求されることも多い。
このようなことから、熱間加工性に優れ、安価である13%Crマルテンサイト系ステンレス鋼をベースとした、降伏強さが654MPa(95ksi)を超える高強度で、かつ優れた耐CO2腐食性と、高靭性とを有する油井用高強度13%Crマルテンサイト系ステンレス鋼管が強く望まれていた。
In recent years, oil fields have been actively developed in cold regions, and it is often required to have excellent low temperature toughness in addition to high strength.
For this reason, it is based on 13% Cr martensitic stainless steel, which is excellent in hot workability and inexpensive, and has high yield strength exceeding 654 MPa (95 ksi) and excellent CO 2 corrosion resistance. High strength 13% Cr martensitic stainless steel pipes for oil wells having high properties and high toughness have been strongly desired.

このような要望に対し、例えば、特許文献1には、Cを0.005 〜0.05%と制限し、Ni:2.4〜6%とCu:0.2〜4%とを複合添加し、さらにMoを0.5〜3%添加し、さらにNieqを10.5以上に調整した組成を有する、耐食性に優れた13%Crマルテンサイト系ステンレス継目無鋼管が提案されている。この継目無鋼管は、API‐C95級以上の高強度と、180℃以上のCO2を含む環境における耐食性と、耐SCC性とを兼ね備えたマルテンサイト系ステンレス継目無鋼管であるとしている。 In response to such a request, for example, in Patent Document 1, C is limited to 0.005 to 0.05%, Ni: 2.4 to 6% and Cu: 0.2 to 4% are added in combination, and Mo is further added to 0.5 to 3%. A 13% Cr martensitic stainless steel seamless pipe with excellent corrosion resistance has been proposed having a composition in which Nieq is adjusted to 10.5 or more. This seamless steel pipe is said to be a martensitic stainless steel seamless pipe having high strength of API-C95 grade or higher, corrosion resistance in an environment containing CO 2 of 180 ° C or higher, and SCC resistance.

また、特許文献2には、C:0.005〜0.05%、N:0.005〜0.1%を含み、Ni:3.0〜6.0%、Cu:0.5〜3%、Mo:0.5〜3%に調整した13%Crマルテンサイト系ステンレス鋼組成と、焼戻しマルテンサイトと20体積%以上のγ相とが混在した組織とを有する耐硫化物応力腐食割れ性に優れたマルテンサイト系ステンレス鋼が提案されている。このマルテンサイト系ステンレス鋼は、γ相を20体積%以上含む焼戻しマルテンサイト組織を有し、顕著に向上した耐硫化物応力腐食割れ性を有するとしている。   Patent Document 2 includes C: 0.005 to 0.05%, N: 0.005 to 0.1%, Ni: 3.0 to 6.0%, Cu: 0.5 to 3%, and Mo: 0.5 to 3%. A martensitic stainless steel excellent in sulfide stress corrosion cracking resistance having a martensitic stainless steel composition and a structure in which tempered martensite and a γ phase of 20% by volume or more are mixed has been proposed. This martensitic stainless steel has a tempered martensite structure containing 20% by volume or more of the γ phase, and has markedly improved sulfide stress corrosion cracking resistance.

また、特許文献3には、10〜15%Crを含有するマルテンサイト系ステンレス鋼の組成で、Cを0.005〜0.05%と制限し、Ni:4.0%以上、Cu:0.5〜3%を複合添加し、さらにMoを1.0〜3.0%添加し、さらにNieqを−10以上に調整した組成と、 焼戻しマルテンサイト相、マルテンサイト相、残留オーステナイト相からなり、焼戻しマルテンサイト相とマルテンサイト相の合計の分率を60〜90%とする組織を有する、耐食性、耐硫化物応力腐食割れ性に優れたマルテンサイト系ステンレス鋼が提案されている。このマルテンサイト系ステンレス鋼は、湿潤炭酸ガス環境および湿潤硫化水素環境における耐食性と耐硫化物応力腐食割れ性に優れるとしている。   In Patent Document 3, the composition of martensitic stainless steel containing 10 to 15% Cr, C is limited to 0.005 to 0.05%, Ni: 4.0% or more, and Cu: 0.5 to 3% are added in combination. Furthermore, it is composed of a composition in which Mo is added in an amount of 1.0 to 3.0% and Nieq is adjusted to -10 or more, and a tempered martensite phase, a martensite phase, and a retained austenite phase. A martensitic stainless steel having a structure with a fraction of 60 to 90% and excellent corrosion resistance and sulfide stress corrosion cracking resistance has been proposed. This martensitic stainless steel is said to be excellent in corrosion resistance and sulfide stress corrosion cracking resistance in a wet carbon dioxide environment and a wet hydrogen sulfide environment.

また、特許文献4には、15%超19%以下のCrを含有し、C:0.05%以下、N:0.1%以下、Ni:3.5〜8.0%を含み、さらにMo:0.1〜4.0%を含有し、30Cr+36Mo+14Si−28Ni≦455 (%)、21Cr+25Mo+17Si+35Ni≦731(%)を同時に満足する鋼組成を有する硫化物応力割れ性に優れた油井用マルテンサイト系ステンレス鋼材が提案されている。このマルテンサイト系ステンレス鋼材は、塩化物イオン、炭酸ガスと微量の硫化水素ガスとが存在する苛酷な油井環境中でも優れた耐食性を有するとしている。   Patent Document 4 contains more than 15% and 19% or less of Cr, C: 0.05% or less, N: 0.1% or less, Ni: 3.5-8.0%, and Mo: 0.1-4.0% In addition, a martensitic stainless steel material for oil wells having a steel composition satisfying 30Cr + 36Mo + 14Si−28Ni ≦ 455 (%) and 21Cr + 25Mo + 17Si + 35Ni ≦ 731 (%) and excellent in sulfide stress cracking has been proposed. This martensitic stainless steel material is said to have excellent corrosion resistance even in a harsh oil well environment in which chloride ions, carbon dioxide gas and a small amount of hydrogen sulfide gas exist.

また、特許文献5には、C:0.005〜0.05%、Si:0.05〜0.5%、Mn:0.2〜1.8%、P:0.03%以下、S:0.005%以下、Cr:15.5〜18%、Ni:1.5〜5%、Mo:1〜3.5%、V:0.02〜0.2%、N:0.01〜0.15%、O:0.006%以下を含有し、かつCr+0.65Ni+0.6Mo+0.55Cu−20C≧19.5およびCr+Mo+0.3Si−43.5C−0.4Mn−Ni−0.3Cu−9N≧11.5を満足する組成と、マルテンサイト相をベース相とし、フェライト相を10〜60体積%、あるいはさらにオーステナイト相を30体積%以下含有する組織とを有する耐食性に優れた油井用高強度ステンレス鋼管が提案されている。
特開平8‐120345号公報 特開平9‐268349号公報 特開平10‐1755号公報 特許第2814528号公報 特開2005‐336595号公報
In Patent Document 5, C: 0.005 to 0.05%, Si: 0.05 to 0.5%, Mn: 0.2 to 1.8%, P: 0.03% or less, S: 0.005% or less, Cr: 15.5 to 18%, Ni: 1.5 to 5%, Mo: 1 to 3.5%, V: 0.02 to 0.2%, N: 0.01 to 0.15%, O: 0.006% or less, and Cr + 0.65Ni + 0.6Mo + 0.55Cu-20C ≧ 19.5 and Cr + Mo + 0. Composition satisfying 3Si-43.5C-0.4Mn-Ni-0.3Cu-9N ≧ 11.5, martensite phase as base phase, ferrite phase 10-60% by volume, or austenite phase 30% by volume or less A high-strength stainless steel pipe for oil wells having excellent corrosion resistance has been proposed.
JP-A-8-120345 JP-A-9-268349 Japanese Patent Laid-Open No. 10-1755 Japanese Patent No. 2814528 JP 2005-336595 A

特許文献1〜特許文献5に記載された技術で製造された、改良型マルテンサイト系ステンレス鋼管では、それまでの従来型13%Crマルテンサイト系ステンレス鋼管に比べて、とくにCO2、Cl-を含む高温腐食環境下での耐食性が著しく向上するとされる。しかし、これら改良型マルテンサイト系ステンレス鋼管は、H2Sが存在する腐食環境下では硫化物応力腐食割れ(SSC)を引き起こしやすいという問題があった。このような問題は、とくに、降伏強さ:792MPa(110ksi)以上を有する高強度マルテンサイト系ステンレス鋼管で顕著となる。 Produced by the technique described in Patent Documents 1 5, the improved martensitic stainless steel tube, as compared with the conventional 13% Cr martensitic stainless steel pipes far, in particular CO 2, Cl - and It is said that the corrosion resistance under the high temperature corrosive environment is significantly improved. However, these improved martensitic stainless steel pipes have a problem that they tend to cause sulfide stress corrosion cracking (SSC) in a corrosive environment where H 2 S exists. Such a problem becomes remarkable particularly in a high-strength martensitic stainless steel pipe having a yield strength of 792 MPa (110 ksi) or more.

この発明は、上記した従来技術の問題に鑑みて成されたものであり、熱間加工性に優れるとともに、YS:654MPaを超える高強度を有し、CO2、Cl-等を含む170℃以上の苛酷な高温腐食環境下において、優れた耐CO2腐食性を示し、さらにH2Sが存在する環境下においても、優れた耐SSC性を示し、かつ高靭性を有する、安価な油井用高強度マルテンサイト系ステンレス鋼管を提供することを目的とする。 The present invention has been made in view of the problems of the prior art described above is excellent in hot workability, YS: it has a high strength of more than 654MPa, CO 2, Cl -, etc. than 170 ° C. containing Excellent oil resistance for CO 2 in the severe hot corrosion environment, and excellent SSC resistance and high toughness even in the presence of H 2 S. It aims at providing a strength martensitic stainless steel pipe.

なお、この発明でいう「高強度マルテンサイト系ステンレス鋼管」は、降伏強さが654MPa(95ksi)を超える強度を有するマルテンサイト系ステンレス鋼管をいうものとする。また、この発明でいう「高靭性」とは、シャルピー衝撃試験の−20℃における吸収エネルギーが50J以上を示す場合をいうものとする。   The “high-strength martensitic stainless steel pipe” in the present invention refers to a martensitic stainless steel pipe having a yield strength exceeding 654 MPa (95 ksi). Further, “high toughness” in the present invention refers to a case where the absorbed energy at −20 ° C. of the Charpy impact test shows 50 J or more.

本発明者らは、上記した目的を達成するために、改良型13%Crマルテンサイト系ステンレス鋼管の組成をベース組成として、降伏強さ:654MPa(95ksi)を超える高強度を維持した状態で、CO2、Cl-等を含む高温環境下での耐CO2腐食性と、さらにH2Sが存在する環境における耐SSC性に及ぼす合金元素の影響について鋭意研究した。その結果、Cを従来より著しく低減した13%Crマルテンサイト系ステンレス鋼において、Crを15.5〜17.5%と従来より増量して含み、さらにNi、Cuの適正量を含み、Mo+0.8Wが2.0 〜4.5の範囲内となるように、Mo、W含有量を調整して含むとともに、さらに次(1)式
Cr+3.2Mo+2.6W−10C ≧ 23.4 …(1)
(ここで、Cr、Mo、W、C:各元素の含有量(mass%))
を満足するように、Cr、Mo、W、C含有量を調整することにより、H2Sが存在する環境における耐SSC性が顕著に向上することを見出した。また、さらに、次(2)式
Cr+Mo+0.5W+0.3Si−43.5C−0.4Mn−0.3Cu−Ni−9N≧11.5 …(2)
(ここで、Cr、Mo、W、Si、C、Mn、Cu、Ni、N:各元素の含有量(mass%))
を満足するように、Cr、Mo、W、Si、C、Mn、Cu、Ni、N含有量を調整することにより、継目無鋼管製造のために十分な、優れた熱間加工性と、さらに所望の高強度が確保できることを見出した。
In order to achieve the above-mentioned object, the present inventors based on the composition of an improved 13% Cr martensitic stainless steel pipe as a base composition, while maintaining a high strength exceeding yield strength: 654 MPa (95 ksi), CO 2, Cl - and anti CO 2 corrosion resistance under high temperature environment and the like, made extensive studied the effect of alloying elements on the SSC resistance in an environment that there are more H 2 S. As a result, 13% Cr martensitic stainless steel with C significantly reduced compared to the prior art contains Cr in an amount of 15.5 to 17.5%, and includes appropriate amounts of Ni and Cu, and Mo + 0.8W is 2.0 to 2.0 In addition to adjusting the Mo and W contents to be within the range of 4.5, the following formula (1)
Cr + 3.2Mo + 2.6W-10C ≧ 23.4 (1)
(Here, Cr, Mo, W, C: content of each element (mass%))
It was found that the SSC resistance in an environment where H 2 S is present is remarkably improved by adjusting the Cr, Mo, W, and C contents so as to satisfy the above. Furthermore, the following equation (2)
Cr + Mo + 0.5W + 0.3Si-43.5C-0.4Mn-0.3Cu-Ni-9N ≧ 11.5 (2)
(Here, Cr, Mo, W, Si, C, Mn, Cu, Ni, N: content of each element (mass%))
By adjusting the content of Cr, Mo, W, Si, C, Mn, Cu, Ni, N so as to satisfy the requirements, excellent hot workability sufficient for seamless steel pipe production, and It has been found that the desired high strength can be ensured.

この発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、この発明の要旨は次のとおりである。
(1)mass%で、C:0.04%以下、Si:0.50%以下、Mn:0.20〜1.80%、P:0.03%以下、S:0.005%以下、Cr:15.5〜17.5%、Ni:2.5〜5.5%、V:0.20%以下、Mo:1.5〜3.5%、W:0.50〜3.0%、Al:0.05%以下、N:0.15%以下、O:0.006%以下を、次(1)〜(3)式
Cr+3.2Mo+2.6W−10C≧ 23.4 …(1)
Cr+Mo+0.5W+0.3Si−43.5C−0.4Mn−0.3Cu−Ni−9N≧11.5 …(2)
2.2 ≦ Mo+0.8W ≦4.5 …(3)
(ここで、Cr、Mo、W、Si、C、Mn、Cu、Ni、N:各元素の含有量(mass%))
を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有することを特徴とする、高靱性で、耐食性に優れた油井用高強度ステンレス鋼管。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.04% or less, Si: 0.50% or less, Mn: 0.20 to 1.80%, P: 0.03% or less, S: 0.005% or less, Cr: 15.5 to 17.5%, Ni: 2.5 to 5.5 %, V: 0.20% or less, Mo: 1.5 to 3.5%, W: 0.50 to 3.0%, Al: 0.05% or less, N: 0.15% or less, O: 0.006% or less, the following formulas (1) to (3)
Cr + 3.2Mo + 2.6W-10C ≧ 23.4 (1)
Cr + Mo + 0.5W + 0.3Si-43.5C-0.4Mn-0.3Cu-Ni-9N ≧ 11.5 (2)
2.2 ≦ Mo + 0.8W ≦ 4.5 (3)
(Here, Cr, Mo, W, Si, C, Mn, Cu, Ni, N: content of each element (mass%))
A high-strength stainless steel pipe for oil wells with high toughness and excellent corrosion resistance, characterized in that it has a composition comprising the balance Fe and inevitable impurities.

(2)(1)において、前記組成に加えてさらに、mass%で、Cu:0.5〜3.5%を含有する組成とすることを特徴とする油井用高強度ステンレス鋼管。
(3)(1)または(2)において、前記組成に加えてさらに、mass%で、Nb:0.20%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする油井用高強度ステンレス鋼管。
(2) A high-strength stainless steel pipe for oil wells characterized in that, in addition to the above composition, the composition further includes mass: Cu: 0.5 to 3.5%.
(3) In (1) or (2), in addition to the above composition, it is further selected in mass% from Nb: 0.20% or less, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less A high-strength stainless steel pipe for oil wells, characterized in that the composition contains one or more kinds.

(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ca:0.0005〜0.01%を含有する組成とすることを特徴とする油井用高強度ステンレス鋼管。
(5)(1)ないし(4)のいずれかにおいて、マルテンサイト相をベース相とし、さらにフェライト相を体積率で、10〜50%含有する組織を有することを特徴とする油井用高強度ステンレス鋼管。
(4) In any one of (1) to (3), a high-strength stainless steel pipe for oil wells characterized in that, in addition to the above-mentioned composition, the composition further contains Ca: 0.0005 to 0.01% in mass%.
(5) The high-strength stainless steel for oil wells according to any one of (1) to (4), characterized in that it has a structure containing a martensite phase as a base phase and a ferrite phase in a volume ratio of 10 to 50%. Steel pipe.

本発明によれば、CO2、Cl-を含み、さらにH2Sを含む高温の苛酷な腐食環境下においても、十分な耐食性を示す高強度ステンレス鋼管を容易に提供でき、油井管の耐久性が顕著に向上し、産業上格段の効果を奏する。 According to the present invention, CO 2, Cl - wherein the further even in severe corrosive environment of high temperature containing H 2 S, can provide a high strength stainless steel exhibits sufficient corrosion resistance easily, the durability of the oil well pipe Is remarkably improved and has a remarkable industrial effect.

まず、本発明高強度ステンレス鋼管の組成限定理由について説明する。以下、とくに断らない限りmass%は、単に%と記す。
C:0.04%以下
Cは、マルテンサイト系ステンレス鋼の強度に関係する重要な元素であり、所望の強度を確保するためには、0.005%以上含有することが望ましいが、0.04%を超えて含有すると、Ni含有による焼戻時の鋭敏化が増大しやすくなる。このため、この焼戻時の鋭敏化を防止する目的から、Cは0.04%以下に限定した。なお、好ましくは、耐食性の観点から0.005〜0.03%の範囲である。
First, the reasons for limiting the composition of the high-strength stainless steel pipe of the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply written as%.
C: 0.04% or less C is an important element related to the strength of martensitic stainless steel. To ensure the desired strength, 0.005% or more is desirable, but more than 0.04% is contained. Then, the sensitization at the time of tempering by Ni containing tends to increase. Therefore, C is limited to 0.04% or less for the purpose of preventing sensitization during tempering. In addition, Preferably, it is 0.005 to 0.03% of range from a viewpoint of corrosion resistance.

Si:0.50%以下
Siは、通常の製鋼過程において脱酸剤として作用する元素であり、この発明では、0.05%以上含有させることが望ましいが、0.50%を超えて含有すると、耐CO2腐食性が低下し、さらに熱間加工性も低下する。このために、Siは0.50%以下に限定した。なお、好ましくは0.10〜0.35%である。
Si: 0.50% or less
Si is an element that acts as a deoxidizer in the normal steelmaking process. In this invention, it is desirable to contain 0.05% or more, but if it exceeds 0.50%, the CO 2 corrosion resistance decreases, Hot workability also decreases. For this reason, Si was limited to 0.50% or less. In addition, Preferably it is 0.10 to 0.35%.

Mn:0.20〜1.80%
Mnは、強度を増加させる元素であり、この発明では油井用マルテンサイト系ステンレス鋼管として必要な強度を確保するために0.20%以上の含有を必要とするが、1.80%を超える含有は、靭性に悪影響を及ぼす。このため、Mnは0.20〜1.80%の範囲に限定した。なお、好ましくは0.25〜0.60%である。
Mn: 0.20 to 1.80%
Mn is an element that increases the strength, and in this invention, it is necessary to contain 0.20% or more in order to ensure the strength required as a martensitic stainless steel pipe for oil wells, but if it exceeds 1.80%, Adversely affect. For this reason, Mn was limited to the range of 0.20 to 1.80%. In addition, Preferably it is 0.25 to 0.60%.

P:0.03%以下
Pは、耐CO2腐食性、耐CO2応力腐食割れ性、耐孔食性および耐硫化物応力腐食割れ性を劣化させる元素であり、この発明では可及的に低減することが望ましいが、極端な低減は製造コストの上昇を招く。工業的に比較的安価に実施可能でかつ耐CO2腐食性、耐CO2応力腐食割れ性、耐孔食性および耐硫化物応力腐食割れ性を劣化させない範囲として、Pは0.03%以下に限定した。なお、好ましくは0.02%以下である。
P: 0.03% or less P is an element that degrades CO 2 corrosion resistance, CO 2 stress corrosion cracking resistance, pitting corrosion resistance and sulfide stress corrosion cracking resistance, and should be reduced as much as possible in this invention. However, extreme reduction leads to increased manufacturing costs. P is limited to 0.03% or less as a range that can be implemented relatively inexpensively industrially and does not deteriorate CO 2 corrosion resistance, CO 2 stress corrosion cracking resistance, pitting corrosion resistance and sulfide stress corrosion cracking resistance. . In addition, Preferably it is 0.02% or less.

S:0.005%以下
Sは、パイプ製造過程において熱間加工性を著しく劣化させる元素であり、可及的に少ないことが望ましいが、0.005%以下に低減すれば通常工程でのパイプ製造が可能となることから、Sは0.005%以下に限定した。なお、好ましくは0.003%以下である。
Cr:15.5〜17.5%
Crは、保護被膜を形成して耐食性を向上させる元素で、とくに耐CO2腐食性、耐CO2応力腐食割れ性の向上に有効に寄与するとともに、耐硫化物応力腐食割れ性(耐SSC性)を向上させる作用を有する元素である。この発明では特に、高温における耐食性向上の観点から、15.5%以上の含有を必要とする。一方、17.5%を超える含有は、強度を低下させる。このため、この発明では、Crは15.5〜17.5%の範囲に限定した。なお、好ましくは16.0〜17.0%である。
S: 0.005% or less S is an element that significantly deteriorates hot workability in the pipe manufacturing process, and it is desirable that it be as small as possible. However, if it is reduced to 0.005% or less, pipes can be manufactured in the normal process. Therefore, S is limited to 0.005% or less. In addition, Preferably it is 0.003% or less.
Cr: 15.5-17.5%
Cr is an element improving the corrosion resistance by forming a protective coating, in particular resistance to CO 2 corrosion, as well as effectively contribute to the improvement of resistance to CO 2 stress corrosion cracking resistance, resistance to sulfide stress corrosion cracking (SSC resistance ). In the present invention, the content of 15.5% or more is particularly required from the viewpoint of improving the corrosion resistance at high temperatures. On the other hand, the content exceeding 17.5% decreases the strength. For this reason, in this invention, Cr was limited to the range of 15.5 to 17.5%. In addition, Preferably it is 16.0 to 17.0%.

Ni:2.5〜5.5%
Niは、保護被膜を強固する作用を有し、耐CO2腐食性、耐CO2応力腐食割れ性、耐孔食性および耐硫化物応力腐食割れ性を高める元素である。このような効果を、この発明が対象とする苛酷な腐食環境下で確保するためには、2.5%以上のNi含有を必要とする。一方、5.5%を超える含有は、マルテンサイト組織の安定性が低下し、強度が低下する。このため、Niは2.5〜5.5%の範囲に限定した。なお、好ましくは3.0〜5.0%である。
Ni: 2.5-5.5%
Ni has an effect of strengthening the protective film, and is an element that enhances CO 2 corrosion resistance, CO 2 stress corrosion cracking resistance, pitting corrosion resistance, and sulfide stress corrosion cracking resistance. In order to secure such an effect in the severe corrosive environment targeted by the present invention, Ni content of 2.5% or more is required. On the other hand, if the content exceeds 5.5%, the stability of the martensite structure decreases and the strength decreases. For this reason, Ni was limited to the range of 2.5 to 5.5%. In addition, Preferably it is 3.0 to 5.0%.

V:0.20%以下
Vは、強度を上昇させるとともに、耐SSC性を改善する効果を有する元素であり、このような効果を得るためには、0.01%以上含有することが望ましいが、0.20%を超えて含有すると、靱性が低下する。このため、Vは0.20 %以下に限定した。 なお、好ましくは0.05〜0.08%である。
V: 0.20% or less V is an element that has the effect of increasing the strength and improving the SSC resistance. To obtain such an effect, it is desirable to contain 0.01% or more, but 0.20% If it is contained in excess, the toughness decreases. For this reason, V was limited to 0.20% or less. In addition, Preferably it is 0.05 to 0.08%.

Mo:1.5〜3.5%
Moは、Cl-による孔食に対する抵抗性を増加させる作用を有する元素であり、さらに耐SSC性の向上に有効に作用する。このような効果を、この発明が対象とする苛酷な腐食環境下で確保するためには、1.5%以上の含有を必要とする。一方、3.5%を超えて含有すると、強度が低下するとともに、材料コストを高騰させる。このため、Moは1.5〜3.5%の範囲に限定した。なお、好ましくは1.8〜3.0%である。
Mo: 1.5-3.5%
Mo is, Cl - by an element having the effect of increasing the resistance to pitting, further effectively acts to improve the SSC resistance. In order to ensure such an effect under the severe corrosive environment targeted by the present invention, the content of 1.5% or more is required. On the other hand, if the content exceeds 3.5%, the strength is lowered and the material cost is increased. For this reason, Mo was limited to the range of 1.5 to 3.5%. In addition, Preferably it is 1.8 to 3.0%.

W:0.50〜3.0%
Wは、Moと同様に、耐SSC性の向上に有効な元素であり、このような効果は、0.50%以上の含有で顕著となる。一方、3.0%を超える含有は、靱性を劣化させる。このため、Moは0.50〜3.0%の範囲に限定した。なお、好ましくは0.7〜2.0%である。
この発明では、Mo、W含有量は、上記した範囲内でかつ、次(3)式
2.2 ≦ Mo+0.8W ≦4.5 …(3)
(ここで、Mo、W:各元素の含有量(mass%))
を満足するように調整される。MoとWを複合して含有することにより、耐SSC性が顕著に向上する。Mo+0.8Wを2.2以上とすることにより、この発明が対象とするCO2、Cl-を含み、さらにH2Sを含む高温の苛酷な腐食環境下でも、優れた耐SSC性を確保できる。一方、Mo+0.8Wが4.5を超えると、靱性、熱間加工性の低下を引き起こす。このため、この発明では、Mo、Wが(3)式を満足する、Mo+0.8Wが2.2〜4.5の範囲となるように、Mo、W含有量を調整することとした。
W: 0.50 ~ 3.0%
W, like Mo, is an element effective for improving the SSC resistance, and such an effect becomes remarkable when the content is 0.50% or more. On the other hand, the content exceeding 3.0% deteriorates toughness. For this reason, Mo was limited to the range of 0.50 to 3.0%. In addition, Preferably it is 0.7 to 2.0%.
In the present invention, the contents of Mo and W are within the above-mentioned range and the following formula (3)
2.2 ≦ Mo + 0.8W ≦ 4.5 (3)
(Where, Mo, W: content of each element (mass%))
It is adjusted to satisfy. By containing Mo and W in combination, the SSC resistance is significantly improved. With a Mo + 0.8 W 2.2 or more, CO 2, Cl which the invention is applied - wherein the further even under severe corrosive environment of the hot containing H 2 S, can ensure excellent SSC resistance. On the other hand, if Mo + 0.8W exceeds 4.5, toughness and hot workability are reduced. Therefore, in the present invention, the Mo and W contents are adjusted so that Mo and W satisfy the formula (3), and Mo + 0.8W is in the range of 2.2 to 4.5.

Al:0.05%以下
Alは、強力な脱酸作用を有する元素であり、このような効果を得るためには、0.002%以上含有することが望ましいが、0.05%を超える含有は、靭性に悪影響を及ぼす。このため、Alは0.05%以下に限定した。なお、好ましくは0.03%以下である。
N:0.15%以下
Nは、耐孔食性を著しく向上させる元素であり、このような効果は、0.01%以上の含有で顕著となる。一方、0.15%を超える含有は、種々の窒化物を形成して靭性を低下させる。このため、Nは0.15%以下に限定した。なお、好ましくは0.02〜0.08%である。
Al: 0.05% or less
Al is an element having a strong deoxidizing action, and in order to obtain such an effect, it is desirable to contain 0.002% or more, but inclusion exceeding 0.05% adversely affects toughness. For this reason, Al was limited to 0.05% or less. In addition, Preferably it is 0.03% or less.
N: 0.15% or less N is an element that remarkably improves pitting corrosion resistance, and such an effect becomes remarkable when the content is 0.01% or more. On the other hand, the content exceeding 0.15% forms various nitrides and lowers the toughness. For this reason, N was limited to 0.15% or less. In addition, Preferably it is 0.02 to 0.08%.

O:0.006%以下
Oは、鋼中では酸化物として存在し、各種特性に悪影響を及ぼすため、できるだけ低減することが望ましい。とくにO含有量が0.006%を超えて多くなると、熱間加工性、耐CO2応力腐食割れ性、耐孔食性、耐硫化物応力腐食割れ性および靭性を著しく低下させる。このため、Oは0.006%以下に限定した。
O: 0.006% or less O is present as an oxide in steel and adversely affects various properties, so it is desirable to reduce it as much as possible. In particular, when the O content exceeds 0.006%, the hot workability, the CO 2 stress corrosion cracking resistance, the pitting corrosion resistance, the sulfide stress corrosion cracking resistance, and the toughness are significantly reduced. For this reason, O was limited to 0.006% or less.

上記した成分が基本の組成であるが、この発明では、上記した組成に加えてさらに、Cu:0.5〜3.5%、および/または、Nb:0.20%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下のうち1種または2種以上、および/または、Ca:0.0005〜0.01%、を必要に応じて選択して含有することができる。
Cu:0.5〜3.5%
Cuは、保護皮膜を強固にして鋼中への水素の侵入を抑制し、耐硫化物応力腐食割れ性を向上させる作用を有する元素であり、必要に応じて含有できる。このような効果を得るためには、0.5%以上含有することが好ましい。一方、3.5%を超える含有は、高温でのCuSの粒界析出を招き、熱間加工性が低下する。このため、含有する場合には、Cuは、0.5〜3.5%の範囲に限定することが好ましい。なお、より好ましくは0.5〜2.5%、さらに好ましくは0.8〜1.5%である。
Although the above-described components have a basic composition, in the present invention, in addition to the above-described composition, Cu: 0.5 to 3.5% and / or Nb: 0.20% or less, Ti: 0.3% or less, Zr: 0.2% Hereinafter, one or more of B: 0.01% or less and / or Ca: 0.0005 to 0.01% may be selected and contained as necessary.
Cu: 0.5-3.5%
Cu is an element having an action of strengthening the protective film and suppressing the penetration of hydrogen into the steel and improving the resistance to sulfide stress corrosion cracking, and can be contained as required. In order to acquire such an effect, it is preferable to contain 0.5% or more. On the other hand, if the content exceeds 3.5%, grain boundary precipitation of CuS occurs at a high temperature, and the hot workability decreases. For this reason, when it contains, it is preferable to limit Cu to 0.5 to 3.5% of range. In addition, More preferably, it is 0.5 to 2.5%, More preferably, it is 0.8 to 1.5%.

Nb:0.20%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下のうちから選ばれた1種または2種以上
Nb、Ti、Zr、Bはいずれも、強度を増加させる元素であり、必要に応じて選択して1種以上、含有することができる。なお、Nbは、上記した効果に加えて、さらに靭性を向上させる効果も有する。また、Ti、Zr、Bは、上記した効果に加えて、さらに耐応力腐食割れ性を改善する効果も有する。このような効果を得るためには、Nb:0.01%以上、Ti:0.01%以上、Zr:0.01%以上、B:0.0005%以上、含有することが望ましい。一方、Nb:0.20%、Ti:0.3%、Zr:0.2%、B:0.01%を超えて含有すると、靱性が低下する。このため、含有する場合には、Nb:0.20%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下に限定することが好ましい。なお、より好ましくはNb:0.02〜0.10%、Ti:0.02〜0.12%、Zr:0.02〜0.08%、B:0.0005〜0.003%である。
One or more selected from Nb: 0.20% or less, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less
Each of Nb, Ti, Zr, and B is an element that increases the strength, and can be selected as required and contained in one or more kinds. Nb has an effect of further improving toughness in addition to the above-described effects. Ti, Zr, and B have an effect of further improving the stress corrosion cracking resistance in addition to the above-described effects. In order to obtain such an effect, it is desirable to contain Nb: 0.01% or more, Ti: 0.01% or more, Zr: 0.01% or more, B: 0.0005% or more. On the other hand, if Nb: 0.20%, Ti: 0.3%, Zr: 0.2%, and B: more than 0.01%, the toughness decreases. For this reason, when it contains, it is preferable to limit to Nb: 0.20% or less, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less. More preferably, Nb: 0.02 to 0.10%, Ti: 0.02 to 0.12%, Zr: 0.02 to 0.08%, B: 0.0005 to 0.003%.

Ca:0.0005〜0.01%
Caは、SをCaSとして固定し、硫化物系介在物を球状化する作用を有する元素である。これにより、介在物周辺のマトリックスの格子歪を小さくして、介在物の水素のトラップ能を低下させる効果を有する。このような効果は、0.0005%以上の含有で顕著となるが、0.01%を超える含有は、CaOの増加を招き、耐CO2腐食性、耐孔食性が低下する。このため、Caは含有する場合には、0.0005〜0.01%の範囲に限定することが好ましい。
Ca: 0.0005 to 0.01%
Ca is an element having an action of fixing S as CaS and spheroidizing sulfide inclusions. This has the effect of reducing the lattice strain of the matrix around the inclusions and reducing the hydrogen trapping ability of the inclusions. Such an effect becomes prominent when the content is 0.0005% or more. However, if the content exceeds 0.01%, CaO increases, and the resistance to CO 2 corrosion and pitting corrosion decreases. For this reason, when it contains Ca, it is preferable to limit to 0.0005 to 0.01% of range.

この発明では、上記した各成分を上記した範囲内で含み、かつ次(1)式
Cr+3.2Mo+2.6W−10C ≧ 23.4 …(1)
および、次(2)式
Cr+Mo+0.5W+0.3Si−43.5C−0.4Mn−0.3Cu−Ni−9N≧11.5 …(2)
(ここで、Cr、Mo、W、Si、C、Mn、Cu、Ni、N:各元素の含有量(mass%))
を満足するように、各成分の含有量を調整する。
In the present invention, each of the above components is included within the above range, and the following formula (1)
Cr + 3.2Mo + 2.6W-10C ≧ 23.4 (1)
And the following equation (2)
Cr + Mo + 0.5W + 0.3Si-43.5C-0.4Mn-0.3Cu-Ni-9N ≧ 11.5 (2)
(Here, Cr, Mo, W, Si, C, Mn, Cu, Ni, N: content of each element (mass%))
The content of each component is adjusted so as to satisfy the above.

上記した(1)式を満足するように、Cr、Mo、W、C含有量を調整することにより、耐SSC性が顕著に向上する。(1)式を満足することができない場合には、充分な耐SSC性を確保できない。また、P、S、Oを上記した範囲にそれぞれ低減することに加えて、さらに上記した(2)式を満足するように、Cr、Mo、W、Si、C、Mn、Cu、Ni、N含有量を調整することにより、マルテンサイト系ステンレス鋼継目無管を造管するために必要十分な熱間加工性を確保でき、さらに所望の強度を維持することができる。P、S、Oを上記した範囲にそれぞれ低減することのみでは、マルテンサイト系ステンレス鋼継目無管を造管するために必要十分な熱間加工性を確保できない。また、(2)式を満足することができない場合には、マルテンサイト系ステンレス鋼継目無管製造のための熱間加工性が不足する。   By adjusting the Cr, Mo, W, and C contents so as to satisfy the above-described expression (1), the SSC resistance is remarkably improved. If the formula (1) cannot be satisfied, sufficient SSC resistance cannot be secured. Further, in addition to reducing P, S, and O to the above ranges, Cr, Mo, W, Si, C, Mn, Cu, Ni, N, so as to satisfy the above-described formula (2). By adjusting the content, it is possible to ensure the necessary and sufficient hot workability for forming a martensitic stainless steel seamless pipe, and to maintain a desired strength. Only by reducing P, S, and O within the above ranges, it is not possible to ensure the hot workability necessary and sufficient for forming a martensitic stainless steel seamless pipe. Moreover, when the formula (2) cannot be satisfied, the hot workability for the production of martensitic stainless steel seamless pipes is insufficient.

上記した成分以外の残部は、Feおよび不可避的不純物である。
この発明になる高強度ステンレス鋼管は、上記した組成を有し、好ましくはさらにマルテンサイト相をベース相とし、さらにフェライト相を体積率で、10〜50%含有する組織を有する。この発明になる高強度ステンレス鋼管では、高強度を維持するために、組織は、マルテンサイト相をベース相とする組織とする。そして、この発明では、強度を低下させずに耐食性を向上させる目的で、体積率で、10%以上のフェライト相を含有する組織とすることが好ましい。一方、フェライト相が体積率で50%を超えると、強度の低下が著しくなる。このため、この発明鋼管においては、フェライト相分率を体積率で10〜50%の範囲に限定することが好ましい。なお、より好ましくは12〜30%である。なお、フェライト相以外の第二相としては、20体積%以下のオーステナイト相を含有してもなんら問題はない。
The balance other than the above components is Fe and inevitable impurities.
The high-strength stainless steel pipe according to the present invention has the above-described composition, and preferably has a structure containing a martensite phase as a base phase and further containing a ferrite phase in a volume ratio of 10 to 50%. In the high-strength stainless steel pipe according to the present invention, the structure is a structure having a martensite phase as a base phase in order to maintain high strength. And in this invention, it is preferable to set it as the structure | tissue which contains a ferrite phase 10% or more by volume for the purpose of improving corrosion resistance, without reducing intensity | strength. On the other hand, when the ferrite phase exceeds 50% by volume, the strength is significantly reduced. For this reason, in this invention steel pipe, it is preferable to limit a ferrite phase fraction to the range of 10 to 50% by volume ratio. More preferably, it is 12 to 30%. In addition, there is no problem even if the second phase other than the ferrite phase contains an austenite phase of 20% by volume or less.

次に、この発明になる高強度ステンレス鋼管の好ましい製造方法について、継目無鋼管を例にして説明する。
まず、上記した組成を有する溶鋼を、転炉、電気炉、真空溶解炉等の通常公知の溶製方法で溶製し、連続鋳造法、造塊−分塊圧延法等、通常の方法でビレット等の鋼管素材とすることが好ましい。ついで、これら鋼管素材を加熱し、通常のマンネスマン−プラグミル方式、あるいはマンネスマン−マンドレルミル方式の製造工程を用いて熱間加工し造管して、所望寸法の継目無鋼管とする。
Next, the preferable manufacturing method of the high strength stainless steel pipe which becomes this invention is demonstrated taking a seamless steel pipe as an example.
First, molten steel having the above composition is melted by a generally known melting method such as a converter, an electric furnace, a vacuum melting furnace, etc., and billet is obtained by a conventional method such as a continuous casting method or an ingot-bundling rolling method. It is preferable to use a steel pipe material such as. Subsequently, these steel pipe materials are heated and hot-worked and formed using a normal Mannesmann-plug mill system or Mannesmann-Mandrel mill process to obtain seamless steel pipes of desired dimensions.

造管後、継目無鋼管は、空冷以上の冷却速度で室温まで冷却することが好ましい。これにより、鋼管の組織を、マルテンサイト相をベース相とする組織とすることができる。なお、プレス方式による熱間押出で継目無鋼管を製造してもよい。
なお、造管後、空冷以上の冷却速度での冷却に続いて、さらに800℃以上の温度に再加熱したのち、空冷以上の冷却速度で100℃以下好ましくは室温まで冷却する焼入れ処理を施すことが好ましい。これにより、好ましくは適正量のフェライト相を含む、微細で高靭性のマルテンサイト組織とすることができる。焼入れ加熱温度が、800℃未満では、所望の強度を確保できなくなる。このため、焼入れ処理の加熱温度は800℃以上好ましくは1100℃以下の温度とすることが好ましい。
After the pipe making, the seamless steel pipe is preferably cooled to room temperature at a cooling rate equal to or higher than air cooling. Thereby, the structure | tissue of a steel pipe can be made into the structure | tissue which makes a martensite phase a base phase. In addition, you may manufacture a seamless steel pipe by the hot extrusion by a press system.
In addition, after pipe making, following cooling at a cooling rate of air cooling or higher, after reheating to a temperature of 800 ° C. or higher, a quenching treatment is performed at a cooling rate of air cooling or higher of 100 ° C. or lower, preferably to room temperature. Is preferred. Thereby, it is possible to obtain a fine and high toughness martensite structure preferably containing an appropriate amount of ferrite phase. If the quenching heating temperature is less than 800 ° C., the desired strength cannot be secured. For this reason, the heating temperature in the quenching treatment is preferably set to a temperature of 800 ° C. or higher, preferably 1100 ° C. or lower.

焼入れ処理を施された継目無鋼管は、ついで、650℃以下の温度に加熱され、空冷以上の冷却速度で冷却される焼戻処理を施されることが好ましい。650℃以下好ましくは500℃以上の温度に加熱し、焼戻しすることにより、組織は焼戻しマルテンサイト相、さらに少量のフェライト相とからなる組織となり、所望の高強度とさらには所望の高靭性、所望の優れた耐食性を有する継目無鋼管となる。なお、焼入れ処理なしで上記した焼戻処理のみを施してもよい。   The seamless steel pipe that has been subjected to the quenching treatment is then preferably tempered by being heated to a temperature of 650 ° C. or lower and cooled at a cooling rate of air cooling or higher. By heating to 650 ° C or less, preferably 500 ° C or more and tempering, the structure becomes a structure composed of a tempered martensite phase and a small amount of ferrite phase, and the desired high strength and further desired high toughness, desired It becomes a seamless steel pipe having excellent corrosion resistance. In addition, you may give only the above-mentioned tempering process without quenching process.

ここまでは、継目無鋼管を例にして説明したが、本発明鋼管はこれに限定されるものではない。上記した本発明範囲内の組成を有する鋼管素材を用いて、通常の工程に従い、電縫鋼管、UOE鋼管を製造し、油井用鋼管とすることも可能である。
上記した本発明範囲内の組成を有する鋼管素材を用いて、通常の製造工程にしたがい得られた継目無鋼管以外の鋼管、例えば電縫鋼管、UOE鋼管では、造管後の鋼管に、上記した焼入れ−焼戻処理である、800℃以上の温度に再加熱したのち空冷以上の冷却速度で100℃以下好ましくは室温まで冷却する焼入れ処理と、ついで650℃以下、好ましくは500℃以上の温度に加熱し空冷以上の冷却速度で冷却する焼戻処理とを施すことが好ましい。
So far, the seamless steel pipe has been described as an example, but the steel pipe of the present invention is not limited to this. Using a steel pipe material having a composition within the scope of the present invention as described above, it is possible to produce an electric-welded steel pipe and a UOE steel pipe in accordance with a normal process to obtain a steel pipe for an oil well.
Using steel pipe material having a composition within the scope of the present invention described above, steel pipes other than seamless steel pipes obtained in accordance with a normal manufacturing process, such as ERW steel pipes and UOE steel pipes, are described above in steel pipes after pipe making. It is a quenching-tempering treatment, which is re-heated to a temperature of 800 ° C. or higher and then cooled to a temperature of 100 ° C. or lower, preferably room temperature, at a cooling rate of air cooling or higher, then 650 ° C. or lower, preferably 500 ° C. or higher. It is preferable to perform a tempering treatment that heats and cools at a cooling rate equal to or higher than air cooling.

表1に示す組成の溶鋼を脱ガス後、100kg鋼塊(鋼管素材)に鋳造し、モデルシームレス圧延機による熱間加工により造管し、造管後空冷または水冷し、外径83.8mm×肉厚12.7mm(3.3in×肉厚0.5in)の継目無鋼管とした。
得られた継目無鋼管について、造管後冷却のままで内外表面の割れ発生の有無を目視で調査し、熱間加工性を評価した。なお、鋼管の前後端面で1mm以上の長さの割れが存在する場合を割れ有り(×)とし、それ以外を割れ無し(○)とした。
After degassing the molten steel with the composition shown in Table 1, it is cast into a 100kg steel ingot (steel pipe material), piped by hot working with a model seamless rolling mill, air-cooled or water-cooled after pipe making, outer diameter 83.8mm x meat It was a seamless steel pipe with a thickness of 12.7mm (3.3in x thickness 0.5in).
About the obtained seamless steel pipe, the presence or absence of the crack generation | occurrence | production of the inner and outer surface was visually examined with cooling after pipe making, and hot workability was evaluated. In addition, the case where the crack of 1 mm or more exists in the front-and-rear end surface of a steel pipe was made into a crack (x), and the other was made into no crack ((circle)).

また、得られた継目無鋼管から、試験片素材を切り出し、表2に示す条件、すなわち920℃で1h加熱したのち、水冷(800〜500℃までの平均冷却速度:10℃/s)する焼入れ処理を施した。さらに表2に示す条件、すなわち500〜650℃の範囲の温度で30min間保持し、空冷する焼戻処理を施した。なお、一部の鋼管は造管後冷却のままとした。
このように、造管後冷却のまま、あるいはさらに焼入れ−焼戻処理を施された試験片素材から、組織観察用試験片を採取し、組織観察用試験片を王水で腐食して走査型電子顕微鏡(400倍)で組織を撮像し、画像解析装置を用いて、フェライト相の組織分率(体積%)を算出した。
In addition, a specimen material was cut out from the obtained seamless steel pipe, and after quenching under the conditions shown in Table 2, ie, heating at 920 ° C. for 1 h, water cooling (average cooling rate from 800 to 500 ° C .: 10 ° C./s) Treated. Furthermore, the tempering process which hold | maintained for 30 minutes on the conditions shown in Table 2, ie, the temperature of the range of 500-650 degreeC, and air-cooled was performed. Some steel pipes were kept cooled after pipe making.
In this way, the specimen for tissue observation is collected from the specimen material which has been cooled after pipe formation or has been further quenched and tempered, and the specimen for tissue observation is corroded with aqua regia and scanned. The structure | tissue was imaged with the electron microscope (400 time), and the structure fraction (volume%) of the ferrite phase was computed using the image-analysis apparatus.

また、残留オーステナイト相組織分率は、X線回折法を用いて測定した。焼入れ−焼戻処理を施された試験片素材から測定用試験片を採取し、X線回折によりγの(220)面、αの(211)面、の回折X線積分強度を測定し、次式
γ(体積率)=100/(1+(IαRγ/IγRγ))
ここで、Iα:αの積分強度
Rγ:αの結晶学的理論計算値
Iγ:γの積分強度
Rγ:γの結晶学的理論計算値
を用いて換算した。なお、マルテンサイト相の分率はこれらの相以外の残部として算出した。
Further, the retained austenite phase structure fraction was measured using an X-ray diffraction method. Test specimens are taken from the quenched and tempered test specimen material, and the X-ray diffraction intensity of γ (220) plane and α (211) plane is measured by X-ray diffraction. Formula γ (volume ratio) = 100 / (1+ (IαRγ / IγRγ))
Where Iα: Integral intensity of α
Rγ: Theoretical calculation value of α
Iγ: Integral intensity of γ
Rγ: Conversion was performed using a crystallographic theoretical calculation value of γ. The fraction of the martensite phase was calculated as the remainder other than these phases.

また、造管後冷却のまま、あるいはさらに焼入れ−焼戻処理を施された試験片素材から、API 弧状引張試験片を採取し、引張試験を実施し引張特性(降伏強さYS、引張強さTS)を求めた。
また、造管後冷却のまま、あるいはさらに焼入れ−焼戻処理を施された試験片素材から、JIS Z 2242の規定に準拠して、Vノッチ試験片(5mm厚)を採取し、シャルピー衝撃試験を実施し、−40℃における吸収エネルギーvE-40を求め、靭性を評価した。
In addition, API arc-shaped tensile test specimens are collected from specimen materials that have been cooled after pipe forming or that have been further quenched and tempered, and subjected to tensile tests (yield strength YS, tensile strength). TS).
In addition, a V-notch test piece (5 mm thick) is collected from a test piece material that has been cooled after pipe making or that has been further quenched and tempered in accordance with the provisions of JIS Z 2242, and subjected to a Charpy impact test. And the absorbed energy vE -40 at -40 ° C was determined to evaluate toughness.

さらに、造管後冷却のまま、あるいはさらに焼入れ−焼戻処理を施された試験片素材から、厚さ3mm×幅30mm×長さ40mmの腐食試験片を機械加工によって作製し、腐食試験を実施した。
腐食試験は、オートクレーブ中に保持された試験液:20%NaCl水溶液(液温:220℃、100気圧のCO2ガス雰囲気) 中に、腐食試験片を浸漬し、浸漬期間を2週間として実施した。腐食試験後の試験片について、重量を測定し、腐食試験前後の重量減から計算した腐食速度を求めた。また、試験後の腐食試験片について倍率:10倍のルーペを用いて試験片表面の孔食発生の有無を観察した。なお孔食が、直径0.3mm以上の場合を孔食発生有りとし、それ以外を孔食無しとした。
Furthermore, a corrosion test piece with a thickness of 3 mm x width 30 mm x length 40 mm is made by machining from a test piece material that has been cooled after pipe making or that has been further quenched and tempered, and subjected to a corrosion test. did.
The corrosion test was carried out by immersing the corrosion test piece in a test solution held in an autoclave: 20% NaCl aqueous solution (liquid temperature: 220 ° C., 100 atm CO 2 gas atmosphere), and the immersion period was 2 weeks. . The test piece after the corrosion test was weighed, and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained. Moreover, about the corrosion test piece after a test, the presence or absence of pitting corrosion on the test piece surface was observed using a magnifying glass with a magnification of 10 times. In addition, when the pitting corrosion was 0.3 mm or more in diameter, pitting corrosion was assumed to be generated, and otherwise, pitting corrosion was not detected.

さらに、造管後冷却のまま、あるいはさらに焼入れ−焼戻処理を施された試験片素材から、NACE-TM0177 Method Aの規定に準拠して、丸棒状の試験片(平行部の直径:6.4mm)を機械加工によって作製し、耐SSC試験を実施した。
耐SSC試験は、試験容器中に保持された試験液:20%NaCl水溶液(液温:25℃、H2S:0.1気圧、CO2:0.9気圧の雰囲気、液pH:3.5(0.5%CH3COOH+CH3COONaで調整)) 中に、試験片を浸漬し、浸漬期間を30日(720h)とし、該試験片に100%SMYS(Specified Minimum Yield Strength)の応力を付加して、試験片の破断の有無を調査した。破断した場合を耐SCC性に劣るとして×、破断しなかった場合を耐SCC性に優れるとして○、として評価した。
得られた結果を表3に示す。
In addition, from the specimen material that has been cooled after pipe making or that has been further quenched and tempered, in accordance with the provisions of NACE-TM0177 Method A, round bar specimens (diameter of parallel part: 6.4 mm) ) Was fabricated by machining, and an SSC resistance test was performed.
The SSC resistance test was conducted in a test solution held in a test vessel: 20% NaCl aqueous solution (liquid temperature: 25 ° C., H 2 S: 0.1 atm, CO 2 : 0.9 atm atmosphere, solution pH: 3.5 (0.5% CH 3 The specimen is immersed in COOH + CH 3 COONa), the immersion period is 30 days (720h), 100% SMYS (Specified Minimum Yield Strength) stress is applied to the specimen, and the specimen breaks. The presence or absence of was investigated. The case where it broke was evaluated as “poor” as being inferior in SCC resistance, and the case where it was not broken was evaluated as “O”, as being excellent in SCC resistance.
The obtained results are shown in Table 3.

Figure 2008081793
Figure 2008081793

Figure 2008081793
Figure 2008081793

Figure 2008081793
Figure 2008081793

本発明例はいずれも、鋼管表面の割れ発生は認められず、熱間加工性に優れていることがわかる。また、本発明例はいずれも、降伏強さYS:654MPa以上の高強度を有し、CO2を含み220℃という高温で苛酷な腐食環境下における腐食速度も小さく耐CO2腐食性に優れ、また孔食の発生も無く、CO2を含み220℃という高温で苛酷な腐食環境下における耐食性に優れた鋼管となっている。また、本発明例はいずれも、H2Sを含む雰囲気下でもSSCの発生はなく、耐SSC性に優れた鋼管となっていることがわかる。 In all of the examples of the present invention, the occurrence of cracks on the surface of the steel pipe is not recognized, and it is understood that the hot workability is excellent. In addition, all of the examples of the present invention have high strength of yield strength YS: 654 MPa or more, have a low corrosion rate in a severe corrosive environment at a high temperature of 220 ° C. including CO 2 , and have excellent CO 2 corrosion resistance. In addition, there is no occurrence of pitting corrosion, and the steel pipe has excellent corrosion resistance in a severe corrosive environment at a high temperature of 220 ° C containing CO 2 . In addition, it can be seen that all of the examples of the present invention do not generate SSC even in an atmosphere containing H 2 S, and the steel pipe has excellent SSC resistance.

これに対し、本発明の範囲を外れる比較例は、表面に割れが発生し熱間加工性が低下しているか、あるいは腐食速度が大きく、孔食が発生し耐食性が低下しているか、あるいはSSCが発生し耐SSC性が低下している。とくに (1)式および/または(3)式を満足しない組成の比較例は、SSCが発生している。また、とくに(2)を満足しない組成の比較例では、熱間加工性が低下している。なお、フェライト量が本発明の好適範囲を外れる場合には、強度が低下し、降伏強さYS:654MPa以上の高強度を満足できていない。   On the other hand, the comparative example out of the scope of the present invention has cracks on the surface and the hot workability is reduced, or the corrosion rate is large, pitting corrosion occurs and the corrosion resistance is reduced, or SSC. Occurs and the SSC resistance is reduced. In particular, SSC occurs in the comparative example having a composition not satisfying the formula (1) and / or the formula (3). In particular, in the comparative example having a composition not satisfying (2), the hot workability is lowered. In addition, when the ferrite content is outside the preferred range of the present invention, the strength is lowered, and the high strength of yield strength YS: 654 MPa or more cannot be satisfied.

Claims (5)

mass%で、
C:0.04%以下、 Si:0.50%以下、
Mn:0.20〜1.80%、 P:0.03%以下、
S:0.005%以下、 Cr:15.5〜17.5%、
Ni:2.5〜5.5%、 V:0.20%以下、
Mo:1.5〜3.5%、 W:0.50〜3.0%、
Al:0.05%以下、 N:0.15%以下、
O:0.006%以下
を、下記(1)〜(3)式を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有することを特徴とする、高靱性で、耐食性に優れた油井用高強度ステンレス鋼管。

Cr+3.2Mo+2.6W−10C≧ 23.4 …(1)
Cr+Mo+0.5W+0.3Si−43.5C−0.4Mn−0.3Cu−Ni−9N≧11.5 …(2)
2.2 ≦ Mo+0.8W ≦4.5 …(3)
ここで、Cr、Mo、W、Si、C、Mn、Cu、Ni、N:各元素の含有量(mass%)
mass%
C: 0.04% or less, Si: 0.50% or less,
Mn: 0.20 to 1.80%, P: 0.03% or less,
S: 0.005% or less, Cr: 15.5-17.5%,
Ni: 2.5-5.5%, V: 0.20% or less,
Mo: 1.5-3.5%, W: 0.50-3.0%
Al: 0.05% or less, N: 0.15% or less,
O: 0.001% or less containing so as to satisfy the following formulas (1) to (3), and having a composition comprising the balance Fe and inevitable impurities, an oil well having high toughness and excellent corrosion resistance For high strength stainless steel pipe.
Record
Cr + 3.2Mo + 2.6W-10C ≧ 23.4 (1)
Cr + Mo + 0.5W + 0.3Si-43.5C-0.4Mn-0.3Cu-Ni-9N ≧ 11.5 (2)
2.2 ≦ Mo + 0.8W ≦ 4.5 (3)
Here, Cr, Mo, W, Si, C, Mn, Cu, Ni, N: Content of each element (mass%)
前記組成に加えてさらに、mass%で、Cu:0.5〜3.5%を含有する組成とすることを特徴とする請求項1に記載の油井用高強度ステンレス鋼管。   The high-strength stainless steel pipe for oil wells according to claim 1, wherein the composition further includes, in addition to the composition, mass% and Cu: 0.5 to 3.5%. 前記組成に加えてさらに、mass%で、Nb:0.20%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1または2に記載の油井用高強度ステンレス鋼管。   In addition to the above composition, the composition further contains one or more selected from mass%, Nb: 0.20% or less, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less The high-strength stainless steel pipe for oil wells according to claim 1 or 2. 前記組成に加えてさらに、mass%で、Ca:0.0005〜0.01%を含有する組成とすることを特徴とする請求項1ないし3のいずれかに記載の油井用高強度ステンレス鋼管。   The high-strength stainless steel pipe for oil wells according to any one of claims 1 to 3, wherein in addition to the composition, the composition further includes Ca: 0.0005 to 0.01% in mass%. マルテンサイト相をベース相とし、さらにフェライト相を体積率で、10〜50%含有する組織を有することを特徴とする請求項1ないし4のいずれかに記載の油井用高強度ステンレス鋼管。   The high-strength stainless steel pipe for oil wells according to any one of claims 1 to 4, which has a structure containing a martensite phase as a base phase and further containing a ferrite phase in a volume ratio of 10 to 50%.
JP2006263704A 2006-09-28 2006-09-28 High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance Active JP4893196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006263704A JP4893196B2 (en) 2006-09-28 2006-09-28 High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006263704A JP4893196B2 (en) 2006-09-28 2006-09-28 High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2008081793A true JP2008081793A (en) 2008-04-10
JP4893196B2 JP4893196B2 (en) 2012-03-07

Family

ID=39352946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006263704A Active JP4893196B2 (en) 2006-09-28 2006-09-28 High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP4893196B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050519A1 (en) * 2008-10-30 2010-05-06 住友金属工業株式会社 High strength stainless steel piping having outstanding resistance to sulphide stress cracking and resistance to high temperature carbon dioxide corrosion
JP2010209402A (en) * 2009-03-10 2010-09-24 Jfe Steel Corp High-strength stainless steel pipe having high toughness and excellent corrosion resistance for oil well
WO2010134498A1 (en) * 2009-05-18 2010-11-25 住友金属工業株式会社 Stainless steel for oil well, stainless steel pipe for oil well, and process for production of stainless steel for oil well
US20110110812A1 (en) * 2008-07-23 2011-05-12 Nobulhiko Hiraide Ferrite stainless steel for use in producing urea water tank
JP2012149317A (en) * 2011-01-20 2012-08-09 Jfe Steel Corp High strength martensitic stainless steel seamless pipe for oil well
WO2013179667A1 (en) * 2012-05-31 2013-12-05 Jfeスチール株式会社 High-strength stainless steel seamless pipe for use as oil well piping, and manufacturing method therefor
WO2013190834A1 (en) 2012-06-21 2013-12-27 Jfeスチール株式会社 High-strength stainless steel seamless pipe having excellent corrosion resistance for oil well, and method for manufacturing same
WO2014030392A1 (en) 2012-08-24 2014-02-27 エヌケーケーシームレス鋼管株式会社 Highly strong, highly tough and highly corrosion-resistant martensitic stainless steel
WO2014097628A1 (en) 2012-12-21 2014-06-26 Jfeスチール株式会社 High-strength stainless steel seamless pipe for oil wells and method for producing same
WO2015033518A1 (en) 2013-09-04 2015-03-12 Jfeスチール株式会社 Method for producing high-strength stainless steel pipe, and high-strength stainless steel pipe
JP2016033237A (en) * 2014-07-31 2016-03-10 Jfeスチール株式会社 High strength stainless seamless steel pipe for oil well excellent in low temperature toughness and manufacturing method therefor
WO2016079920A1 (en) * 2014-11-19 2016-05-26 Jfeスチール株式会社 High-strength stainless steel seamless pipe for oil wells
WO2016113794A1 (en) * 2015-01-15 2016-07-21 Jfeスチール株式会社 Seamless stainless steel pipe for oil well, and method for manufacturing same
CN106414785A (en) * 2014-05-21 2017-02-15 杰富意钢铁株式会社 High-strength stainless steel seamless pipe for oil well, and method for producing same
JP2017039998A (en) * 2015-08-18 2017-02-23 Jfeスチール株式会社 Seamless stainless steel pipe for oil well and method for producing the same
WO2017138050A1 (en) 2016-02-08 2017-08-17 Jfeスチール株式会社 High strength stainless steel seamless pipe for oil well and manufacturing method therefor
EP3260564A4 (en) * 2015-02-20 2017-12-27 JFE Steel Corporation High-strength seamless thick-walled steel pipe and process for producing same
WO2018020886A1 (en) 2016-07-27 2018-02-01 Jfeスチール株式会社 High strength seamless stainless steel pipe for oil wells and production method therefor
WO2018131340A1 (en) 2017-01-13 2018-07-19 Jfeスチール株式会社 High strength seamless stainless steel pipe and production method therefor
WO2018155041A1 (en) 2017-02-24 2018-08-30 Jfeスチール株式会社 High strength seamless stainless steel pipe for oil well and production method therefor
EP3404120A4 (en) * 2016-01-13 2018-11-21 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing stainless steel pipe for oil wells and stainless steel pipe for oil wells
WO2019035329A1 (en) 2017-08-15 2019-02-21 Jfeスチール株式会社 High strength stainless seamless steel pipe for oil wells, and method for producing same
US10876183B2 (en) 2015-07-10 2020-12-29 Jfe Steel Corporation High-strength seamless stainless steel pipe and method of manufacturing high-strength seamless stainless steel pipe
WO2022224640A1 (en) 2021-04-21 2022-10-27 Jfeスチール株式会社 Stainless steel pipe and manufacturing method thereof
CN116145051A (en) * 2022-12-13 2023-05-23 钢铁研究总院有限公司 High-corrosion-resistance economic oil well pipe steel and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103286127B (en) * 2013-06-14 2015-06-24 首钢总公司 Method for manufacturing anticorrosion steel plate for upper deck on crude oil tanker oil cargo tank and steel plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581044A (en) * 1981-06-24 1983-01-06 Sumitomo Metal Ind Ltd High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPH10130787A (en) * 1996-10-29 1998-05-19 Kawasaki Steel Corp High strength martensitic stainless steel for oil well pipe, excellent in stress corrosion cracking resistance and high temperature tensile characteristic
JP2002060910A (en) * 2000-08-11 2002-02-28 Sumitomo Metal Ind Ltd HIGH Cr WELDED STEEL PIPE
WO2005007915A1 (en) * 2003-07-22 2005-01-27 Sumitomo Metal Industries, Ltd. Martensitic stainless steel
JP2005336595A (en) * 2003-08-19 2005-12-08 Jfe Steel Kk High strength stainless steel pipe excellent in corrosion resistance for use in oil well and method for production thereof
JP2005336599A (en) * 2003-10-31 2005-12-08 Jfe Steel Kk High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581044A (en) * 1981-06-24 1983-01-06 Sumitomo Metal Ind Ltd High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPH10130787A (en) * 1996-10-29 1998-05-19 Kawasaki Steel Corp High strength martensitic stainless steel for oil well pipe, excellent in stress corrosion cracking resistance and high temperature tensile characteristic
JP2002060910A (en) * 2000-08-11 2002-02-28 Sumitomo Metal Ind Ltd HIGH Cr WELDED STEEL PIPE
WO2005007915A1 (en) * 2003-07-22 2005-01-27 Sumitomo Metal Industries, Ltd. Martensitic stainless steel
JP2005336595A (en) * 2003-08-19 2005-12-08 Jfe Steel Kk High strength stainless steel pipe excellent in corrosion resistance for use in oil well and method for production thereof
JP2005336599A (en) * 2003-10-31 2005-12-08 Jfe Steel Kk High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110110812A1 (en) * 2008-07-23 2011-05-12 Nobulhiko Hiraide Ferrite stainless steel for use in producing urea water tank
JP4761008B2 (en) * 2008-10-30 2011-08-31 住友金属工業株式会社 High-strength stainless steel pipe with excellent resistance to sulfide stress cracking and high temperature carbon dioxide corrosion
WO2010050519A1 (en) * 2008-10-30 2010-05-06 住友金属工業株式会社 High strength stainless steel piping having outstanding resistance to sulphide stress cracking and resistance to high temperature carbon dioxide corrosion
US8608872B2 (en) 2008-10-30 2013-12-17 Nippon Steel & Sumitomo Metal Corporation High-strength stainless steel pipe excellent in sulfide stress cracking resistance and high-temperature carbonic-acid gas corrosion resistance
JP2010209402A (en) * 2009-03-10 2010-09-24 Jfe Steel Corp High-strength stainless steel pipe having high toughness and excellent corrosion resistance for oil well
US9109268B2 (en) 2009-05-18 2015-08-18 Nippon Steel & Sumitomo Metal Corporation Stainless steel for oil well, stainless steel pipe for oil well, and method of manufacturing stainless steel for oil well
WO2010134498A1 (en) * 2009-05-18 2010-11-25 住友金属工業株式会社 Stainless steel for oil well, stainless steel pipe for oil well, and process for production of stainless steel for oil well
JP4930654B2 (en) * 2009-05-18 2012-05-16 住友金属工業株式会社 Stainless steel for oil well, stainless steel pipe for oil well, and method for producing stainless steel for oil well
AU2010250501B2 (en) * 2009-05-18 2013-07-25 Nippon Steel Corporation Stainless steel for oil well, stainless steel pipe for oil well, and process for production of stainless steel for oil well
RU2494166C2 (en) * 2009-05-18 2013-09-27 Сумитомо Метал Индастриз, Лтд. Stainless steel for oil well, pipe from said steel and method of making stainless steel for oil well
US9322087B2 (en) 2009-05-18 2016-04-26 Nippon Steel & Sumitomo Metal Corporation Stainless steel for oil well, stainless steel pipe for oil well, and method of manufacturing stainless steel for oil well
JP2012149317A (en) * 2011-01-20 2012-08-09 Jfe Steel Corp High strength martensitic stainless steel seamless pipe for oil well
US20150101711A1 (en) * 2012-05-31 2015-04-16 Jfe Steel Corporation High-strength seamless stainless steel tube for oil country tubular goods and method of manufacturing the same
WO2013179667A1 (en) * 2012-05-31 2013-12-05 Jfeスチール株式会社 High-strength stainless steel seamless pipe for use as oil well piping, and manufacturing method therefor
JP2013249516A (en) * 2012-05-31 2013-12-12 Jfe Steel Corp High-strength stainless steel seamless pipe for use as oil well piping, and method of manufacturing the same
EP2865777A4 (en) * 2012-06-21 2015-11-11 Jfe Steel Corp High-strength stainless steel seamless pipe having excellent corrosion resistance for oil well, and method for manufacturing same
US9758850B2 (en) 2012-06-21 2017-09-12 Jfe Steel Corporation High strength stainless steel seamless pipe with excellent corrosion resistance for oil well and method of manufacturing the same
WO2013190834A1 (en) 2012-06-21 2013-12-27 Jfeスチール株式会社 High-strength stainless steel seamless pipe having excellent corrosion resistance for oil well, and method for manufacturing same
EP2889390A4 (en) * 2012-08-24 2016-05-11 Nkk Tubes Highly strong, highly tough and highly corrosion-resistant martensitic stainless steel
WO2014030392A1 (en) 2012-08-24 2014-02-27 エヌケーケーシームレス鋼管株式会社 Highly strong, highly tough and highly corrosion-resistant martensitic stainless steel
EP2918697A4 (en) * 2012-12-21 2016-03-09 Jfe Steel Corp High-strength stainless steel seamless pipe for oil wells and method for producing same
JP2015110822A (en) * 2012-12-21 2015-06-18 Jfeスチール株式会社 High strength seamless stainless steel tube for oil well, having excellent corrosion resistance, and method for manufacturing the same
WO2014097628A1 (en) 2012-12-21 2014-06-26 Jfeスチール株式会社 High-strength stainless steel seamless pipe for oil wells and method for producing same
US10151011B2 (en) 2012-12-21 2018-12-11 Jfe Steel Corporation High-strength stainless steel seamless tube or pipe for oil country tubular goods, and method of manufacturing the same
JP2015071822A (en) * 2013-09-04 2015-04-16 Jfeスチール株式会社 Method for producing high strength stainless steel pipe, and high strength stainless steel pipe
WO2015033518A1 (en) 2013-09-04 2015-03-12 Jfeスチール株式会社 Method for producing high-strength stainless steel pipe, and high-strength stainless steel pipe
US10151012B2 (en) 2013-09-04 2018-12-11 Jfe Steel Corporation High-strength stainless steel pipe
US10329633B2 (en) 2014-05-21 2019-06-25 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods and method for manufacturing the same
CN106414785A (en) * 2014-05-21 2017-02-15 杰富意钢铁株式会社 High-strength stainless steel seamless pipe for oil well, and method for producing same
US20170096722A1 (en) * 2014-05-21 2017-04-06 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods and method for manufacturing the same
EP3121306A4 (en) * 2014-05-21 2017-04-26 JFE Steel Corporation High-strength stainless steel seamless pipe for oil well, and method for producing same
JP2016033237A (en) * 2014-07-31 2016-03-10 Jfeスチール株式会社 High strength stainless seamless steel pipe for oil well excellent in low temperature toughness and manufacturing method therefor
WO2016079920A1 (en) * 2014-11-19 2016-05-26 Jfeスチール株式会社 High-strength stainless steel seamless pipe for oil wells
JPWO2016079920A1 (en) * 2014-11-19 2017-04-27 Jfeスチール株式会社 High strength stainless steel seamless steel pipe for oil well
US11193179B2 (en) 2015-01-15 2021-12-07 Jfe Steel Corporation Seamless stainless steel pipe for oil country tubular goods and method of manufacturing the same
WO2016113794A1 (en) * 2015-01-15 2016-07-21 Jfeスチール株式会社 Seamless stainless steel pipe for oil well, and method for manufacturing same
JPWO2016113794A1 (en) * 2015-01-15 2017-04-27 Jfeスチール株式会社 Seamless stainless steel pipe for oil well and manufacturing method thereof
EP3260564A4 (en) * 2015-02-20 2017-12-27 JFE Steel Corporation High-strength seamless thick-walled steel pipe and process for producing same
US10837073B2 (en) 2015-02-20 2020-11-17 Jfe Steel Corporation High-strength heavy-walled stainless steel seamless tube or pipe and method of manufacturing the same
US10876183B2 (en) 2015-07-10 2020-12-29 Jfe Steel Corporation High-strength seamless stainless steel pipe and method of manufacturing high-strength seamless stainless steel pipe
JP2017039998A (en) * 2015-08-18 2017-02-23 Jfeスチール株式会社 Seamless stainless steel pipe for oil well and method for producing the same
EP3404120A4 (en) * 2016-01-13 2018-11-21 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing stainless steel pipe for oil wells and stainless steel pipe for oil wells
US11085095B2 (en) 2016-02-08 2021-08-10 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods and method of manufacturing high-strength seamless stainless steel pipe
WO2017138050A1 (en) 2016-02-08 2017-08-17 Jfeスチール株式会社 High strength stainless steel seamless pipe for oil well and manufacturing method therefor
US11072835B2 (en) 2016-07-27 2021-07-27 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods, and method for producing the same
WO2018020886A1 (en) 2016-07-27 2018-02-01 Jfeスチール株式会社 High strength seamless stainless steel pipe for oil wells and production method therefor
WO2018131340A1 (en) 2017-01-13 2018-07-19 Jfeスチール株式会社 High strength seamless stainless steel pipe and production method therefor
US11268161B2 (en) 2017-01-13 2022-03-08 Jfe Steel Corporation High strength seamless stainless steel pipe and method for producing same
US11306369B2 (en) 2017-02-24 2022-04-19 Jfe Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for producing same
WO2018155041A1 (en) 2017-02-24 2018-08-30 Jfeスチール株式会社 High strength seamless stainless steel pipe for oil well and production method therefor
US11286548B2 (en) 2017-08-15 2022-03-29 Jfe Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
WO2019035329A1 (en) 2017-08-15 2019-02-21 Jfeスチール株式会社 High strength stainless seamless steel pipe for oil wells, and method for producing same
WO2022224640A1 (en) 2021-04-21 2022-10-27 Jfeスチール株式会社 Stainless steel pipe and manufacturing method thereof
CN116145051A (en) * 2022-12-13 2023-05-23 钢铁研究总院有限公司 High-corrosion-resistance economic oil well pipe steel and preparation method thereof

Also Published As

Publication number Publication date
JP4893196B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP4893196B2 (en) High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance
JP5109222B2 (en) High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
JP5446335B2 (en) Evaluation method of high strength stainless steel pipe for oil well
JP6766887B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP6399259B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP4363327B2 (en) Stainless steel pipe for oil well and manufacturing method thereof
JP5967066B2 (en) High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
JP5924256B2 (en) High strength stainless steel seamless pipe for oil well with excellent corrosion resistance and manufacturing method thereof
JP4978073B2 (en) High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same
WO2017138050A1 (en) High strength stainless steel seamless pipe for oil well and manufacturing method therefor
JP6156609B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP4462005B2 (en) High strength stainless steel pipe for line pipe with excellent corrosion resistance and method for producing the same
JP3608743B2 (en) Martensitic stainless steel with excellent hot workability and resistance to sulfide stress cracking
JP6237873B2 (en) High strength stainless steel seamless steel pipe for oil well
WO2005042793A1 (en) High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
JP2011241477A (en) Cr-CONTAINING STEEL PIPE FOR LINE PIPE EXCELLENT IN INTERGRANULAR STRESS CORROSION CRACKING RESISTANCE AT WELDING-HEAT-AFFECTED PORTION
JP7315097B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP7226675B1 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP4978070B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability
JP4470617B2 (en) High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance
JP4449174B2 (en) Manufacturing method of high strength martensitic stainless steel pipe for oil well
JP5245238B2 (en) Stainless steel pipe for oil well pipe excellent in pipe expandability and manufacturing method thereof
JP2005105357A (en) High-strength stainless steel pipe superior in corrosion resistance for oil well
JP5040215B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability
JP7347714B1 (en) High strength seamless stainless steel pipe for oil wells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Ref document number: 4893196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250