JP3550726B2 - Method for producing high strength steel with excellent low temperature toughness - Google Patents

Method for producing high strength steel with excellent low temperature toughness Download PDF

Info

Publication number
JP3550726B2
JP3550726B2 JP12215394A JP12215394A JP3550726B2 JP 3550726 B2 JP3550726 B2 JP 3550726B2 JP 12215394 A JP12215394 A JP 12215394A JP 12215394 A JP12215394 A JP 12215394A JP 3550726 B2 JP3550726 B2 JP 3550726B2
Authority
JP
Japan
Prior art keywords
less
temperature
transformation point
steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12215394A
Other languages
Japanese (ja)
Other versions
JPH07331328A (en
Inventor
康 森影
智也 小関
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP12215394A priority Critical patent/JP3550726B2/en
Publication of JPH07331328A publication Critical patent/JPH07331328A/en
Application granted granted Critical
Publication of JP3550726B2 publication Critical patent/JP3550726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、優れた低温靱性を有する高張力鋼の製造方法に関するものである。
【0002】
【従来の技術】
最近のエネルギー資源の開発は、今までは顧みられなかったような厳しい環境下で行われるようになってきた。この傾向は、石油や天然ガスなどの分野において顕著であり、例えば北極圏のような極寒の地での開発も精力的に行われている。
このような環境下でのエネルギー資源の開発はまた、採取した資源の輸送に使用されるパイプラインなどの低温用鋼材に対して、今まで以上に優れた品質を求めており、例えば、強度のほか低温靭性に対する要求は、一層厳しさを増してきている。
一方、エネルギー源としてLPG,LEG,LNGなどの液化ガスの利用も着実に増えつつあり、これら液化ガスの運搬や貯蔵用容器として使用される鋼材として、優れた材質とくに低温の材質特性と経済性を兼ね備えた低温用鋼材の供給が望まれている。
【0003】
ところで、上記各用途に供される低温用鋼材として、従来から、2.5 〜 9%Ni鋼が開発され広く実用化されている。この既知の低温用鋼材は、熱間圧延後の鋼材をいったん冷却した後、Ac3 変態点以上の温度に再加熱し、その温度から焼きならしまたは焼入れ(以下、この熱処理を「Q」で略記する)し、その後 Ac1変態点〜Ac3 変態点に再加熱した後焼入れ(以下、この熱処理を「Q' 」で略記する)し、Ac1 変態点より低い温度で焼もどし(以下、この熱処理を「T」で略記する)を行ういわゆるQQ' T処理、あるいはQ' を省略したいわゆるQT処理のいずれかの方法を経て製造されている。
2.5 〜 9%Ni鋼の優れた低温靱性を得るための上記の熱処理方法は、加熱、焼入れの操作を複数回にわたって行う必要があるため、経済的でないばかりか、生産性に劣り、そのうえ熱処理時に生成した多量のスケールにより鋼板の表面清浄が損なわれるという問題があった。
さらに上記鋼組成として、Nb、Vなどの析出硬化型元素を添加した場合には、オーテナイト・フェライト域加熱と焼もどし加熱の2回の加熱理時に、炭窒化析出物が粗大化して低温靭性を劣化させるという問題もあった。
【0004】
これに対して、従来上述のごとき複雑な熱処理を経ることなく、含Ni鋼を製造する方法が、特公昭61-17885号公報および特開昭58-100624 号公報に提案されている。
前記特公昭61-17885号公報に開示の技術は、Ar3 変態点以上の温度で高圧下率の圧延を施し、引き続いてAr3 変態点〜Ar1 変態点の温度範囲に一定時間保持した後焼入れし,その後Ac1 変態点より低い温度で焼きもどしを施す方法であるが、焼入性が不十分なために、良好な溶接熱影響部(以下、単に「HAZ」と略記する)特性が得られないという問題があった。
また前記特開昭58-100624 号公報に開示の技術は、2相域圧延を施した後急冷し,焼もどし処理する方法であるが、2相域圧延によりフェライトが多量に析出するため強度が不足するという問題があった。
【0005】
【発明が解決しようとする課題】
この発明は、上記の問題を有利に解決するもので、加熱、焼入れを繰り返す煩雑な熱処理に頼ることなく、従来の方法によって製造した鋼材が抱えていた問題点を克服して低温靱性に優れた高張力鋼を製造するための方法を提案することを主たる目的とする。
この発明の他の目的は、表面清浄に優れかつ高い強度とHAZ特性に優れた低温用鋼材を提供することにある。
この発明のさらに他の目的は、上記の鋼を高い生産性で経済的に製造する技術を確立することにある。
【0006】
【課題を解決するための手段】
このような課題認識の下で、発明者らは、鋼の成分組成、圧延条件およびその後の熱処理条件について詳細に検討した。その結果、これらの条件を適切に組み合わせることによって、鋼組織を強度の高い微細な焼もどしマルテンサイトもしくは焼もどしマルテンサイトと下部ベイナイトの混合組織とすれば、上記問題点が解決することを見いだし本発明を完成するに至った。
この方法によれば、従来、とくにこの種の鋼材特性の向上に望ましいとされているいわゆるQQ' T処理を行わなくても、低温靭性、強度、HAZ特性およびさらに表面清浄などに優れた鋼を製造することが可能となる。
【0007】
すなわち、本発明は、鋼の成分組成、圧延およびその後の熱処理の条件を制御することにより、上記の新規知見を達成する方法であって、その要旨構成は以下の通りである。
(1) C:0.20wt%以下、Si:0.03〜0.8wt%、Mn:0.4〜4.5wt%、Al:0.07wt%以下、Ni:3.5〜6.0wt%、Nb:0.005〜0.2wt%、B:0.0003〜0.002wt%、P:0.010wt%以下、S:0.005wt%以下を含有し、残部は実質的にFeの組成からなる鋼を加熱後、1000℃以下での圧下率が30〜70%で、かつ圧延終了温度が(Ar3変態点+300)℃〜(Ar3変態点+100)℃である圧延を施し、続いて(Ar3変態点+50)℃以上の温度から焼き入れた後、Ac1変態点以下の温度で焼もどしを施すことを特徴とする低温靱性に優れた高張力鋼の製造方法。
【0008】
(2) C:0.20wt%以下、Si:0.03〜0.8wt%、Mn:0.4〜4.5wt%、Al:0.07wt%以下、Ni:3.5〜6.0wt%、Nb:0.005〜0.2wt%、B:0.0003〜0.002wt%、P:0.010wt%以下、S:0.005wt%以下を含み、か Mo:0.8wt%以下、Cu:0.5wt%以下、V:0.2 wt%以下、Ti:0.1wt%以下のうちから選ばれたいずれか1種または2種以上を含有し、残部は実質的にFeの組成からなる鋼を加熱後、1000℃以下での圧下率が30〜70%で、かつ圧延終了温度が(Ar3変態点+300)℃〜(Ar3変態点+100)℃である圧延を施し、続いて(Ar3変態点+50)℃以上の温度から焼き入れた後、Ac1 変態点以下の温度で焼もどしを施すことを特徴とする低温靱性に優れた高張力鋼の製造方法。
【0009】
(3) C:0.20wt%以下、Si:0.03〜0.8wt%、Mn:0.4 〜4.5wt%、 Al:0.07wt%以下、Ni:3.5〜6.0wt%、Nb:0.005〜0.2wt%、B:0.0003〜0.002wt%、P:0.010wt%以下、S:0.005wt%以下を含み、かつLa:0.03 wt%以下、Ce:0.03wt%以下のうちから選ばれたいずれか1種または2種を含有し、残部は実質的にFeの組成からなる鋼を加熱後、1000℃以下での圧下率が30〜70%で、かつ圧延終了温度が(Ar3変態点+300)℃〜(Ar3変態点+100)℃である圧延を施し、続いて(Ar3変態点+50)℃以上の温度から焼き入れた後、Ac1 変態点以下の温度で焼もどしを施すことを特徴とする低温靱性に優れた高張力鋼の製造方法。
【0010】
(4) C:0.20wt%以下、Si:0.03〜0.8wt%、Mn:0.4〜4.5 wt%、 Al:0.07wt%以下、Ni:3.5〜6.0wt%、Nb:0.005〜0.2wt%、B:0.0003〜0.002wt%、P:0.010wt%以下、S:0.005wt%以下を含み、か Mo:0.8wt%以下、Cu:0.5wt%以下、 V:0.2wt%以下、Ti:0.1wt%以下のうちから選ばれたいずれか1種または2種以上を含有し、さらにLa:0.03wt%以下、Ce:0.03wt%以下のうちから選ばれたいずれか1種または2種を含有し、残部は実質的にFeの組成からなる鋼を加熱後、1000℃以下での圧下率が30〜70%で、かつ圧延終了温度が(Ar3変態点+300)℃〜(Ar3変態点+100)℃である圧延を施し、続いて(Ar3変態点+50)℃以上の温度から焼き入れた後、Ac1 変態点以下の温度で焼もどしを施すことを特徴とする低温靱性に優れた高張力鋼の製造方法。上記各発明において、基本成分に加える添加元素の組み合わせは
(1) Mo系のものでは、
Mo-(Cu,V,Tiのいずれか1種以上)
Mo-(Cu,V,Tiのいずれか1種以上)-(La,Ceのいずれか1種又は2種)
(2) Cu系のものでは、
Cu-(V,Tiのいずれか1種又は2種)
Cu-(V,Ti のいずれか1種又は2種)-(La,Ceのいずれか1種又は2種)
(3) V系のものでは、
V-Ti
V-Ti-(La,Ceのいずれか1種又は2種)
(4) Ti系のものでは、
Ti
Ti-(La,Ce のいずれか1種又は2種)
が好適である。
【0011】
【作用】
次に、本発明において、鋼組成を上記要旨構成のとおりに限定した理由について説明する。
C:0.20wt%以下;
Cは、焼入性を向上させ、強度を容易に上げるために有効な元素であるが、多過ぎると靭性を著しく害し、また溶接割れ感受性を高める。したがって、その含有量は0.20wt%以下とする必要がある。なお、好ましい含有量は0.10wt%以下である。
【0012】
Si:0.03〜0.8 wt%;
Siは、脱酸を促進し、強度を上げるのに有効に働く元素である。その効果は、0.03wt%以上の添加で得られるが、多すぎると、低温靭性や溶接性を著しく損なうので、その含有量は0.03〜0.8 wt%とする必要があり、好ましい含有量は0.10〜0.20wt%である。
【0013】
Mn:0.4 〜4.5 wt%;
Mnは、焼入性を向上させ、鋼の強度および低温靭性をともに高める作用があるので、高価なNiに代わる極めて有用な元素である.その効果は、0.4 wt%以上の添加で得られるが、4.5 wt%を超えて添加すると溶接割れ感受性が著しく高まるとともに焼もどし脆性も増大するので、0.4 〜4.5 wt%の範囲で添加する必要がある。なお、好ましい含有量は0.4 〜1.0 wt%である。
【0014】
Al:0.07wt%以下;
Alは、製鋼過程における脱酸作用を有するほか、熱延時および熱処理時に窒化物を形成して組織を微粒化するので有用ではあるが,あまり多くなるとAl2O3 系介在物量が増して溶接性を害する。したがって、含有量の上限は0.07wt%以下にする必要がある。
【0015】
Ni:3.5〜6.0wt%;
Niは、低温靭性および強度を向上させるのに極めて有用な元素である。その効果は、3.5wt%以上の添加で得られるが、多すぎるても、高価な元素であるうえ、効果もさほど改善されないので、3.5〜6.0wt%の範囲で添加する必要がある。なお、Niの好ましい含有量は4.0〜6.0wt%である。
【0016】
Nb:0.005 〜0.2 wt%;
Nbは、高温加熱によって鋼中に固溶し、その後の圧延過程で炭窒化物として微細に析出する。このためオーステナイト粒はその再結晶時に結晶の粗大化が著しく抑制される結果、非常に微細な組織となる。また析出硬化による強度上昇にも寄与する。これらの効果は、本発明の製造条件のもとで、0.005 wt%以上の添加で発揮される。しかし、Nbの添加量が多過ぎると、溶接部靭性を低下させるため0.2 wt%を上限とする。なお、Nbの好ましい含有量は0.005 〜0.015wt %である。
【0017】
B:0.0003〜0.002 wt%;
Bは、焼入性を高め、母材の強度上昇およびHAZ特性の向上に寄与する成分である。これらの効果は、0.0003wt%に満たないと得られず、また、過多に添加すると母材およびHAZ靱性がかえって低下する。したがって、Bの含有量は0.0003〜0.002 wt%とする必要がある。
【0018】
P:0.010wt %以下;
Pは、不純物として鋼中に必然的に含有されるものであるが、その量がわずかでも母材および溶接部の靱性に悪影響を及ぼすので0.010wt %以下にする必要がある。より好ましくは-.005 wt%以下がよい。
【0019】
S:0.005 wt%以下;
Sも、Pと同様に不純物として鋼中に必然的に含有されるものであるが、MnS 系介在物として母材および溶接部の靱性に悪影響を及ぼすので0.005 wt%以下にする必要がある。より好ましくは0.002 wt%以下がよい。
【0020】
また、この発明では、上述の基本成分のほかに,必要に応じて鋼材の特性を補足するために Mo、Cu、V、Ti、La、Ceから選ばれたいずれか1種または2種以上を添加することができる。以下上記各成分を限定した理由について説明する
【0021】
Mo:0.8wt %以下;
Moは、固溶強化と焼入性向上により強度を上昇させる効果を有する。また、Mnの多量添加によって誘起される焼もどし脆性を防止するのに有効な元素である.しかしながら、Moは高価であるうえ、多量に添加すると溶接部を著しく硬化させHAZ靱性に悪影響を及ぼす。したがって、その添加量は1.0 wt%以下、好ましくは0.05〜0.30wt%の範囲とする。
【0022】
Cu:0.5 wt%以下;
Cuは、固溶強化元素であり強度を高め、さらに耐食性の向上にも有効であるが、過多に添加すると熱間加工性を阻害するので、0.5 wt%以下、好ましくは0.2 wt%以下とする。
【0023】
V:0.2 wt%以下;
Vは、析出硬化作用を有し、強度を一層向上させる場合に有効である。しかし多量に添加すると炭窒化物の生成量が増加し、溶接部の靭性を劣化させるので、0.2 wt%以下、好ましくは0.05〜0.15wt%とする。
【0024】
Ti:0.1 wt%以下
Tiは、析出硬化作用を有し、強度を一層向上させる場合に有効である。しかし多量に添加すると炭窒化物の生成量が増加し、溶接部の靭性を劣化させるので、0.1 wt%以下、好ましくは0.05wt%以下とする。
【0025】
La:0.03 wt %以下;
Laは、硫化物系非金属介在物の形態を球状化させ靱性を向上させる効果がある、しかし過多に添加すると低温靭性はかえって低下するため、0.03 wt%以下、好ましくは0.005 〜0.015 wt%とする。
【0026】
Ce:0.03 wt %以下;
Ceは、Laと同様に、硫化物系非金属介在物の形態を球状化させ靱性を向上させる効果がある、しかし過多に添加すると低温靭性はかえって低下するため、0.03wt%以下、好ましくは0.005 〜0.015 wt%とする。
なお、この発明では、La、Ce添加の代わりに、その他の希土類元素で代替することができる。
【0027】
次に、製造条件を限定した理由について説明する。
▲1▼1000℃以下での圧下率:30〜70%;
最終の鋼組織を、微細な焼もどしマルテンサイト又は焼もどしマルテンサイトと下部ベイナイトの混合組織とするためには、焼き入れ処理前の結晶粒を制御し細粒化する必要がある。焼き入れ処理前の結晶粒の細粒化を達成するためには、1000℃以下での圧下率が重要である。 すなわち、この温度域での圧下率を30%以上にすることにより、オーステナイト粒界にひずみエネルギーが蓄積され,また粒内には転位および変形帯が数多く導入される。この結果、焼き入れ−焼きもどし処理後、結晶粒の微細化および転位導入による高強度化ならびに強靭性化が可能となる。
しかし、圧下率が70%超えると、強度の低下を引き起こす。この理由は、過度の加工で加工歪蓄積個所を核にしてフェライトが多量に析出するためであると考えられる。
したがって、1000℃以下の圧下率は30〜70%の範囲で圧延する必要がある。より好ましくは、40〜60%がよい。
【0028】
▲2▼圧延終了温度:(Ar3変態点+300)℃〜(Ar3変態点+100)℃;
最終の鋼組織を、微細な焼もどしマルテンサイト又は焼もどしマルテンサイトと下部ベイナイトの微細な混合組織とするためには、圧延終了温度も重要な要件である。圧延終了温度が(Ar3変態点+300)℃を超えると、再結晶した粒が粗大化し、焼入れ・焼もどし後の靱性に悪影響を及ぼすためであり、一方(Ar3変態点+100)℃未満では、フェライトが多量に析出し、強度が低下するためである。したがって、圧延終了温度は(Ar3変態点+300)℃〜(Ar3変態点+100)℃とする必要がある。より好ましくは、900 〜700 ℃がよい。
【0029】
▲3▼焼き入れ温度:(Ar3変態点+50) ℃以上;
上記の圧延を施した後急冷するとオーステナイト相が微細なマルテンサイトおよび下部ベイナイトに変態する。この旧オーステナイト粒は前記圧延により細く伸長した組織となっている。焼き入れ温度が(Ar3変態点+50) ℃に満たないと、圧延で導入した転位が回復し、強度が低下するので、(Ar3変態点+50) ℃以上の温度から焼き入れる必要がある。より好ましくは、800 〜650 ℃がよい。
【0030】
▲4▼焼もどし温度:Ac1 変態点以下;
上記条件で焼き入れた後、Ac1 変態点以下の温度で焼もどしすることにより、はじめて、目標とする材質を備えた高張力鋼が得られる。焼もどし温度が、Ac1 変態点を超えると母材の靱性が低下する傾向にあり、材質が充足されない。なお、焼もどし温度が400 ℃以下でも母材の靱性が低下するので、下限の温度は400 ℃とするのが好ましい。
【0031】
上述した化学組成と製造条件の採用により、鋼の最終組織が微細な焼もどしマルテンサイト又は焼もどしマルテンサイトと下部ベイナイトの混合組織となり、主として組織の微細化とNb等の析出強化とにより、強度、低温靱性およびHAZ特性に優れた鋼を得ることができる。
なお、この発明の組織は、従来のいわゆるQQ' T法で得られる組織とは著しく異なっている。すなわち、従来のQQ' T法で得られる組織は、はじめの焼入れ過程(Q)で生じた粗いマルテンサイト組織が2回目の焼入れ(Q' )時の加熱によリ、一部はフェライトヘ、一部はオーステナイトヘと変態するが、この際生じたオーステナイトの一部が冷却に際してフェライト相を取り囲んだ形でマルテンサイト組織になる。これが、その後の焼もどし(T)によりフェライト粒を取り囲んだ焼もどしマルテンサイトからなる組織となる。
【0032】
【実施例】
実施例1
表1に示す成分組成の鋼を溶製してスラブとし、これを1150℃に加熱した後、表2に示す各条件で圧延と熱処理を施した。ここに、比較のために従来のQQ’T処理によっても製造した。なお、鋼板板厚はすべて25mmとした。これら方法により製造した鋼板の機械的性質(降伏強さ、引張強さ、シャルピー衝撃試験における破面遷移温度および−110 ℃での衝撃吸収エネルギー)を調べた。その結果を表2に併せて示す。
【0033】
【表1】

Figure 0003550726
【0034】
【表2】
Figure 0003550726
【0035】
実施例2
表3に示す組成の各鋼を溶製してスラブとした後、1150℃に加熱した後、表4に示す各条件で圧延および焼入れの後、570 ℃において焼もどし処理を行った(発明法、比較法)。この他に、鋼 2,3,6,8〜13については従来のQQ’T処理(890 ℃で1時間加熱後水冷と700 ℃で20分間加熱後水冷の後、570 ℃で焼もどしの処理)によっても製造した。
これらの鋼板の降伏強さ、引張強さおよびシャルピー衝撃試験における破面遷移温度、−60℃および−110 ℃での吸収エネルギーおよび再現HAZ靭性について調べた結果を表4に示す。ここで、再現HAZの条件は、ピーク温度が1400℃および 800℃の単サイクル熱履歴とし、800 ℃から 500℃までの冷却時問を30秒とした。
【0036】
【表3】
Figure 0003550726
【0037】
【表4】
Figure 0003550726
【0038】
【発明の効果】
以上説明したように本発明の製造方法によれば、従来のQQ’T処理によって得られるよりも優れた特性、すなわち、低温靱性に優れるとともに良好なHAZ特性と高い強度を、他を犠牲にすることなく実現した低温用鋼を提供できるほか、こうした鋼材を高い生産性の下で経済的に製造することができる。[0001]
[Industrial applications]
The present invention relates to a method for producing a high-tensile steel having excellent low-temperature toughness.
[0002]
[Prior art]
Recent developments in energy resources have been conducted in harsh environments that were previously neglected. This tendency is remarkable in fields such as oil and natural gas, and development is being vigorously carried out, for example, in extremely cold regions such as the Arctic Circle.
The development of energy resources in such an environment also demands better quality than ever before for low-temperature steel materials such as pipelines used to transport the extracted resources, such as strength. Demands for low-temperature toughness are becoming more severe.
On the other hand, the use of liquefied gases such as LPG, LEG, and LNG as energy sources is also steadily increasing. As steel materials used for transporting and storing these liquefied gases, excellent materials, especially at low temperatures, are economical. It is desired to supply a low-temperature steel material having the above characteristics.
[0003]
By the way, as a low-temperature steel material provided for each of the above-mentioned uses, 2.5 to 9% Ni steel has been conventionally developed and widely used. This known low-temperature steel material is obtained by cooling the steel material after hot rolling and then reheating the steel material to a temperature higher than the transformation point of Ac 3 and normalizing or quenching from that temperature (hereinafter, this heat treatment is referred to as “Q”). Abbreviated), then quenched after reheating to the Ac 1 transformation point to the Ac 3 transformation point (hereinafter, this heat treatment is abbreviated as “Q ′”), and tempered at a temperature lower than the Ac 1 transformation point (hereinafter, referred to as This heat treatment is abbreviated as “T”), or a so-called QQ′T treatment in which Q ′ is omitted, or a so-called QT treatment in which Q ′ is omitted.
The above-mentioned heat treatment method for obtaining excellent low-temperature toughness of 2.5 to 9% Ni steel is not only economical, but also inferior in productivity because heating and quenching operations need to be performed several times. There is a problem that the surface cleanliness of the steel sheet is impaired by the large amount of scale generated.
Further, when a precipitation hardening element such as Nb or V is added as the above steel composition, carbonitride precipitates are coarsened during two heating treatments of austenite / ferrite region heating and tempering heating, and low temperature toughness is reduced. There was also a problem of deterioration.
[0004]
On the other hand, methods for producing Ni-containing steel without the complicated heat treatment as described above have been proposed in Japanese Patent Publication No. Sho 61-17885 and Japanese Patent Application Laid-Open No. Sho 58-100624.
The technique disclosed in Japanese Patent Publication No. 61-17885 discloses rolling of a high-pressure reduction at a temperature not lower than the Ar 3 transformation point, and subsequently maintaining the temperature in the temperature range of the Ar 3 transformation point to the Ar 1 transformation point for a certain period of time. This method involves quenching and then tempering at a temperature lower than the Ac 1 transformation point. However, due to insufficient hardenability, good welding heat affected zone (hereinafter simply referred to as “HAZ”) characteristics are obtained. There was a problem that it could not be obtained.
The technique disclosed in Japanese Patent Application Laid-Open No. 58-100624 is a method in which a two-phase zone rolling is performed, followed by rapid cooling and a tempering treatment. There was a problem of shortage.
[0005]
[Problems to be solved by the invention]
The present invention advantageously solves the above-described problems, and has excellent low-temperature toughness by overcoming the problems of steel materials manufactured by the conventional method without resorting to complicated heat treatment of repeating heating and quenching. The main purpose is to propose a method for producing high strength steel.
Another object of the present invention is to provide a low-temperature steel material having excellent surface cleaning, high strength, and excellent HAZ characteristics.
Still another object of the present invention is to establish a technique for economically producing the above steel with high productivity.
[0006]
[Means for Solving the Problems]
Under the recognition of such a problem, the inventors have studied in detail the steel composition, rolling conditions, and subsequent heat treatment conditions. As a result, it was found that by appropriately combining these conditions, the above problem could be solved if the steel structure was made to be a high-strength fine tempered martensite or a mixed structure of tempered martensite and lower bainite. The invention has been completed.
According to this method, a steel excellent in low-temperature toughness, strength, HAZ characteristics, and surface cleanliness can be obtained without performing so-called QQ'T treatment, which is conventionally desirable for improving the properties of steel materials. It can be manufactured.
[0007]
That is, the present invention is a method of achieving the above-mentioned new knowledge by controlling the composition of steel, the conditions of rolling and subsequent heat treatment, and the gist configuration thereof is as follows.
(1) C: 0.20 wt% or less, Si: 0.03 to 0.8 wt%, Mn: 0.4 to 4.5 wt%, Al: 0.07 wt% or less, Ni: 3.5 to 6.0 wt%, Nb: 0.005 to 0.2 wt%, B : 0.0003 to 0.002 wt%, P: 0.010 wt% or less, S: 0.005 wt% or less, and the balance is a steel substantially composed of Fe. After heating, the rolling reduction at 1000 ° C or less is 30 to 70. %, And the rolling end temperature is (Ar 3 transformation point +300) ° C. to (Ar 3 transformation point +100) ° C., and then quenched from a temperature of (Ar 3 transformation point +50) ° C. or higher, A method for producing a high-strength steel excellent in low-temperature toughness, characterized in that tempering is performed at a temperature equal to or lower than the Ac 1 transformation point.
[0008]
(2) C: 0.20 wt% or less, Si: 0.03 to 0.8 wt%, Mn: 0.4 to 4.5 wt%, Al: 0.07 wt% or less, Ni: 3.5 to 6.0 wt%, Nb: 0.005 to 0.2 wt%, B : 0.0003~0.002wt%, P: 0.010wt% or less, S: include: 0.005 wt%, or one Mo: 0.8 wt% or less, Cu: 0.5 wt% or less, V: 0.2 wt% or less, Ti: 0.1 wt % Or less selected from the group consisting of at least one selected from the group consisting of iron and a balance of substantially Fe. Rolling is performed at a rolling end temperature of (Ar 3 transformation point +300) ° C. to (Ar 3 transformation point +100) ° C., followed by quenching from a temperature of (Ar 3 transformation point +50) ° C. or higher, and then an Ac 1 transformation point A method for producing a high-strength steel excellent in low-temperature toughness, characterized by performing tempering at the following temperature.
[0009]
(3) C: 0.20 wt% or less, Si: 0.03 to 0.8 wt%, Mn: 0.4 to 4.5 wt%, Al: 0.07 wt% or less, Ni: 3.5 to 6.0 wt%, Nb: 0.005 to 0.2 wt%, B : 0.0003-0.002 wt%, P: 0.010 wt% or less, S: 0.005 wt% or less, and any one or two selected from La: 0.03 wt% or less, Ce: 0.03 wt% or less After heating a steel substantially composed of Fe, the rolling reduction at 1000 ° C. or less is 30 to 70%, and the rolling end temperature is (Ar 3 transformation point + 300) ° C. to (Ar 3 Rolling at (transformation point +100) ℃, quenching from (Ar 3 transformation point +50) ℃ or higher, and then tempering at temperature below Ac 1 transformation point. Excellent method for producing high tensile steel.
[0010]
(4) C: 0.20 wt% or less, Si: 0.03 to 0.8 wt%, Mn: 0.4 to 4.5 wt%, Al: 0.07 wt% or less, Ni: 3.5 to 6.0 wt%, Nb: 0.005 to 0.2 wt% , B: 0.0003~0.002wt%, P: 0.010wt% or less, S: 0.005 wt% include the following, or one Mo: 0.8 wt% or less, Cu: 0.5 wt% or less, V: 0.2 wt% or less, Ti: It contains one or more selected from 0.1 wt% or less, and further contains one or two selected from La: 0.03 wt% or less and Ce: 0.03 wt% or less. After heating a steel substantially composed of Fe, the rolling reduction at 1000 ° C or less is 30 to 70%, and the rolling end temperature is (Ar 3 transformation point + 300) ° C. to (Ar 3 transformation Excellent in low-temperature toughness, characterized by rolling at (point +100) ° C, then quenching from (Ar 3 transformation point +50) ° C or higher, and then tempering at temperature below Ac 1 transformation point. Method of manufacturing high-strength steel. In each of the above inventions, the combination of the additional elements added to the basic components is
(1) For Mo type,
Mo- (one or more of Cu, V, Ti)
Mo- (one or more of Cu, V, Ti)-(one or two of La, Ce)
(2) For Cu-based materials,
Cu- (one or two of V and Ti)
Cu- (one or two of V and Ti)-(one or two of La and Ce)
(3) For the V type,
V-Ti
V-Ti- (one or two of La and Ce)
(4) For Ti series,
Ti
Ti- (one or two of La and Ce)
Is preferred.
[0011]
[Action]
Next, in the present invention, the reason why the steel composition is limited according to the above-mentioned summary configuration will be described.
C: 0.20 wt% or less;
C is an element effective for improving hardenability and easily increasing strength, but when too much, significantly impairs toughness and increases weld cracking susceptibility. Therefore, its content needs to be 0.20 wt% or less. The preferred content is 0.10 wt% or less.
[0012]
Si: 0.03 to 0.8 wt%;
Si is an element that effectively promotes deoxidation and works effectively to increase the strength. The effect can be obtained by adding 0.03 wt% or more, but if it is too much, the low-temperature toughness and weldability are significantly impaired, so the content must be 0.03-0.8 wt%, and the preferred content is 0.10-0.8 wt%. 0.20 wt%.
[0013]
Mn: 0.4 to 4.5 wt%;
Mn is an extremely useful element that replaces expensive Ni because it has the effect of improving hardenability and increasing both the strength and low-temperature toughness of steel. The effect can be obtained by adding 0.4 wt% or more. However, adding more than 4.5 wt% significantly increases the susceptibility to weld cracking and increases the temper brittleness, so it is necessary to add it in the range of 0.4 to 4.5 wt%. is there. The preferred content is 0.4 to 1.0 wt%.
[0014]
Al: 0.07 wt% or less;
Al has a deoxidizing effect in the steelmaking process, and is also useful because it forms nitrides during hot rolling and heat treatment to make the structure finer, but too much increases the amount of Al 2 O 3 inclusions and increases weldability. Harms. Therefore, the upper limit of the content needs to be 0.07 wt% or less.
[0015]
Ni: 3.5 to 6.0 wt%;
Ni is an extremely useful element for improving low-temperature toughness and strength. The effect can be obtained by adding 3.5 wt% or more, but if it is too much, it is an expensive element and the effect is not improved so much, so it is necessary to add it in the range of 3.5 to 6.0 wt%. In addition, the preferable content of Ni is 4.0 to 6.0 wt%.
[0016]
Nb: 0.005 to 0.2 wt%;
Nb forms a solid solution in steel by high-temperature heating, and finely precipitates as carbonitride in the subsequent rolling process. For this reason, the austenite grains have a very fine structure as a result of the crystal growth being remarkably suppressed during recrystallization. It also contributes to an increase in strength due to precipitation hardening. These effects are exhibited by adding 0.005 wt% or more under the production conditions of the present invention. However, if the added amount of Nb is too large, the upper limit is 0.2 wt% in order to reduce the weld toughness. The preferred content of Nb is 0.005 to 0.015 wt%.
[0017]
B: 0.0003-0.002 wt%;
B is a component that enhances hardenability, contributes to an increase in the strength of the base material, and an improvement in HAZ characteristics. These effects cannot be obtained unless the amount is less than 0.0003 wt%, and when added excessively, the base material and the HAZ toughness are rather reduced. Therefore, the content of B needs to be 0.0003 to 0.002 wt%.
[0018]
P: 0.010 wt% or less;
Although P is inevitably contained in steel as an impurity, even a small amount thereof has an adverse effect on the toughness of the base metal and the welded portion. More preferably, the content is -0.005 wt% or less.
[0019]
S: 0.005 wt% or less;
S, which is inevitably contained in steel as an impurity like P, has an adverse effect on the toughness of the base metal and the welded portion as MnS-based inclusions, so it must be made 0.005 wt% or less. More preferably, the content is 0.002 wt% or less.
[0020]
Further, in this invention, in addition to the basic components described above, if necessary to supplement the properties of the steel, Mo, Cu, V, Ti, La, any one or more selected from Ce Can be added. Hereinafter, the reasons for limiting the above components will be described .
[0021]
Mo: 0.8 wt% or less;
Mo has an effect of increasing strength by solid solution strengthening and improvement of hardenability. In addition, it is an effective element to prevent tempering brittleness induced by the addition of a large amount of Mn. However, Mo is expensive and, when added in large amounts, significantly hardens the weld and adversely affects HAZ toughness. Therefore, the addition amount is 1.0 wt% or less, preferably in the range of 0.05 to 0.30 wt%.
[0022]
Cu: 0.5 wt% or less;
Cu is a solid solution strengthening element and enhances strength and is also effective in improving corrosion resistance. However, excessive addition of Cu impairs hot workability. Therefore, the content of Cu is 0.5 wt% or less, preferably 0.2 wt% or less. .
[0023]
V: 0.2 wt% or less;
V has a precipitation hardening effect and is effective for further improving the strength. However, when added in a large amount, the amount of carbonitride generated increases and the toughness of the welded portion is degraded. Therefore, the content is set to 0.2 wt% or less, preferably 0.05 to 0.15 wt%.
[0024]
Ti: 0.1 wt% or less
Ti has a precipitation hardening effect and is effective for further improving the strength. However, if added in a large amount, the amount of carbonitride generated increases and the toughness of the welded portion is degraded. Therefore, the content is made 0.1 wt% or less, preferably 0.05 wt% or less.
[0025]
La: 0.03 wt% or less;
La has the effect of improving the toughness by spheroidizing the form of the sulfide-based nonmetallic inclusions. However, when added excessively, the low-temperature toughness is rather reduced, so that 0.03 wt% or less, preferably 0.005 to 0.015 wt%. I do.
[0026]
Ce: 0.03 wt% or less;
Ce has the effect of improving the toughness by spheroidizing the form of the sulfide-based nonmetallic inclusions like La, but when added excessively, the low-temperature toughness rather decreases, so that 0.03 wt% or less, preferably 0.005 wt% or less. To 0.015 wt%.
In the present invention, other rare earth elements can be used instead of La and Ce additions.
[0027]
Next, the reason for limiting the manufacturing conditions will be described.
{Circle around (1)} Reduction at 1000 ° C or less: 30-70%;
In order to make the final steel structure a fine tempered martensite or a mixed structure of tempered martensite and lower bainite, it is necessary to control and refine the crystal grains before quenching. In order to achieve the refinement of the crystal grains before the quenching treatment, the rolling reduction at 1000 ° C. or less is important. That is, by setting the rolling reduction in this temperature range to 30% or more, strain energy is accumulated at the austenite grain boundaries, and many dislocations and deformation zones are introduced into the grains. As a result, after the quenching-tempering treatment, it is possible to increase the strength and toughness by making the crystal grains finer and introducing dislocations.
However, when the rolling reduction exceeds 70%, the strength is reduced. It is considered that the reason for this is that a large amount of ferrite precipitates at the processing strain accumulation portion as a nucleus due to excessive processing.
Therefore, it is necessary to perform rolling at a rolling reduction of 1000 ° C. or less in the range of 30 to 70%. More preferably, 40 to 60% is good.
[0028]
(2) Rolling end temperature: (Ar 3 transformation point + 300) ° C-(Ar 3 transformation point + 100) ° C;
In order to make the final steel structure a fine tempered martensite or a fine mixed structure of tempered martensite and lower bainite, the rolling completion temperature is also an important requirement. If the rolling end temperature exceeds (Ar 3 transformation point + 300) ° C, the recrystallized grains become coarse and adversely affect the toughness after quenching and tempering. On the other hand, if the rolling end temperature is less than (Ar 3 transformation point + 100) ° C, This is because a large amount of ferrite is precipitated and the strength is reduced. Therefore, the rolling end temperature is required to be (Ar 3 transformation point +300) ℃ ~ (Ar 3 transformation point +100) ° C.. More preferably, the temperature is 900 to 700 ° C.
[0029]
( 3 ) Quenching temperature: (Ar 3 transformation point + 50) ° C or higher;
When quenched after the above rolling, the austenite phase is transformed into fine martensite and lower bainite. The old austenite grains have a thin and elongated structure by the rolling. If the quenching temperature is less than (Ar 3 transformation point +50) ° C., the dislocations introduced by rolling recover and the strength decreases, so it is necessary to quench from a temperature of (Ar 3 transformation point +50) ° C. or more. More preferably, the temperature is from 800 to 650 ° C.
[0030]
(4) Tempering temperature: below the Ac 1 transformation point;
After quenching under the above conditions, by tempering at a temperature equal to or lower than the Ac 1 transformation point, a high-tensile steel having a target material can be obtained for the first time. If the tempering temperature exceeds the Ac 1 transformation point, the toughness of the base material tends to decrease, and the material is not satisfied. Since the toughness of the base material is lowered even at a tempering temperature of 400 ° C. or lower, the lower limit temperature is preferably set to 400 ° C.
[0031]
By adopting the above-mentioned chemical composition and manufacturing conditions, the final structure of the steel becomes fine tempered martensite or a mixed structure of tempered martensite and lower bainite, and the strength is mainly due to the refinement of the structure and the strengthening of precipitation of Nb and the like. , A steel excellent in low-temperature toughness and HAZ characteristics can be obtained.
The structure of the present invention is significantly different from the structure obtained by the conventional so-called QQ'T method. That is, the structure obtained by the conventional QQ'T method is such that the coarse martensite structure generated in the first quenching process (Q) is partially heated by ferrite during the second quenching (Q '), A part transforms into austenite, but a part of the austenite formed at this time becomes a martensite structure in a form surrounding a ferrite phase upon cooling. This results in a structure composed of tempered martensite surrounding the ferrite grains by the subsequent tempering (T).
[0032]
【Example】
Example 1
Steel having the composition shown in Table 1 was melted to form a slab, which was heated to 1150 ° C., and then subjected to rolling and heat treatment under the conditions shown in Table 2. Here, it was also manufactured by the conventional QQ'T treatment for comparison. The thickness of each steel plate was 25 mm. The mechanical properties (yield strength, tensile strength, fracture transition temperature in Charpy impact test, and impact absorption energy at -110 ° C) of the steel sheets produced by these methods were examined. The results are shown in Table 2.
[0033]
[Table 1]
Figure 0003550726
[0034]
[Table 2]
Figure 0003550726
[0035]
Example 2
Each steel having the composition shown in Table 3 was melted to form a slab, heated to 1150 ° C, rolled and quenched under the conditions shown in Table 4, and then tempered at 570 ° C (invention method). , Comparison method). In addition, for steel 2,3,6,8-13, conventional QQ'T treatment (heating at 890 ° C for 1 hour, water cooling, heating at 700 ° C for 20 minutes, water cooling, and tempering at 570 ° C) ).
Table 4 shows the results of examining the yield strength, tensile strength, fracture transition temperature in the Charpy impact test, absorbed energy at −60 ° C. and −110 ° C., and reproduced HAZ toughness of these steel sheets. Here, the condition of the reproduction HAZ was a single cycle heat history with peak temperatures of 1400 ° C. and 800 ° C., and the cooling time from 800 ° C. to 500 ° C. was 30 seconds.
[0036]
[Table 3]
Figure 0003550726
[0037]
[Table 4]
Figure 0003550726
[0038]
【The invention's effect】
As described above, according to the manufacturing method of the present invention, characteristics superior to those obtained by the conventional QQ'T treatment, that is, excellent HAZ characteristics and high strength while having excellent low-temperature toughness, are sacrificed at the expense of others. In addition to providing a low-temperature steel that has been realized without any problems, such a steel material can be economically manufactured with high productivity.

Claims (4)

C:0.20wt%以下、Si:0.03〜0.8wt%、Mn:0.4〜4.5wt%、Al:0.07wt%以下、Ni:3.5〜6.0wt%、Nb:0.005〜0.2wt%、B:0.0003〜0.002wt%、P:0.010wt%以下、S:0.005wt%以下を含有し、残部は実質的にFeの組成からなる鋼を加熱後、1000℃以下での圧下率が30〜70%で、かつ圧延終了温度が(Ar3変態点+300)℃〜(Ar3変態点+100)℃である圧延を施し、続いて(Ar3変態点+50)℃以上の温度から焼き入れた後、Ac1変態点以下の温度で焼もどしを施すことを特徴とする低温靱性に優れた高張力鋼の製造方法。C: 0.20 wt% or less, Si: 0.03 to 0.8 wt%, Mn: 0.4 to 4.5 wt%, Al: 0.07 wt% or less, Ni: 3.5 to 6.0 wt%, Nb: 0.005 to 0.2 wt%, B: 0.0003 to After heating a steel containing 0.002 wt%, P: 0.010 wt% or less, S: 0.005 wt% or less, and the balance substantially consisting of Fe, the rolling reduction at 1000 ° C or less is 30 to 70%. Rolling is performed at a rolling end temperature of (Ar 3 transformation point +300) ° C. to (Ar 3 transformation point +100) ° C. Then, after quenching from a temperature of (Ar 3 transformation point +50) ° C. or higher, Ac 1 transformation A method for producing a high-strength steel excellent in low-temperature toughness, characterized by performing tempering at a temperature not higher than the temperature. C:0.20wt%以下、Si:0.03〜0.8wt%、Mn:0.4〜4.5wt%、Al:0.07wt%以下、Ni:3.5〜6.0wt%、Nb:0.005〜0.2wt%、B:0.0003〜0.002wt%、P:0.010wt%以下、S:0.005wt%以下を含み、か Mo:0.8wt%以下、Cu:0.5wt%以下、V:0.2wt%以下、Ti:0.1wt%以下のうちから選ばれたいずれか1種または2種以上を含有し、残部は実質的にFeの組成からなる鋼を加熱後、1000℃以下での圧下率が30〜70%で、かつ圧延終了温度が(Ar3変態点+300)℃〜(Ar3変態点+100)℃である圧延を施し、続いて(Ar3変態点+50)℃以上の温度から焼き入れた後、Ac1 変態点以下の温度で焼もどしを施すことを特徴とする低温靱性に優れた高張力鋼の製造方法。C: 0.20 wt% or less, Si: 0.03 to 0.8 wt%, Mn: 0.4 to 4.5 wt%, Al: 0.07 wt% or less, Ni: 3.5 to 6.0 wt%, Nb: 0.005 to 0.2 wt%, B: 0.0003 to 0.002wt%, P: 0.010wt% or less, S: include: 0.005 wt%, or one Mo: 0.8 wt% or less, Cu: 0.5 wt% or less, V: 0.2 wt% or less, Ti: less 0.1 wt% After heating one or two or more kinds selected from the above, and the balance is substantially composed of Fe, the rolling reduction at 1000 ° C or lower is 30 to 70%, and the rolling end temperature After rolling at (Ar 3 transformation point + 300) ℃ ~ (Ar 3 transformation point + 100) ℃, and then quenching from a temperature of (Ar 3 transformation point + 50) ℃ or more, then temperature below Ac 1 transformation point A method for producing a high-strength steel excellent in low-temperature toughness, characterized in that tempering is performed in the steel. C:0.20wt%以下、Si:0.03〜0.8wt%、Mn:0.4〜4.5wt%、Al:0.07wt%以下、Ni:3.5〜6.0wt%、Nb:0.005〜0.2wt%、B:0.0003〜0.002wt%、P:0.010wt%以下、S:0.005wt%以下を含み、かつLa:0.03wt%以下、Ce:0.03wt%以下のうちから選ばれたいずれか1種または2種を含有し、残部は実質的にFeの組成からなる鋼を加熱後、1000℃以下での圧下率が30〜70%で、かつ圧延終了温度が(Ar3変態点+300)℃〜(Ar3変態点+100)℃である圧延を施し、続いて(Ar3変態点+50)℃以上の温度から焼き入れた後、Ac1 変態点以下の温度で焼もどしを施すことを特徴とする低温靱性に優れた高張力鋼の製造方法。C: 0.20 wt% or less, Si: 0.03 to 0.8 wt%, Mn: 0.4 to 4.5 wt%, Al: 0.07 wt% or less, Ni: 3.5 to 6.0 wt%, Nb: 0.005 to 0.2 wt%, B: 0.0003 to 0.002% by weight, P: 0.010% by weight or less, S: 0.005% by weight or less, and La: 0.03% by weight or less, Ce: 0.03% by weight or less. After heating the steel substantially composed of Fe, the reduction at a temperature of 1000 ° C. or less is 30 to 70%, and the rolling end temperature is (Ar 3 transformation point +300) ° C. to (Ar 3 transformation point +100). ) ° C, followed by quenching at a temperature of (Ar 3 transformation point + 50) ° C or higher, and then tempering at a temperature of Ac 1 transformation point or lower. Manufacturing method for tensile steel. C:0.20wt%以下、Si:0.03〜0.8wt%、Mn:0.4〜4.5wt%、Al:0.07wt%以下、Ni:3.5〜6.0wt%、Nb:0.005〜0.2wt%、B:0.0003〜0.002wt%、P:0.010wt%以下、S:0.005wt%以下を含み、か Mo:0.8wt%以下、Cu:0.5wt%以下、V:0.2wt%以下、Ti:0.1wt%以下のうちから選ばれたいずれか1種または2種以上を含有し、さらにLa:0.03w%以下、Ce:0.03wt%以下のうちから選ばれたいずれか1種または2種を含有し、残部は実質的にFeの組成からなる鋼を加熱後、1000℃以下での圧下率が30〜70%で、かつ圧延終了温度が(Ar3変態点+300)℃〜(Ar3変態点+100)℃である圧延を施し、続いて(Ar3変態点+50)℃以上の温度から焼き入れた後、Ac1 変態点以下の温度で焼もどしを施すことを特徴とする低温靱性に優れた高張力鋼の製造方法。C: 0.20 wt% or less, Si: 0.03 to 0.8 wt%, Mn: 0.4 to 4.5 wt%, Al: 0.07 wt% or less, Ni: 3.5 to 6.0 wt%, Nb: 0.005 to 0.2 wt%, B: 0.0003 to 0.002wt%, P: 0.010wt% or less, S: include: 0.005 wt%, or one Mo: 0.8 wt% or less, Cu: 0.5 wt% or less, V: 0.2 wt% or less, Ti: less 0.1 wt% It contains one or two or more selected from among them, and further contains one or two selected from La: 0.03 w% or less and Ce: 0.03 wt% or less, and the balance is after heating a steel having a composition of substantially Fe, at a reduction rate of 30 to 70 percent at 1000 ° C. or less, and the rolling finishing temperature is (Ar 3 transformation point +300) ℃ ~ (Ar 3 transformation point + 100) at ° C. A high-strength steel with excellent low-temperature toughness characterized by being subjected to a certain rolling, followed by quenching at a temperature of (Ar 3 transformation point + 50) ° C or higher and then tempering at a temperature of Ac 1 transformation point or lower. Production method.
JP12215394A 1994-06-03 1994-06-03 Method for producing high strength steel with excellent low temperature toughness Expired - Fee Related JP3550726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12215394A JP3550726B2 (en) 1994-06-03 1994-06-03 Method for producing high strength steel with excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12215394A JP3550726B2 (en) 1994-06-03 1994-06-03 Method for producing high strength steel with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JPH07331328A JPH07331328A (en) 1995-12-19
JP3550726B2 true JP3550726B2 (en) 2004-08-04

Family

ID=14828920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12215394A Expired - Fee Related JP3550726B2 (en) 1994-06-03 1994-06-03 Method for producing high strength steel with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP3550726B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237583A (en) 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd High tensile strength steel and its production
TW444109B (en) * 1997-06-20 2001-07-01 Exxon Production Research Co LNG fuel storage and delivery systems for natural gas powered vehicles
TW359736B (en) * 1997-06-20 1999-06-01 Exxon Production Research Co Systems for vehicular, land-based distribution of liquefied natural gas
TW396253B (en) * 1997-06-20 2000-07-01 Exxon Production Research Co Improved system for processing, storing, and transporting liquefied natural gas
TW396254B (en) * 1997-06-20 2000-07-01 Exxon Production Research Co Pipeline distribution network systems for transportation of liquefied natural gas
EP1017862B1 (en) 1997-07-28 2006-11-29 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
UA59411C2 (en) 1997-07-28 2003-09-15 Ексонмобіл Апстрім Рісерч Компані Super high-strength steels with perfect superlow temperature density
US6224689B1 (en) 1997-07-28 2001-05-01 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels with superior toughness
WO1999005336A1 (en) 1997-07-28 1999-02-04 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
TW459053B (en) * 1997-12-19 2001-10-11 Exxon Production Research Co Ultra-high strength dual phase steels with excellent cryogenic temperature toughness
US6254698B1 (en) 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof
US6159312A (en) * 1997-12-19 2000-12-12 Exxonmobil Upstream Research Company Ultra-high strength triple phase steels with excellent cryogenic temperature toughness
DZ2530A1 (en) 1997-12-19 2003-02-01 Exxon Production Research Co Process for the preparation of a steel sheet, this steel sheet and process for strengthening the resistance to the propagation of cracks in a steel sheet.
TW436597B (en) * 1997-12-19 2001-05-28 Exxon Production Research Co Process components, containers, and pipes suitable for containign and transporting cryogenic temperature fluids
WO2024190920A1 (en) * 2023-03-16 2024-09-19 日本製鉄株式会社 Steel
WO2024190921A1 (en) * 2023-03-16 2024-09-19 日本製鉄株式会社 Steel material

Also Published As

Publication number Publication date
JPH07331328A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
JP3550726B2 (en) Method for producing high strength steel with excellent low temperature toughness
JP2001511479A (en) Method for producing weldable super-strength steel with excellent toughness
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP2020510749A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature and method for producing the same
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP3906779B2 (en) Manufacturing method of low temperature steel with excellent stress corrosion cracking resistance
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JPH05186823A (en) Production of cu-containing high tensile strength steel with high toughness
JP3817887B2 (en) High toughness high strength steel and method for producing the same
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JPS6410564B2 (en)
JPH06293915A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and sour resistance
JPH0931536A (en) Production of ultrahigh strength steel plate excellent in low temperature toughness
JPH073330A (en) Production of high tensile strength and high toughness bent tube excellent in corrosion resistance
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP2598357B2 (en) Manufacturing method of high strength steel sheet with excellent low temperature toughness
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JPH09295067A (en) Manufacture of high strength bent pipe excellent in toughness at welded metal part
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JP2003342638A (en) Process for manufacturing high-strength bent tube
JP3297107B2 (en) Method for producing low temperature steel with excellent weldability
JPH09263831A (en) Production of extra thick high strength bent pipe excellent in toughness at low temperature

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees