JPS6410564B2 - - Google Patents

Info

Publication number
JPS6410564B2
JPS6410564B2 JP19863284A JP19863284A JPS6410564B2 JP S6410564 B2 JPS6410564 B2 JP S6410564B2 JP 19863284 A JP19863284 A JP 19863284A JP 19863284 A JP19863284 A JP 19863284A JP S6410564 B2 JPS6410564 B2 JP S6410564B2
Authority
JP
Japan
Prior art keywords
steel
less
temperature
quenching
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19863284A
Other languages
Japanese (ja)
Other versions
JPS6176615A (en
Inventor
Makoto Yamada
Nobuo Shikauchi
Masataka Suga
Masao Une
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP19863284A priority Critical patent/JPS6176615A/en
Publication of JPS6176615A publication Critical patent/JPS6176615A/en
Publication of JPS6410564B2 publication Critical patent/JPS6410564B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は、焼入れ処理あるいは焼入れ−焼戻
し処理によつて、健全性に優れ、鋼板形状が良好
で、板厚方向硬度分布差の少ない耐摩耗鋼を得
る、耐摩耗鋼の製造方法に係り、詳しくは、特定
組成の鋼片を特定の条件下で圧延し、これを引続
いて直接焼入れまたは通常の焼入れをするに際
し、冷却速度ならびに冷却停止温度を制御するこ
とにより、健全性に優れ、鋼板形状が良好で、板
厚方向硬度分布差の少ない耐摩耗鋼を製造する方
法に関するものである。 〔従来技術とその問題点〕 耐土砂摩耗などに優れた耐摩耗鋼は、従来、鋼
を焼入れ処理し、あるいは焼入れ−焼戻し処理す
ることによつて製造されていたが、溶接性向上お
よび低コスト化の観点から添加成分の低減が望ま
れ、そのため焼入れ処理のままで製造されるよう
になつてきている。さらに、添加成分をより低減
できる直接焼入れプロセスにより製造される方向
に進みつつある。また、このような耐摩耗鋼に要
求される硬度も、従来は、表面ブリネル硬度HB
で360程度であつたが、最近では、前記硬度HB
400を越えるような高硬度が要求されるようにな
つてきている。 鋼の硬度は、組織のマルテンサイト分率と含有
する炭素量とによつてほぼ決定され、高い硬度の
鋼の製造には、硬度に相応する炭素量の増加が必
要である。表面ブリネル硬度HB>400の鋼では、
炭素を約0.2%添加しなければならない。しかし、
このように鋼の添加成分が多くなると、焼入れに
よつて、焼割れ、水素割れ等が起り易くなる。そ
のために焼入れをするにあたつては、細心の注意
が要求される。特に直接焼入れ法においては、予
め脱水素等を入念に行なつておく必要がある。 しかしながら、従来の製造プロセスのように、
焼入れにおいて室温付近まで冷却した場合には、
例えば溶鋼段階で脱ガス処理し、又はスラブ段階
で徐冷することにより、予め鋼中水素量を2ppm
以下としておいても、焼割れ、水素割れを完全に
防止することが困難である。さらに、従来の製造
プロセスでは、焼入れ処理のままで供する場合
に、焼入れ歪みの矯正が困難になるという難点も
あつた。 〔発明の目的〕 この発明は、上述の現状に鑑み、焼入れ処理あ
るいは焼入れ−焼戻し処理によつて、水素割れ等
による欠陥がなく健全性に優れ、歪み量が小さく
鋼板形状が良好で、かつ、表面硬度が充分に高
く、板厚方向硬度分布差が小さい耐摩耗鋼を得
る、耐摩耗鋼の製造方法を提供することを目的と
する。 〔発明の概要〕 この発明の耐摩耗鋼の製造方法は、 C:0.05〜0.40wt%、 Si:0.1〜0.8wt%、 Mn:0.5〜2.0wt%、 Ti:0.005〜0.10wt%、 B:0.0005〜0.005wt%、 Sol.Al:0.005〜0.10wt%、 N:0.005wt%以下、 H:0.0002wt%以下 を含有し、かつ、Ti/N≧3.0であつて、 残部:Feおよび不可避不純物 からなる鋼片を素材として、前記鋼片を1000℃以
上の温度に加熱後Ar3点以上の温度で圧延を終了
して得た鋼材を、焼入れするに際し、A3点以上
の温度から3℃/sec以上の冷却速度で冷却し、
150〜300℃の温度で冷却を停止して耐摩耗鋼を得
ることに特徴を有する。 〔発明の構成〕 この発明は、特定組成の鋼片を素材として、こ
れを特定の条件下で圧延し、次いで、これに冷却
速度および冷却停止温度を制御した直接焼入れま
たは通常の焼入れを行なつて、水素割れ等の欠陥
がなく健全性に優れ、歪み量が小さく鋼板形状が
良好な、板厚方向硬度分布差が小さい耐摩耗鋼を
得るものである。 この発明においては、素材として、C:0.05〜
0.40wt%、Si:0.1〜0.8wt%、Mn:0.5〜2.0wt
%、Ti:0.005〜0.10wt%、B:0.0005〜0.005wt
%、Sol.Al:0.005〜0.10wt%、N:0.005wt%以
下、H:0.0002wt%以下を含有し、かつ、Ti/
N≧3.0であつて、残部:Feおよび不可避不純物
からなる鋼片を用いるが、鋼片の成分組成を上記
のように限定した理由は、次の通りである。 C:耐摩耗鋼では高い硬度が要求されるため、C
は0.05wt%以上必要であるが、溶接性、靭性と
の観点から上限を0.40wt%とし、0.05〜0.40wt
%とした。 Si:Siは脱酸元素として有用であり0.1wt%以上
必要であるが、0.8wt%を越えると溶接性、靫
性を劣化させるため、0.1〜0.8wt%とした。 Mn:Mnは焼入れ性の確保と靭性向上を図るた
めに0.50wt%以上必要であるが、2.0wt%を超
えると靭性劣化が考えられるため、0.5〜2.0wt
%とした。 Ti、N:Tiを0.005〜0.10wt%とし、Nを0.005wt
%以下とし、かつ、Ti/N≧3.0とするのは、
焼入れ時に、焼入れ性向上を有効であるBを、
充分に確保するためである。すなわち、Ti無
添加高N鋼では、鋼中BはNと結合して焼入れ
性向上に何んら効果をもたなくなるが、Tiを
添加するとTiがNと結合してNを固定するの
で、BはNと結合することがなくなり、焼入れ
性向上効果を発揮するようになる。このTiが
0.005wt%未満では、Nの固定が不充分となり、
Bによる焼入れ性を確保できない。また高Nレ
ベルにおいても、Nを固定するに充分な量の
Tiを含有させることにより、Bによる焼入れ
性を確保することはできるが、Tiが0.1wt%を
越えると、コスト上昇を招くだけでなく、大き
なTiNが形成されるので、鋼質上からも好ま
しくない。 第1図は焼入れ後の鋼材の板厚と板厚方向硬
度分布差ΔHv(ΔHv=Hv,Max−Hv,nio)との関係
を示したグラフである。Ti/Nが2.7以下にお
いては、板厚が薄い場合でも、ΔHvはかなり
大きく、100mm程度の板厚までΔHv≦150とす
るためには、Ti/N≧3.0とすることが必要で
ある。Nを0.005wt%以下とし、かつ、Tiを
0.005〜0.1wt%の範囲でTi/N≧3.0とすると、
上記のような問題を生ずることなく、TiがN
と結合し、Bは固溶状態となつて、焼入れ性を
向上させることが可能となる。そして、比較的
板厚の厚い鋼板においても、硬度分布差の少な
い耐摩耗鋼の製造が可能となる。 B:Bは焼入れ性を高めるために0.0005wt%以上
必要であるが、多量の添加は溶接性に有害であ
るため上限を0.005wt%とし、0.0005〜0.005wt
%とした。 Sol.Al:Alは脱酸元素として不可欠であり
0.005wt%以上必要であるが、0.10wt%を越え
るとAlN等によつて靭性の劣化を招くように
なるので、上限を0.10wt%とし、0.005〜
0.10wt%とした。 H:Hは一般的に割れ感受性を高める作用があ
り、特に高強度鋼材においてはその傾向が顕著
であるので、少ないことが望ましい。しかし、
焼入れの停止温度を150〜300℃とすれば、同一
の水素量でも割れ感受性を小さくでき、Hは
0.0002wt%(2ppm)まで適用上問題がない。
従つて、Hを0.0002wt%以下とした。 この発明では、素材となる鋼片として、上記の
基本成分に必要に応じて、Cu:1.0wt%以下、
Ni:1.0wt%以下、Cr:2.0wt%以下、Mo:
1.0wt%以下、Nb:0.1wt%以下、V:0.1wt%以
下、Ca:0.01wt%以下、Mg:0.01wt%以下およ
びREM(希土類元素):0.01wt%以下のうちの少
なくとも1種または2種以上を加えた成分組成の
ものを用いることができる。これらCu等の限定
理由は次の通りである。 Cu:Cuは焼入れ性を向上させるが、多量に添加
すると熱間脆性の原因となるために、1.0wt%
以下とした。 Ni:Niは靭性と焼入れ性とを向上させるが、高
価であるために、1.0wt%以下とした。 Cr、Mo:CrとMoは焼入れ性を向上させるが、
多量に添加すると溶接性、靭性に有害であるた
め、それぞれCr2.0wt%以下、Mn1.0wt%以下
とした。 V、Nb:VとNbは析出硬化により強度を上昇さ
せるが、多量に添加すると溶接性を害するた
め、共にV0.1wt%以下、Nb0.1wt%以下とし
た。 Ca、Mg、REM:Ca、MgおよびREMはSと結
合し、形状制御された硫化物を形成して、低温
靭性を向上させるが、多量に添加すると鋼の清
浄性を低下させるため、共にCa0.01wt%以下、
Mg0.01wt%以下、REM0.01wt%以下とした。 この発明では、上述した鋼片を1000℃以上の温
度に加熱後圧延して、Ar3点以上で圧延を終了
し、次いで圧延によつて得られた鋼材を、A3
態点以上の温度から冷却して焼入れする、すなわ
ち直接焼入れにあつてはAr3点以上の温度から冷
却し、通常の焼入れにあつてはAc3点以上の温度
に再加熱し、Ac3点以上の温度から冷却して焼入
れするものである。 ここで、鋼片の加熱温度を1000℃以上とするの
は、圧延能率を高くするためと、直接焼入れ法採
用時の焼入れ開始温度(Ar3点以上の温度)を確
保するためとからである。 圧延仕上り温度をAr3点以上とするのは、圧延
能率および焼入れ操作の関係上からである。すな
わち、先ず直接焼入れにあつては、圧延終了後引
続いて直ちに焼入れすることになるが、焼入れは
鋼がオーステナイト一相の状態から急冷する必要
があることから、少なくとも直接焼入れの先行程
たる圧延仕上げは、オーステナイト→フエライト
変態開始点(Ar3点)以上の温度でなければなら
ない。一方通常の焼入れにあつては、熱間圧延完
了後鋼材が少なくともAr1点以上の温度に冷却さ
れた後、Ac3点以上の温度に再加熱してから焼入
れするものであるから、、直接焼入れにおける場
合ほど仕上り温度が直接的な意味を持たないけれ
ども、Ar3点以下の温度では前述のフエライトの
析出が始まり、圧延荷重が増大するので、Ar3
以上の温度で圧延を終了することが望ましい。ま
たAr3点以下の温度で圧延を行なうとフエライト
に歪みが導入され、Ac3点以上の温度に加熱した
際に得られるオーステナイトが混粒となることが
あり、焼入れ性が不均一となる。 焼入れによつて鋼材の表面硬度を所定の高い値
にするためには、鋼材の表層近傍で完全なマルテ
ンサイト組織を得る必要があり、そのために焼入
れの冷却速度は、少なくと3℃/sec以上である
ことが必要である。冷却速度が3℃/sec未満で
は、得られる耐摩耗鋼の表面硬さが不充分となる
だけでなく、板厚方向硬度分布も凹型となり好ま
しくない。 焼入れの冷却停止温度は、焼割れ、水素割れ、
歪み等を防止する観点から、150〜300℃とする。
耐摩耗鋼は、圧延後の鋼材を焼入れ処理して得た
後、焼戻し処理をせずに使用されることがあるた
め、圧延後の鋼材を焼入れ処理したままでの品質
が重要であり、焼入れの冷却停止温度が重要とな
つてくる。 第2図は焼入れの水冷停止温度と焼入れした鋼
材の超音波探傷試験(UST)によるUST欠陥密
集度との関係を示すグラフである。第2図から判
るように、水冷停止温度が上昇するに伴なつて、
UST欠陥密集度は低下する傾向を示す。また鋼
材中の水素量が同一でも硬度が高い方が、UST
欠陥発生に対する感受性が高い。従つて、高硬度
材ほど、焼入れの冷却停止温度を上昇させ、また
鋼材中の水素濃度を低下させる必要がある。この
水冷停止温度が150℃未満のときには、水素濃度
を低く抑えてもUST欠陥密集度はかなり高く、
硬度HBが450〜500の鋼材ではは、水素濃度を
1.0ppm以下としなければUS欠陥密集度を小さく
できない。これに対し、停止温度を150〜300℃と
したときには、硬度HBが450〜500の鋼材でも、
鋼材中の水素濃度2.0ppm以下で、UST欠陥密集
度を実用上問題のない程度の大きさとすることが
できる。 以上のことから焼入れの冷却停止温度の下限を
150℃とする。停止温度が150℃未満では、鋼材中
の水素量を充分に低くしておかなければ、遅れ破
壊を生ずる可能性がある。停止温度を150℃以上
とすると、焼入れ後の徐冷過程で水素を拡散させ
ることができる。150℃以上の温度で冷却を停止
することは、焼入れによる歪み防止にも有効であ
る。停止温度の上限は300℃とする。これは、300
℃を越えた高い温度で焼入れを停止すると、充分
な硬さが得られなくなるからである。 この発明は以上述べたように、焼入れ処理のま
まで耐摩焼鋼を製造することを主たる目的とする
が、硬度その他の機械的性質を調整するために、
必要に応じて焼入れ後Ac1点以下の温度で焼戻し
ても良いことを含むことは当然である。その場
合、焼戻し温度が400℃以下のときには、通常の
焼戻し時間の採用が、そして焼戻し温度が400℃
を超えAc1点以下であるときには、硬度低下が著
しいことから1分以内の短時間焼戻しをすること
が推奨される。 この発明によれば、内部の傷が少なく、歪みが
小さくて、かつ板厚方向硬度分布差ΔHvが150以
下の、低温靭性に優れた耐摩耗鋼が得られる。 〔実施例〕 次に、この発明の実施例について説明する。 第1表に示す化学成分を含有する鋼片a〜fか
ら、第2表に示す製造条件で耐摩耗鋼を製造し、
本発明鋼(鋼No.1、5、8、9、11、13)および
比較鋼(鋼No.2〜4、6〜7、10、12、14〜19)
を得た。本発明鋼および比較鋼の表面硬度HB
の試験結果を、同じく第2表に示す。なお、第1
表の鋼片a〜fのうち、a〜dは化学成分が本発
明鋼の対象とする鋼片の範囲内にあるもの、e〜
fは化学成分が本発明鋼の対象とする鋼片の
[Technical Field of the Invention] The present invention provides a wear-resistant steel that has excellent soundness, good steel plate shape, and small difference in hardness distribution in the thickness direction by quenching treatment or quenching-tempering treatment. Regarding the manufacturing method, in detail, when a steel billet of a specific composition is rolled under specific conditions and then subjected to direct quenching or normal quenching, the cooling rate and cooling stop temperature are controlled to ensure soundness. The present invention relates to a method for producing wear-resistant steel having excellent properties, good steel sheet shape, and little difference in hardness distribution in the thickness direction. [Prior art and its problems] Wear-resistant steel with excellent soil and sand abrasion resistance has conventionally been manufactured by quenching or quenching-tempering steel, but improvements in weldability and low cost have been produced. It is desired to reduce the amount of added components from the viewpoint of chemical processing, and for this reason, it is increasingly being manufactured as is after the quenching process. Furthermore, there is a trend toward manufacturing by a direct quenching process that can further reduce the amount of added components. In addition, the hardness required for such wear-resistant steel was conventionally determined by the surface Brinell hardness H B
The hardness used to be about 360, but recently the hardness H B
High hardness of over 400 is increasingly required. The hardness of steel is approximately determined by the martensite fraction of the structure and the amount of carbon contained, and in order to manufacture steel with high hardness, it is necessary to increase the amount of carbon in proportion to the hardness. For steels with surface Brinell hardness H B > 400,
Approximately 0.2% carbon must be added. but,
When the added components of steel increase in this way, quench cracking, hydrogen cracking, etc. are more likely to occur during quenching. For this reason, extreme care is required when hardening. Particularly in the direct quenching method, it is necessary to carefully perform dehydrogenation, etc. in advance. However, like traditional manufacturing processes,
When it is cooled to around room temperature during quenching,
For example, by degassing at the molten steel stage or slow cooling at the slab stage, the amount of hydrogen in the steel can be reduced to 2ppm in advance.
Even with the following conditions, it is difficult to completely prevent quench cracking and hydrogen cracking. Furthermore, in the conventional manufacturing process, when the product is provided after being quenched, it is difficult to correct the quenching distortion. [Object of the Invention] In view of the above-mentioned current situation, the present invention provides a steel sheet that is free from defects such as hydrogen cracking, has excellent soundness, has a small amount of distortion, and has a good shape through quenching treatment or quenching-tempering treatment, and It is an object of the present invention to provide a method for producing wear-resistant steel that can obtain wear-resistant steel that has sufficiently high surface hardness and a small difference in hardness distribution in the thickness direction. [Summary of the Invention] The method for producing wear-resistant steel of the present invention includes: C: 0.05 to 0.40wt%, Si: 0.1 to 0.8wt%, Mn: 0.5 to 2.0wt%, Ti: 0.005 to 0.10wt%, B: Contains 0.0005 to 0.005wt%, Sol.Al: 0.005 to 0.10wt%, N: 0.005wt% or less, H: 0.0002wt% or less, and Ti/N≧3.0, and the remainder: Fe and inevitable impurities. When quenching the steel material obtained by heating the steel billet to a temperature of 1000℃ or higher and then finishing rolling at a temperature of 3 points or higher of Cool at a cooling rate of /sec or more,
It is characterized by stopping cooling at a temperature of 150-300℃ to obtain wear-resistant steel. [Structure of the Invention] This invention uses a steel billet of a specific composition as a raw material, rolling it under specific conditions, and then subjecting it to direct quenching or normal quenching with a controlled cooling rate and cooling stop temperature. Thus, a wear-resistant steel is obtained which is free from defects such as hydrogen cracking, has excellent soundness, has a small amount of distortion, has a good steel plate shape, and has a small difference in hardness distribution in the thickness direction. In this invention, as a material, C: 0.05~
0.40wt%, Si: 0.1~0.8wt%, Mn: 0.5~2.0wt
%, Ti: 0.005-0.10wt%, B: 0.0005-0.005wt
%, Sol.Al: 0.005 to 0.10wt%, N: 0.005wt% or less, H: 0.0002wt% or less, and Ti/
A steel slab with N≧3.0 and the balance consisting of Fe and unavoidable impurities is used. The reason why the composition of the steel slab is limited as described above is as follows. C: Since high hardness is required for wear-resistant steel, C
is required to be 0.05wt% or more, but from the viewpoint of weldability and toughness, the upper limit is set to 0.40wt%, and 0.05 to 0.40wt%.
%. Si: Si is useful as a deoxidizing element and needs to be present in an amount of 0.1 wt% or more, but if it exceeds 0.8 wt%, weldability and toughness deteriorate, so it is set at 0.1 to 0.8 wt%. Mn: Mn is required at 0.50wt% or more to ensure hardenability and improve toughness, but if it exceeds 2.0wt%, toughness may deteriorate, so 0.5 to 2.0wt%
%. Ti, N: Ti 0.005-0.10wt%, N 0.005wt
% or less and Ti/N≧3.0 is as follows:
B, which is effective in improving hardenability during hardening,
This is to ensure sufficient capacity. In other words, in high N steel without Ti addition, B in the steel combines with N and has no effect on improving hardenability, but when Ti is added, Ti combines with N and fixes N. B no longer combines with N and exhibits the effect of improving hardenability. This Ti
If it is less than 0.005wt%, N fixation will be insufficient,
Hardenability due to B cannot be ensured. Also, even at high N levels, a sufficient amount of
By including Ti, hardenability due to B can be ensured, but if Ti exceeds 0.1wt%, it not only increases cost but also forms large TiN, which is preferable from the viewpoint of steel quality. do not have. FIG. 1 is a graph showing the relationship between the thickness of the steel material after quenching and the difference in hardness distribution in the thickness direction ΔH v (ΔH v =H v,Max −H v,nio ). When Ti/N is 2.7 or less, ΔH v is quite large even if the plate thickness is thin, and in order to maintain ΔH v ≦150 up to a thickness of about 100 mm, it is necessary to set Ti/N ≧ 3.0. . N is 0.005wt% or less, and Ti is
If Ti/N≧3.0 in the range of 0.005 to 0.1wt%,
Ti is N without causing the above problems.
When combined with B, B enters a solid solution state, making it possible to improve hardenability. Moreover, even in the case of relatively thick steel plates, it is possible to manufacture wear-resistant steel with little difference in hardness distribution. B: 0.0005wt% or more of B is required to improve hardenability, but since adding a large amount is harmful to weldability, the upper limit is set at 0.005wt%, and 0.0005 to 0.005wt
%. Sol.Al: Al is essential as a deoxidizing element.
0.005wt% or more is required, but if it exceeds 0.10wt%, the toughness will deteriorate due to AlN etc., so the upper limit is set at 0.10wt%, and 0.005~
It was set to 0.10wt%. H: H generally has the effect of increasing cracking susceptibility, and this tendency is particularly noticeable in high-strength steel materials, so it is desirable to have a small amount. but,
By setting the quenching stop temperature to 150 to 300℃, cracking susceptibility can be reduced even with the same amount of hydrogen, and H is
There is no problem in application up to 0.0002wt% (2ppm).
Therefore, H was set to 0.0002wt% or less. In this invention, as a steel billet as a material, Cu: 1.0wt% or less, Cu: 1.0wt% or less,
Ni: 1.0wt% or less, Cr: 2.0wt% or less, Mo:
At least one of the following, or A component composition containing two or more types can be used. The reason for limiting these Cu etc. is as follows. Cu: Cu improves hardenability, but if added in large amounts it causes hot embrittlement, so 1.0wt%
The following was made. Ni: Ni improves toughness and hardenability, but is expensive, so it was set at 1.0 wt% or less. Cr, Mo: Cr and Mo improve hardenability, but
If added in large amounts, it is harmful to weldability and toughness, so Cr and Mn were set at 2.0wt% or less and 1.0wt% or less, respectively. V, Nb: V and Nb increase strength through precipitation hardening, but if added in large amounts they impair weldability, so V and Nb were both set to 0.1 wt% or less and Nb 0.1 wt% or less. Ca, Mg, REM: Ca, Mg, and REM combine with S to form shape-controlled sulfides and improve low-temperature toughness, but when added in large amounts, they reduce the cleanliness of steel, so both Ca0 .01wt% or less,
Mg was 0.01wt% or less and REM was 0.01wt% or less. In this invention, the above-mentioned steel billet is heated to a temperature of 1000°C or higher and then rolled, the rolling is finished at an Ar point of 3 or more, and the steel material obtained by rolling is then heated to a temperature of A3 or higher. Cool and quench, that is, for direct quenching, cool from a temperature of Ar 3 or higher, for normal quenching, reheat to a temperature of Ac 3 or higher, and then cool from a temperature of Ac 3 or higher. It is then quenched. Here, the heating temperature of the steel billet is set to 1000°C or higher in order to increase rolling efficiency and to ensure the quenching start temperature (temperature at Ar 3 points or higher) when using the direct quenching method. . The reason why the finishing temperature of rolling is set to 3 or more Ar points is because of the relationship between rolling efficiency and quenching operation. In other words, in direct quenching, the rolling is immediately followed by quenching, but since quenching requires the steel to be rapidly cooled from a single-phase austenite state, rolling is performed at least as early as before direct quenching. The finishing temperature must be above the starting point of austenite → ferrite transformation (Ar 3 point). On the other hand, in normal quenching, after hot rolling, the steel material is cooled to a temperature of at least Ar 1 point or higher, and then reheated to a temperature of Ac 3 or higher before quenching. Although finishing temperature does not have as much direct meaning as it does in quenching, at temperatures below the Ar 3 point, the aforementioned ferrite precipitation begins and the rolling load increases, so rolling should be finished at a temperature above the Ar 3 point. is desirable. Furthermore, if rolling is performed at a temperature below the Ar 3 point, distortion will be introduced into the ferrite, and the austenite obtained when heated to a temperature above the Ac 3 point may become mixed grains, resulting in non-uniform hardenability. In order to bring the surface hardness of steel to a predetermined high value through quenching, it is necessary to obtain a complete martensitic structure near the surface layer of the steel, and for this purpose the cooling rate during quenching must be at least 3°C/sec or higher. It is necessary that If the cooling rate is less than 3° C./sec, not only the surface hardness of the wear-resistant steel obtained will be insufficient, but also the hardness distribution in the thickness direction will become concave, which is not preferable. The cooling stop temperature for quenching is for quench cracking, hydrogen cracking,
From the viewpoint of preventing distortion etc., the temperature is set at 150 to 300°C.
Wear-resistant steel is obtained by quenching rolled steel and is sometimes used without tempering, so it is important to maintain the quality of the rolled steel after quenching. The cooling stop temperature becomes important. Figure 2 is a graph showing the relationship between the water-cooling stop temperature of quenching and the UST defect density determined by ultrasonic testing (UST) of quenched steel. As can be seen from Figure 2, as the water cooling stop temperature increases,
UST defect density shows a decreasing trend. Also, even if the amount of hydrogen in the steel is the same, the one with higher hardness has UST
High susceptibility to defect occurrence. Therefore, the harder the steel, the higher the cooling stop temperature for quenching and the lower the hydrogen concentration in the steel. When this water cooling stop temperature is less than 150℃, the UST defect density is quite high even if the hydrogen concentration is kept low.
For steel materials with hardness H B of 450 to 500, the hydrogen concentration is
The US defect density cannot be reduced unless it is 1.0 ppm or less. On the other hand, when the stopping temperature is set to 150 to 300℃, even steel with hardness H B of 450 to 500,
When the hydrogen concentration in steel is 2.0 ppm or less, the UST defect density can be reduced to a level that poses no practical problem. From the above, the lower limit of the cooling stop temperature for quenching is determined.
The temperature shall be 150℃. If the stopping temperature is less than 150°C, delayed fracture may occur unless the hydrogen content in the steel is kept sufficiently low. When the stopping temperature is set to 150°C or higher, hydrogen can be diffused during the slow cooling process after quenching. Stopping cooling at a temperature of 150°C or higher is also effective in preventing distortion due to quenching. The upper limit of the stopping temperature is 300℃. This is 300
This is because if quenching is stopped at a high temperature exceeding 0.degree. C., sufficient hardness cannot be obtained. As mentioned above, the main purpose of this invention is to produce wear-resistant steel as it is after quenching, but in order to adjust the hardness and other mechanical properties,
It goes without saying that this also includes the possibility of tempering at a temperature below Ac 1 point after quenching, if necessary. In that case, when the tempering temperature is below 400℃, the normal tempering time is adopted, and when the tempering temperature is 400℃
When the Ac value exceeds 1 point and the hardness decreases significantly, it is recommended to perform short-term tempering for less than 1 minute. According to the present invention, it is possible to obtain a wear-resistant steel with excellent low-temperature toughness, which has few internal flaws, low distortion, and has a hardness distribution difference ΔH v in the thickness direction of 150 or less. [Example] Next, an example of the present invention will be described. Producing wear-resistant steel from steel slabs a to f containing the chemical components shown in Table 1 under the manufacturing conditions shown in Table 2,
Invention steel (Steel No. 1, 5, 8, 9, 11, 13) and comparative steel (Steel No. 2-4, 6-7, 10, 12, 14-19)
I got it. Table 2 also shows the test results of the surface hardness H B of the steel of the present invention and the comparative steel. In addition, the first
Among the steel slabs a to f in the table, a to d have chemical compositions within the range of steel slabs targeted for the steel of the present invention, and e to
f is the chemical composition of the steel slab targeted for the steel of the present invention.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、水素
割れ等による内部欠陥がなく健全性に優れ、歪み
量が小さく鋼板形状が良好で、かつ、表面硬度が
充分に高く、板厚方向硬度分布差が小さい耐摩耗
鋼を製造することができる。
As explained above, according to the present invention, there is no internal defect such as hydrogen cracking, the steel plate has excellent soundness, the amount of distortion is small and the shape of the steel plate is good, the surface hardness is sufficiently high, and the hardness distribution difference in the plate thickness direction. It is possible to produce wear-resistant steel with small wear resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は焼入れ後の鋼材の板厚と板厚方向硬度
分布差との関係を示すグラフ、第2図は焼入れの
水冷停止温度と焼入れ後の鋼材のUST欠陥密集
度との関係を示すグラフである。
Figure 1 is a graph showing the relationship between the thickness of the steel material after quenching and the hardness distribution difference in the thickness direction, and Figure 2 is a graph showing the relationship between the water cooling stop temperature of quenching and the UST defect density of the steel material after quenching. It is.

Claims (1)

【特許請求の範囲】 1 C:0.05〜0.40wt%、 Si:0.1〜0.8wt%、 Mn:0.5〜2.0wt%、 Ti:0.005〜0.10wt%、 B:0.0005〜0.005wt%、 Sol.Al:0.005〜0.10wt%、 N:0.005wt%以下、 H:0.0002wt%以下 を含有し、かつ、Ti/N≧3.0であつて、 残部:Feおよび不可避不純物 からなる鋼片を、1000℃以上の温度に加熱後Ar3
点以上の温度で圧延を終了して得た鋼材を、焼入
れするに際し、A3点以上の温度から3℃/sec以
上の冷却速度で冷却し、150〜300℃の温度で冷却
を停止することを特徴とする、耐摩耗鋼の製造方
法。 2 C:0.05〜0.40wt%、 Si:0.1〜0.8wt%、 Mn:0.5〜2.0wt%、 Ti:0.005〜0.10wt%、 B:0.0005〜0.005wt%、 Sol.Al:0.005〜0.10wt%、 N:0.005wt%以下、 H:0.0002wt%以下 を含有し、かつ、Ti/N≧3.0であつて、さらに、 Cu:1.0wt%以下、 Ni:1.0wt%以下、 Cr:2.0wt%以下、 Mo:1.0wt%以下、 Nb:0.1wt%以下、 V:0.1wt%以下、 Ca:0.01wt%以下、 Mg:0.01wt%以下、 希土類元素:0.01wt%以下 のうちの少なくとも1種を含有し、 残部:Feおよび不可避不純物 からなる鋼片を、1000℃以上の温度に加熱後Ar3
点以上の温度で圧延を終了して得た鋼材を、焼入
れするに際し、A3点以上の温度から3℃/sec以
上の冷却速度で冷却し、150〜300℃の温度で冷却
を停止することを特徴とする、耐摩耗鋼の製造方
法。
[Claims] 1 C: 0.05-0.40wt%, Si: 0.1-0.8wt%, Mn: 0.5-2.0wt%, Ti: 0.005-0.10wt%, B: 0.0005-0.005wt%, Sol.Al : 0.005 to 0.10wt%, N: 0.005wt% or less, H: 0.0002wt% or less, and Ti/N≧3.0, the balance being Fe and unavoidable impurities. After heating to a temperature of Ar3
When quenching the steel material obtained by finishing rolling at a temperature of 3 or higher, cool the steel material at a cooling rate of 3℃/sec or higher from the temperature of point 3 or higher, and stop cooling at a temperature of 150 to 300℃. A method for producing wear-resistant steel, characterized by: 2 C: 0.05-0.40wt%, Si: 0.1-0.8wt%, Mn: 0.5-2.0wt%, Ti: 0.005-0.10wt%, B: 0.0005-0.005wt%, Sol.Al: 0.005-0.10wt% , contains N: 0.005wt% or less, H: 0.0002wt% or less, and Ti/N≧3.0, furthermore, Cu: 1.0wt% or less, Ni: 1.0wt% or less, Cr: 2.0wt%. At least one of the following: Mo: 1.0wt% or less, Nb: 0.1wt% or less, V: 0.1wt% or less, Ca: 0.01wt% or less, Mg: 0.01wt% or less, rare earth elements: 0.01wt% or less After heating a steel piece containing Fe and unavoidable impurities to a temperature of 1000℃ or higher, Ar 3
When quenching the steel material obtained by finishing rolling at a temperature of 3 or higher, cool the steel material at a cooling rate of 3℃/sec or higher from the temperature of point 3 or higher, and stop cooling at a temperature of 150 to 300℃. A method for producing wear-resistant steel, characterized by:
JP19863284A 1984-09-25 1984-09-25 Manufacture of wear resistant steel Granted JPS6176615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19863284A JPS6176615A (en) 1984-09-25 1984-09-25 Manufacture of wear resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19863284A JPS6176615A (en) 1984-09-25 1984-09-25 Manufacture of wear resistant steel

Publications (2)

Publication Number Publication Date
JPS6176615A JPS6176615A (en) 1986-04-19
JPS6410564B2 true JPS6410564B2 (en) 1989-02-22

Family

ID=16394426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19863284A Granted JPS6176615A (en) 1984-09-25 1984-09-25 Manufacture of wear resistant steel

Country Status (1)

Country Link
JP (1) JPS6176615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233171A (en) * 2013-05-10 2013-08-07 武汉钢铁(集团)公司 NM400-level anti-crack high-strength wear-resistant steel and production method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318019A (en) * 1986-07-10 1988-01-25 Kobe Steel Ltd Manufacture of wear-resistant steel plate
JPS6431928A (en) * 1987-07-27 1989-02-02 Kawasaki Steel Co Manufacture of wear-resistant steel stock by direct hardening
JP2578449B2 (en) * 1987-12-04 1997-02-05 川崎製鉄株式会社 Manufacturing method of direct hardened high strength steel with excellent delayed cracking resistance
JPH01172550A (en) * 1987-12-25 1989-07-07 Nippon Steel Corp Wear-resistant steel excellent in heat check resistance and having high hardness and high toughness
JP2867626B2 (en) * 1990-06-14 1999-03-08 株式会社東郷製作所 Leaf spring hose band and method of manufacturing the same
JP2924592B2 (en) * 1993-09-13 1999-07-26 日本鋼管株式会社 Steel pipe with excellent wear resistance
CN1293222C (en) * 2003-12-11 2007-01-03 杨军 Easy cut by flame abrasion-resistant steel in high rigidity, in toughness and preparation method
CN102747282B (en) 2012-07-31 2015-04-22 宝山钢铁股份有限公司 High-hardness high-tenacity wear-resistant steel plate and production method thereof
EP3597784B1 (en) * 2017-03-13 2021-03-31 JFE Steel Corporation Abrasion-resistant steel plate and method of manufacturing same
CN107130172B (en) * 2017-05-27 2019-03-19 江阴兴澄特种钢铁有限公司 400HBW grades of Brinell hardness whole constrictive type high tenacity easily weld special thick wear-resisting steel plate and its manufacturing method
CN107881417B (en) * 2017-11-29 2019-08-27 东北大学 A kind of low yield strength ratio martensite-ferrite-austenite multi-phase wear-resistant steel plate and its manufacturing method
CN108707824A (en) * 2018-05-25 2018-10-26 山东钢铁股份有限公司 A kind of anti-hydrogen-induced delayed cracking wear-resisting steel plate and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789426A (en) * 1980-11-19 1982-06-03 Nippon Steel Corp Manufacture of high-hardness and wear resistant steel having excellent weldability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233171A (en) * 2013-05-10 2013-08-07 武汉钢铁(集团)公司 NM400-level anti-crack high-strength wear-resistant steel and production method thereof

Also Published As

Publication number Publication date
JPS6176615A (en) 1986-04-19

Similar Documents

Publication Publication Date Title
EP2397570B1 (en) Steel plate for line pipes with excellent strength and ductility and process for production of same
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
KR101908818B1 (en) High strength steel having excellent fracture initiation resistance and fracture arrestability in low temperature, and method for manufacturing the same
JP2020510749A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature and method for producing the same
JP3550726B2 (en) Method for producing high strength steel with excellent low temperature toughness
JPS6410564B2 (en)
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JP7221476B2 (en) Steel material excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP2005139517A (en) Method for producing high strength and high toughness thick steel plate
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP7508469B2 (en) Ultra-high strength steel plate with excellent shear workability and its manufacturing method
KR102164110B1 (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JPH0413406B2 (en)
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
KR20200047081A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JPS6358906B2 (en)
KR102326109B1 (en) Steel sheet having excellent resistance of sulfide stress cracking and method of manufacturing the same
JPH0741865A (en) Method for spheroidizing high carbon steel sheet by continuous annealing
JP4803077B2 (en) Steel plate for carburizing and quenching and method for manufacturing the same
KR100368241B1 (en) A method for manufacturing hot rolled trip steels with excellent flange formability
JPS6117885B2 (en)