JP2005139517A - Method for producing high strength and high toughness thick steel plate - Google Patents

Method for producing high strength and high toughness thick steel plate Download PDF

Info

Publication number
JP2005139517A
JP2005139517A JP2003377854A JP2003377854A JP2005139517A JP 2005139517 A JP2005139517 A JP 2005139517A JP 2003377854 A JP2003377854 A JP 2003377854A JP 2003377854 A JP2003377854 A JP 2003377854A JP 2005139517 A JP2005139517 A JP 2005139517A
Authority
JP
Japan
Prior art keywords
temperature
cooling
mass
less
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003377854A
Other languages
Japanese (ja)
Other versions
JP4379085B2 (en
Inventor
Junji Shimamura
純二 嶋村
Kenji Oi
健次 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003377854A priority Critical patent/JP4379085B2/en
Publication of JP2005139517A publication Critical patent/JP2005139517A/en
Application granted granted Critical
Publication of JP4379085B2 publication Critical patent/JP4379085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high strength and high toughness thick steel plate which has the high strength of ≥590 MPa tensile strength and excellent balance to the strength and the toughness and uniform characteristic in the thickness direction of the plate. <P>SOLUTION: To a steel blank composed by mass% of 0.01-0.20% C, 0.01-0.60% Si, 0.50-2.50% Mn, ≤0.020% P, ≤0.0070% S and 0.001-0.100% solAl, a hot-rolling is applied at ≥Ar<SB>3</SB>point of rolling finish temperature after heating, and successively, the cooling is started at CR<SB>M</SB>martensite generating critical cooling speed from the temperature zone of ≥Ar<SB>3</SB>point, and after cooling to Ms point to 300°C quenching-cooling stop temperature, this steel is isothermally held to this temperature for a prescribed time, or cooled at a rate of <10°C/s from this temperature to a room temperature. Further, this steel blank can contain one or more groups among one or more kinds of Cu,Ni,Cr,Mo,B, one or more kinds of Ti,V,Nb and one or more kinds of Ca,REM. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、造船、海洋構造物、建築機械、建築、橋梁、タンク、パイプライン、ペンストックなどの溶接鋼構造物に利用して好適な高強度高靭性厚鋼板の製造方法に係り、とくに強度−靭性バランスの向上、板厚方向特性の均質性向上に関する。なお、本発明でいう「高強度」とは、引張強さ590MPa以上の強度をいうものとする。また、本発明でいう「厚鋼板」とは、板厚2mm以上の鋼板をいうものとする。   The present invention relates to a method for producing a high-strength, high-tough steel plate suitable for use in welded steel structures such as shipbuilding, offshore structures, building machines, buildings, bridges, tanks, pipelines, and penstocks. -Regarding improvement of toughness balance and improvement of homogeneity of sheet thickness direction characteristics. In the present invention, “high strength” refers to strength having a tensile strength of 590 MPa or more. The “thick steel plate” in the present invention refers to a steel plate having a thickness of 2 mm or more.

一般に、鋼板の強度が増加するにしたがい、低温靭性は低下する傾向にある。とくに、引張強さが590MPa以上の高強度鋼板において、良好な低温靭性を具備させることは容易ではない。   Generally, as the strength of the steel sheet increases, the low temperature toughness tends to decrease. In particular, it is not easy to provide good low temperature toughness in a high strength steel sheet having a tensile strength of 590 MPa or more.

引張強さ590MPa以上の高強度厚鋼板は、従来からオーステナイト温度域に再加熱したのち焼入れする再加熱焼入れ処理により製造されてきた。最近、例えば、特許文献1には、熱間圧延後に直ちに焼入れる直接焼入れ処理による高強度厚鋼板の製造方法が提案されている。しかしながら、良好な靭性を得るためには、再加熱焼入れ処理による場合も、直接焼入れ処理による場合もいずれも、焼入れ時に生成したマルテンサイトの硬度を低下させて靭性を回復させるための焼戻し処理を行う必要があり、生産性、製造コスト、工期等の点で問題を残していた。   Conventionally, high-strength thick steel plates having a tensile strength of 590 MPa or more have been manufactured by a reheating quenching process in which the steel is reheated to an austenite temperature range and then quenched. Recently, for example, Patent Document 1 proposes a method for producing a high-strength thick steel plate by direct quenching that is quenched immediately after hot rolling. However, in order to obtain good toughness, both in the case of reheating quenching treatment and in the case of direct quenching treatment, tempering treatment is performed to reduce the hardness of martensite generated during quenching and restore toughness. It was necessary and left problems in terms of productivity, manufacturing cost, construction period, and the like.

これらの問題点を解決する方法として、例えば、特許文献2には、C、Si、Mn、Cr、Ti、B、Al、N量を適正量に調整した鋼素材を、900℃以下の温度域で累積圧下率50%以上の熱間圧延を施したのち、直にAr3点以上の温度から焼入れを開始し、(Ms点+100℃)〜(Ms点−250℃)の温度域で焼入れを停止し、表層部をマルテンサイト組織とする、靭性および耐遅れ破壊性に優れた耐摩耗鋼材の製造方法が記載されている。特許文献2に記載された技術は、焼入れをMs点を挟む温度域の温度で停止して、表層部をマルテンサイト単相組織とし、内層部を下部ベイナイトとマルテンサイトの混合組織とするものである。特許文献2に記載された技術によれば、焼戻し処理を行うことなく、高強度で高靭性を有する厚鋼板を製造できるとしている。しかしながら、この技術では、板厚方向の硬さ分布にばらつきが生じて板厚方向材質の均質性に劣るとともに、マルテンサイト単相組織となる表層部の靭性が低下するなどの問題があった。 As a method for solving these problems, for example, in Patent Document 2, a steel material in which the amounts of C, Si, Mn, Cr, Ti, B, Al, and N are adjusted to appropriate amounts is set to a temperature range of 900 ° C. or lower. After performing hot rolling with a cumulative reduction ratio of 50% or more at, immediately start quenching at a temperature of Ar 3 or higher, and quench in the temperature range from (Ms point + 100 ° C) to (Ms point -250 ° C). A method for producing a wear-resistant steel material that is stopped and has a martensite structure at the surface layer and excellent in toughness and delayed fracture resistance is described. The technique described in Patent Document 2 stops quenching at a temperature in the temperature range sandwiching the Ms point, and the surface layer part is a martensite single phase structure and the inner layer part is a mixed structure of lower bainite and martensite. is there. According to the technique described in Patent Document 2, a thick steel plate having high strength and high toughness can be manufactured without performing a tempering treatment. However, this technique has a problem in that the hardness distribution in the thickness direction varies and the homogeneity of the material in the thickness direction is inferior, and the toughness of the surface layer portion that becomes a martensite single phase structure decreases.

また、例えば、特許文献3には、1000〜900℃の温度範囲で累積圧下率が50%以上の熱間圧延を施し、引き続き900℃未満810℃以上の未再結晶γ域で、1パスあたりの圧下率が10%未満の軽圧下圧延により累積圧下率を10〜30%としたのち、直ちに焼入れし、その後焼戻しを行う、板厚方向の均質性に優れた溶接用超高張力鋼板の製造方法が提案されている。しかし、特許文献3に記載された技術では、板厚方向の均質性は向上するが、焼入れ後の焼戻しを必須としており、工程が複雑かつ長期化するため、生産性、製造コストの観点から問題を残していた。
特開平2-27407号公報 特開2002-80930号公報 特公平6-70248号公報
Further, for example, in Patent Document 3, hot rolling with a cumulative rolling reduction of 50% or more is performed in a temperature range of 1000 to 900 ° C., and then in an unrecrystallized γ region of less than 900 ° C. and 810 ° C. or more per pass. Production of ultra-high-strength steel sheets for welding with excellent homogeneity in the thickness direction, with a cumulative reduction of 10 to 30% by light reduction with a reduction of less than 10%, followed by quenching and subsequent tempering A method has been proposed. However, in the technique described in Patent Document 3, the homogeneity in the plate thickness direction is improved, but tempering after quenching is essential, and the process is complicated and prolonged, which is problematic from the viewpoint of productivity and manufacturing cost. Was leaving.
JP-A-2-27407 JP 2002-80930 A Japanese Patent Publication No. 6-70248

本発明は、上記した従来技術の問題を解決し、引張強さ590MPa以上の高強度を有し、かつ強度−靭性バランスに優れ、板厚方向特性が均質である高強度高靭性厚鋼板を、焼戻し処理を行うことなく、高能率でかつ安価に製造できる、高強度高靭性厚鋼板の製造方法を提案することを目的とする。   The present invention solves the above-described problems of the prior art, and has a high strength and high toughness steel plate having a high strength of tensile strength of 590 MPa or more, an excellent strength-toughness balance, and a uniform thickness direction property. It is an object of the present invention to propose a method for producing a high-strength, high-toughness thick steel plate that can be produced at high efficiency and at low cost without performing tempering treatment.

本発明者らは、上記した課題を達成するために、引張強さ590MPa以上の強度レベルにおいて、低温靭性に及ぼす各種要因について鋭意検討した。その結果、オーステナイト域温度から特定冷却速度で焼入れ冷却し、Ms点以下の温度域で焼入れ冷却を停止、該温度域で特定時間保持することにより、表層部、中心部などの板厚位置によらず焼戻マルテンサイトと下部ベイナイトの混合組織となり、強度−靭性バランスが向上し、板厚方向特性が均質化するという知見を得た。   In order to achieve the above-mentioned problems, the present inventors diligently studied various factors affecting low-temperature toughness at a tensile strength level of 590 MPa or more. As a result, by quenching and cooling at a specific cooling rate from the austenite region temperature, quenching and cooling is stopped in a temperature region below the Ms point, and held for a specific time in the temperature region, depending on the plate thickness position of the surface layer portion, center portion, etc. It was found that a mixed structure of tempered martensite and lower bainite was obtained, the strength-toughness balance was improved, and the thickness direction characteristics were homogenized.

低炭素(C:0.01〜0.20質量%)鋼では、焼入れ冷却時にオーステナイトが変態して、ラス状組織を形成する。この際、ラス間にCの濃縮が起こり未変態オーステナイト(γ)フィルムが残留しやすく、靭性に有害な針状の島状マルテンサイト(Martensite-Austenite constituent)(以下,MAともいう)を形成しやすい。   In low carbon (C: 0.01 to 0.20 mass%) steel, austenite is transformed during quenching and cooling to form a lath structure. At this time, C is concentrated between the laths, and untransformed austenite (γ) film tends to remain, forming acicular island martensite (hereinafter also referred to as MA) that is harmful to toughness. Cheap.

本発明者らは、焼入れ冷却をMs点以下の温度で停止し、その温度で等温保持すると、焼入れ冷却時に生成したマルテンサイトが焼戻されることに加えて、下部ベイナイトが微細でかつ多量に生成し、下部ベイナイトのラス間のMAは少なくなり、靭性が向上することを見い出した。また、本発明者らは、等温保持を適正時間行うことにより、下部ベイナイトのラス間のγの分解が進行し、未変態γ量が少なくなり、MAの生成量も少なく靭性の劣化が少なくなることを知見した。   The present inventors stopped quenching cooling at a temperature below the Ms point and kept isothermal at that temperature, in addition to tempering the martensite generated during quenching cooling, and forming a fine and large amount of lower bainite. In addition, the MA between the laths of the lower bainite was found to be reduced and the toughness was improved. In addition, by performing the isothermal holding for an appropriate time, the present inventors proceeded with the decomposition of γ between the laths of the lower bainite, reducing the amount of untransformed γ, reducing the amount of MA produced, and reducing the deterioration of toughness. I found out.

一方、焼入れ冷却をMs点より僅かに高い(Ms点直上)温度で停止し、その温度で等温保持すると、下部ベイナイト変態が生じ、下部ベイナイトのラス間に長く伸びた針状のMAあるいは塊状のMAを形成しやすく、靭性が低下する。   On the other hand, when quenching and cooling is stopped at a temperature slightly higher than the Ms point (immediately above the Ms point) and kept isothermally at that temperature, lower bainite transformation occurs, and needle-like MA or lump that extends long between laths of the lower bainite. MA is easy to form, and toughness decreases.

このように、本発明者らは、焼入れ冷却を、Ms点以下の温度で停止し、その温度で等温保持することにより、島状マルテンサイト相の生成をより少なくすることができ、さらに微細な下部ベイナイト相を高分率で得ることができ、高強度でかつ高靭性の厚鋼板の製造が可能となることを知見した。   In this way, the inventors stopped quenching cooling at a temperature below the Ms point, and kept isothermal at that temperature, thereby making it possible to reduce the generation of island-like martensite phases, and further finer It has been found that the lower bainite phase can be obtained at a high fraction, and that it is possible to produce a high strength and high tough steel plate.

本発明は、このような知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。   The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.

(1)質量%で、C:0.01〜0.20%、Si:0.01〜0.60%、Mn:0.50〜2.50%、P:0.020%以下、S:0.0070%以下、solAl:0.001〜0.100%を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼素材を、加熱したのち、圧延終了温度をAr3変態点以上の温度域の温度とする熱間圧延を施し、ついで、Ar3変態点以上の温度域から、次(1)式
logCRM=2.94−0.75β ・・・・(1)
ここで、β=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+2Mo(B≧0.0005質量%の場合)
=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+Mo(B<0.0005質量%の場合)
CRM:マルテンサイト生成臨界冷却速度(℃/s)
C、Si、Mn、Ni、Cr、Mo:各元素の含有量(質量%)
で定義されるマルテンサイト生成臨界冷却速度CR以上の冷却速度で冷却を開始し、マルテンサイト変態開始温度以下300℃以上の温度域の焼入れ冷却停止温度まで冷却したのち、該焼入れ冷却停止温度で所定時間等温保持するか、あるいは該焼入れ冷却停止温度から室温までの温度域を10℃/s未満の冷却速度で冷却することを特徴とする高強度高靭性厚鋼板の製造方法。
(1) By mass%, C: 0.01 to 0.20%, Si: 0.01 to 0.60%, Mn: 0.50 to 2.50%, P: 0.020% or less, S: 0.0070% or less, solAl: 0.001 to 0.100%, After heating the steel material having the composition of the balance consisting of Fe and inevitable impurities, the steel material is subjected to hot rolling at a temperature in the temperature range higher than the Ar 3 transformation point, and then higher than the Ar 3 transformation point. From the temperature range, the following equation (1)
logCR M = 2.94−0.75β (1)
Here, β = 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + 2Mo (when B ≧ 0.0005 mass%)
= 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + Mo (when B <0.0005 mass%)
CR M: martensite critical cooling rate (° C. / s)
C, Si, Mn, Ni, Cr, Mo: Content of each element (mass%)
In in defined to start cooling with martensite critical cooling rate CR M or more cooling rate is, after cooling to quench cooling stop temperature of martensitic transformation start temperature or lower 300 ° C. or higher temperature range,該焼purse cooling stop temperature A method for producing a high-strength, high-tough steel plate, characterized in that it is kept isothermal for a predetermined time, or the temperature range from the quenching cooling stop temperature to room temperature is cooled at a cooling rate of less than 10 ° C / s.

(2)(1)において、前記所定時間が、1〜60minであることを特徴とする高強度高靭性厚鋼板の製造方法。   (2) The method for producing a high strength and high toughness thick steel plate according to (1), wherein the predetermined time is 1 to 60 minutes.

(3)(1)または(2)において、前記組成に加えてさらに、質量%で、次A〜C群
A群:質量%で、Cu:0.10〜1.00%、Ni:0.10〜5.00%、Cr:0.10〜0.80%、Mo:0.01〜0.80%、B:0.0002〜0.0025%のうちから選ばれた1種または2種以上
B群:質量%で、Ti:0.03%以下、V:0.005〜0.100%、Nb:0.050%以下のうちから選ばれた1種または2種以上
C群:質量%で、Ca:0.010%以下、REM:0.020%以下のうちから選ばれた1種または2種
のうちから選ばれた1群または2群以上を含有することを特徴とする高強度高靭性厚鋼板の製造方法。
(3) In (1) or (2), in addition to the above-mentioned composition, in mass%, the following groups A to C group A: mass%, Cu: 0.10 to 1.00%, Ni: 0.10 to 5.00%, Cr : 0.10 to 0.80%, Mo: 0.01 to 0.80%, B: One or more selected from 0.0002 to 0.0025% Group B: mass%, Ti: 0.03% or less, V: 0.005 to 0.100% , Nb: One or more selected from 0.050% or less Group C: Mass%, Ca: 0.010% or less, REM: From one or two selected from 0.020% or less A method for producing a high-strength, high-toughness steel plate, comprising one or more selected groups.

本発明によれば、引張強さ590MPa以上の高強度を有し、かつ強度−靭性バランスに優れ、板厚方向特性が均質である高強度高靭性厚鋼板を、焼戻し処理を行うことなく、高能率でかつ安価に製造でき、産業上格段の効果を奏する。また、本発明により得られた高強度厚鋼板は、熱加工精度の信頼性が高いという効果もある。   According to the present invention, a high-strength, high-toughness thick steel plate having a high strength with a tensile strength of 590 MPa or more, an excellent balance between strength and toughness, and uniform thickness direction characteristics can be obtained without tempering. It can be manufactured efficiently and inexpensively, and has a remarkable industrial effect. Moreover, the high-strength thick steel plate obtained by this invention also has the effect that the reliability of a heat processing precision is high.

本発明で使用する鋼素材の組成限定理由についてまず説明する。以下、組成における質量%は、単に%で記す。   The reason for limiting the composition of the steel material used in the present invention will be described first. Hereinafter, the mass% in the composition is simply expressed as%.

C:0.01〜0.20%
Cは、鋼の強度を増加する元素であり、所望の高強度とするためには、0.01%以上の含有を必要とする。一方、0.20%を超えて含有すると溶接性が劣化し、溶接割れが生じやすくなるとともに、母材靭性およびHAZ靭性が低下する。このため、Cは0.01〜0.20%の範囲に限定した。なお、好ましくは0.02〜0.16%である。
C: 0.01-0.20%
C is an element that increases the strength of steel, and in order to obtain a desired high strength, it needs to be contained in an amount of 0.01% or more. On the other hand, if the content exceeds 0.20%, the weldability deteriorates, the weld cracking is likely to occur, and the base metal toughness and the HAZ toughness are lowered. For this reason, C was limited to the range of 0.01 to 0.20%. In addition, Preferably it is 0.02 to 0.16%.

Si:0.01〜0.60%
Siは、脱酸材として作用し、さらに固溶強化により鋼材の強度を増加させる元素である。このような効果を得るためには、0.01%以上の含有を必要とするが、0.60%を超える含有は、HAZ靭性を著しく劣化させる。このため、Siは0.01〜0.60%の範囲とした。なお、好ましくは、0.05〜0.20%である。
Si: 0.01-0.60%
Si is an element that acts as a deoxidizing material and further increases the strength of the steel material by solid solution strengthening. In order to obtain such an effect, a content of 0.01% or more is required, but a content exceeding 0.60% significantly deteriorates the HAZ toughness. For this reason, Si was made into the range of 0.01 to 0.60%. In addition, Preferably, it is 0.05 to 0.20%.

Mn:0.50〜2.50%
Mnは、鋼の焼入れ性を高めるとともに、靭性を向上させる作用を有する元素であり、本発明では、0.50%以上の含有を必要とするが、2.50%を超える含有は、溶接性を劣化させる恐れがある。このため、本発明では、Mnは0.50〜2.50%の範囲に限定した。なお、好ましくは、0.80〜2.50%である。
Mn: 0.50-2.50%
Mn is an element that has the effect of enhancing the hardenability of steel and improving toughness. In the present invention, it is necessary to contain 0.50% or more, but the content exceeding 2.50% may deteriorate weldability. There is. For this reason, in this invention, Mn was limited to 0.50 to 2.50% of range. In addition, Preferably, it is 0.80 to 2.50%.

P:0.020%以下
Pは、固溶強化により強度を増加させる元素であるが、靭性、溶接性を劣化させるため、本発明ではできるだけ低減することが好ましいが、0.020%までの含有は許容できる。このため、Pは0.020%以下に限定した。なお、好ましくは0.017%以下である。また、極端な低減は溶製コストの高騰を招くため、本発明では、0.008%以上とすることが好ましい。
P: 0.020% or less P is an element that increases strength by solid solution strengthening. However, in order to deteriorate toughness and weldability, P is preferably reduced as much as possible in the present invention, but the content up to 0.020% is acceptable. For this reason, P was limited to 0.020% or less. In addition, Preferably it is 0.017% or less. In addition, since extreme reduction leads to an increase in melting cost, it is preferably 0.008% or more in the present invention.

S:0.0070%以下
Sは、鋼中では硫化物として存在し、延性を低下させる作用を示す。このため、Sはできるだけ低減することが望ましいが、0.0070%までは許容できる。なお、好ましくは0.0030%以下である。また、極端な低減は溶製コストの高騰を招くため、本発明では0.0005%以上とすることが好ましい。
S: 0.0070% or less S is present as a sulfide in steel and exhibits an effect of reducing ductility. For this reason, it is desirable to reduce S as much as possible, but it is acceptable up to 0.0070%. In addition, Preferably it is 0.0030% or less. Moreover, since an extreme reduction leads to an increase in melting cost, it is preferable to make it 0.0005% or more in the present invention.

solAl:0.001〜0.100%
Alは、製鋼時の脱酸材として作用し、本発明では、0.001%以上の含有を必要とするが、0.100%を超える含有は、靭性の低下を招く。このため、solAlは0.001〜0.100%の範囲に限定した。なお、好ましくは、0.001〜0.060%である。
solAl: 0.001 to 0.100%
Al acts as a deoxidizer during steelmaking, and in the present invention, it needs to be contained in an amount of 0.001% or more. However, if it exceeds 0.100%, the toughness is lowered. For this reason, solAl was limited to the range of 0.001 to 0.100%. In addition, Preferably, it is 0.001 to 0.060%.

上記した基本組成に加えて、本発明では、さらに次A〜C群
A群:質量%で、Cu:0.10〜1.00%、Ni:0.10〜5.00%、Cr:0.10〜0.80%、Mo:0.01〜0.80%、B:0.0002〜0.0025%のうちから選ばれた1種または2種以上
B群:質量%で、Ti:0.03%以下、V:0.005〜0.100%、Nb:0.050%以下のうちから選ばれた1種または2種以上
C群:質量%で、Ca:0.010%以下、REM:0.020%以下のうちから選ばれた1種または2種
のうちから選ばれた1群または2群以上を含有することができる。
In addition to the basic composition described above, in the present invention, the following groups A to C, group A: mass%, Cu: 0.10 to 1.00%, Ni: 0.10 to 5.00%, Cr: 0.10 to 0.80%, Mo: 0.01 to One or more selected from 0.80%, B: 0.0002-0.0025% Group B: mass%, Ti: 0.03% or less, V: 0.005-0.100%, Nb: selected from 0.050% or less 1 type or 2 types or more selected: C group:% by mass, Ca: 0.010% or less, REM: 0.020% or less selected from 1 type or 2 types selected from 1 type or 2 types Can be contained.

A群のCu、Ni、Cr、Mo、Bは、いずれも鋼の焼入れ性をより向上させる元素であり、必要に応じ選択して1種または2種以上を含有できる。   Cu, Ni, Cr, Mo, and B in group A are all elements that further improve the hardenability of the steel, and can be selected as necessary to contain one or more.

Cuは、焼入れ性をより向上させる作用を有する。0.10%未満の含有では、このような効果を期待することができず、一方、1.00%を超える含有は熱間脆性を引き起こす危険性が増大する。このため、Cuは0.10〜1.00%に限定することが好ましい。なお、より好ましくは0.10〜0.30%である。   Cu has the effect of further improving the hardenability. If the content is less than 0.10%, such an effect cannot be expected. On the other hand, if the content exceeds 1.00%, the risk of causing hot brittleness increases. For this reason, it is preferable to limit Cu to 0.10 to 1.00%. In addition, More preferably, it is 0.10 to 0.30%.

Niは、鋼の焼入れ性をより向上させるとともに、靭性をも向上させる作用を有する。このような効果は、0.10%以上の含有で認められるが、5.00%を超える含有は、製造コスト上昇を招く傾向になる。このため、Niは0.10〜5.00%の範囲に限定することが好ましい。なお、より好ましくは、0.20〜2.00%である。   Ni has the effect of improving the hardenability of the steel and improving the toughness. Such an effect is recognized at a content of 0.10% or more, but a content exceeding 5.00% tends to increase the manufacturing cost. For this reason, it is preferable to limit Ni to the range of 0.10 to 5.00%. In addition, More preferably, it is 0.20 to 2.00%.

Crは、鋼の焼入れ性を向上させる安価な元素であり、このような効果は0.10%以上の含有で認められるが、0.80%を超える含有は、溶接性および靭性を劣化させる。このため、Crは0.10〜0.80%の範囲に限定することが好ましい。なお、より好ましくは、0.20〜0.80%である。   Cr is an inexpensive element that improves the hardenability of steel, and such an effect is recognized with a content of 0.10% or more. However, a content exceeding 0.80% deteriorates weldability and toughness. For this reason, it is preferable to limit Cr to the range of 0.10 to 0.80%. In addition, More preferably, it is 0.20 to 0.80%.

Moは、鋼の焼入れ性をより向上させる作用を有する元素であり、このような効果は0.01%以上の含有で認められるが、0.80%を超える含有は、溶接性および靭性を劣化させる。このため、Moは0.01〜0.80%の範囲に限定することが好ましい。なお、より好ましくは、0.10〜0.60%である。   Mo is an element that has the effect of further improving the hardenability of steel, and such an effect is recognized with a content of 0.01% or more. However, a content exceeding 0.80% deteriorates weldability and toughness. For this reason, it is preferable to limit Mo to the range of 0.01 to 0.80%. In addition, More preferably, it is 0.10 to 0.60%.

Bは、少量で鋼の焼入れ性を向上させる元素であり、このような効果は0.0002%以上の含有で認められるが、0.0025%を超えて含有すると、却って焼入れ性が低下する。このため、Bは0.0002〜0.0025%の範囲に限定することが好ましい。なお、より好ましくは0.0005〜0.0020%である。   B is an element that improves the hardenability of the steel in a small amount, and such an effect is recognized with a content of 0.0002% or more. However, when it exceeds 0.0025%, the hardenability is lowered. For this reason, it is preferable to limit B to 0.0002 to 0.0025% of range. In addition, More preferably, it is 0.0005 to 0.0020%.

B群の、Ti、V、Nbはいずれも炭化物および/または窒化物の形成を介して強度増加に影響する元素であり、必要に応じ選択して1種または2種以上を含有できる。   In the group B, Ti, V, and Nb are all elements that influence the increase in strength through the formation of carbides and / or nitrides, and can be selected as needed to contain one or more.

Tiは、鋼中のNと結合しTiNを形成し、結晶粒の粗大化を抑制してHAZ靭性の向上に寄与するとともに、固溶Nを減少させBの焼入れ性向上効果を確保する作用を有する。このような効果は、0.005%以上の含有で認められるが、0.03%を超えて含有すると、TiNが粗大化し、γ粒の微細化効果が消失し、靭性が劣化する。このため、Tiは0.03%以下に限定することが好ましい。   Ti combines with N in the steel to form TiN, suppresses the coarsening of crystal grains and contributes to the improvement of HAZ toughness, and reduces the solid solution N and ensures the effect of improving the hardenability of B. Have. Such an effect is recognized when the content is 0.005% or more. However, when the content exceeds 0.03%, TiN becomes coarse, the effect of refining γ grains disappears, and toughness deteriorates. For this reason, it is preferable to limit Ti to 0.03% or less.

Vは、炭化物および/または窒化物として析出し、析出硬化により鋼の強度を増加させる作用を有する。このような効果は0.005%以上の含有で認められるが、0.100%を超えて含有すると、溶接性が劣化する。このため、Vは0.005〜0.100%の範囲に限定することが好ましい。なお、より好ましくは0.010〜0.060%である。   V precipitates as carbides and / or nitrides and has the effect of increasing the strength of the steel by precipitation hardening. Such an effect is recognized at a content of 0.005% or more, but if it exceeds 0.100%, the weldability deteriorates. For this reason, it is preferable to limit V to 0.005 to 0.100% of range. In addition, More preferably, it is 0.010 to 0.060%.

Nbは、熱間圧延時のオーステナイト粒の再結晶を抑制して、熱間圧延によるオーステナイト粒の展伸を容易にし、フェライトを微細化させて強度、靭性を向上させる作用を有する。このような効果は、0.003%以上の含有で顕著となるが、0.050%を超える含有は、溶接性およびHAZ部靭性を劣化させる。このため、Nbは0.050%以下の範囲に限定することが好ましい。なお、より好ましくは0.010〜0.030%である。   Nb has the effect of suppressing recrystallization of austenite grains during hot rolling, facilitating the expansion of austenite grains by hot rolling, and refining ferrite to improve strength and toughness. Such an effect becomes remarkable when the content is 0.003% or more, but the content exceeding 0.050% deteriorates the weldability and the HAZ part toughness. For this reason, Nb is preferably limited to a range of 0.050% or less. In addition, More preferably, it is 0.010 to 0.030%.

C群のCa、REMはいずれも、硫化物形成元素であり、硫化物を球状化し延性を向上させる元素であり、必要に応じ選択し1種または2種を含有できる。このような効果は、Ca:0.001%以上、REM:0.001%以上の含有で顕著となるが、Ca:0.010%、REM:0.020%を超える含有は硫化物が過剰に形成され靭性が劣化する。このため、Ca:0.010%以下、REM:0.020%以下に限定することが好ましい。   Ca and REM of group C are both sulfide-forming elements, elements that spheroidize sulfides and improve ductility, and can be selected as necessary to contain one or two kinds. Such effects become remarkable when the content of Ca is 0.001% or more and REM: 0.001% or more. However, when the content exceeds Ca: 0.010% and REM: 0.020%, sulfide is excessively formed and the toughness deteriorates. For this reason, it is preferable to limit to Ca: 0.010% or less and REM: 0.020% or less.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。   The balance other than the components described above consists of Fe and inevitable impurities.

上記した組成を有する溶鋼を、転炉、電気炉等の通常の溶製手段で溶製し、連続鋳造法または造塊−分塊法等の通常の鋳造法でスラブ等の鋼素材とすることが好ましい。なお、溶製方法、鋳造法については上記した方法に限定されるものではない。   The molten steel having the above composition is melted by a normal melting means such as a converter or an electric furnace, and is made into a steel material such as a slab by a normal casting method such as a continuous casting method or an ingot-bundling method. Is preferred. The melting method and the casting method are not limited to the methods described above.

鋼素材は、オーステナイト単相となる温度に加熱される。   The steel material is heated to a temperature at which it becomes an austenite single phase.

鋼素材の加熱温度は、鋼素材をオーステナイト単相組織となる温度、好ましくは1050〜1250℃とする。鋼素材の加熱温度が1050℃未満では、熱間変形抵抗が高すぎて1回あたりの圧下率を高く採れず、生産性が低下する。また、V、Nb等の析出物形成元素を含有する場合には、これら元素が十分にオーステナイト中に固溶せず、これら元素の効果を十分に発揮することが困難となる。一方、加熱温度が1250℃を超えると、結晶粒が粗大化するとともに、スケールロス量の増加や炉の改修頻度の増加を招く。このため、鋼素材の加熱温度は、1050〜1250℃の範囲とすることが好ましい。   The heating temperature of the steel material is a temperature at which the steel material becomes an austenite single phase structure, preferably 1050 to 1250 ° C. If the heating temperature of the steel material is less than 1050 ° C., the hot deformation resistance is too high, so that the rolling reduction per time cannot be taken high, and the productivity is lowered. Further, when a precipitate-forming element such as V or Nb is contained, these elements are not sufficiently dissolved in austenite, and it is difficult to sufficiently exhibit the effects of these elements. On the other hand, when the heating temperature exceeds 1250 ° C., the crystal grains become coarse and the amount of scale loss and the frequency of furnace repairs increase. For this reason, it is preferable to make the heating temperature of a steel raw material into the range of 1050-1250 degreeC.

加熱された鋼素材は、圧延終了温度をAr3変態点以上の温度域の温度とする熱間圧延を施され、厚鋼板とされる。圧延終了温度がAr3変態点未満の温度では、圧延中にフェライトが析出し、その後に焼入れ処理を行っても所望の組織が得られず、所望の強度を確保できなくなる。なお、Ar3変態点以上の温度域での累積圧下率は30%以上とすることが好ましい。累積圧下率が30%未満では、十分なオーステナイト粒の微細化が達成できない。 The heated steel material is subjected to hot rolling with the rolling end temperature set to a temperature in the temperature range equal to or higher than the Ar 3 transformation point to obtain a thick steel plate. If the rolling end temperature is lower than the Ar 3 transformation point, ferrite precipitates during rolling, and a desired structure cannot be obtained even if quenching is performed thereafter, and a desired strength cannot be ensured. The cumulative rolling reduction in the temperature range above the Ar 3 transformation point is preferably 30% or more. If the cumulative rolling reduction is less than 30%, sufficient austenite grain refinement cannot be achieved.

熱間圧延終了後、厚鋼板は、Ar3 変態点以上の温度域から焼入れ冷却される。焼入れ冷却の開始温度が、Ar3 変態点未満では、焼入れ冷却開始時の組織がオーステナイト単相ではなく、一部フェライト等への変態が開始していることになり、焼入れ処理を施してもマルテンサイト量が少なく所望の強度を確保することができなくなる。 After the hot rolling is finished, the thick steel plate is quenched and cooled from a temperature range not lower than the Ar 3 transformation point. When the quenching cooling start temperature is lower than the Ar 3 transformation point, the structure at the quenching cooling start is not an austenite single phase, and the transformation to a part of ferrite has started. The amount of sites is small and the desired strength cannot be ensured.

また、焼入れ冷却の冷却速度は、マルテンサイト生成臨界冷却速度CR以上の冷却速度とする。なお、本発明でいうマルテンサイト生成臨界冷却速度CRは、次(1)式
logCRM=2.94−0.75β ・・・・(1)
ここで、β=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+2Mo(B≧0.0005質量%の場合)
=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+Mo(B<0.0005質量%の場合)
CRM:マルテンサイト生成臨界冷却速度(℃/s)
C、Si、Mn、Ni、Cr、Mo:各元素の含有量(質量%)
で定義される冷却速度をいう。
The cooling rate of the quenching cooling, the martensite critical cooling rate CR M or more cooling rate. Note that martensite critical cooling rate CR M in the present invention, the following (1)
logCR M = 2.94−0.75β (1)
Here, β = 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + 2Mo (when B ≧ 0.0005 mass%)
= 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + Mo (when B <0.0005 mass%)
CR M: martensite critical cooling rate (° C. / s)
C, Si, Mn, Ni, Cr, Mo: Content of each element (mass%)
Refers to the cooling rate defined by.

本発明では、マルテンサイト生成臨界冷却速度CR以上の冷却速度で、マルテンサイト変態開始温度(Ms点)以下300℃以上の温度域の焼入れ冷却停止温度まで冷却する、焼入れ処理を施す。これにより、板厚方向各位置で部分的にマルテンサイトがまず生成する。 In the present invention, in martensite critical cooling rate CR M or more cooling rate, cooling to quench cooling stop temperature of martensitic transformation starting temperature (Ms point) or less 300 ° C. or higher temperature range is subjected to quenching treatment. Thereby, martensite is first partially generated at each position in the plate thickness direction.

ここで部分的にマルテンサイトを生成させることは、生成したマルテンサイトと未変態のオーステナイトとの界面にマルテンサイト変態時の膨張を利用した歪の生成を狙ったものである。この歪エネルギーにより未変態のオーステナイトが下部ベイナイトへ変態しやすくなるとともに、下部ベイナイト相を従来に比べて微細でかつ多量に生成することが可能となる。   The partial generation of martensite here aims to generate strain using expansion during martensite transformation at the interface between the generated martensite and untransformed austenite. This strain energy facilitates transformation of untransformed austenite to lower bainite, and it is possible to produce a lower bainite phase that is finer and more abundant than conventional ones.

焼入れ冷却の冷却速度がマルテンサイト生成臨界冷却速度CR未満では、マルテンサイト変態前に粗大なベイナイトが生成し、上記したマルテンサイト変態による歪の生成が不十分となり、所期した効果を期待できなくなる。 The cooling rate is martensite subcritical cooling rate CR M quench cooling, martensite coarse bainite is generated before transformation, generation of distortion due to martensitic transformation described above is insufficient, can be expected desired to effect Disappear.

また、焼入れ冷却停止温度が、Ms点を超える温度では、マルテンサイトの生成による歪生成効果が期待できず、下部ベイナイト相への変態促進が不十分となるうえ、その後の等温保持、あるいは冷却(徐冷)により、靭性に有害な島状マルテンサイト量が増加する。一方、焼入れ冷却停止温度が300℃未満では、Cの拡散が不十分となり、亀裂伝播抵抗に有効な炭化物がベイニティックフェライト中に析出しない。このようなことから、焼入れ冷却停止温度はMs点以下300℃以上の温度域の温度とした。なお、好ましくは、Ms点以下350℃以上の温度範囲である。   Further, when the quenching cooling stop temperature exceeds the Ms point, the strain generation effect due to the formation of martensite cannot be expected, the transformation to the lower bainite phase is insufficiently promoted, and the subsequent isothermal holding or cooling ( (Slow cooling) increases the amount of island martensite harmful to toughness. On the other hand, if the quenching and cooling stop temperature is less than 300 ° C., the diffusion of C becomes insufficient, and carbide effective for crack propagation resistance does not precipitate in bainitic ferrite. For this reason, the quenching and cooling stop temperature was set to a temperature in the temperature range of 300 ° C. or higher below the Ms point. In addition, Preferably, it is the temperature range below 350 degreeC above Ms point.

ついで、厚鋼板は、上記した範囲の焼入れ冷却停止温度で所定時間等温保持するか、あるいは該焼入れ冷却停止温度から室温までの温度域を10℃/s未満の冷却速度で冷却される。   Next, the thick steel plate is kept isothermal for a predetermined time at the quenching cooling stop temperature in the above-described range, or is cooled at a cooling rate of less than 10 ° C./s in the temperature range from the quenching cooling stop temperature to room temperature.

焼入れ冷却停止温度で所定時間等温保持することにより、マルテンサイトが自己焼鈍される一方、未変態オーステナイトの下部ベイナイトへの変態が促進され、焼戻しマルテンサイトと下部ベイナイトとの混合組織を得ることができる。等温保持における保持の所定時間は、1〜60minとすることが好ましい。等温保持時間が1min未満では、未変態オーステナイトの下部ベイナイトへの変態が完了せず、Cが濃縮された未変態オーステナイトが、その後の冷却により島状マルテンサイトとなるため、靭性が劣化する。一方、等温保持時間が60minを超えて長くしても、内部組織に大きな変化は見られなくなる。このため、等温保持時間は1〜60minとすることが好ましい。   By maintaining isothermal for a predetermined time at the quenching and cooling stop temperature, martensite is self-annealed, while transformation of untransformed austenite to lower bainite is promoted, and a mixed structure of tempered martensite and lower bainite can be obtained. . The predetermined holding time in the isothermal holding is preferably 1 to 60 minutes. If the isothermal holding time is less than 1 min, the transformation of untransformed austenite to lower bainite is not completed, and the untransformed austenite enriched with C becomes island-like martensite by subsequent cooling, so that the toughness deteriorates. On the other hand, even if the isothermal holding time is longer than 60 min, no significant change is observed in the internal tissue. For this reason, the isothermal holding time is preferably 1 to 60 minutes.

また、本発明では等温保持に代えて、焼入れ冷却停止温度から室温までの温度域を10℃/s未満の冷却速度で冷却(徐冷)してもよい。徐冷することにより、未変態オーステナイトが下部ベイナイトへ変態しやすくなる。焼入れ冷却停止温度から室温までの冷却速度を10℃/s以上とすると、冷却中にさらにマルテンサイトが生成し、靭性が低下する。このため、焼入れ冷却停止温度から室温までの温度域を10℃/s未満の冷却速度で冷却することが好ましい。   In the present invention, instead of isothermal holding, the temperature range from the quenching cooling stop temperature to room temperature may be cooled (slowly cooled) at a cooling rate of less than 10 ° C./s. By slow cooling, untransformed austenite is easily transformed into lower bainite. When the cooling rate from the quenching cooling stop temperature to room temperature is 10 ° C./s or more, martensite is further generated during cooling and the toughness is lowered. For this reason, it is preferable to cool the temperature range from the quenching cooling stop temperature to room temperature at a cooling rate of less than 10 ° C./s.

上記した製造条件で得られる厚鋼板は、上記した組成を有しかつ、板厚方向位置に拠らず、焼戻しマルテンサイトと下部ベイナイトとの混合組織を有する。焼戻しマルテンサイトと下部ベイナイトの組織分率は、体積率で80%以上となる。なお、下部ベイナイトの組織分率は、体積率で全体の50%以上となることが好ましい。また、焼戻しマルテンサイトと下部ベイナイト以外の相としては、体積率で20%以下の上部ベイナイトやフェライトの混在が許容できる。なお、ここでいう「焼戻しマルテンサイト」とは、炭化物が析出あるいは球状化したマルテンサイトをいうものとする。また、ここでいう「下部ベイナイト」は、炭化物が球状化した焼戻し下部ベイナイトをも含むものとする。   The thick steel plate obtained under the manufacturing conditions described above has the above-described composition and has a mixed structure of tempered martensite and lower bainite regardless of the position in the plate thickness direction. The structural fraction of tempered martensite and lower bainite is 80% or more by volume. In addition, it is preferable that the structure fraction of the lower bainite is 50% or more of the whole by volume. In addition, as phases other than tempered martensite and lower bainite, mixing of upper bainite and ferrite having a volume ratio of 20% or less is acceptable. Here, “tempered martensite” refers to martensite in which carbides are precipitated or spheroidized. The “lower bainite” here also includes tempered lower bainite in which carbides are spheroidized.

なお、実操業においては、鋼板の温度管理は、鋼板表面温度により行われ、リアルタイムで鋼板全体の平均温度を計算して、この平均温度に基いて温度制御や速度制御を行うのが一般的であるため、本発明でいう「温度」は鋼板全体の平均温度、「冷却速度」は鋼板全体の平均冷却速度を意味するものとする。   In actual operation, the temperature of the steel sheet is generally controlled by the surface temperature of the steel sheet, and the average temperature of the entire steel sheet is calculated in real time, and temperature control and speed control are generally performed based on this average temperature. Therefore, “temperature” in the present invention means the average temperature of the entire steel plate, and “cooling rate” means the average cooling rate of the whole steel plate.

また、本発明では、Ar3、Msの各変態点は、各鋼素材(厚鋼板)中の各元素の含有量に基づいた、次(2)、(3)式
Ar3=910-273C−74Mn−56Ni−16Cr−9Mo−5Cu ………(2)
Ms=517−300C−11Si−33Mn−22Cr−17Ni−11Mo ………(3)
(ここで、C、Mn、Si、Cr、Ni、Mo、Cu:各元素の含有量(%))
を用いて計算して得られる値を用いるものとする。
In the present invention, the transformation points of Ar 3 and Ms are expressed by the following formulas (2) and (3) based on the content of each element in each steel material (thick steel plate).
Ar 3 = 910-273C-74Mn-56Ni-16Cr-9Mo-5Cu (2)
Ms = 517-300C-11Si-33Mn-22Cr-17Ni-11Mo (3)
(Here, C, Mn, Si, Cr, Ni, Mo, Cu: content of each element (%))
The value obtained by calculating using is used.

表1に示す組成の溶鋼を真空溶解炉で溶製した鋼塊を熱間圧延により100mm厚のスラブ(鋼素材)とした。ついで、これらスラブに表2に示す条件の熱間圧延とそれに続いて焼入れ処理を施して、厚鋼板(板厚:12〜50mm)とした。   A steel ingot obtained by melting molten steel having the composition shown in Table 1 in a vacuum melting furnace was hot rolled to form a slab (steel material) having a thickness of 100 mm. Subsequently, these steel slabs were subjected to hot rolling under the conditions shown in Table 2, followed by quenching to obtain thick steel plates (plate thickness: 12 to 50 mm).

得られた厚鋼板について、板厚方向1/2の位置からJIS Z 2201の規定に準拠して、4号引張試験片を採取して、JIS Z 2241の規定に準拠して引張試験を実施し、引張強さTSを求めた。なお、表層部とは、表面から1mmの位置をいうものとする。   With respect to the obtained thick steel plate, a No. 4 tensile test piece was collected from the position in the thickness direction 1/2 in accordance with the provisions of JIS Z 2201, and a tensile test was performed in accordance with the provisions of JIS Z 2241. The tensile strength TS was determined. The surface layer portion means a position 1 mm from the surface.

また、得られた厚鋼板の板厚方向1/2の位置からJIS Z 2202の規定に準拠して、Vノッチ標準寸法のシャルピー衝撃試験片を採取して、JIS Z 2242の規定に準拠して衝撃試験を実施し、−40℃でのシャルピー衝撃吸収エネルギーvE-40(J)を求めた。 In addition, a Charpy impact test piece with a V-notch standard dimension was collected from the position of the obtained thick steel plate in the thickness direction 1/2 in accordance with JIS Z 2202, and in accordance with JIS Z 2242. An impact test was performed to determine Charpy impact absorption energy vE- 40 (J) at -40 ° C.

また、得られた厚鋼板から、硬さ測定試験片を採取し、圧延方向に直交する断面(C断面)で板厚方向に表面から裏面まで連続的にビッカース硬度計を用いて硬さを測定した。得られた板厚方向の硬さ分布から、最高値と最低値の差、ΔHvを求め、厚鋼板の板厚方向の均質性を評価した。   In addition, from the obtained thick steel plate, a hardness measurement test piece is collected, and the hardness is continuously measured using a Vickers hardness tester in the plate thickness direction from the front surface to the back surface in a cross section (C cross section) orthogonal to the rolling direction. did. The difference between the maximum value and the minimum value, ΔHv, was obtained from the hardness distribution in the plate thickness direction, and the homogeneity in the plate thickness direction of the thick steel plate was evaluated.

また、得られた厚鋼板から、組織観察用試験片を採取し、走査型電子顕微鏡および透過型電子顕微鏡により板厚方向1/2の位置の組織観察を行い、組織の同定、および各組織の組織分率を求めた。なお、焼戻しマルテンサイトと下部ベイナイトは炭化物の析出形態により判別した。各組織の組織分率は、走査型電子顕微鏡を用いて線分法により平均オーステナイト(γ)粒径を測定し、その平均的なγ粒径の粒をランダムに10個選び、そのγ粒内の各組織の領域をそれぞれ断面面積率として求め、10個の断面面積率の平均値をその鋼板各位置の組織分率とした。なお、表2中の鋼板温度、冷却速度は、平均温度、平均冷却速度を用いて表示してある。   In addition, a specimen for tissue observation is collected from the obtained thick steel plate, and the structure is observed at a position in the plate thickness direction 1/2 with a scanning electron microscope and a transmission electron microscope. The tissue fraction was determined. In addition, tempered martensite and lower bainite were discriminated by the precipitation form of carbides. The structure fraction of each structure is determined by measuring the average austenite (γ) particle size by a line segment method using a scanning electron microscope, and randomly selecting 10 particles having an average γ particle size. The area of each structure was determined as the cross-sectional area ratio, and the average value of the 10 cross-sectional area ratios was taken as the structure fraction at each position of the steel sheet. In addition, the steel plate temperature and the cooling rate in Table 2 are displayed using the average temperature and the average cooling rate.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 2005139517
Figure 2005139517

Figure 2005139517
Figure 2005139517

Figure 2005139517
Figure 2005139517

Figure 2005139517
Figure 2005139517

Figure 2005139517
Figure 2005139517

Figure 2005139517
Figure 2005139517

本発明例はいずれも、引張強さ590MPa以上の高強度と、各強度に応じた高靭性を有し、しかも板厚方向のΔHvも小さく板厚方向特性の均質性に優れた厚鋼板となっている。一方、本発明の範囲を外れる比較例は、いずれも下部ベイナイト量が少なく、強度、靭性、あるいは均質性のうちのいずれかが低下している。とくに、下部ベイナイト量の増加は靭性向上に大きく寄与していることがわかる。   Each of the examples of the present invention is a thick steel plate having a high strength with a tensile strength of 590 MPa or more and a high toughness according to each strength, and also has a small ΔHv in the thickness direction and excellent uniformity in the thickness direction characteristics. ing. On the other hand, all the comparative examples outside the scope of the present invention have a lower amount of lower bainite, and any one of strength, toughness, and homogeneity is lowered. In particular, it can be seen that the increase in the amount of lower bainite greatly contributes to the improvement of toughness.

例えば、焼入れ冷却の冷却速度が本発明範囲を外れる、鋼板No.29、No.30、No.31では靭性は優れているが、合金元素含有量に見合う所望の強度レベルが得られていない。また、焼入れ冷却停止温度がMs点より高く、本発明範囲を外れる、鋼板No.32、No.34では靭性が劣化している。また、焼入れ冷却停止温度を室温(50℃)とし、本発明範囲を外れる、鋼板No.33でも、同様である。   For example, steel plates No. 29, No. 30, and No. 31 with excellent quenching cooling rate outside the scope of the present invention have excellent toughness, but a desired strength level that matches the alloy element content is not obtained. Further, the toughness is deteriorated in the steel plates No. 32 and No. 34 whose quenching and cooling stop temperature is higher than the Ms point and out of the scope of the present invention. The same applies to steel plate No. 33, where the quenching and cooling stop temperature is set to room temperature (50 ° C.) and is outside the scope of the present invention.

また、焼入れ冷却停止温度からの冷却で冷却速度を10℃/s以上とする、本発明の範囲を外れる、鋼板No.35、No.36では、同一強度レベルの本発明例に比べて靭性が大きく劣化している。   In addition, the steel plate No. 35 and No. 36, which have a cooling rate of 10 ° C./s or more by cooling from the quenching cooling stop temperature and are outside the scope of the present invention, have toughness compared to the present invention example of the same strength level. Deteriorated greatly.

また、化学成分が本発明の範囲を外れる鋼板No.37〜41はいずれも、同一強度レベルの本発明例に比べて靭性が大きく劣化している。   In addition, the steel plates Nos. 37 to 41 whose chemical components deviate from the scope of the present invention are greatly deteriorated in toughness as compared with the present invention example having the same strength level.

Claims (3)

質量%で、
C:0.01〜0.20%、 Si:0.01〜0.60%、
Mn:0.50〜2.50%、 P:0.020%以下、
S:0.0070%以下、 solAl:0.001〜0.100%
を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼素材を、加熱したのち、圧延終了温度をAr3変態点以上の温度域とする熱間圧延を施し、ついで、Ar3変態点以上の温度域から、下記(1)式で定義されるマルテンサイト生成臨界冷却速度CR以上の冷却速度で冷却を開始し、マルテンサイト変態開始温度以下300℃以上の温度域の焼入れ冷却停止温度まで冷却したのち、該焼入れ冷却停止温度で所定時間等温保持するか、あるいは該焼入れ冷却停止温度から室温までの温度域を10℃/s未満の冷却速度で冷却することを特徴とする高強度高靭性厚鋼板の製造方法。

logCRM=2.94−0.75β ・・・・(1)
ここで、β=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+2Mo(B≧0.0005質量%の場合)
=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+Mo(B<0.0005質量%の場合)
CRM:マルテンサイト生成臨界冷却速度(℃/s)
C、Si、Mn、Ni、Cr、Mo:各元素の含有量(質量%)
% By mass
C: 0.01-0.20%, Si: 0.01-0.60%,
Mn: 0.50-2.50%, P: 0.020% or less,
S: 0.0070% or less, solAl: 0.001 to 0.100%
After heating a steel material having a composition consisting of Fe and the inevitable impurities in the balance, the steel is subjected to hot rolling in which the rolling end temperature is equal to or higher than the Ar 3 transformation point, and then the Ar 3 transformation point. from the above temperature range, the following (1) martensite critical cooling rate CR M or more cooling rate defined by start cooling by the formula, the martensitic transformation starting temperature below 300 ° C. over a temperature range of quench cooling stop temperature After cooling to the quenching cooling stop temperature, the isothermal holding is performed for a predetermined time, or the temperature range from the quenching cooling stop temperature to room temperature is cooled at a cooling rate of less than 10 ° C / s. A method for producing a tough steel plate.
Record
logCR M = 2.94−0.75β (1)
Here, β = 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + 2Mo (when B ≧ 0.0005 mass%)
= 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + Mo (when B <0.0005 mass%)
CR M: martensite critical cooling rate (° C. / s)
C, Si, Mn, Ni, Cr, Mo: Content of each element (mass%)
前記所定時間が、1〜60minであることを特徴とする請求項1に記載の高強度高靭性厚鋼板の製造方法。   The method for producing a high-strength, high-toughness thick steel plate according to claim 1, wherein the predetermined time is 1 to 60 minutes. 前記組成に加えてさらに、質量%で、下記A〜C群のうちから選ばれた1群または2群以上を含有することを特徴とする請求項1または2に記載の高強度高靭性厚鋼板の製造方法。

A群:質量%で、Cu:0.10〜1.00%、Ni:0.10〜5.00%、Cr:0.10〜0.80%、Mo:0.01〜0.80%、B:0.0002〜0.0025%のうちから選ばれた1種または2種以上
B群:質量%で、Ti:0.03%以下、V:0.005〜0.100%、Nb:0.050%以下のうちから選ばれた1種または2種以上
C群:質量%で、Ca:0.010%以下、REM:0.020%以下のうちから選ばれた1種または2種
The high-strength and high-toughness thick steel plate according to claim 1 or 2, further comprising one group or two or more groups selected from the following groups A to C in mass% in addition to the composition. Manufacturing method.
Group A: Mass%, Cu: 0.10 to 1.00%, Ni: 0.10 to 5.00%, Cr: 0.10 to 0.80%, Mo: 0.01 to 0.80%, B: 0.0002 to 0.0025% Alternatively, two or more types B group: mass%, Ti: 0.03% or less, V: 0.005 to 0.100%, Nb: 0.050% or less selected from one or more types C group: mass%, Ca: One or two selected from 0.010% or less, REM: 0.020% or less
JP2003377854A 2003-11-07 2003-11-07 Manufacturing method of high strength and high toughness thick steel plate Expired - Lifetime JP4379085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003377854A JP4379085B2 (en) 2003-11-07 2003-11-07 Manufacturing method of high strength and high toughness thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003377854A JP4379085B2 (en) 2003-11-07 2003-11-07 Manufacturing method of high strength and high toughness thick steel plate

Publications (2)

Publication Number Publication Date
JP2005139517A true JP2005139517A (en) 2005-06-02
JP4379085B2 JP4379085B2 (en) 2009-12-09

Family

ID=34688426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003377854A Expired - Lifetime JP4379085B2 (en) 2003-11-07 2003-11-07 Manufacturing method of high strength and high toughness thick steel plate

Country Status (1)

Country Link
JP (1) JP4379085B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291349A (en) * 2005-03-17 2006-10-26 Jfe Steel Kk Line pipe steel sheet having high deformation performance and its manufacturing method
JP2007119889A (en) * 2005-10-31 2007-05-17 Jfe Steel Kk High toughness and high tensile strength steel plate and production method therefor
JP2007197761A (en) * 2006-01-25 2007-08-09 Kobe Steel Ltd Marine steel with excellent corrosion resistance and brittle crack arrest behavior
JP2007197760A (en) * 2006-01-25 2007-08-09 Kobe Steel Ltd Marine steel with excellent corrosion resistance and brittle fracture occurrence characteristic
JP2007197762A (en) * 2006-01-25 2007-08-09 Kobe Steel Ltd Marine steel with excellent corrosion resistance and fatigue crack propagation resistance
EP1923477A1 (en) * 2005-08-22 2008-05-21 Nippon Steel Corporation Highly strong, thick electric resistance-welded steel pipe excellent in quenching property, hot forming processability and fatigue strength, and method for manufacture thereof
JP2012092419A (en) * 2010-09-30 2012-05-17 Jfe Steel Corp Thick steel plate with superior fatigue resistance and method of manufacturing the same
JP2012107333A (en) * 2010-10-28 2012-06-07 Jfe Steel Corp High-strength steel for high-pressure hydrogen storage container
KR101271888B1 (en) 2010-12-23 2013-06-05 주식회사 포스코 Thick Plate Having Excellent Wear Resistant And Low-Temperature Toughness, And Method For Manufacturing The Same
CN103147017A (en) * 2013-03-21 2013-06-12 宝山钢铁股份有限公司 Steel plate with high strength and excellent low-temperature toughness and manufacturing method thereof
CN104404390A (en) * 2014-12-08 2015-03-11 钢铁研究总院 High-strength and high-plasticity bolting steel for supporting in coal mines and manufacturing method thereof
CN104894490A (en) * 2014-03-05 2015-09-09 鞍钢股份有限公司 High-strength extremely thick steel plate and production method thereof
CN110184525A (en) * 2018-04-20 2019-08-30 江阴兴澄特种钢铁有限公司 A kind of high intensity Q500GJE quenched and tempered state steel plate for building structure and its manufacturing method
CN110952034A (en) * 2019-11-28 2020-04-03 舞阳钢铁有限责任公司 Large-thickness hydroelectric S550Q steel plate and production method thereof
CN112281053A (en) * 2020-09-21 2021-01-29 中国石油天然气集团有限公司 SiMnCrNiMo low-carbon martensitic steel, drilling machine hoisting ring and manufacturing method thereof
WO2023228523A1 (en) * 2022-05-26 2023-11-30 Jfeスチール株式会社 Pipeline steel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230529A (en) * 1992-02-25 1993-09-07 Nippon Steel Corp Production of high strength hot rolled steel plate excellent in workability and weldability
JPH06145894A (en) * 1992-11-05 1994-05-27 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JPH08277438A (en) * 1995-04-07 1996-10-22 Nippon Steel Corp Production of high tensile strength steel excellent in strength and toughness
JPH10298707A (en) * 1997-02-25 1998-11-10 Sumitomo Metal Ind Ltd High toughness and high tensile strength steel and its production
JPH1136042A (en) * 1997-07-18 1999-02-09 Sumitomo Metal Ind Ltd High tensile strength steel excellent in arrestability and weldability and its production
JP2001511482A (en) * 1997-07-28 2001-08-14 エクソンモービル アップストリーム リサーチ カンパニー Ultra high strength, weldable steel with excellent ultra low temperature toughness
JP2002534601A (en) * 1998-12-19 2002-10-15 エクソンモービル アップストリーム リサーチ カンパニー Ultra high strength ausage treated steel with excellent cryogenic toughness

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230529A (en) * 1992-02-25 1993-09-07 Nippon Steel Corp Production of high strength hot rolled steel plate excellent in workability and weldability
JPH06145894A (en) * 1992-11-05 1994-05-27 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JPH08277438A (en) * 1995-04-07 1996-10-22 Nippon Steel Corp Production of high tensile strength steel excellent in strength and toughness
JPH10298707A (en) * 1997-02-25 1998-11-10 Sumitomo Metal Ind Ltd High toughness and high tensile strength steel and its production
JPH1136042A (en) * 1997-07-18 1999-02-09 Sumitomo Metal Ind Ltd High tensile strength steel excellent in arrestability and weldability and its production
JP2001511482A (en) * 1997-07-28 2001-08-14 エクソンモービル アップストリーム リサーチ カンパニー Ultra high strength, weldable steel with excellent ultra low temperature toughness
JP2002534601A (en) * 1998-12-19 2002-10-15 エクソンモービル アップストリーム リサーチ カンパニー Ultra high strength ausage treated steel with excellent cryogenic toughness

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291349A (en) * 2005-03-17 2006-10-26 Jfe Steel Kk Line pipe steel sheet having high deformation performance and its manufacturing method
EP1923477A4 (en) * 2005-08-22 2015-04-01 Nippon Steel & Sumitomo Metal Corp Highly strong, thick electric resistance-welded steel pipe excellent in quenching property, hot forming processability and fatigue strength, and method for manufacture thereof
EP1923477A1 (en) * 2005-08-22 2008-05-21 Nippon Steel Corporation Highly strong, thick electric resistance-welded steel pipe excellent in quenching property, hot forming processability and fatigue strength, and method for manufacture thereof
JP2007119889A (en) * 2005-10-31 2007-05-17 Jfe Steel Kk High toughness and high tensile strength steel plate and production method therefor
JP2007197761A (en) * 2006-01-25 2007-08-09 Kobe Steel Ltd Marine steel with excellent corrosion resistance and brittle crack arrest behavior
JP2007197760A (en) * 2006-01-25 2007-08-09 Kobe Steel Ltd Marine steel with excellent corrosion resistance and brittle fracture occurrence characteristic
JP2007197762A (en) * 2006-01-25 2007-08-09 Kobe Steel Ltd Marine steel with excellent corrosion resistance and fatigue crack propagation resistance
JP4579838B2 (en) * 2006-01-25 2010-11-10 株式会社神戸製鋼所 Marine steel with excellent corrosion resistance and brittle crack stopping properties
JP4579837B2 (en) * 2006-01-25 2010-11-10 株式会社神戸製鋼所 Marine steel with excellent corrosion resistance and brittle fracture characteristics
JP2012092419A (en) * 2010-09-30 2012-05-17 Jfe Steel Corp Thick steel plate with superior fatigue resistance and method of manufacturing the same
JP2012107333A (en) * 2010-10-28 2012-06-07 Jfe Steel Corp High-strength steel for high-pressure hydrogen storage container
KR101271888B1 (en) 2010-12-23 2013-06-05 주식회사 포스코 Thick Plate Having Excellent Wear Resistant And Low-Temperature Toughness, And Method For Manufacturing The Same
CN103147017A (en) * 2013-03-21 2013-06-12 宝山钢铁股份有限公司 Steel plate with high strength and excellent low-temperature toughness and manufacturing method thereof
CN104894490A (en) * 2014-03-05 2015-09-09 鞍钢股份有限公司 High-strength extremely thick steel plate and production method thereof
CN104404390A (en) * 2014-12-08 2015-03-11 钢铁研究总院 High-strength and high-plasticity bolting steel for supporting in coal mines and manufacturing method thereof
CN110184525A (en) * 2018-04-20 2019-08-30 江阴兴澄特种钢铁有限公司 A kind of high intensity Q500GJE quenched and tempered state steel plate for building structure and its manufacturing method
CN110184525B (en) * 2018-04-20 2021-06-22 江阴兴澄特种钢铁有限公司 High-strength Q500GJE quenched and tempered steel plate for building structure and manufacturing method thereof
CN110952034A (en) * 2019-11-28 2020-04-03 舞阳钢铁有限责任公司 Large-thickness hydroelectric S550Q steel plate and production method thereof
CN112281053A (en) * 2020-09-21 2021-01-29 中国石油天然气集团有限公司 SiMnCrNiMo low-carbon martensitic steel, drilling machine hoisting ring and manufacturing method thereof
CN112281053B (en) * 2020-09-21 2022-03-01 中国石油天然气集团有限公司 SiMnCrNiMo low-carbon martensitic steel, drilling machine hoisting ring and manufacturing method thereof
WO2023228523A1 (en) * 2022-05-26 2023-11-30 Jfeスチール株式会社 Pipeline steel

Also Published As

Publication number Publication date
JP4379085B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP5069863B2 (en) 490 MPa class low yield ratio cold-formed steel pipe excellent in weldability and manufacturing method thereof
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
EP3653736B1 (en) Hot-rolled steel strip and manufacturing method
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
EP1375694B2 (en) Hot-rolled steel strip and method for manufacturing the same
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP3247908B2 (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JPH07331328A (en) Production of high tensile strength steel excellent in toughness at low temperature
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP2008189973A (en) Method for producing high-toughness and high-tension steel sheet excellent in strength-elongation balance
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP4951938B2 (en) Manufacturing method of high toughness high tensile steel sheet
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JP2007197778A (en) High-strength steel material having low strength-dependency and superior fatigue-crack propagation resistance, and manufacturing method therefor
JP6923103B1 (en) Manufacturing method of thick steel plate and thick steel plate
JP2004339550A (en) LOW YIELD RATIO 570 MPa CLASS HIGH-TENSILE STRENGTH STEEL HAVING EXCELLENT WELD ZONE TOUGHNESS AND THREAD CUTTABILITY, AND ITS PRODUCTION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4379085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term