WO2016174500A1 - Martensitic stainless steel, method for producing a semi-finished product made from said steel and cutting tool produced from said semi-finished product - Google Patents

Martensitic stainless steel, method for producing a semi-finished product made from said steel and cutting tool produced from said semi-finished product Download PDF

Info

Publication number
WO2016174500A1
WO2016174500A1 PCT/IB2015/053144 IB2015053144W WO2016174500A1 WO 2016174500 A1 WO2016174500 A1 WO 2016174500A1 IB 2015053144 W IB2015053144 W IB 2015053144W WO 2016174500 A1 WO2016174500 A1 WO 2016174500A1
Authority
WO
WIPO (PCT)
Prior art keywords
traces
semi
steel
temperature
finished product
Prior art date
Application number
PCT/IB2015/053144
Other languages
French (fr)
Inventor
Francis Chassagne
Françoise Haegeli
Original Assignee
Aperam
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aperam filed Critical Aperam
Priority to PCT/IB2015/053144 priority Critical patent/WO2016174500A1/en
Priority to MX2017013834A priority patent/MX2017013834A/en
Priority to UAA201710404A priority patent/UA120119C2/en
Priority to EP16724302.1A priority patent/EP3289109B1/en
Priority to PCT/EP2016/059684 priority patent/WO2016146857A1/en
Priority to CN201680025863.1A priority patent/CN107567507A/en
Priority to BR112017023361-4A priority patent/BR112017023361B1/en
Priority to ES16724302T priority patent/ES2796354T3/en
Priority to US15/570,574 priority patent/US20180127858A1/en
Priority to RU2017137708A priority patent/RU2017137708A/en
Priority to CA2984514A priority patent/CA2984514A1/en
Priority to KR1020177034728A priority patent/KR20170141250A/en
Priority to JP2017556875A priority patent/JP6767389B2/en
Publication of WO2016174500A1 publication Critical patent/WO2016174500A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • C21C7/0685Decarburising of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/18Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for knives, scythes, scissors, or like hand cutting tools

Definitions

  • Martensitic stainless steel method of manufacturing a semi-finished product of this steel and cutting tool made from this semi-finished product
  • the invention relates to a martensitic stainless steel.
  • This steel is mainly intended for the manufacture of cutting tools, especially cutlery items, such as scalpels, scissors blades, or knife blades or blades of household robots.
  • Steels for cutlery must have high corrosion resistance, polishing ability and hardness.
  • the martensitic stainless steels currently used to make the blades of the cutting tools such as the steels of the types EN 1 .4021, EN 1 .4028 and EN 1 .4034, have Cr contents of less than or equal to 14 or 14, 5% by weight and variable C contents, ie 0.16% -0.25% for EN 1 4021, 0.26-0.35% for EN 1 4028 and 0.43-0.50. % for EN 1 4034.
  • the hardness level of the steel depends mainly on this C content.
  • the grade EN 1 .4419 at 0.36-0.42% C, 13.0-14.5% Cr and 0.60-1.00% of Mo can be used.
  • these steels are typically made in an AOD converter, then continuously cast as slabs, blooms, or billets, and then hot-rolled to a reel, roll bar, or wire rod. They are then annealed to obtain a ferritic structure containing carbides, which is sufficiently soft to allow cold rolling for the flat products, or to facilitate sawing before forging the hot-rolled semi-finished product for long products.
  • the product then undergoes recrystallization annealing.
  • the product is cut to give it its final shape, for example that of a knife blade, before undergoing a heat treatment comprising a high temperature austenitization, typically between 950 ° C. and 1150 ° C, followed by quenching to room temperature which leads to a predominantly martensitic structure.
  • the product has a high hardness, the higher the carbon content is important, but it also has great fragility.
  • a tempering treatment typically between 100 ° C and 300 ° C, is then performed to reduce brittleness without too much lowering hardness.
  • the blade then undergoes various operations including sharpening and polishing to give it its cutting quality and aesthetic appearance. None of the four shades mentioned at the same time allows a good resistance to corrosion, a good surface condition and a high hardness, for a reasonable cost.
  • the grade EN 1 .4419 has good corrosion resistance and high hardness, but it is prohibitively expensive due to the addition of Mo in large quantities.
  • the grade EN 1 .4034 has a high hardness, but also a poor surface appearance after polishing, because of the presence in large numbers of undissolved carbides during austenitization, because of the high C content of this grade. .
  • the corrosion resistance is insufficient because the Cr content is not high enough in the matrix, especially since part of the Cr is trapped in the undissolved carbides.
  • the less loaded grades of C EN 1 4021 and 1 4028 have lower hardnesses, without having sufficient resistance to corrosion due to too low Cr contents.
  • the present invention aims to solve the problems mentioned above.
  • it aims to provide a martensitic stainless steel for cutting tool as economical as possible, which however has both good corrosion resistance, good polishing ability and high hardness.
  • the invention relates to a martensitic stainless steel, characterized in that its composition is, in percentages by weight:
  • Its Cr content can be between 15 and 17%.
  • microstructure preferably comprises at least 75% of martensite
  • the subject of the invention is also a process for producing a martensitic stainless steel semi-finished product, characterized in that:
  • said semi-product is heated to a temperature greater than or equal to 1000 ° C .
  • said sheet, said bar or said machine wire is annealed at a temperature of between 700 and 900 ° C .;
  • Said half-product may be a sheet, and said forming operation may be cold rolling.
  • Said half-product may be a bar or a wire rod, and said shaping operation may be forging.
  • Said semi-shaped product if its Cr content is between 15 and 17%, can then be austenitized between 950 and 1150 ° C, and then cooled at a rate of at least 15 ° C / s to a temperature lower than or equal to 20 ° C, then undergoes an income at a temperature between 100 and 300 ° C.
  • Said semi-finished product can then be austenitized between 950 and 1150 ° C, then cooled at a rate of at least 15 ° C / s to a temperature of 20 ° C or lower, and then undergoes a treatment. cryogenic at a temperature of -220 to -50 ° C, then a tempering at a temperature of between 100 and 300 ° C.
  • the invention also relates to a cutting tool, characterized in that it was made from a semi-finished product prepared according to the preceding method.
  • the cutting tool may be a cutlery article such as a knife blade, a food processor blade, a scalpel, or a scissors blade,
  • the invention consists in using, in order to produce the cutting tool, a martensitic stainless steel of particular composition, free from expensive elements at high levels, but containing relatively large amounts of nitrogen located in a well defined range. Also, a particular balancing of the contents of Cr, C and N is necessary.
  • FIG. 1 shows the evolution of the Vickers hardness of steel under a load of 1 kg, depending on the martensite rate after austenitization, quenching and tempering, of a steel according to the invention.
  • the C content must be at least 0.10% to obtain sufficient hardness and at most 0.45% to obtain good corrosion resistance and a satisfactory surface appearance after polishing. Depending on the casting process used, however, it may be useful to limit a little more the maximum content of C in case this process might not guarantee homogeneity of the solidifying steel which would be sufficient to avoid a precipitation of primary carbides M 7 C 3 . In this case, it is advisable to limit the C content to 0.40%, better still to 0.25%.
  • Mn is a so-called gammagenic element because it stabilizes the austenitic structure.
  • An excessive content of Mn leads to an insufficient martensite rate after austenitization and quenching treatment, which leads to a decrease in hardness. For this reason the Mn content must be less than or equal to 1.0%.
  • Si is a useful element in the process of making steel. It is very reducing, and it allows to reduce the Cr oxides in the reduction phase of the steel that follows the decarburization phase in the AOD converter. However, the Si content in the final steel must be less than or equal to 1.0%, since this element has a heat-curing effect which limits the possibilities of hot deformation during hot rolling or during forging.
  • S and P are impurities that decrease hot ductility. P easily segregates at the grain boundaries and facilitates their decohesion. In addition, S reduces the resistance to pitting corrosion by forming compounds with Mn which serve as initiating sites for this type of corrosion. In this respect, the contents of S and P must respectively be less than or equal to 0.01% and 0.04% by weight.
  • Cr is an essential element for corrosion resistance.
  • its content must be limited because a high content may lower the temperature Mf martensitic transformation end below the ambient temperature. This would lead, after austenitization and quenching to room temperature, to a martensitic transformation that is too incomplete and to an insufficient hardness.
  • the Cr content must be between 15% and 18% by weight. However, it is advisable to limit the Cr content to 17% when cryogenic treatment of steel is not performed.
  • the Cr content must also satisfy a formula linking it to the N and C contents as will be explained later.
  • the elements Ni, Cu, Mo and V are expensive and also reduce the temperature Mf.
  • each of these elements must therefore be limited to 0.50% by weight. It is therefore not necessary to add after the merger of raw materials.
  • Nb, Ti and Zr are so-called “stabilizing" elements, which means that they form, in the presence of N and C and at high temperature, carbides and nitrides more stable than the carbides and nitrides of Cr.
  • stabilizing elements which means that they form, in the presence of N and C and at high temperature, carbides and nitrides more stable than the carbides and nitrides of Cr.
  • These elements are however undesirable because their respective carbides and nitrides once formed during the manufacturing process, can not be easily dissolved during austenitization, which limits the levels of C and N in the austenite, and therefore the hardness corresponding martensite after quenching.
  • the content of each of these elements must therefore be less than or equal to 0.03%.
  • the Al content must likewise be less than or equal to 0.010% to avoid forming nitrides of AI, whose dissolution temperature would be too high and which would reduce the N content of the austenite, hence the hardness of martensite after quenching.
  • the O content results from the process of making the steel and its composition. It must be limited to 0.0080% (80 ppm) maximum, so as to avoid forming too many and / or too large oxide inclusions, which could constitute privileged sites of initiation of pitting corrosion, and also take off shoes during the polishing so that the surface appearance of the product would not be satisfactory.
  • the O content also influences the mechanical properties of the steel, and it may optionally, in a conventional manner, set a limit not to exceed lower than 80 ppm according to the requirements of users of the final product.
  • the control of the N content at a well defined level is an essential element of the invention. Like C, it allows, when in solid solution, to increase the hardness of martensite without having the disadvantage of forming precipitates during solidification. Nitrides are formed at lower temperatures than carbides, which makes them easier to dissolve during austenitization. The presence of N in solid solution also improves the resistance to corrosion.
  • the N content must be between 0.10 and 0.20% by weight.
  • the N content must also satisfy various formulas that bind it to Cr contents and
  • the hardness of the martensite depends on its contents in C and N.
  • the inventors have shown that the hardening effects of these two elements are similar, and therefore that the hardness of the martensite is dependent on its overall content.
  • C + N It has been established by the inventors that the hardness after quenching and tempering will be sufficient if the following formula is respected:
  • C + N and Cr + 16 N - 5 C may not be respected simultaneously.
  • C + N 0,4 0.45% and Cr + 16 N -5 C may be between 14 and 16.0% if it is desired to favor an optimum hardness and to accept a corrosion resistance corresponding only to the minimum required by the invention.
  • Cr + 16 N - 5 C ⁇ 16.0% and C + N may also be simultaneously between 0.25 and 0.45% if, on the contrary, optimum corrosion resistance is desired but hardness corresponding only to minimum required by the invention.
  • Steels according to the invention have been subjected to austenitization tests at different temperatures before quenching with water at 20 ° C. with a cooling rate greater than 100 ° C./s, followed by an income of 200 ° C. ° C, in order to vary the proportion of dissolved carbides, and consequently the carbon content in the austenite then in martensite after quenching.
  • the martensite rate and the Vickers hardness were measured in order to plot the evolution of the hardness as a function of the martensite content, and the results are shown in FIG. 1, for a steel having the composition of Example 16 of table 1.
  • the martensite rate of the steel after austenitization, quenching at a speed of at least 15 ° C / s up to a temperature below or equal to 20 ° C, and then returned to a temperature of 100 to 300 ° C, typically 200 ° C, is greater than or equal to 75%.
  • Achieving a high martensite content of up to 100% can be better ensured if, after quenching to 20 ° C or less, cryogenic treatment, i.e. quenching in a very low temperature medium ranging from -220 to -50 ° C, typically in liquid nitrogen at -196 ° C or in dry ice at -80 ° C, before proceeding to 100-300 ° C.
  • cryogenic treatment i.e. quenching in a very low temperature medium ranging from -220 to -50 ° C, typically in liquid nitrogen at -196 ° C or in dry ice at -80 ° C, before proceeding to 100-300 ° C.
  • the remaining microstructure typically consists essentially of residual austenite. There may also be ferrite.
  • compositions of the various samples of steel tested are shown in Table 1, expressed in% by weight.
  • the underlined values are those which do not conform to the invention.
  • the values of C + N and Cr + 16 N - 5 C were also reported for each sample.
  • these steels were heated to a temperature above 1100 ° C, hot rolled to a thickness of 3mm, annealed at a temperature of 800 ° C, and then pickled and cold rolled to a thickness of 1, 5mm.
  • the steel sheets were then annealed at a temperature of 800 ° C.
  • the annealed steel sheets were then subjected to a 15-minute austenitization treatment at 1050 ° C. followed by quenching with water to a temperature of 20 ° C.
  • Table 2 shows the results of tests and observations made on these steels.
  • the underlined values correspond to performances deemed insufficient.
  • the "+” correspond to results deemed satisfactory, the "-” correspond to results deemed insufficient.
  • the martensite rate is measured after quenching with water at 20 ° C. and after a cryogenic quenching treatment at -80 ° C., this quenching, or the second of these quenchings, having been followed by a tempering at 200 ° C. .
  • the martensite content is greater than or equal to 75% after quenching with water at 20 ° C.
  • the other results given in Table 2 relate to the quenched state at 20 ° C. followed by the tempering at 200 ° C.
  • the martensite content is less than 75% after quenching with water at 20 ° C.
  • the other results given in Table 2 concern the state after a cryogenic treatment (quenching to a very high temperature). low temperature, for example in dry ice) at -80 ° C, followed by income at 200 ° C.
  • the corrosion resistance is evaluated by an electrochemical pitting corrosion test in a medium composed of 0.02M NaCl, at 23 ° C. and at a pH of 6.6.
  • the electrochemical test carried out on 24 samples to determine the potential E 0 .i for which the probability element of pitting is equal to 0.1 cm "2.
  • the corrosion resistance is considered unsatisfactory if the potential E 0 is less .i 350 mV, measured against the saturated calomel electrode at KCI (350 mV / SCE). it is considered satisfactory if the potential E 0 .i is between 350 mV / SCE 450 mV / SCE. it is considered to be very satisfactory if the potential E 0 .i is greater than 450 mV / ECS.
  • the Vickers hardness is measured in the thickness on a mirror-polished cut, under a load of 1 kg with a square base diamond pyramidal tip, according to EN ISO 6507.
  • the average hardness obtained is calculated by making 10 impressions. Hardness is considered unsatisfactory if the average hardness is less than 500 HV. It is considered satisfactory if the average hardness is between 500 HV and 600 HV. It is considered very satisfactory if the average hardness is greater than 600 HV.
  • the polishability is evaluated by carrying out a flat polishing up to the mid-thickness of the sample, successively using the SiC papers 180, 320, 500, 800 and 1200 under a force of 30 N, then a polishing on a soaked cloth of diamond paste of particle size 3 ⁇ then 1 ⁇ under a force of 20 N. The surface is then observed under an optical microscope at the magnification of x100.
  • the polishability is considered unsatisfactory if the density of defects conventionally called "comet tails" is greater than 100 / cm 2 .
  • the polishability is considered satisfactory if this density is between 10 / cm 2 and 100 / cm 2 .
  • the polishability is considered very satisfactory if this density is less than 10 / cm 2 .
  • the internal health is evaluated by observing the raw steel of solidification in section by optical metallography at magnification x25. Internal health is not satisfactory if globular holes showing the formation of nitrogen bubbles on solidification are observed. Otherwise, internal health is considered satisfactory.
  • the martensite rate is determined by X-ray diffraction by measuring the intensity of the lines characteristic of martensite compared to the intensity of the lines characteristic of austenite knowing that they are the only two phases in the presence.
  • the steels according to the invention 11 to 18 combine good properties of resistance to corrosion, hardness and polishability, and have good internal health, as well as a martensite content greater than or equal to 75% after quenching. ° C.
  • the steel according to the invention 19 combines good properties of resistance to corrosion, hardness and polishability, and has good internal health and a martensite rate greater than or equal to 75%, but provided to perform cryogenic treatment at -80 ° C. Indeed, after a simple quenching with water at 20 ° C, the martensite rate is not yet sufficient, which is to relate to the presence of Cr at a higher level than other samples according to the invention.
  • the reference steels R1 to R3 have Cr and N contents, as well as insufficient C + N and / or Cr + 16 N - 5 C sums, which does not allow a satisfactory corrosion resistance.
  • the R4 and R5 reference steels have insufficient Cr contents. Without compensation by addition of N, the steel R4 also has a combination Cr + 16 N - 5 C insufficient leading to an unsatisfactory corrosion resistance. For R5 steel, compensating for lack of Cr by adding N restores satisfactory corrosion resistance, but no longer ensures good internal health.
  • the R6 reference steel has a high C content and an insufficient N content.
  • the excessively high C content does not allow sufficient polishing ability due to excessive carbide formation.
  • the reference steel R7 has too high a N content, which degrades internal health.
  • the R8 reference steel has an excessive C content, which leads to poor polishability and a low martensite rate even after cryogenic quenching at -80 ° C.
  • the R9 reference steel contains too much Cr, which leads to an insufficient martensite rate even after cryogenic quenching at -80 ° C.
  • the reference steels R10 and R1 1 have too low C contents as well as insufficient C + N sums, leading to too low hardnesses.
  • the steels according to the invention are used with advantage for the manufacture of cutting tools, such as for example scalpels, scissors, knife blades or circular blades of household robots.

Abstract

martensitic stainless steel, characterised in that the composition thereof is, in percentage by weight: 0.10% ≤ C ≤ 0.45%; traces ≤ Mn ≤ 1.0%; traces ≤ Si ≤ 1.0%; traces ≤ S ≤ 0.01 %; traces ≤ P ≤ 0.04%; 15.0% ≤ Cr ≤ 18.0%; traces ≤ Ni ≤ 0.50%; traces ≤ Mo ≤ 0.50%; traces ≤ Cu ≤ 0.50%; traces ≤ V ≤ 0.50%; traces ≤ Nb ≤ 0.03%; traces ≤ Ti ≤ 0.03%; traces ≤ Zr ≤ 0.03%; traces ≤ Al ≤ 0.010%; traces ≤ O ≤ 0.0080%; traces ≤ Pb ≤ 0.02%; traces ≤ Bi ≤ 0.02%; traces ≤ Sn ≤ 0.02%; 0.10%≤ N ≤ 0.20%; C + N ≥ 0.25%; preferably C + N ≥ 0.45%; Cr + 16 N - 5 C ≥ 14.0%; preferably Cr + 16 N - 5 C ≥ 16%; the remainder being iron and impurities resulting from the production. Method for producing a semi-finished product from said martensitic stainless steel, and cutting tool produced from said semi-finished product.

Description

Acier inoxydable martensitique, procédé de fabrication d'un demi-produit en cet acier et outil de coupe réalisé à partir de ce demi-produit  Martensitic stainless steel, method of manufacturing a semi-finished product of this steel and cutting tool made from this semi-finished product
L'invention concerne un acier inoxydable martensitique. Cet acier est principalement destiné à la fabrication d'outils de coupe, notamment d'articles de coutellerie, tels que des scalpels, des lames de ciseaux, ou des lames de couteaux ou des lames de robots ménagers. The invention relates to a martensitic stainless steel. This steel is mainly intended for the manufacture of cutting tools, especially cutlery items, such as scalpels, scissors blades, or knife blades or blades of household robots.
Les aciers destinés à la coutellerie doivent présenter une résistance à la corrosion, une aptitude au polissage et une dureté élevées.  Steels for cutlery must have high corrosion resistance, polishing ability and hardness.
Les aciers inoxydables martensitiques actuellement utilisés pour réaliser les lames des outils de coupe, tels que les aciers de types EN 1 .4021 , EN 1 .4028 et EN 1 .4034, ont des teneurs en Cr inférieures ou égales à 14 ou à 14,5% en poids et des teneurs en C variables, soit 0,16%-0,25% pour le EN 1 .4021 , 0,26-0,35% pour le EN 1 .4028 et 0,43-0,50% pour le EN 1 .4034. Le niveau de dureté de l'acier dépend principalement de cette teneur en C.  The martensitic stainless steels currently used to make the blades of the cutting tools, such as the steels of the types EN 1 .4021, EN 1 .4028 and EN 1 .4034, have Cr contents of less than or equal to 14 or 14, 5% by weight and variable C contents, ie 0.16% -0.25% for EN 1 4021, 0.26-0.35% for EN 1 4028 and 0.43-0.50. % for EN 1 4034. The hardness level of the steel depends mainly on this C content.
Lorsqu'une résistance à la corrosion encore meilleure est recherchée, la nuance EN 1 .4419 à 0,36-0,42% de C, 13,0-14,5% de Cr et 0,60-1 ,00% de Mo peut être utilisée.  When an even better corrosion resistance is sought, the grade EN 1 .4419 at 0.36-0.42% C, 13.0-14.5% Cr and 0.60-1.00% of Mo can be used.
Lors de leurs fabrications, ces aciers sont typiquement élaborés dans un convertisseur AOD, puis coulés en continu sous forme de brames, de blooms ou de billettes, puis laminés à chaud pour conduire à une bobine, une barre laminée ou un fil machine. Ils subissent ensuite un recuit afin d'obtenir une structure ferritique contenant des carbures, qui est suffisamment douce pour permettre de réaliser un laminage à froid pour les produits plats, ou pour en faciliter le sciage avant forgeage du demi-produit laminé à chaud pour les produits longs.  In their manufacture, these steels are typically made in an AOD converter, then continuously cast as slabs, blooms, or billets, and then hot-rolled to a reel, roll bar, or wire rod. They are then annealed to obtain a ferritic structure containing carbides, which is sufficiently soft to allow cold rolling for the flat products, or to facilitate sawing before forging the hot-rolled semi-finished product for long products.
Le produit subit ensuite un recuit de recristallisation. Dans cet état adouci de ferrite recristallisée contenant des carbures, le produit est découpé pour lui conférer sa forme finale, par exemple celle d'une lame de couteau, avant de subir un traitement thermique comprenant une austénitisation à haute température, typiquement entre 950°C et 1 150°C, suivie d'une trempe jusqu'à la température ambiante qui conduit à une structure majoritairement martensitique.  The product then undergoes recrystallization annealing. In this softened state of recrystallized ferrite containing carbides, the product is cut to give it its final shape, for example that of a knife blade, before undergoing a heat treatment comprising a high temperature austenitization, typically between 950 ° C. and 1150 ° C, followed by quenching to room temperature which leads to a predominantly martensitic structure.
Dans cet état martensitique le produit présente une dureté élevée, d'autant plus élevée que la teneur en carbone est importante, mais il présente aussi une grande fragilité. Un traitement de revenu, typiquement entre 100°C et 300°C, est alors effectué pour réduire la fragilité sans trop abaisser la dureté. La lame subit ensuite diverses opérations dont un affûtage et un polissage pour lui conférer sa qualité de coupe et son aspect esthétique. Aucune des quatre nuances citées ne permet à la fois une bonne résistance à la corrosion, un bel état de surface et une dureté élevée, pour un coût raisonnable. In this martensitic state the product has a high hardness, the higher the carbon content is important, but it also has great fragility. A tempering treatment, typically between 100 ° C and 300 ° C, is then performed to reduce brittleness without too much lowering hardness. The blade then undergoes various operations including sharpening and polishing to give it its cutting quality and aesthetic appearance. None of the four shades mentioned at the same time allows a good resistance to corrosion, a good surface condition and a high hardness, for a reasonable cost.
La nuance EN 1 .4419 à une bonne résistance à la corrosion et une dureté élevée, mais elle a un coût prohibitif dû à l'ajout de Mo en grande quantité.  The grade EN 1 .4419 has good corrosion resistance and high hardness, but it is prohibitively expensive due to the addition of Mo in large quantities.
La nuance EN 1 .4034 présente une dureté élevée, mais aussi un aspect de surface médiocre après polissage, à cause de la présence en grand nombre de carbures non dissous lors de l'austénitisation, en raison de la teneur élevée en C de cette nuance. La résistance à la corrosion est insuffisante car la teneur en Cr n'est pas assez élevée dans la matrice, d'autant qu'une partie du Cr est piégée dans les carbures non dissous. Par ailleurs il arrive régulièrement que le tranchant de la lame soit le siège d'une corrosion caverneuse, provenant de la décohésion de gros carbures primaires qui apparaissent en fin de solidification en coulée continue.  The grade EN 1 .4034 has a high hardness, but also a poor surface appearance after polishing, because of the presence in large numbers of undissolved carbides during austenitization, because of the high C content of this grade. . The corrosion resistance is insufficient because the Cr content is not high enough in the matrix, especially since part of the Cr is trapped in the undissolved carbides. Moreover it happens regularly that the cutting edge of the blade is the seat of a crevice corrosion, from the decohesion of large primary carbides which appear at the end of solidification in continuous casting.
Les nuances moins chargées en C EN 1 .4021 et 1 .4028 ont des duretés plus faibles, sans pour autant avoir une tenue à la corrosion suffisante en raison de teneurs en Cr trop faibles.  The less loaded grades of C EN 1 4021 and 1 4028 have lower hardnesses, without having sufficient resistance to corrosion due to too low Cr contents.
La présente invention a pour but de résoudre les problèmes évoqués ci-dessus. Elle vise en particulier à proposer un acier inoxydable martensitique pour outil de coupe aussi économique que possible, qui présente cependant à la fois une bonne résistance à la corrosion, une bonne aptitude au polissage et une dureté élevée.  The present invention aims to solve the problems mentioned above. In particular, it aims to provide a martensitic stainless steel for cutting tool as economical as possible, which however has both good corrosion resistance, good polishing ability and high hardness.
Dans ce but l'invention à pour objet un acier inoxydable martensitique, caractérisé en ce que sa composition est, en pourcentages pondéraux :  For this purpose the invention relates to a martensitic stainless steel, characterized in that its composition is, in percentages by weight:
- 0,10%≤ C≤ 0,45% ; de préférence 0,10%≤ C≤ 0,40% ; mieux 0,10% - 0.10% ≤ C≤ 0.45%; preferably 0.10% ≤ C≤ 0.40%; better 0.10%
0,25% ; 0.25%;
- traces≤ Mn≤ 1 ,0% ;  - traces≤ Mn≤ 1, 0%;
- traces≤ Si≤ 1 ,0% ;  - traces≤ Si≤ 1, 0%;
- traces≤ S≤ 0,01 % ;  - traces≤ S≤ 0.01%;
- traces≤ P≤ 0,04% ;  - traces≤ P≤0.04%;
- 15,0%≤Cr≤ 18,0% ;  - 15.0% ≤Cr≤ 18.0%;
- traces≤ Ni≤ 0,50% ;  - traces≤ Ni≤ 0.50%;
- traces≤ Mo≤ 0,50% ;  - traces≤ Mo≤ 0.50%;
- traces≤ Cu≤ 0,50% ;  - traces≤ Cu≤ 0.50%;
- traces≤ V≤ 0,50% ;  - traces≤ V≤ 0.50%;
- traces≤ Nb≤ 0,03% ;  - traces≤Nb≤0.03%;
- traces≤ Ti≤ 0,03% ;  - traces ≤ Ti ≤ 0.03%;
- traces≤ Zr≤ 0,03% ;  - traces≤Zr≤0.03%;
- traces≤ Al≤ 0,010% ; - traces≤ O≤ 0,0080% ; - traces≤ Al≤ 0.010%; - traces ≤ 0 ≤ 0.0080%;
- traces≤ Pb≤ 0,02% ;  - traces≤ Pb≤ 0.02%;
- traces≤ Bi≤ 0,02% ;  - traces≤ Bi≤ 0.02%;
- traces≤ Sn≤ 0,02% ;  - traces≤ Sn≤ 0.02%;
- 0,10%≤N≤0,20% ;  - 0.10% ≤N≤0.20%;
- C + N≥ 0,25% ; de préférence C + N≥ 0,45% ;  - C + N≥ 0.25%; preferably C + N≥ 0.45%;
- Cr + 16 N - 5 C≥ 14,0% ; de préférence Cr + 16 N - 5 C≥ 16% ;  - Cr + 16 N - 5 C ≥ 14.0%; preferably Cr + 16 N - 5 C≥16%;
le reste étant du fer et des impuretés résultant de l'élaboration.  the rest being iron and impurities resulting from the elaboration.
Sa teneur en Cr peut être comprise entre 15 et 17%.  Its Cr content can be between 15 and 17%.
Sa microstructure comporte de préférence au moins 75% de martensite Its microstructure preferably comprises at least 75% of martensite
L'invention a également pour objet un procédé de fabrication d'un demi-produit en acier inoxydable martensitique, caractérisé en ce que : The subject of the invention is also a process for producing a martensitic stainless steel semi-finished product, characterized in that:
- on élabore et on coule un demi-produit en un acier ayant la composition précédente ;  a semi-finished product is produced and cast into a steel having the preceding composition;
- on chauffe ledit demi-produit à une température supérieure ou égale à 1000°C ; said semi-product is heated to a temperature greater than or equal to 1000 ° C .;
- on le lamine à chaud pour obtenir une tôle, une barre ou un fil machine ; - It is hot rolled to obtain a sheet, bar or wire machine;
- on recuit ladite tôle, ladite barre ou ledit fil machine à une température comprise entre 700 et 900°C ;  said sheet, said bar or said machine wire is annealed at a temperature of between 700 and 900 ° C .;
- et on exécute une opération de mise en forme sur ladite tôle, ladite barre ou ledit fil machine.  and performing a shaping operation on said sheet, said bar or said wire rod.
Ledit demi-produit peut être une tôle, et ladite opération de mise en forme peut être un laminage à froid.  Said half-product may be a sheet, and said forming operation may be cold rolling.
Ledit demi-produit peut être une barre ou un fil machine, et ladite opération de mise en forme peut être un forgeage.  Said half-product may be a bar or a wire rod, and said shaping operation may be forging.
Ledit demi-produit mis en forme, si sa teneur en Cr est comprise entre 15 et 17%, peut être ensuite austénitisé entre 950 et 1 150°C, puis refroidi à une vitesse d'au moins 15°C/s jusqu'à une température inférieure ou égale à 20°C, puis subit un revenu à une température comprise entre 100 et 300°C.  Said semi-shaped product, if its Cr content is between 15 and 17%, can then be austenitized between 950 and 1150 ° C, and then cooled at a rate of at least 15 ° C / s to a temperature lower than or equal to 20 ° C, then undergoes an income at a temperature between 100 and 300 ° C.
Ledit demi-produit mis en forme peut être ensuite austénitisé entre 950 et 1 150°C, puis refroidi à une vitesse d'au moins 15°C/s jusqu'à une température inférieure ou égale à 20°C, puis subit un traitement cryogénique à une température de -220 à -50°C, puis un revenu à une température comprise entre 100 et 300°C.  Said semi-finished product can then be austenitized between 950 and 1150 ° C, then cooled at a rate of at least 15 ° C / s to a temperature of 20 ° C or lower, and then undergoes a treatment. cryogenic at a temperature of -220 to -50 ° C, then a tempering at a temperature of between 100 and 300 ° C.
L'invention a également pour objet un outil de coupe, caractérisé en ce qu'il a été réalisé à partir d'un demi-produit préparé selon le procédé précédent.  The invention also relates to a cutting tool, characterized in that it was made from a semi-finished product prepared according to the preceding method.
L'outil de coupe peut être un article de coutellerie tel qu'une lame de couteau, une lame de robot ménager, un scalpel, ou une lame de ciseaux, Comme on l'aura compris, l'invention consiste à utiliser, pour réaliser l'outil de coupe, un acier inoxydable martensitique de composition particulière, exempte d'éléments coûteux à des teneurs élevées, mais contenant des quantités d'azote relativement importantes situées dans une gamme bien définie. Egalement, un équilibrage particulier des teneurs en Cr, C et N est nécessaire. The cutting tool may be a cutlery article such as a knife blade, a food processor blade, a scalpel, or a scissors blade, As will be understood, the invention consists in using, in order to produce the cutting tool, a martensitic stainless steel of particular composition, free from expensive elements at high levels, but containing relatively large amounts of nitrogen located in a well defined range. Also, a particular balancing of the contents of Cr, C and N is necessary.
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessous donné à titre d'exemple et faite en référence à la figure 1 annexée, qui montre l'évolution de la dureté Vickers de l'acier sous une charge de 1 kg, en fonction du taux de martensite après austénitisation, trempe et revenu, d'un acier selon l'invention.  Other characteristics and advantages of the invention will become apparent from the following description given by way of example and with reference to the appended FIG. 1, which shows the evolution of the Vickers hardness of steel under a load of 1 kg, depending on the martensite rate after austenitization, quenching and tempering, of a steel according to the invention.
En ce qui concerne la composition chimique de l'acier selon l'invention, les justifications suivantes sont avancées.  With regard to the chemical composition of the steel according to the invention, the following justifications are advanced.
C augmente la dureté à l'état martensitique après austénitisation, trempe et revenu. Cependant il favorise aussi la précipitation de carbures primaires M7C3 au cours de la solidification, qui peuvent être déchaussés lors du polissage ou de l'affûtage de la lame, ce qui dégrade l'aspect de surface du produit. Les sites où ils se trouvaient avant le polissage peuvent aussi devenir le siège d'une corrosion caverneuse. Une teneur en C excessive conduit aussi, suivant la température d'austénitisation, soit à une teneur en C trop élevée dans la matrice austénitique qui ne permet plus d'obtenir une fraction suffisante de martensite après trempe, soit à la persistance de carbures M23C6 non dissous qui appauvrissent la matrice austénitique en Cr. Ils réduisent ainsi la résistance à la corrosion et nuisent à la polissabilité. C increases martensitic hardness after austenitization, quenching and tempering. However, it also promotes the precipitation of primary carbides M 7 C 3 during solidification, which can be removed during polishing or sharpening of the blade, which degrades the surface appearance of the product. The sites where they were before polishing can also become the site of cavernous corrosion. Excessive C content also leads, according to the austenitization temperature, either to a C content that is too high in the austenitic matrix that no longer makes it possible to obtain a sufficient fraction of martensite after quenching, or to the persistence of M 2 carbides. 3C 6 undissolved which deplete the austenitic matrix in Cr. They thus reduce the resistance to corrosion and impair polishability.
La teneur en C doit être d'au moins 0,10% pour obtenir une dureté suffisante et d'au plus 0,45% pour obtenir une bonne résistance à la corrosion et un aspect de surface satisfaisant après polissage. Selon le procédé de coulée employé, il peut cependant s'avérer utile de limiter un peu plus la teneur maximale en C pour le cas où ce procédé risquerait de ne pas garantir une homogénéité de l'acier en cours de solidification qui serait suffisante pour éviter une précipitation de carbures primaires M7C3. Dans ce cas, on conseille de limiter la teneur en C à 0,40%, mieux à 0,25%. The C content must be at least 0.10% to obtain sufficient hardness and at most 0.45% to obtain good corrosion resistance and a satisfactory surface appearance after polishing. Depending on the casting process used, however, it may be useful to limit a little more the maximum content of C in case this process might not guarantee homogeneity of the solidifying steel which would be sufficient to avoid a precipitation of primary carbides M 7 C 3 . In this case, it is advisable to limit the C content to 0.40%, better still to 0.25%.
De plus, la teneur en C doit satisfaire des formules la liant avec la teneur en N et avec les teneurs en N et Cr, comme il sera expliqué plus loin.  In addition, the content of C must satisfy formulas linking it with the N content and with the N and Cr contents, as will be explained below.
Mn est un élément dit gammagène, car il stabilise la structure austénitique. Une teneur excessive en Mn conduit à un taux de martensite insuffisant après traitement d'austénitisation et trempe, qui conduit à une baisse de la dureté. Pour cette raison la teneur en Mn doit être inférieure ou égale à 1 ,0%.  Mn is a so-called gammagenic element because it stabilizes the austenitic structure. An excessive content of Mn leads to an insufficient martensite rate after austenitization and quenching treatment, which leads to a decrease in hardness. For this reason the Mn content must be less than or equal to 1.0%.
Si est un élément utile lors du procédé d'élaboration de l'acier. Il est très réducteur, et il permet donc de réduire les oxydes de Cr dans la phase de réduction de l'acier qui suit la phase de décarburation dans le convertisseur AOD. Cependant la teneur en Si dans l'acier final doit être inférieure ou égale à 1 ,0%, car cet élément à un effet durcissant à chaud qui limite les possibilités de déformation à chaud lors du laminage à chaud ou lors du forgeage. Si is a useful element in the process of making steel. It is very reducing, and it allows to reduce the Cr oxides in the reduction phase of the steel that follows the decarburization phase in the AOD converter. However, the Si content in the final steel must be less than or equal to 1.0%, since this element has a heat-curing effect which limits the possibilities of hot deformation during hot rolling or during forging.
S et P sont des impuretés qui diminuent la ductilité à chaud. P ségrége facilement aux joints des grains et facilite leur décohésion. De plus, S réduit la résistance à la corrosion par piqûre en formant avec Mn des composés qui servent de sites initiateurs pour ce type de corrosion. A ce titre les teneurs en S et en P doivent être respectivement inférieures ou égales à 0,01 % et 0,04% en poids.  S and P are impurities that decrease hot ductility. P easily segregates at the grain boundaries and facilitates their decohesion. In addition, S reduces the resistance to pitting corrosion by forming compounds with Mn which serve as initiating sites for this type of corrosion. In this respect, the contents of S and P must respectively be less than or equal to 0.01% and 0.04% by weight.
Cr est un élément essentiel pour la tenue à la corrosion. Cependant sa teneur doit être limitée car une teneur élevée risque d'abaisser la température Mf de fin de transformation martensitique en dessous de la température ambiante. Cela conduirait, après austénitisation et trempe jusqu'à la température ambiante, à une transformation martensitique trop incomplète et à une dureté insuffisante. Pour ces différentes raisons, la teneur en Cr doit être comprise entre 15% et 18% en poids. Il est cependant conseillé de limiter la teneur en Cr à 17% lorsqu'un traitement cryogénique de l'acier n'est pas effectué.  Cr is an essential element for corrosion resistance. However, its content must be limited because a high content may lower the temperature Mf martensitic transformation end below the ambient temperature. This would lead, after austenitization and quenching to room temperature, to a martensitic transformation that is too incomplete and to an insufficient hardness. For these reasons, the Cr content must be between 15% and 18% by weight. However, it is advisable to limit the Cr content to 17% when cryogenic treatment of steel is not performed.
La teneur en Cr doit aussi satisfaire une formule la liant aux teneurs en N et C comme il sera expliqué par la suite.  The Cr content must also satisfy a formula linking it to the N and C contents as will be explained later.
Les éléments Ni, Cu, Mo et V sont onéreux et réduisent aussi la température Mf. The elements Ni, Cu, Mo and V are expensive and also reduce the temperature Mf.
La teneur de chacun de ces éléments doit donc être limitée à 0,50% en poids. Il n'est donc pas nécessaire d'en ajouter après la fusion des matières premières. The content of each of these elements must therefore be limited to 0.50% by weight. It is therefore not necessary to add after the merger of raw materials.
Nb, Ti et Zr sont des éléments dit « stabilisants », ce qui signifie qu'ils forment, en présence de N et C et à haute température, des carbures et des nitrures plus stables que les carbures et nitrures de Cr. Ces éléments sont cependant indésirables car leur carbures et nitrures respectifs une fois formés lors du procédé de fabrication, ne peuvent plus être aisément dissous lors de l'austénitisation, ce qui limite les teneurs en C et N dans l'austénite, et donc la dureté correspondante de la martensite après trempe. La teneur de chacun de ces éléments doit donc être inférieure ou égale à 0,03%.  Nb, Ti and Zr are so-called "stabilizing" elements, which means that they form, in the presence of N and C and at high temperature, carbides and nitrides more stable than the carbides and nitrides of Cr. These elements are however undesirable because their respective carbides and nitrides once formed during the manufacturing process, can not be easily dissolved during austenitization, which limits the levels of C and N in the austenite, and therefore the hardness corresponding martensite after quenching. The content of each of these elements must therefore be less than or equal to 0.03%.
La teneur en Al doit, de même, être inférieure ou égale à 0,010% pour éviter de former des nitrures d'AI, dont la température de dissolution serait trop élevée et qui diminueraient la teneur en N de l'austénite, donc la dureté de la martensite après trempe.  The Al content must likewise be less than or equal to 0.010% to avoid forming nitrides of AI, whose dissolution temperature would be too high and which would reduce the N content of the austenite, hence the hardness of martensite after quenching.
La teneur en O résulte du procédé d'élaboration de l'acier et de sa composition. Elle doit être limitée à 0,0080% (80 ppm) au maximum, de façon à éviter de former des inclusions d'oxydes trop nombreuses et/ou trop grosses, qui pourraient constituer des sites privilégiés d'initiation de la corrosion par piqûre, et aussi se déchausser lors du polissage de sorte que l'aspect de surface du produit ne serait pas satisfaisant. La teneur en O influence aussi les propriétés mécaniques de l'acier, et on pourra éventuellement, de façon classique, fixer une limite à ne pas dépasser plus basse que 80 ppm suivant les exigences des utilisateurs du produit final. The O content results from the process of making the steel and its composition. It must be limited to 0.0080% (80 ppm) maximum, so as to avoid forming too many and / or too large oxide inclusions, which could constitute privileged sites of initiation of pitting corrosion, and also take off shoes during the polishing so that the surface appearance of the product would not be satisfactory. The O content also influences the mechanical properties of the steel, and it may optionally, in a conventional manner, set a limit not to exceed lower than 80 ppm according to the requirements of users of the final product.
Les teneurs en Pb, Bi et Sn ne doivent chacune pas dépasser 0,02% pour ne pas rendre trop difficiles les transformations à chaud.  The contents of Pb, Bi and Sn must not exceed 0.02% each in order not to make the hot transformations too difficult.
Le contrôle de la teneur en N a un niveau bien défini est un élément essentiel de l'invention. Tout comme C, il permet, lorsqu'il est en solution solide, d'augmenter la dureté de la martensite sans avoir l'inconvénient de former des précipités au cours de la solidification. Les nitrures se forment à des températures plus faibles que les carbures ce qui facilite leur mise en solution lors de l'austénitisation. La présence de N en solution solide améliore aussi la tenue à la corrosion.  The control of the N content at a well defined level is an essential element of the invention. Like C, it allows, when in solid solution, to increase the hardness of martensite without having the disadvantage of forming precipitates during solidification. Nitrides are formed at lower temperatures than carbides, which makes them easier to dissolve during austenitization. The presence of N in solid solution also improves the resistance to corrosion.
Cependant une teneur excessive en N ne permet plus sa dissolution complète lors de la solidification, et conduit à la formation de bulles de N2 préjudiciables à la santé interne du métal. However an excessive content of N no longer allows its complete dissolution during solidification, and leads to the formation of N 2 bubbles detrimental to the internal health of the metal.
Pour ces différentes raisons la teneur en N doit être comprise entre 0,10 et 0,20% en poids.  For these reasons, the N content must be between 0.10 and 0.20% by weight.
La teneur en N doit aussi satisfaire diverses formules la liant aux teneurs en Cr et The N content must also satisfy various formulas that bind it to Cr contents and
C. vs.
En effet, la dureté de la martensite dépend de ses teneurs en C et en N. Les inventeurs ont mis en évidence que les effets durcissants de ces deux éléments sont similaires, et donc que la dureté de la martensite est dépendante de sa teneur globale en C + N. Il a été établi par les inventeurs que la dureté après trempe et revenu sera suffisante si la formule suivante est respectée :  Indeed, the hardness of the martensite depends on its contents in C and N. The inventors have shown that the hardening effects of these two elements are similar, and therefore that the hardness of the martensite is dependent on its overall content. C + N. It has been established by the inventors that the hardness after quenching and tempering will be sufficient if the following formula is respected:
C + N≥ 0,25%  C + N≥ 0.25%
Dans un mode préféré de l'invention, une dureté encore plus élevée est obtenue après trempe et revenu si la formule suivante est respectée :  In a preferred embodiment of the invention, an even higher hardness is obtained after quenching and tempering if the following formula is respected:
C + N≥ 0,45%.  C + N≥ 0.45%.
Trois éléments ont un effet sur la résistance à la corrosion. Cr et N sont bénéfiques, alors que C a un effet négatif car il n'est généralement pas possible de dissoudre tous les carbures de Cr lors de l'austénitisation, pour des raisons de productivité et de coût qui limitent dans la pratique industrielle la durée et la température du traitement. Les carbures de Cr non dissous réduisent la teneur en Cr de la matrice austénitique, et de ce fait réduisent la tenue à la corrosion.  Three elements have an effect on the corrosion resistance. Cr and N are beneficial, while C has a negative effect because it is generally not possible to dissolve all the carbides of Cr during austenitization, for reasons of productivity and cost that limit in industrial practice the duration and the temperature of the treatment. Undissolved Cr carbides reduce the Cr content of the austenitic matrix, and thereby reduce the corrosion resistance.
A partir de l'étude de la résistance à la corrosion d'aciers martensitiques à différentes teneurs pondérales en Cr, N et C, les inventeurs ont trouvé une formule associant ces différents éléments qui permet d'assurer une bonne résistance à la corrosion : From the study of the corrosion resistance of martensitic steels at different weight contents in Cr, N and C, the inventors have found a formula combining these different elements that ensures good resistance to corrosion:
Cr + 16 N - 5 C≥ 14,0%  Cr + 16 N - 5 C≥ 14.0%
Dans un mode préféré de l'invention, une résistance à la corrosion encore plus élevée est obtenue si la formule suivante est respectée :  In a preferred embodiment of the invention, even higher corrosion resistance is achieved if the following formula is followed:
Cr + 16 N - 5 C≥ 16,0%  Cr + 16 N - 5 C≥ 16.0%
Il doit être entendu que les valeurs préférentielles de C + N et de Cr + 16 N - 5 C peuvent ne pas être respectées simultanément. On peut avoir simultanément C + N≥ 0,45% et Cr + 16 N - 5 C entre 14 et 16,0% si on désire privilégier une dureté optimale et accepter une résistance à la corrosion correspondant seulement au minimum requis par l'invention. On peut aussi avoir simultanément Cr + 16 N - 5 C≥ 16,0% et C + N compris entre 0,25 et 0,45% si, au contraire, on souhaite une résistance à la corrosion optimale mais une dureté correspondant seulement au minimum requis par l'invention.  It should be understood that the preferential values of C + N and Cr + 16 N - 5 C may not be respected simultaneously. At the same time, C + N 0,4 0.45% and Cr + 16 N -5 C may be between 14 and 16.0% if it is desired to favor an optimum hardness and to accept a corrosion resistance corresponding only to the minimum required by the invention. . Cr + 16 N - 5 C ≥ 16.0% and C + N may also be simultaneously between 0.25 and 0.45% if, on the contrary, optimum corrosion resistance is desired but hardness corresponding only to minimum required by the invention.
Des aciers selon l'invention ont fait l'objet d'essais d'austénitisation à différentes températures avant une trempe à l'eau à 20°C avec une vitesse de refroidissement supérieure à 100°C/s, suivie par un revenu à 200°C, afin de faire varier la proportion de carbures dissous, et par conséquent la teneur en carbone dans l'austénite puis dans la martensite après trempe. Le taux de martensite ainsi que la dureté Vickers ont été mesurés afin de tracer l'évolution de la dureté en fonction du taux de martensite, et les résultats sont représentés sur la figure 1 , pour un acier ayant la composition de l'exemple 16 du tableau 1 .  Steels according to the invention have been subjected to austenitization tests at different temperatures before quenching with water at 20 ° C. with a cooling rate greater than 100 ° C./s, followed by an income of 200 ° C. ° C, in order to vary the proportion of dissolved carbides, and consequently the carbon content in the austenite then in martensite after quenching. The martensite rate and the Vickers hardness were measured in order to plot the evolution of the hardness as a function of the martensite content, and the results are shown in FIG. 1, for a steel having the composition of Example 16 of table 1.
On voit sur la figure 1 que la dureté commence par croître avec la baisse du taux de martensite, car la martensite durcit par enrichissement en carbone. La dureté atteint un maximum, puis baisse lorsque le taux de martensite devient trop faible. En dessous de 75% de martensite, le durcissement de la martensite ne compense plus l'adoucissement lié à la présence d'austénite résiduelle de dureté plus faible. Pour cette raison, dans un mode préféré de l'invention, adapté à la fabrication d'outil de coupe à partir de l'acier coulé, le taux de martensite de l'acier après austénitisation, trempe à une vitesse d'au moins 15°C/s jusqu'à une température inférieure ou égale à 20°C, puis revenu à une température de 100 à 300°C, typiquement 200°C, est supérieur ou égal à 75%.  We see in Figure 1 that the hardness begins to grow with the drop in the martensite rate, because martensite hardens by carbon enrichment. The hardness reaches a maximum, then decreases when the martensite rate becomes too low. Below 75% of martensite, the hardening of martensite no longer offsets the softening associated with the presence of residual austenite of lower hardness. For this reason, in a preferred embodiment of the invention, suitable for the manufacture of cutting tool from cast steel, the martensite rate of the steel after austenitization, quenching at a speed of at least 15 ° C / s up to a temperature below or equal to 20 ° C, and then returned to a temperature of 100 to 300 ° C, typically 200 ° C, is greater than or equal to 75%.
L'obtention d'une teneur en martensite élevée pouvant atteindre 100% peut être mieux assurée, si, après la trempe jusqu'à 20°C ou moins, on procède à un traitement cryogénique, c'est-à-dire la réalisation d'une trempe dans un milieu à très basse température allant de -220 à -50°C, typiquement dans de l'azote liquide à -196°C ou dans de la neige carbonique à -80°C, avant de procéder au revenu à 100-300°C. Lorsque la teneur en martensite n'atteint pas 100%, la microstructure restante est typiquement constituée essentiellement d'austénite résiduelle. Il peut aussi y avoir de la ferrite. Achieving a high martensite content of up to 100% can be better ensured if, after quenching to 20 ° C or less, cryogenic treatment, i.e. quenching in a very low temperature medium ranging from -220 to -50 ° C, typically in liquid nitrogen at -196 ° C or in dry ice at -80 ° C, before proceeding to 100-300 ° C. When the martensite content does not reach 100%, the remaining microstructure typically consists essentially of residual austenite. There may also be ferrite.
A titre d'exemples non limitatifs, les résultats suivants vont montrer les caractéristiques avantageuses conférées par l'invention.  By way of nonlimiting examples, the following results will show the advantageous characteristics conferred by the invention.
Les compositions des différents échantillons d'acier testés figurent dans le tableau 1 , exprimées en % pondéraux. Les valeurs soulignées sont celles qui ne sont pas conformes à l'invention. On a également reporté les valeurs de C + N et de Cr + 16 N - 5 C pour chaque échantillon.  The compositions of the various samples of steel tested are shown in Table 1, expressed in% by weight. The underlined values are those which do not conform to the invention. The values of C + N and Cr + 16 N - 5 C were also reported for each sample.
Figure imgf000010_0001
Figure imgf000010_0001
Nb Ti Al Zr Sn 0 N C+N Cr + 16N - 5CNb Ti Al Zr Sn 0 N C + N Cr + 16N - 5C
11 0,004 0,004 0,002 0,001 0,008 0,002 0,197 0,301 17,7311 0.004 0.004 0.002 0.001 0.008 0.002 0.197 0.301 17.73
12 0,004 0,002 0,001 0,002 0,006 0,002 0,192 0,304 19,2112 0.004 0.002 0.001 0.002 0.006 0.002 0.192 0.304 19.21
13 0,002 0,001 0,002 0,002 0,012 0,002 0,105 0,351 15,6513 0.002 0.001 0.002 0.002 0.012 0.002 0.105 0.351 15.65
14 0,002 0,002 0,001 0,001 0,009 0,003 0,194 0,438 16,9814 0.002 0.002 0.001 0.001 0.009 0.003 0.194 0.438 16.98
15 0,003 0,001 0,003 0,001 0,008 0,002 0,106 0,553 14,860.003 0.001 0.003 0.001 0.008 0.002 0.106 0.553 14.86
Invention 16 0,002 0,003 0,003 0,002 0,015 0,002 0,102 0,545 16,22 Invention 16 0.002 0.003 0.003 0.002 0.015 0.002 0.102 0.545 16.22
17 0,005 0,003 0,001 0,001 0,016 0,003 0,194 0,639 16, 18 17 0.005 0.003 0.001 0.001 0.016 0.003 0.194 0.639 16, 18
18 0,003 0,002 0,002 0,001 0,007 0,003 0,184 0,594 17,69 19 0,003 0,002 0,002 0,001 0,007 0,003 0,175 0,607 18,5418 0.003 0.002 0.002 0.001 0.007 0.003 0.184 0.594 17.69 19 0.003 0.002 0.002 0.001 0.007 0.003 0.175 0.607 18.54
R1 0,005 0,003 0,003 0,002 0,006 0,003 0,002 0,225 12,32R1 0.005 0.003 0.003 0.002 0.006 0.003 0.002 0.225 12.32
R2 0,002 0,002 0,003 0,001 0,01 1 0,002 0,003 0,315 12,29R2 0.002 0.002 0.003 0.001 0.01 1 0.002 0.003 0.315 12.29
R3 0,005 0,004 0,002 0,001 0,010 0,001 0,003 0,481 1 1 ,36R3 0.005 0.004 0.002 0.001 0.010 0.001 0.003 0.481 1 1, 36
R4 0,003 0,004 0,001 0,002 0,006 0,002 0,109 0,501 13,68R4 0.003 0.004 0.001 0.002 0.006 0.002 0.109 0.501 13.68
R5 0,002 0,001 0,002 0,002 0,009 0,004 0,197 0,495 15,96R5 0.002 0.001 0.002 0.002 0.009 0.004 0.197 0.495 15.96
Références R6 0,004 0,002 0,001 0,001 0,013 0,003 0,032 0,497 14,51 References R6 0.004 0.002 0.001 0.001 0.013 0.003 0.032 0.497 14.51
R7 0,003 0,002 0,001 0,001 0,014 0,003 0,253 0,658 18,12 R7 0.003 0.002 0.001 0.001 0.014 0.003 0.253 0.658 18.12
R8 0,005 0,002 0,002 0,002 0,012 0,003 0,198 0,718 16,97R8 0.005 0.002 0.002 0.002 0.012 0.003 0.198 0.718 16.97
R9 0,002 0,001 0,001 0,001 0,008 0,002 0,195 0,643 19,38R9 0.002 0.001 0.001 0.001 0.008 0.002 0.195 0.643 19.38
R10 0,002 0,003 0,003 0,001 0,006 0,002 0,1 14 0,226 16,36R10 0.002 0.003 0.003 0.001 0.006 0.002 0.1 14 0.226 16.36
R1 1 0,003 0,001 0,002 0,002 0,01 1 0,003 0,1 12 0,235 17,88 R1 1 0.003 0.001 0.002 0.002 0.01 1 0.003 0.1 12 0.235 17.88
Tableau 1 : Compositions des échantillons testés Table 1: Compositions of the samples tested
Après coulée, ces aciers ont été réchauffés à une température supérieure à 1 100°C, laminés à chaud jusqu'à une épaisseur de 3mm, recuits à une température de 800°C, puis décapés et laminés à froid jusqu'à une épaisseur de 1 ,5mm. After casting, these steels were heated to a temperature above 1100 ° C, hot rolled to a thickness of 3mm, annealed at a temperature of 800 ° C, and then pickled and cold rolled to a thickness of 1, 5mm.
Les tôles d'acier ont été ensuite recuites à une température de 800°C. Les tôles d'acier recuites ont subi ensuite un traitement d'austénitisation de 15 minutes à 1050°C suivi d'une trempe à l'eau jusqu'à la température de 20°C.  The steel sheets were then annealed at a temperature of 800 ° C. The annealed steel sheets were then subjected to a 15-minute austenitization treatment at 1050 ° C. followed by quenching with water to a temperature of 20 ° C.
Après découpe des tôles en deux parties, l'une des parties a été ensuite plongée pendant 10mn dans un bain thermostaté à -80°C, de façon à pouvoir évaluer les effets d'un traitement cryogénique qui s'ajouterait à la simple trempe à l'eau.  After cutting the sheets into two parts, one of the parts was then immersed for 10 minutes in a bath thermostated at -80 ° C., so as to be able to evaluate the effects of a cryogenic treatment which would be added to the simple quenching. the water.
Un revenu de 1 h à 200°C a ensuite été effectué sur chaque partie de tôle.  An income of 1 h at 200 ° C was then made on each part of the sheet.
Le tableau 2 présente le résultat d'essais et observations effectués sur ces aciers. Les valeurs soulignées correspondent à des performances jugées insuffisantes. Les « + » correspondent à des résultats jugés satisfaisants, les « - » correspondent à des résultats jugés insuffisants.  Table 2 shows the results of tests and observations made on these steels. The underlined values correspond to performances deemed insufficient. The "+" correspond to results deemed satisfactory, the "-" correspond to results deemed insufficient.
La santé interne est évaluée sur un état brut de solidification après coulée, sachant que les opérations de transformation ultérieures ne la dégraderont pas.  Internal health is evaluated on a post-pouring solidification state, knowing that subsequent processing operations will not degrade it.
Le taux de martensite est mesuré après une trempe à l'eau à 20°C et après un traitement cryogénique par trempe à -80°C, cette trempe, ou la deuxième de ces trempes, ayant été suivie par un revenu à 200°C. Lorsque le taux de martensite est supérieur ou égale à 75% après trempe à l'eau à 20°C, les autres résultats donnés dans le tableau 2 concernent l'état trempé à 20°C suivi du revenu à 200°C. Lorsque le taux de martensite est inférieur à 75% après la trempe à l'eau à 20°C, les autres résultats donnés dans le tableau 2 concernent l'état après un traitement cryogénique (trempe jusqu'à une très basse température, effectuée par exemple dans de la neige carbonique) à -80°C, suivi du revenu à 200°C. The martensite rate is measured after quenching with water at 20 ° C. and after a cryogenic quenching treatment at -80 ° C., this quenching, or the second of these quenchings, having been followed by a tempering at 200 ° C. . When the martensite content is greater than or equal to 75% after quenching with water at 20 ° C., the other results given in Table 2 relate to the quenched state at 20 ° C. followed by the tempering at 200 ° C. When the martensite content is less than 75% after quenching with water at 20 ° C., the other results given in Table 2 concern the state after a cryogenic treatment (quenching to a very high temperature). low temperature, for example in dry ice) at -80 ° C, followed by income at 200 ° C.
La tenue à la corrosion est évaluée par un test électrochimique de corrosion par piqûre dans un milieu composé de NaCI 0.02M, à 23°C et à pH de 6.6. Le test électrochimique réalisé sur 24 échantillons permet de déterminer le potentiel E0.i pour lequel la probabilité élémentaire de piqûration est égale à 0.1 cm"2. La tenue à la corrosion est considérée comme non satisfaisante si le potentiel E0.i est inférieur à 350 mV, mesuré par rapport à l'électrode au calomel saturée au KCI (350 mV/ECS). Elle est considérée comme satisfaisante si le potentiel E0.i est compris entre 350 mV/ECS et 450 mV/ ECS. Elle est considérée comme très satisfaisante si le potentiel E0.i est supérieur à 450 mV/ECS. The corrosion resistance is evaluated by an electrochemical pitting corrosion test in a medium composed of 0.02M NaCl, at 23 ° C. and at a pH of 6.6. The electrochemical test carried out on 24 samples to determine the potential E 0 .i for which the probability element of pitting is equal to 0.1 cm "2. The corrosion resistance is considered unsatisfactory if the potential E 0 is less .i 350 mV, measured against the saturated calomel electrode at KCI (350 mV / SCE). it is considered satisfactory if the potential E 0 .i is between 350 mV / SCE 450 mV / SCE. it is considered to be very satisfactory if the potential E 0 .i is greater than 450 mV / ECS.
La dureté Vickers est mesurée dans l'épaisseur sur une coupe polie miroir, sous une charge de 1 kg avec une pointe pyramidale en diamant de base carrée, suivant la norme EN ISO 6507. La moyenne des duretés obtenues est calculée en réalisant 10 empreintes. La dureté est considérée comme non satisfaisante si la dureté moyenne est inférieure à 500 HV. Elle est considérée comme satisfaisante si la dureté moyenne est comprise entre 500 HV et 600 HV. Elle est considérée comme très satisfaisante si la dureté moyenne est supérieure à 600 HV.  The Vickers hardness is measured in the thickness on a mirror-polished cut, under a load of 1 kg with a square base diamond pyramidal tip, according to EN ISO 6507. The average hardness obtained is calculated by making 10 impressions. Hardness is considered unsatisfactory if the average hardness is less than 500 HV. It is considered satisfactory if the average hardness is between 500 HV and 600 HV. It is considered very satisfactory if the average hardness is greater than 600 HV.
La polissabilité est évaluée en effectuant un polissage à plat jusqu'à la mi- épaisseur de l'échantillon, en utilisant successivement les papiers SiC 180, 320, 500, 800 et 1200 sous une force de 30 N, puis un polissage sur drap imbibé de pâte diamantée de granulométrie 3 μηι puis 1 μηι sous une force de 20 N. La surface est ensuite observée au microscope optique au grandissement de x100. La polissabilité est considérée comme non satisfaisante si la densité de défauts appelés classiquement « queues de comète » est supérieure à 100/cm2. La polissabilité est considérée comme satisfaisante si cette densité est comprise entre 10/cm2 et 100/cm2. La polissabilité est considérée comme très satisfaisante si cette densité est inférieure à 10/cm2. The polishability is evaluated by carrying out a flat polishing up to the mid-thickness of the sample, successively using the SiC papers 180, 320, 500, 800 and 1200 under a force of 30 N, then a polishing on a soaked cloth of diamond paste of particle size 3 μηι then 1 μηι under a force of 20 N. The surface is then observed under an optical microscope at the magnification of x100. The polishability is considered unsatisfactory if the density of defects conventionally called "comet tails" is greater than 100 / cm 2 . The polishability is considered satisfactory if this density is between 10 / cm 2 and 100 / cm 2 . The polishability is considered very satisfactory if this density is less than 10 / cm 2 .
La santé interne est évaluée en observant l'acier brut de solidification en coupe par métallographie optique au grandissement x25. La santé interne n'est pas satisfaisante si des trous globulaires traduisant la formation de bulles d'azote à la solidification sont observés. Dans le cas contraire la santé interne est considérée comme satisfaisante.  The internal health is evaluated by observing the raw steel of solidification in section by optical metallography at magnification x25. Internal health is not satisfactory if globular holes showing the formation of nitrogen bubbles on solidification are observed. Otherwise, internal health is considered satisfactory.
Le taux de martensite est déterminé par diffraction des rayons X en mesurant l'intensité des raies caractéristiques de la martensite comparativement à l'intensité des raies caractéristiques de l'austénite sachant que se sont les deux seules phases en présence. Un taux de martensite supérieur ou égal à 75% après trempe à 20°C et revenu à 200°C, ou supérieur ou égal à 75% après une trempe à 20°C, un traitement cryogénique à -80°C et un revenu à 200°C, est satisfaisant. Si un taux de martensite de 75% ou plus ne peut être obtenu par l'un de ces traitements, l'échantillon est considéré comme non satisfaisant. The martensite rate is determined by X-ray diffraction by measuring the intensity of the lines characteristic of martensite compared to the intensity of the lines characteristic of austenite knowing that they are the only two phases in the presence. A martensite content greater than or equal to 75% after quenching at 20 ° C. and returned to 200 ° C., or greater than or equal to 75% after quenching at 20 ° C., a treatment cryogenic at -80 ° C and an income at 200 ° C, is satisfactory. If a martensite level of 75% or more can not be achieved by any of these treatments, the sample is considered unsatisfactory.
Figure imgf000013_0001
Figure imgf000013_0001
Tableau 2 : résultats des essais réalisés sur les échantillons du tableau 1 Table 2: Results of Tests on Table 1 Samples
Les aciers selon l'invention 11 à 18 combinent de bonnes propriétés de tenue à la corrosion, de dureté et de polissabilité, et présentent une bonne santé interne, ainsi qu'un taux de martensite supérieur ou égal à 75% après une trempe à 20°C. L'acier selon l'invention 19 combine de bonnes propriétés de tenue à la corrosion, de dureté et de polissabilité, et présente une bonne santé interne ainsi qu'un taux de martensite supérieur ou égal à 75%, mais à condition d'effectuer un traitement cryogénique à -80°C. En effet à l'issue d'une simple trempe à l'eau à 20°C, le taux de martensite n'est pas encore suffisant, ce qui est à relier à la présence de Cr à un niveau supérieur à celui des autres échantillons selon l'invention. The steels according to the invention 11 to 18 combine good properties of resistance to corrosion, hardness and polishability, and have good internal health, as well as a martensite content greater than or equal to 75% after quenching. ° C. The steel according to the invention 19 combines good properties of resistance to corrosion, hardness and polishability, and has good internal health and a martensite rate greater than or equal to 75%, but provided to perform cryogenic treatment at -80 ° C. Indeed, after a simple quenching with water at 20 ° C, the martensite rate is not yet sufficient, which is to relate to the presence of Cr at a higher level than other samples according to the invention.
Les aciers de référence R1 à R3 ont des teneurs en Cr et N, ainsi que des sommes C + N et/ou Cr + 16 N - 5 C insuffisantes, ce qui ne permet pas une tenue à la corrosion satisfaisante.  The reference steels R1 to R3 have Cr and N contents, as well as insufficient C + N and / or Cr + 16 N - 5 C sums, which does not allow a satisfactory corrosion resistance.
Les aciers de référence R4 et R5 ont des teneurs en Cr insuffisantes. Sans compensation par un ajout de N, l'acier R4 présente aussi une combinaison Cr + 16 N - 5 C insuffisante conduisant à une tenue à la corrosion non satisfaisante. Pour l'acier R5, la compensation du manque de Cr par un ajout de N rétablit une tenue à la corrosion satisfaisante, mais ne permet plus d'assurer une bonne santé interne.  The R4 and R5 reference steels have insufficient Cr contents. Without compensation by addition of N, the steel R4 also has a combination Cr + 16 N - 5 C insufficient leading to an unsatisfactory corrosion resistance. For R5 steel, compensating for lack of Cr by adding N restores satisfactory corrosion resistance, but no longer ensures good internal health.
L'acier de référence R6 a une teneur en C trop élevée et une teneur en N insuffisante. La teneur en C trop élevée ne permet pas une aptitude au polissage suffisante du fait de la formation de carbures trop importante.  The R6 reference steel has a high C content and an insufficient N content. The excessively high C content does not allow sufficient polishing ability due to excessive carbide formation.
L'acier de référence R7 a une teneur en N trop élevée, ce qui dégrade la santé interne.  The reference steel R7 has too high a N content, which degrades internal health.
L'acier de référence R8 à une teneur excessive en C, ce qui conduit à une mauvaise polissabilité et à un taux de martensite trop faible même après une trempe cryogénique à -80°C.  The R8 reference steel has an excessive C content, which leads to poor polishability and a low martensite rate even after cryogenic quenching at -80 ° C.
L'acier de référence R9 contient trop de Cr, ce qui conduit à un taux de martensite insuffisant même après une trempe cryogénique à -80°C.  The R9 reference steel contains too much Cr, which leads to an insufficient martensite rate even after cryogenic quenching at -80 ° C.
Les aciers de référence R10 et R1 1 ont des teneurs en C trop faibles ainsi que des sommes C + N insuffisantes, conduisant à des duretés trop faibles.  The reference steels R10 and R1 1 have too low C contents as well as insufficient C + N sums, leading to too low hardnesses.
Les aciers selon l'invention sont utilisés avec profit pour la fabrication d'outils de coupe, comme par exemple des scalpels, des ciseaux, des lames de couteaux ou des lames circulaires de robots ménagers.  The steels according to the invention are used with advantage for the manufacture of cutting tools, such as for example scalpels, scissors, knife blades or circular blades of household robots.

Claims

REVENDICATIONS
1 . - Acier inoxydable martensitique, caractérisé en ce que sa composition est, en pourcentages pondéraux : 1. - Martensitic stainless steel, characterized in that its composition is, in percentages by weight:
- 0,10%≤ C≤ 0,45% ; de préférence 0,10%≤ C≤ 0,40% ; mieux 0,10%≤ C≤ - 0.10% ≤ C≤ 0.45%; preferably 0.10% ≤ C≤ 0.40%; better 0.10% ≤ C≤
0,25% ; 0.25%;
- traces≤ Mn≤ 1 ,0% ;  - traces≤ Mn≤ 1, 0%;
- traces≤ Si≤ 1 ,0% ;  - traces≤ Si≤ 1, 0%;
- traces≤ S≤ 0,01 % ;  - traces≤ S≤ 0.01%;
- traces≤ P≤ 0,04% ;  - traces≤ P≤0.04%;
- 15,0%≤Cr≤ 18,0% ;  - 15.0% ≤Cr≤ 18.0%;
- traces≤ Ni≤ 0,50% ;  - traces≤ Ni≤ 0.50%;
- traces≤ Mo≤ 0,50% ;  - traces≤ Mo≤ 0.50%;
- traces≤ Cu≤ 0,50% ;  - traces≤ Cu≤ 0.50%;
- traces≤ V≤ 0,50% ;  - traces≤ V≤ 0.50%;
- traces≤ Nb≤ 0,03% ;  - traces≤Nb≤0.03%;
- traces≤ Ti≤ 0,03% ;  - traces ≤ Ti ≤ 0.03%;
- traces≤ Zr≤ 0,03% ;  - traces≤Zr≤0.03%;
- traces≤ Al≤ 0,010% ;  - traces≤ Al≤ 0.010%;
- traces≤ O≤ 0,0080% ;  - traces ≤ 0 ≤ 0.0080%;
- traces≤ Pb≤ 0,02% ;  - traces≤ Pb≤ 0.02%;
- traces≤ Bi≤ 0,02% ;  - traces≤ Bi≤ 0.02%;
- traces≤ Sn≤ 0,02% ;  - traces≤ Sn≤ 0.02%;
- 0,10%≤N≤0,20% ;  - 0.10% ≤N≤0.20%;
- C + N≥ 0,25% ; de préférence C + N≥ 0,45% ;  - C + N≥ 0.25%; preferably C + N≥ 0.45%;
- Cr + 16 N - 5 C≥ 14,0% ; de préférence Cr + 16 N - 5 C≥ 16% ;  - Cr + 16 N - 5 C ≥ 14.0%; preferably Cr + 16 N - 5 C≥16%;
le reste étant du fer et des impuretés résultant de l'élaboration. the rest being iron and impurities resulting from the elaboration.
2. - Acier selon la revendication 1 , caractérisé en ce que sa teneur pondérale en Cr est comprise entre 15 et 17%.  2. - Steel according to claim 1, characterized in that its weight content of Cr is between 15 and 17%.
3. - Acier selon la revendication 1 , caractérisé en ce que sa microstructure comporte au moins 75% de martensite.  3. - Steel according to claim 1, characterized in that its microstructure comprises at least 75% of martensite.
4. - Procédé de fabrication d'un demi-produit en acier inoxydable martensitique, caractérisé en ce que :  4. - Process for producing a martensitic stainless steel semi-finished product, characterized in that:
- on élabore et on coule un demi-produit en un acier ayant la composition selon l'une des revendications 1 ou 2 ;  a semi-finished product is produced and cast in a steel having the composition according to one of claims 1 or 2;
- on chauffe ledit demi-produit à une température supérieure ou égale à 1000°C ; - on le lamine à chaud pour obtenir une tôle, une barre ou un fil machine ; said semi-product is heated to a temperature greater than or equal to 1000 ° C .; - It is hot rolled to obtain a sheet, bar or wire machine;
- on recuit ladite tôle, ladite barre ou ledit fil machine à une température comprise entre 700 et 900°C ;  said sheet, said bar or said machine wire is annealed at a temperature of between 700 and 900 ° C .;
- et on exécute une opération de mise en forme sur ladite tôle, ladite barre ou ledit fil machine.  and performing a shaping operation on said sheet, said bar or said wire rod.
5. - Procédé selon la revendication 4, caractérisé en ce que ledit demi-produit est une tôle, et en ce que ladite opération de mise en forme est un laminage à froid.  5. - Method according to claim 4, characterized in that said half-product is a sheet, and in that said shaping operation is a cold rolling.
6. Procédé selon la revendication 4, caractérisé en ce que ledit demi-produit est une barre ou un fil machine, et en ce que ladite opération de mise en forme est un forgeage.  6. Method according to claim 4, characterized in that said half-product is a bar or a wire rod, and in that said shaping operation is a forging.
7. - Procédé selon l'une des revendications 4 à 6, caractérisé en ce que l'acier a une composition selon la revendication 2, en ce que ledit demi-produit mis en forme est ensuite austénitisé entre 950 et 1 150°C, puis refroidi à une vitesse d'au moins 15°C/s jusqu'à une température inférieure ou égale à 20°C, puis subit un revenu à une température comprise entre 100 et 300°C.  7. - Method according to one of claims 4 to 6, characterized in that the steel has a composition according to claim 2, in that said semi-shaped product is then austenitized between 950 and 1150 ° C, then cooled at a rate of at least 15 ° C / s to a temperature of less than or equal to 20 ° C and then tempered at a temperature of between 100 and 300 ° C.
8. - Procédé selon l'une des revendications 4 à 6, caractérisé en ce que l'acier a une composition selon la revendication 1 ou 2, en ce que ledit demi-produit mis en forme est ensuite austénitisé entre 950 et 1 150°C, puis refroidi à une vitesse d'au moins 15°C/s jusqu'à une température inférieure ou égale à 20°C, puis subit un traitement cryogénique à une température de -220 à -50°C, puis un revenu à une température comprise entre 100 et 300°C.  8. - Method according to one of claims 4 to 6, characterized in that the steel has a composition according to claim 1 or 2, in that said semi-shaped product is then austenitized between 950 and 1150 ° C, then cooled at a rate of at least 15 ° C / s to a temperature below or equal to 20 ° C, and then undergoes a cryogenic treatment at a temperature of -220 to -50 ° C, and then an income at a temperature of between 100 and 300 ° C.
9. - Outil de coupe, caractérisé en ce qu'il a été réalisé à partir d'un demi-produit préparé selon le procédé de l'une des revendications 4 à 8.  9. - cutting tool, characterized in that it was made from a semi-finished product prepared according to the method of one of claims 4 to 8.
10. - Outil de coupe selon la revendication 9, caractérisé en ce qu'il s'agit d'un article de coutellerie tel qu'une lame de couteau, une lame de robot ménager, un scalpel, ou une lame de ciseaux,  10. - Cutting tool according to claim 9, characterized in that it is a cutlery article such as a knife blade, a household robot blade, a scalpel, or a scissors blade,
PCT/IB2015/053144 2015-04-30 2015-04-30 Martensitic stainless steel, method for producing a semi-finished product made from said steel and cutting tool produced from said semi-finished product WO2016174500A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
PCT/IB2015/053144 WO2016174500A1 (en) 2015-04-30 2015-04-30 Martensitic stainless steel, method for producing a semi-finished product made from said steel and cutting tool produced from said semi-finished product
MX2017013834A MX2017013834A (en) 2015-04-30 2016-04-29 Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product.
UAA201710404A UA120119C2 (en) 2015-04-30 2016-04-29 Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product
EP16724302.1A EP3289109B1 (en) 2015-04-30 2016-04-29 Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product
PCT/EP2016/059684 WO2016146857A1 (en) 2015-04-30 2016-04-29 Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product
CN201680025863.1A CN107567507A (en) 2015-04-30 2016-04-29 Martensitic stain less steel, by the steel making process of semi-finished and the cutting element made of semi-finished product
BR112017023361-4A BR112017023361B1 (en) 2015-04-30 2016-04-29 MARTENSITIC STAINLESS STEEL, METHOD TO PRODUCE A SEMI-FINISHED PRODUCT PRODUCED FROM MARTENSITIC STAINLESS STEEL AND CUTTING TOOL
ES16724302T ES2796354T3 (en) 2015-04-30 2016-04-29 Martensitic stainless steel, manufacturing procedure for a semi-finished product of this steel and cutting tool made from this semi-finished product
US15/570,574 US20180127858A1 (en) 2015-04-30 2016-04-29 Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product
RU2017137708A RU2017137708A (en) 2015-04-30 2016-04-29 MARTEN STEEL STAINLESS STEEL, METHOD OF OBTAINING FROM AREA STATED STEEL AND CUTTING TOOL RECEIVED FROM SUCH A STEEL
CA2984514A CA2984514A1 (en) 2015-04-30 2016-04-29 Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product
KR1020177034728A KR20170141250A (en) 2015-04-30 2016-04-29 Martensitic stainless steel, a method for producing a semi-finished product from the above steel, and a cutting tool manufactured from the semi-finished product
JP2017556875A JP6767389B2 (en) 2015-04-30 2016-04-29 Martensitic stainless steel, how to make semi-finished products from the steel, and cutting tools made from the semi-finished products.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2015/053144 WO2016174500A1 (en) 2015-04-30 2015-04-30 Martensitic stainless steel, method for producing a semi-finished product made from said steel and cutting tool produced from said semi-finished product

Publications (1)

Publication Number Publication Date
WO2016174500A1 true WO2016174500A1 (en) 2016-11-03

Family

ID=53177712

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2015/053144 WO2016174500A1 (en) 2015-04-30 2015-04-30 Martensitic stainless steel, method for producing a semi-finished product made from said steel and cutting tool produced from said semi-finished product
PCT/EP2016/059684 WO2016146857A1 (en) 2015-04-30 2016-04-29 Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/059684 WO2016146857A1 (en) 2015-04-30 2016-04-29 Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product

Country Status (12)

Country Link
US (1) US20180127858A1 (en)
EP (1) EP3289109B1 (en)
JP (1) JP6767389B2 (en)
KR (1) KR20170141250A (en)
CN (1) CN107567507A (en)
BR (1) BR112017023361B1 (en)
CA (1) CA2984514A1 (en)
ES (1) ES2796354T3 (en)
MX (1) MX2017013834A (en)
RU (1) RU2017137708A (en)
UA (1) UA120119C2 (en)
WO (2) WO2016174500A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636893A (en) * 2016-11-25 2017-05-10 邢台钢铁有限责任公司 Stainless steel wire rod easy to cut and manufacturing method thereof
CN109022728A (en) * 2018-07-20 2018-12-18 西安建筑科技大学 A kind of the high temperature quenching-high undercooling-low temperature partition heat treatment method and stainless steel of metastable state austenitic stainless steel
CN109666779A (en) * 2018-12-06 2019-04-23 南京理工大学 A kind of cutting edge martensite strengthening medical operation scissors and production method
CN110438404A (en) * 2019-09-09 2019-11-12 山东泰山钢铁集团有限公司 A kind of the ingredient design and control technology of measurer slide calliper rule steel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE051293T2 (en) * 2016-04-22 2021-03-01 Aperam A process for manufacturing a martensitic stainless steel part from a sheet
DE102017003965B4 (en) * 2017-04-25 2019-12-12 Zapp Precision Metals Gmbh Martensitic chrome steel, steel foil, perforated and / or perforated steel foil component, process for producing a steel foil
WO2019240209A1 (en) * 2018-06-13 2019-12-19 日鉄ステンレス株式会社 Martensitic s free-cutting stainless steel

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1179829A (en) * 1967-06-30 1970-02-04 Sandvikens Jernverks Ab Improved Method for the Manufacture of Razor Blades and Like Tools
US3575737A (en) * 1968-06-25 1971-04-20 Sandvikens Jernverks Ab Razor blades and other thin cutting edge tools and method of manufacture of such tools
US4180420A (en) * 1977-12-01 1979-12-25 The Gillette Company Razor blades
EP0638658A1 (en) * 1993-08-11 1995-02-15 SOCIETE INDUSTRIELLE DE METALLURGIE AVANCEE S.I.M.A. Société Anonyme Nitrogen-containing martensilic steel with low carbon content and process for its manufacture
JPH09256116A (en) * 1996-03-19 1997-09-30 Nisshin Steel Co Ltd High strength martensitic stainless steel excellent in antibacterial characteristic
WO2001040526A1 (en) * 1999-12-02 2001-06-07 Ati Properties, Inc. Martensitic stainless steel and steelmaking process
FR2896514A1 (en) * 2006-01-26 2007-07-27 Aubert & Duval Soc Par Actions Corrosion-resistant martensitic stainless steel, useful for producing internal combustion engine valves, includes high level of chromium and added vanadium, silicon and nitrogen
CN101768700A (en) * 2009-02-01 2010-07-07 裘德鑫 Antibacterial martensitic stainless steel applied in hardware industry
US20120237390A1 (en) * 2009-12-28 2012-09-20 Posco Martensitic Stainless Steel Produced by a Twin Roll Strip Casting Process and Method for Manufacturing Same
WO2012137070A2 (en) * 2011-04-02 2012-10-11 Qiu Dexin A martensitic antibacterial stainless steel and manufacturing method thereof
US20130309126A1 (en) * 2010-12-27 2013-11-21 Posco Martensitic Stainless Steel Highly Resistant to Corrosion, and Method for Manufacturing Same
WO2014014246A1 (en) * 2012-07-16 2014-01-23 주식회사 포스코 Martensitic stainless steel and method for manufacturing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134161A (en) * 1984-07-25 1986-02-18 Kawasaki Steel Corp Stainless steel for cutlery
JPH07113126B2 (en) * 1987-12-26 1995-12-06 新日本製鐵株式会社 Method for producing stainless steel with excellent resistance to stress corrosion cracking
JPH07110970B2 (en) * 1987-12-26 1995-11-29 新日本製鐵株式会社 Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
GB2324305B (en) * 1997-04-16 2000-05-24 Nsk Ltd Rolling member
JP3965779B2 (en) * 1998-05-22 2007-08-29 大同特殊鋼株式会社 Steel for plastic molds
JP2000144332A (en) * 1998-11-02 2000-05-26 Sanyo Special Steel Co Ltd Steel for die for plastic excellent in corrosion resistance and mirror finishing property
JP3452354B2 (en) * 2000-01-20 2003-09-29 日本高周波鋼業株式会社 Martensitic stainless steel for piston rings and deformed wires for piston rings
JP4857811B2 (en) * 2006-02-27 2012-01-18 Jfeスチール株式会社 Steel for knives
JP5368887B2 (en) * 2008-09-01 2013-12-18 ミネベア株式会社 Martensitic stainless steel and rolling bearings
CN102337461B (en) * 2010-07-23 2013-10-16 宝山钢铁股份有限公司 High-hardness martensitic stainless steel and its production method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1179829A (en) * 1967-06-30 1970-02-04 Sandvikens Jernverks Ab Improved Method for the Manufacture of Razor Blades and Like Tools
US3575737A (en) * 1968-06-25 1971-04-20 Sandvikens Jernverks Ab Razor blades and other thin cutting edge tools and method of manufacture of such tools
US4180420A (en) * 1977-12-01 1979-12-25 The Gillette Company Razor blades
EP0638658A1 (en) * 1993-08-11 1995-02-15 SOCIETE INDUSTRIELLE DE METALLURGIE AVANCEE S.I.M.A. Société Anonyme Nitrogen-containing martensilic steel with low carbon content and process for its manufacture
JPH09256116A (en) * 1996-03-19 1997-09-30 Nisshin Steel Co Ltd High strength martensitic stainless steel excellent in antibacterial characteristic
WO2001040526A1 (en) * 1999-12-02 2001-06-07 Ati Properties, Inc. Martensitic stainless steel and steelmaking process
FR2896514A1 (en) * 2006-01-26 2007-07-27 Aubert & Duval Soc Par Actions Corrosion-resistant martensitic stainless steel, useful for producing internal combustion engine valves, includes high level of chromium and added vanadium, silicon and nitrogen
CN101768700A (en) * 2009-02-01 2010-07-07 裘德鑫 Antibacterial martensitic stainless steel applied in hardware industry
US20120237390A1 (en) * 2009-12-28 2012-09-20 Posco Martensitic Stainless Steel Produced by a Twin Roll Strip Casting Process and Method for Manufacturing Same
US20130309126A1 (en) * 2010-12-27 2013-11-21 Posco Martensitic Stainless Steel Highly Resistant to Corrosion, and Method for Manufacturing Same
WO2012137070A2 (en) * 2011-04-02 2012-10-11 Qiu Dexin A martensitic antibacterial stainless steel and manufacturing method thereof
WO2014014246A1 (en) * 2012-07-16 2014-01-23 주식회사 포스코 Martensitic stainless steel and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636893A (en) * 2016-11-25 2017-05-10 邢台钢铁有限责任公司 Stainless steel wire rod easy to cut and manufacturing method thereof
CN109022728A (en) * 2018-07-20 2018-12-18 西安建筑科技大学 A kind of the high temperature quenching-high undercooling-low temperature partition heat treatment method and stainless steel of metastable state austenitic stainless steel
CN109666779A (en) * 2018-12-06 2019-04-23 南京理工大学 A kind of cutting edge martensite strengthening medical operation scissors and production method
CN110438404A (en) * 2019-09-09 2019-11-12 山东泰山钢铁集团有限公司 A kind of the ingredient design and control technology of measurer slide calliper rule steel

Also Published As

Publication number Publication date
RU2017137708A3 (en) 2019-10-21
RU2017137708A (en) 2019-04-30
CN107567507A (en) 2018-01-09
MX2017013834A (en) 2018-03-21
JP6767389B2 (en) 2020-10-14
CA2984514A1 (en) 2016-09-22
JP2018521215A (en) 2018-08-02
WO2016146857A1 (en) 2016-09-22
KR20170141250A (en) 2017-12-22
UA120119C2 (en) 2019-10-10
ES2796354T3 (en) 2020-11-26
BR112017023361B1 (en) 2021-07-13
EP3289109A1 (en) 2018-03-07
EP3289109B1 (en) 2020-03-04
US20180127858A1 (en) 2018-05-10
BR112017023361A2 (en) 2018-07-17

Similar Documents

Publication Publication Date Title
EP3289109B1 (en) Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product
JP5111119B2 (en) Method for producing austenitic iron-carbon-manganese metal steel sheet, and steel sheet produced thereby
EP1913169B1 (en) Manufacture of steel sheets having high resistance and excellent ductility, products thereof
JP5812048B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
EP2855725B1 (en) Low-density hot- or cold-rolled steel, method for implementing same and use thereof
CA2847809C (en) Rolled steel that hardens by means of precipitation after hot-forming and/or quenching with a tool having very high strength and ductility, and method for manufacturing same
JP5271981B2 (en) Method for producing Si-containing hot-rolled steel sheet having excellent pickling properties and pickling method
EP1427866B1 (en) Method for making rolled and welded tubes comprising a final drawing or hydroforming step and resulting rolled tube
SE1250810A1 (en) Pulled heat treated steel wire for high strength spring use and preferred steel wire for high strength spring use
EP3704280B1 (en) Martensitic stainless steel and method for producing same
JP6244701B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
KR101853533B1 (en) High-carbon hot-rolled steel sheet and method for producing the same
JP6190298B2 (en) High strength bolt steel and high strength bolts with excellent delayed fracture resistance
JP6631715B2 (en) Steel member, hot-rolled steel sheet for the steel member, and method for producing the same
EP3274483A1 (en) Parts with a bainitic structure having high strength properties and manufacturing process
WO2018186274A1 (en) Steel member, hot-rolled steel sheet for said steel member and production methods therefor
JP2011184780A (en) Stainless steel sheet with austenite-martensite dual-phase structure and method of producing the same
JP5491968B2 (en) Steel bar manufacturing method
JP5884781B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP2005330511A (en) Method for manufacturing high-carbon steel parts with small strain of heat treatment
JP2005350736A (en) High-strength steel having superior corrosion resistance and fatigue characteristics for spring, and manufacturing method therefor
KR102597734B1 (en) Steel plates, members and their manufacturing methods
BE1011557A4 (en) Steel with a high elasticity limit showing good ductility and a method of manufacturing this steel
WO2000003041A1 (en) Flat product, such as sheet metal, made of steel with high yield strength having good ductility and method for making same
LU83796A1 (en) PROCESS FOR COLLECTING STEELS AND ARTICLES OF ANNULATED STEEL ACCORDING TO THIS PROCESS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15722596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15722596

Country of ref document: EP

Kind code of ref document: A1