WO2019240209A1 - Martensitic s free-cutting stainless steel - Google Patents

Martensitic s free-cutting stainless steel Download PDF

Info

Publication number
WO2019240209A1
WO2019240209A1 PCT/JP2019/023437 JP2019023437W WO2019240209A1 WO 2019240209 A1 WO2019240209 A1 WO 2019240209A1 JP 2019023437 W JP2019023437 W JP 2019023437W WO 2019240209 A1 WO2019240209 A1 WO 2019240209A1
Authority
WO
WIPO (PCT)
Prior art keywords
inclusions
less
content
cutting
martensitic
Prior art date
Application number
PCT/JP2019/023437
Other languages
French (fr)
Japanese (ja)
Inventor
勇人 境沢
雅之 東城
光司 高野
成雄 福元
Original Assignee
日鉄ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ステンレス株式会社 filed Critical 日鉄ステンレス株式会社
Priority to KR1020207028397A priority Critical patent/KR102471016B1/en
Priority to JP2020525645A priority patent/JP6918238B2/en
Priority to CN201980023405.8A priority patent/CN111989418B/en
Publication of WO2019240209A1 publication Critical patent/WO2019240209A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires

Definitions

  • the present invention relates to martensitic S free-cutting stainless steel (martensitic S-containing free-cutting stainless steel).
  • This application claims priority on June 13, 2018 based on Japanese Patent Application No. 2018-112562 for which it applied to Japan, and uses the content for it here.
  • Patent Documents 1 to 5 have not been satisfactory in terms of manufacturability and surface properties after cutting.
  • the above precision parts have an accuracy of surface roughness Ra ⁇ 0.50 ⁇ m and excellent tool resistance under industrial cutting conditions such as cutting speed ⁇ 20 m / min, cutting depth ⁇ 0.05 mm, feed amount ⁇ 0.005 mm / rev. Abrasion is required.
  • Japanese Patent Publication No. 7-56064 JP 2001-152298 A Japanese Patent No. 5135918 Japanese Patent No. 6194696 Japanese Patent No. 4502519
  • the present invention has been made in view of the above circumstances. Under industrial cutting conditions for precision parts, surface roughness (Ra): excellent surface accuracy of 0.50 ⁇ m or less can be obtained. It is an object to provide martensitic S free-cutting stainless steel that is excellent in wear and manufacturability and does not contain Pb.
  • the formation of the constituent cutting edge is suppressed by reducing the aspect ratio of the inclusions in the steel.
  • the sulfide inclusions in one embodiment of the present invention are (Mn, Cr) (S, O) type inclusions or (Mn, Cr, Ca, REM) (S, O, Te) type inclusions, It is characterized by increasing the deformation resistance of inclusions and reducing the aspect ratio by dissolving trace elements in sulfide inclusions.
  • rod-shaped sulfides eutectic type
  • such inclusions have a large aspect ratio and non-uniform shape, leading to deterioration of surface roughness. .
  • the surface roughness (Ra) is 0.50 ⁇ m or less under an ordinary precision part cutting condition without containing Pb that adversely affects the environment, Martensitic S free-cutting stainless steel excellent in tool wear and manufacturability can be obtained.
  • the martensitic S free-cutting stainless steel according to one aspect of the present invention includes, for example, materials for precision parts such as OA equipment and electronic equipment that require machinability and corrosion resistance, and parts such as shafts, screws, and bolts. Can be used as
  • the chemical components are mass%, C: 0.08 to 0.70%, Si: 0.01 to 1.0%, Mn: 0.1 to 1.50%, S: 0.15 to 0.60%, P: 0.010 to 0.050%, Cr: 10 to 16%, N: 0.005 to 0.15%, Al: 0.004 %: Mg: 0.0020% or less, O: 0.007 to 0.030%, Ni: 0 to 1.0%, Mo: 0 to 3.0%, Ca: 0 to 0.003%, Te : 0-0.024%, REM: 0-0.003%, B: 0-0.02%, Nb: 0-1.00%, Ti: 0-1.00%, V: 0-0.
  • the martensitic S free-cutting stainless steel of the present embodiment includes one or more of 0.3 mass% or more of Ca, 1 mass% or more of Te, or 0.3 mass% or more of REM. It may contain (Mn, Cr, Ca, REM) (S, O, Te) inclusions.
  • the aspect ratio of (Mn, Cr) (S, O) inclusions may be 4.0 or less. Furthermore, in the martensitic S free-cutting stainless steel of this embodiment, the aspect ratio of (Mn, Cr, Ca, REM) (S, O, Te) inclusions may be 4.0 or less. Below, each requirement of this embodiment is demonstrated.
  • C 0.08 to 0.70% C is necessary in order to obtain a martensite structure and obtain high strength after quenching. For this reason, C content shall be 0.08% or more. Further, from the viewpoint of machinability, the C content may be 0.12% or more. On the other hand, when an excessive amount of C is contained, coarse carbides are generated at the time of annealing, and the generation of the constituent cutting edge is promoted at the time of cutting to deteriorate the accuracy of the cutting surface. Therefore, the C content is 0.70% or less. To do. Preferably it is 0.40% or less.
  • Si 0.01 to 1.0% Si is contained for deoxidation. For this reason, Si content shall be 0.01% or more. The Si content may be 0.05% or more. On the other hand, when Si exceeds 1.0%, when stainless steel is hot-rolled into a bar wire, the scale generation at the time of rolling is promoted, and the formation of hot-rolled iron is promoted. 1.0% or less.
  • Mn 0.1 to 1.50%
  • Mn is an element that generates inclusions together with Cr and improves machinability, particularly surface accuracy. For this reason, Mn content shall be 0.10% or more.
  • Mn content exceeds 1.50%, the composition ratio of Mn / Cr in the inclusions becomes high, and the inclusions expand to increase the aspect ratio. Therefore, the Mn content is 1.50% or less.
  • the Mn content may be 1.40% or less, or 1.10% or less.
  • S 0.15-0.60%
  • S forms sulfide inclusions, and stress concentrates on the inclusions during cutting.
  • cracks are generated starting from inclusions in the shear deformation region at the time of chip generation, and the growth of the constituent cutting edges is suppressed. For this reason, the precision of the cutting surface of steel improves.
  • the S content is 0.15% or more.
  • the S content may be 0.20% or more.
  • the S content is set to 0.60% or less. S content is good also as 0.40% or less.
  • P 0.010 to 0.050% P segregates at the grain boundaries to lower the material ductility during the cutting process and improve the surface accuracy. For this reason, the P content is set to 0.010% or more. The P content may be 0.020% or more. On the other hand, if the P content exceeds 0.050%, the productivity is significantly deteriorated. Therefore, the P content is 0.050% or less.
  • Cr 10-16% Cr forms sulfide inclusions with Mn, and the aspect ratio of inclusions can be controlled by optimizing the composition ratio (Mn / Cr) of Mn and Cr in the inclusions.
  • the Cr content is 10% or more.
  • the Cr content may be 12% or more.
  • the Cr content is 16% or less.
  • the Cr content may be 15% or less.
  • N 0.005 to 0.15% N dissolves in the matrix, embrittles the matrix in the cutting temperature range, and increases the strength of the product. For this reason, N content shall be 0.005% or more.
  • N is contained in an amount of more than 0.02%. However, if N is contained exceeding 0.15%, the manufacturability is remarkably deteriorated due to the formation of blow holes and the deterioration of hot workability. Therefore, the N content is 0.15% or less. The N content may be 0.12% or less.
  • Al 0.004% or less Al is used as a deoxidizing element, but forms rod-like sulfides (eutectic type) in order to form hard Al-based oxides and reduce oxygen. Therefore, the Al content is 0.004% or less. The Al content may be 0.003% or less and may be less than 0.002%. In order to exhibit the effect in the present embodiment, Al is preferably contained in an amount of 0.001% or more.
  • Mg 0.0020% or less Mg is used as a deoxidizing element, but forms a rod-like sulfide (eutectic type) in order to form a hard Mg-based oxide to reduce oxygen. Therefore, the Mg content is 0.0020% or less.
  • the Mg content may be 0.0010% or less or less than 0.0005%.
  • O 0.007 to 0.030% O coarsens the deoxidation product at the time of solidification and improves the machinability by generating granular sulfide inclusions (clinotropic type). For this reason, the O content is set to 0.007% or more.
  • the O content may be 0.012% or more. Furthermore, it may be 0.016% or more. However, if O is contained in an amount exceeding 0.030%, hard inclusions increase and machinability is deteriorated, so the O content is set to 0.030% or less.
  • the martensitic S free-cutting stainless steel of the present embodiment is composed of Fe and impurities other than the elements described above.
  • the elements described below other than the above can be selectively contained within a range that does not impair the effects exhibited by the technical features of the present embodiment. The reasons for limitation are described below.
  • the lower limit of these elements is 0%.
  • Ni 0 to 1.0%
  • Ni may be contained in order to increase the hardness of the material by solid solution strengthening to prevent the formation of the constituent cutting edge and improve the surface accuracy during cutting.
  • the Ni content is preferably 0.1% or more. However, if it exceeds 1.0%, it hardens and causes deterioration of the tool life. Therefore, the Ni content is 1.0% or less. The Ni content may be 0.8% or less. The Ni content may be 0%.
  • Mo 0 to 3.0%
  • Mo is an element that improves the corrosion resistance, and may be contained. However, when Mo is contained in a large amount, it hardens and causes deterioration of the tool life. For this reason, Mo content shall be 3.0% or less. The Mo content may be 2.0% or less. On the other hand, in order to acquire the said effect, it is preferable that Mo content is 0.1% or more. The Mo content may be 0%.
  • Ca 0 to 0.003% Ca improves the machinability by generating granular sulfide inclusions (clinotropic type), so Ca may be contained. Moreover, since there exists an effect which softens an oxide type inclusion and improves a tool life, you may make it contain. In order to acquire these effects, it is good to make it contain 0.0005% or more. However, when Ca is contained exceeding 0.003%, the effect is saturated and hot workability is reduced. For this reason, Ca content is made into 0.003% or less. The Ca content is more preferably 0.001% or more and 0.002% or less. Ca may be 0%.
  • Te 0 to 0.024% Te is an important element for improving the machinability, in particular, the accuracy of the cutting surface in the present embodiment, and therefore, Te may be contained. Te suppresses deformation of inclusions by dissolving at least 1% by mass in the inclusions, thereby reducing the aspect ratio. As a result, the growth of the cutting edge is suppressed and the accuracy of the cutting surface is improved.
  • Te content is preferably 0.010% or more.
  • Te exceeds 0.024%, not only the effect is saturated, but also MnTe is formed around the inclusions, and the productivity is remarkably deteriorated. Therefore, the Te content is set to 0.024% or less. The Te content may be 0.015% or less. Te may be 0%.
  • REM 0 to 0.003% Since REM improves the machinability by generating granular sulfide inclusions (clinotropic type) like Ca, it may be included. Moreover, since there exists an effect which softens an oxide type inclusion and improves a tool life, you may make it contain. When it contains REM, it is good to make it 0.0005% or more. However, when the content of REM exceeds 0.003%, not only the effect is saturated, but also a hard REM-based oxysulfide is generated in a part of the inclusions, causing deterioration of the tool life. For this reason, REM content shall be 0.003% or less. The REM content is preferably 0.001% or more and 0.002% or less. REM may be 0%.
  • REM rare earth element
  • Sc scandium
  • Y yttrium
  • lanthanoid lanthanoid
  • La lanthanum
  • Lu lutetium
  • B 0 to 0.02%
  • B is an element used for improving hot workability, and may be contained in order to obtain a stable effect. However, if B is contained in an excessive amount, the B compound is precipitated and the hot workability is deteriorated, so the B content is set to 0.02% or less.
  • the B content is preferably 0.015% or less.
  • B content is 0.0001% or more, and it is more preferable that B content is 0.0002% or more.
  • B may be 0%.
  • Nb 0 to 1.00% Ti: 0 to 1.00% V: 0 to 0.50% Ta: 0 to 0.5% W: 0-0.5%
  • Ti, V, Ta, and W may form carbonitride and have an effect of improving corrosion resistance, and thus may be contained. However, if these elements are contained in large quantities, the machinability deteriorates, so the Nb content is 1.00% or less and the Ti content is 1.00% or less. Further, the V content is 0.50% or less, the Ta content is 0.5% or less, and the W content is 0.5% or less.
  • the Nb content is preferably 0.05% or more, the Ti content is preferably 0.05% or more, and the V content is 0.00%. It is preferably at least 05%.
  • the Ta content is preferably 0.1% or more, and the W content is preferably 0.1% or more.
  • Nb, Ti, V, Ta, and W may be 0%.
  • Co 0 to 1.00%
  • Co may be contained in order to increase the toughness of the matrix. However, if Co is contained in an excessive amount, it hardens and deteriorates the machinability, so the Co content is 1.00% or less.
  • the Co content may be 0.60% or less.
  • Co content is 0.05% or more.
  • Co may be 0%.
  • Zr 0 to 0.020%
  • Zr has the effect of improving the strength and may be contained. However, if a large amount of Zr is contained, the toughness is reduced, so the Zr content is 0.020% or less. On the other hand, in order to sufficiently obtain the effect of improving the strength, the Zr content is preferably 0.001% or more. Zr may be 0%.
  • Cu 0 to 3.0% Cu may be contained in order to increase the hardness of the material by solid solution strengthening to prevent the formation of the constituent cutting edge and to improve the surface accuracy during the cutting process.
  • the Cu content is 3.0% or less.
  • Cu may be 0%.
  • Sn and Sb may be contained in order to suppress deterioration of corrosion resistance by coexisting with a sulfide that deteriorates corrosion resistance. However, if the content of Sn and Sb exceeds 0.5%, manufacturability is deteriorated, so the Sn and Sb contents are 0.5% or less, respectively. Each of Sn and Sb contents may be 0.3% or less. On the other hand, in order to acquire the said effect, it is preferable that Sn and Sb content are 0.005% or more, respectively. The Sn and Sb contents may be 0.010% or more, respectively. Moreover, Sn and Sb content may be 0%, respectively.
  • Ga 0 to 0.0050% Ga may be contained in an amount of 0.0005% or more as necessary for improving cold workability. However, when Ga exceeds 0.0050%, forgeability deteriorates. Therefore, the upper limit of the Ga content is preferably 0.0050% or less. Ga may be 0%.
  • the martensitic S free-cutting stainless steel of this embodiment may inevitably contain Pb and Se, but the Pb content is controlled to be less than 0.03% and the Se content is less than 0.02%. Need to control.
  • Impurities are introduced from ore, scrap, or production environment as raw materials when industrially manufacturing steel materials, and are allowed within a range that does not adversely affect the steel materials of this embodiment. Means something.
  • the composition of inclusions it is important to control the composition of inclusions.
  • the aspect ratio of the inclusions after rolling the martensitic S free-cutting stainless steel according to the present embodiment into a wire can be kept small.
  • the formation of the constituent cutting edges is suppressed, and high dimensional accuracy and good surface properties can be obtained during cutting.
  • the oxygen content in the molten steel is controlled by controlling the amount of deoxidizing components such as Al and Mg during melting of the steel to be equal to or lower than the upper limit of the content of the present embodiment. Increase. Further, in the actual production, it is preferable that the basicity CaO / SiO 2 of slag is 1.8 or less, preferably about 1.5 in AOD (or VOD).
  • the oxygen content in the molten steel can be increased by an operation in which no deoxidizing components such as Al and Mg are added.
  • (Mn, Cr) (S, O) inclusions containing 0.5% by mass or more of O can be generated as granular sulfide inclusions (clinotropic type).
  • the aspect ratio of the inclusion at this stage is 4.0 or less, preferably 3.0 or less.
  • the stainless steel in which inclusions were produced was when the total hot rolling area reduction (total area reduction in hot rolling) was 95% or more in the subsequent hot rolling process.
  • the inclusions are not deformed, and the aspect ratio can be controlled to 4.0 or less, preferably 3.0 or less. If the aspect ratio exceeds 4.0, it is not preferable because machinability deteriorates when cutting a part or the like.
  • the aspect ratio of the inclusion is preferably 1 or more. When the aspect ratio of inclusions is less than 1, the inclusions are very hard inclusions that are difficult to stretch, and are considered to cause cracks and surface scratches during production.
  • the aspect ratio of the produced inclusions is 4.0 or less, preferably 3.0 or less. Since such composite inclusions have high deformation resistance, the inclusions are not deformed even when the rolling reduction is performed under the condition that the area reduction rate of hot rolling is 95% or more in the subsequent hot rolling process, The aspect ratio of inclusions can be controlled to 4.0 or less, preferably 3.0 or less, and the machinability can be greatly improved. If the aspect ratio exceeds 4.0, the machinability is lowered, which is not preferable.
  • the aspect ratio of the inclusion is preferably 1 or more.
  • the martensitic S free-cutting stainless steel of the present embodiment may be a steel material after casting, may be a wire obtained by hot rolling the steel material, and is obtained by further cold-drawing the wire. It may be a steel wire, or a forged material obtained by forging a steel material after casting or a wire material after hot rolling.
  • These steel materials, wire materials, steel wires or forged materials are steels having chemical components according to the present embodiment, and include (Mn, Cr) (S, O) -based inclusions or (Mn, Cr, Ca, REM) ( S, O, Te) inclusions are included.
  • (Mn, Cr) (S, O) inclusions or (Mn, Cr, Ca, REM) (S, O, Te) inclusions contained in steel are inclusions that are relatively difficult to deform. Therefore, in any of the above steps, the aspect ratio is 4.0 or less.
  • the martensitic S free-cutting stainless steel according to the present embodiment may contain (Mn, Cr) (S, O) inclusions.
  • the (Mn, Cr) (S, O) inclusions containing 0.5% or more of O are inclusions containing all of Mn, Cr, S and O and having an O concentration of 0.5% or more.
  • the (Mn, Cr, Ca, REM) (S, O, Te) inclusions include all of Mn, Cr, S, and O, 0.3% or more of Ca, 1% or more of Te, and It is an inclusion containing one or more of 0.3% or more of REM.
  • the (Mn, Cr, Ca, REM) (S, O, Te) type inclusions may contain 0.5% or more of O.
  • Each amount of O and Te in the inclusion is preferably 10% or less.
  • Each amount of Ca and REM in the inclusion is preferably 20% or less.
  • the composition of these inclusions is analyzed by an energy dispersive X-ray analyzer (EDS) attached to a scanning electron microscope (SEM).
  • EDS energy dispersive X-ray analyzer
  • SEM scanning electron microscope
  • the inclusion is (Mn, Cr) (S, O).
  • System inclusions Mn, Cr, S, and O are all detected from the inclusions specified by SEM, and one of 0.3% by mass or more of Ca, 1% by mass or more of Te, and 0.3% by mass or more of REM.
  • the inclusions are (Mn, Cr, Ca, REM) (S, O, Te) type inclusions. Whether or not these inclusions are mixed may be determined by identifying and analyzing 10 or more inclusions, and confirming whether or not the inclusions are mixed from the result.
  • the aspect ratio of inclusions was measured using a sample subjected to SEM-EDS, and 10 fields of view were taken at a magnification of 100 by observation with an optical microscope.
  • the diameter was horizontal in the rolling direction circumscribing the inclusions (horizontal ferret diameter).
  • the diameter perpendicular to the rolling direction (vertical ferret diameter) is measured by image analysis.
  • the ratio of the horizontal ferret diameter / vertical ferret diameter of each inclusion is calculated as an aspect ratio, and the average value of the aspect ratios of all inclusions is taken as the aspect ratio of the sample.
  • the aspect ratios of all the inclusions may be averaged.
  • the martensitic S free-cutting stainless steel of this embodiment contains S as a free-cutting element and has excellent machinability.
  • this steel is used as a steel wire, for example, it can be suitably used as a material for precision parts such as OA equipment and electronic equipment that require machinability and corrosion resistance, and a material for parts such as screws and bolts.
  • the oxygen content in the molten steel remains high. And cast into a mold having a diameter of 200 mm. Then, it heated at 1200 degreeC and then processed by hot forging to a diameter of 70 mm. Next, it was annealed at 780 ° C. for 1 hour (air-cooled) and peeled to a diameter of 66 mm. Subsequently, it processed into the diameter of 10 mm by the hot extrusion equivalent to rolling of steel bar. Pickling and then annealing again at 780 ° C.
  • the wire is embedded in a resin so as to observe a cross section in the longitudinal direction including the center line, mirror-polished, and the composition of inclusions is analyzed by energy dispersive X-ray analysis attached to a scanning electron microscope (SEM). Analyzed by instrument (EDS). When all of Cr, Mn, S, and O are detected from the inclusion specified by SEM and 0.5 mass% or more of O is contained, the inclusion is (Mn, Cr) (S, O). System inclusions were used. In addition, Mn, Cr, S, and O are all detected from the inclusions specified by SEM, and one of 0.3 mass% or more of Ca, 1 mass% or more of Te, and 0.3 mass% or more of REM.
  • the inclusions are (Mn, Cr, Ca, REM) (S, O, Te) type inclusions. Whether or not these inclusions were mixed was determined by analyzing 10 or more inclusions, and the results confirmed whether or not inclusions were mixed. Tables 4 and 5 show the composition ratio of inclusions.
  • the aspect ratio of inclusions was measured using a sample subjected to SEM-EDS, and was observed with an optical microscope at 10 magnifications at a magnification of 100.
  • the horizontal diameter in the rolling direction circumscribing the inclusions (horizontal ferret diameter) and rolling
  • the diameter perpendicular to the direction (vertical ferret diameter) was measured by an image analysis method.
  • the ratio of the horizontal ferret diameter / vertical ferret diameter of each inclusion was calculated as an aspect ratio, and the average value of the aspect ratios of all inclusions was taken as the aspect ratio of the sample.
  • Tables 6 and 7 In Tables 6 and 7, when the above two types of inclusions are included, a value obtained by averaging the aspect ratios of all the inclusions is expressed as the aspect ratio of the sample.
  • the surface roughness after cutting the outer periphery of the wire was evaluated by the centerline average roughness (Ra) of the cutting surface.
  • Cutting is turning, material is P type carbide, cutting edge R is 0.4mm, cutting speed is 50m / min, feed rate is 0.02mm / rev, cutting depth is 0.1mm.
  • Cutting was performed while applying oil (mineral oil).
  • the surface roughness Ra was measured on a sample after turning for 15 minutes.
  • a contact-type roughness measuring machine was used, and the average length was measured at 5 points each with a reference length of 2.5 mm. In this embodiment, it was determined that the surface roughness Ra was good when it was 0.50 ⁇ m or less.
  • the tool life was evaluated by the time until the average flank wear amount reached 0.2 mm. If the average flank wear amount was less than 0.2 mm after 15 minutes of machining, the tool life was achieved. That is, it was evaluated that the tool life was long and the machinability was excellent when the average wear amount of the flank was less than 0.2 mm after 15 minutes of machining. When the average wear amount of the flank face was 0.2 mm or more after 15 minutes of machining, the tool life was short and the machinability was inferior. The results are shown in Tables 6 and 7.
  • Manufacturability was evaluated by a high temperature tensile test.
  • a hot ductility evaluation test piece having a diameter of 10 mm was collected in the longitudinal direction of the round bar from the center of the forged material having a diameter of 70 mm and the middle portion of the surface.
  • Manufacturability was evaluated by a drawing value after tensile fracture at a test temperature of 1000 ° C. and a tensile speed of 10 mm / s. The shape of the test piece at this time is ⁇ 10 mm ⁇ 100 mm.
  • Manufacturability was achieved when the aperture value at 1000 ° C. was 50% or more. That is, when the aperture value at 1000 ° C. was 50% or more, it was evaluated that the productivity was excellent. When the aperture value at 1000 ° C. was less than 50%, it was evaluated that the productivity was inferior.
  • Sample No. 1 to 49 are steels of the present invention (invention examples).
  • 50 to 65 are comparative steels (comparative examples). * Mark in a table
  • any 1 type or 2 types or more of Ca, Te, and REM were detected.
  • both (Mn, Cr) (S, O) inclusions and (Mn, Cr, Ca, REM) (S, O, Te) inclusions are included. It was.
  • the aspect ratios of (Mn, Cr) (S, O) inclusions and (Mn, Cr, Ca, REM) (S, O, Te) inclusions are as follows: , Both were 4.0 or less. No. In 59, 60, and 62, the amount of oxygen in the inclusion composition was less than 0.5% by mass. These No. In 59, 60, and 62, (Mn, Cr) (S, O) inclusions having an aspect ratio of 4.0 or less were not included. No. In 52, the amount of Mn was out of the range of the present embodiment. No. In 55, the Cr amount was out of the range of the present embodiment. These No. In Nos. 52 and 55, (Mn, Cr) (S, O) inclusions having an aspect ratio of 4.0 or less were not included. Samples other than the above contained (Mn, Cr) (S, O) inclusions having an aspect ratio of 4.0 or less.
  • No. of steel of the present invention 1-No. 49 by controlling the composition of inclusions in martensitic S free-cutting stainless steel, the surface roughness Ra after cutting becomes 0.50 ⁇ m or less, the tool wear amount is less than 0.2 mm, and the target tool life Achieved the criteria.
  • the aperture value at 1000 ° C. was 50% or more, and the manufacturability standard was achieved.
  • no. 50-No. No. 65 did not satisfy the specified range of the embodiment and did not satisfy any of the characteristics.
  • martensitic S free-cutting stainless steel excellent in machinability and manufacturability can be produced without containing highly toxic Pb or the like.
  • the martensitic S free-cutting stainless steel of the present embodiment can be used as materials for precision parts such as OA equipment and electronic equipment that require machinability and corrosion resistance, and parts such as shafts, screws, and bolts. it can.

Abstract

This martensitic S free-cutting stainless steel contains, in terms of % by mass, 0.07-0.70% C, 0.01-1.0% Si, 0.1-1.50% Mn, 0.15-0.60% S, 0.010-0.050% P, 10-16% Cr, 0.005-0.15% N, 0.004% or less of Al, 0.0020% or less of Mg, 0.007-0.030% O, 0-1.0% Ni, and 0-3.0% Mo, the remainder comprising Fe and impurities, and contains (Mn, Cr)(S, O)-based inclusions including 0.5% by mass or more of O.

Description

マルテンサイト系S快削ステンレス鋼Martensitic S free-cutting stainless steel
 本発明は、マルテンサイト系S快削ステンレス鋼(マルテンサイト系S含有快削ステンレス鋼)に関する。
 本願は、2018年6月13日に、日本に出願された特願2018-112652号に基づき優先権を主張し、その内容をここに援用する。 
The present invention relates to martensitic S free-cutting stainless steel (martensitic S-containing free-cutting stainless steel).
This application claims priority on June 13, 2018 based on Japanese Patent Application No. 2018-112562 for which it applied to Japan, and uses the content for it here.
 OA機器、電子機器等の部品の中で、切削で製造される精密部品には、切削時の切屑処理性に加え、切削加工面に高い寸法精度、および良好な表面性状が求められる。これらの要求に応える素材として、Sを0.15%以上含有するSUS420F、または切削性を更に向上させるためにPb、Se、Teを単独もしくは複合して含有するマルテンサイト系快削ステンレス鋼がある(特許文献1~3)。 Among parts such as OA equipment and electronic equipment, precision parts manufactured by cutting are required to have high dimensional accuracy and good surface properties on the cut surface in addition to chip disposal during cutting. As materials that meet these requirements, there are SUS420F containing 0.15% or more of S, or martensitic free-cutting stainless steel containing Pb, Se, Te alone or in combination to further improve the machinability. (Patent Documents 1 to 3).
 一方、Pb添加を廃止する市場要求に対して、BiまたはSnを含有するとともに、Cuを主体とする第2相を分散させたマルテンサイト系快削ステンレス鋼が提案されている(特許文献4、5)。 On the other hand, martensitic free-cutting stainless steel containing Bi or Sn and in which a second phase mainly composed of Cu is dispersed has been proposed in response to the market demand for eliminating Pb addition (Patent Document 4, 5).
 しかしながら、特許文献1~5に記載の発明では、製造性や切削後の表面性状において満足なものが得られていない。特に上記精密部品は、切削速度≧20m/min、切込み≧0.05mm、送り量≧0.005mm/revといった工業的な切削条件において、表面粗さRa≦0.50μmの精度と優れた耐工具摩耗性が要求される。 However, the inventions described in Patent Documents 1 to 5 have not been satisfactory in terms of manufacturability and surface properties after cutting. In particular, the above precision parts have an accuracy of surface roughness Ra ≦ 0.50 μm and excellent tool resistance under industrial cutting conditions such as cutting speed ≧ 20 m / min, cutting depth ≧ 0.05 mm, feed amount ≧ 0.005 mm / rev. Abrasion is required.
特公平7-56064号公報Japanese Patent Publication No. 7-56064 特開2001-152298号公報JP 2001-152298 A 特許第5135918号公報Japanese Patent No. 5135918 特許第6194696号公報Japanese Patent No. 6194696 特許第4502519号公報Japanese Patent No. 4502519
 本発明は上記事情に鑑みてなされたものであり、精密部品の工業的な切削加工条件下において、表面粗さ(Ra):0.50μm以下の優れた表面精度を得ることができ、耐工具摩耗性及び製造性にも優れ、Pbを含まないマルテンサイト系S快削ステンレス鋼を提供することを課題とする。 The present invention has been made in view of the above circumstances. Under industrial cutting conditions for precision parts, surface roughness (Ra): excellent surface accuracy of 0.50 μm or less can be obtained. It is an object to provide martensitic S free-cutting stainless steel that is excellent in wear and manufacturability and does not contain Pb.
 本発明の一態様では、微量成分のコントロールにより介在物の組成の制御を図り、MnSを均一に分散化させることにより、被削性、特に切削後の表面粗さを改善できることを明らかにした。詳細な知見は以下の通りである。 In one aspect of the present invention, it has been clarified that machinability, particularly the surface roughness after cutting, can be improved by controlling the composition of inclusions by controlling trace components and uniformly dispersing MnS. Detailed findings are as follows.
 表面粗さを改善するためには、切削中に工具の刃先に形成される構成刃先を小さくすることが有効である。構成刃先が発生すると、切削の際に工具の切刃の輪郭と異なった凹凸が生じるために表面粗さが劣化する。本発明の一態様では、鋼中の介在物のアスペクト比を小さくすることで構成刃先の形成を抑制する。 In order to improve the surface roughness, it is effective to reduce the component cutting edge formed on the cutting edge of the tool during cutting. When the constituent cutting edge is generated, irregularities different from the contour of the cutting edge of the tool are generated during cutting, so that the surface roughness is deteriorated. In one aspect of the present invention, the formation of the constituent cutting edge is suppressed by reducing the aspect ratio of the inclusions in the steel.
 まず、鋳造段階では粒状の硫化物系介在物(偏晶型)を生成させるように微量成分を制御する。本発明の一態様における硫化物系介在物は(Mn,Cr)(S,O)系介在物、または、(Mn,Cr,Ca,REM)(S,O,Te)系介在物であり、微量元素を硫化物系介在物に固溶することで、介在物の変形抵抗が高まり、アスペクト比が小さくなることが特徴である。なお、一般的には鋳造段階で棒状の硫化物(共晶型)が生成するが、このような介在物はアスペクト比が大きく、また形態が不均一になるために表面粗さの劣化につながる。 First, in the casting stage, trace components are controlled so as to generate granular sulfide inclusions (clinotropic type). The sulfide inclusions in one embodiment of the present invention are (Mn, Cr) (S, O) type inclusions or (Mn, Cr, Ca, REM) (S, O, Te) type inclusions, It is characterized by increasing the deformation resistance of inclusions and reducing the aspect ratio by dissolving trace elements in sulfide inclusions. In general, rod-shaped sulfides (eutectic type) are produced at the casting stage, but such inclusions have a large aspect ratio and non-uniform shape, leading to deterioration of surface roughness. .
 本発明の一態様は、上記知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
[1] 質量%で、
C:0.08~0.70%、
Si:0.01~1.0%、
Mn:0.1~1.50%、
S:0.15~0.60%、
P:0.010~0.050%、
Cr:10~16%、
N:0.005~0.15%、
Al:0.004%以下、
Mg:0.0020%以下、
O:0.007~0.030%、
Ni:0~1.0%、
Mo:0~3.0%、
Ca:0~0.003%、
Te:0~0.024%、
REM:0~0.003%、
B:0~0.02%、
Nb:0~1.00%、
Ti:0~1.00%、
V:0~0.50%、
Ta:0~0.5%、
W:0~0.5%、
Co:0~1.00%、
Zr:0~0.020%、
Cu:0~3.0%、
Sn:0~0.5%、
Sb:0~0.5%、
Ga:0~0.0050%を含有し、
残部がFeおよび不純物よりなり、
 Oを0.5質量%以上含む(Mn,Cr)(S,O)系介在物を含有することを特徴とするマルテンサイト系S快削ステンレス鋼。
[2] 質量%で、
Ca:0.0005~0.003%、
Te:0.010~0.024%、
REM:0.0005~0.003%の1種または2種以上を含有することを特徴とする[1]に記載のマルテンサイト系S快削ステンレス鋼。
[3] 0.3質量%以上のCa、1質量%以上のTe、0.3質量%以上のREMのいずれか1種または2種以上を含む(Mn,Cr,Ca,REM)(S,O,Te)系介在物を含有することを特徴とする[1]または[2]に記載のマルテンサイト系S快削ステンレス鋼。
[4] 質量%で、
B:0.0001~0.02%、
Nb:0.05~1.00%、
Ti:0.05~1.00%、
V:0.05~0.50%、
Ta:0.1~0.5%、
W:0.1~0.5%、
Co:0.05~1.00%、
Zr:0.001~0.020%、
Cu:0.1~3.0%、
Sn:0.005~0.5%、
Sb:0.005~0.5%、
Ga:0.0005~0.0050%
から選択される1種または2種以上を含有する、[1]~[3]の何れか一項に記載のマルテンサイト系S快削ステンレス鋼。
[5] 前記(Mn,Cr)(S,O)系介在物のアスペクト比が4.0以下である、[1]~[4]の何れか一項に記載のマルテンサイト系S快削ステンレス鋼。
[6] 前記(Mn,Cr,Ca,REM)(S,O,Te)系介在物のアスペクト比が4.0以下である、[3]または[4]に記載のマルテンサイト系S快削ステンレス鋼。
One aspect of the present invention has been made based on the above findings, and the gist thereof is as follows.
[1] By mass%
C: 0.08 to 0.70%,
Si: 0.01 to 1.0%,
Mn: 0.1 to 1.50%,
S: 0.15-0.60%,
P: 0.010 to 0.050%,
Cr: 10 to 16%,
N: 0.005 to 0.15%,
Al: 0.004% or less,
Mg: 0.0020% or less,
O: 0.007 to 0.030%,
Ni: 0 to 1.0%,
Mo: 0 to 3.0%,
Ca: 0 to 0.003%,
Te: 0 to 0.024%,
REM: 0 to 0.003%,
B: 0 to 0.02%,
Nb: 0 to 1.00%,
Ti: 0 to 1.00%,
V: 0 to 0.50%,
Ta: 0 to 0.5%
W: 0 to 0.5%
Co: 0 to 1.00%,
Zr: 0 to 0.020%,
Cu: 0 to 3.0%,
Sn: 0 to 0.5%
Sb: 0 to 0.5%,
Ga: 0 to 0.0050% is contained,
The balance consists of Fe and impurities,
A martensitic S free-cutting stainless steel characterized by containing (Mn, Cr) (S, O) -based inclusions containing 0.5 mass% or more of O.
[2] By mass%
Ca: 0.0005 to 0.003%,
Te: 0.010 to 0.024%,
REM: Martensitic S free-cutting stainless steel according to [1], containing one or more of 0.0005 to 0.003%.
[3] Including one or more of 0.3 mass% or more of Ca, 1 mass% or more of Te, 0.3 mass% or more of REM (Mn, Cr, Ca, REM) (S, The martensitic S free-cutting stainless steel according to [1] or [2], characterized by containing O, Te) -based inclusions.
[4] In mass%,
B: 0.0001 to 0.02%,
Nb: 0.05 to 1.00%,
Ti: 0.05 to 1.00%,
V: 0.05 to 0.50%,
Ta: 0.1 to 0.5%
W: 0.1-0.5%
Co: 0.05 to 1.00%,
Zr: 0.001 to 0.020%,
Cu: 0.1 to 3.0%,
Sn: 0.005 to 0.5%,
Sb: 0.005 to 0.5%,
Ga: 0.0005 to 0.0050%
The martensitic S free-cutting stainless steel according to any one of [1] to [3], containing one or more selected from:
[5] The martensitic S free-cutting stainless steel according to any one of [1] to [4], wherein the aspect ratio of the (Mn, Cr) (S, O) inclusion is 4.0 or less. steel.
[6] The martensitic S free cutting according to [3] or [4], wherein the (Mn, Cr, Ca, REM) (S, O, Te) inclusions have an aspect ratio of 4.0 or less. Stainless steel.
 本発明の一態様では、環境に悪影響を与えるPbを含有することなく、通常の精密部品の切削加工条件において、表面粗さ(Ra):0.50μm以下の優れた表面精度を有し、耐工具摩耗性及び製造性にも優れた、マルテンサイト系S快削ステンレス鋼を得ることができる。また、本発明の一態様に係るマルテンサイト系S快削ステンレス鋼は、例えば、被削性および耐食性が要求されるOA機器、電子機器等の精密部品の素材やシャフト、ネジ、ボルト等の部品として利用することができる。 In one aspect of the present invention, the surface roughness (Ra) is 0.50 μm or less under an ordinary precision part cutting condition without containing Pb that adversely affects the environment, Martensitic S free-cutting stainless steel excellent in tool wear and manufacturability can be obtained. In addition, the martensitic S free-cutting stainless steel according to one aspect of the present invention includes, for example, materials for precision parts such as OA equipment and electronic equipment that require machinability and corrosion resistance, and parts such as shafts, screws, and bolts. Can be used as
 本実施形態のマルテンサイト系S快削ステンレス鋼は、化学成分が、質量%で、C:0.08~0.70%、Si:0.01~1.0%、Mn:0.1~1.50%、S:0.15~0.60%、P:0.010~0.050%、Cr:10~16%、N:0.005~0.15%、Al:0.004%以下、Mg:0.0020%以下、O:0.007~0.030%、Ni:0~1.0%、Mo:0~3.0%、Ca:0~0.003%、Te:0~0.024%、REM:0~0.003%、B:0~0.02%、Nb:0~1.00%、Ti:0~1.00%、V:0~0.50%、Ta:0~0.5%、W:0~0.5%、Co:0~1.00%、Zr:0~0.020%、Cu:0~3.0%、Sn:0~0.5%、Sb:0~0.5%、Ga:0~0.0050%を含有し、残部がFeおよび不純物よりなり、Oを0.5質量%以上含む(Mn,Cr)(S,O)系介在物を含有する。
 また、本実施形態のマルテンサイト系S快削ステンレス鋼は、0.3質量%以上のCa、1質量%以上のTe、0.3質量%以上のREMのいずれか1種または2種以上を含む(Mn,Cr,Ca,REM)(S,O,Te)系介在物を含有していてもよい。
 更に、本実施形態のマルテンサイト系S快削ステンレス鋼においては、(Mn,Cr)(S,O)系介在物のアスペクト比が4.0以下であってもよい。
 更に、本実施形態のマルテンサイト系S快削ステンレス鋼においては、(Mn,Cr,Ca,REM)(S,O,Te)系介在物のアスペクト比が4.0以下であってもよい。
 以下に、本実施形態の各要件について説明する。
In the martensitic S free-cutting stainless steel of this embodiment, the chemical components are mass%, C: 0.08 to 0.70%, Si: 0.01 to 1.0%, Mn: 0.1 to 1.50%, S: 0.15 to 0.60%, P: 0.010 to 0.050%, Cr: 10 to 16%, N: 0.005 to 0.15%, Al: 0.004 %: Mg: 0.0020% or less, O: 0.007 to 0.030%, Ni: 0 to 1.0%, Mo: 0 to 3.0%, Ca: 0 to 0.003%, Te : 0-0.024%, REM: 0-0.003%, B: 0-0.02%, Nb: 0-1.00%, Ti: 0-1.00%, V: 0-0. 50%, Ta: 0 to 0.5%, W: 0 to 0.5%, Co: 0 to 1.00%, Zr: 0 to 0.020%, Cu: 0 to 3.0%, Sn: 0 to 0.5%, Sb: 0 to .5% Ga: 0 contained to 0.0050% the balance being Fe and impurities, O and comprises more than 0.5 wt% (Mn, Cr) (S, O) containing inclusions.
In addition, the martensitic S free-cutting stainless steel of the present embodiment includes one or more of 0.3 mass% or more of Ca, 1 mass% or more of Te, or 0.3 mass% or more of REM. It may contain (Mn, Cr, Ca, REM) (S, O, Te) inclusions.
Furthermore, in the martensitic S free-cutting stainless steel of this embodiment, the aspect ratio of (Mn, Cr) (S, O) inclusions may be 4.0 or less.
Furthermore, in the martensitic S free-cutting stainless steel of this embodiment, the aspect ratio of (Mn, Cr, Ca, REM) (S, O, Te) inclusions may be 4.0 or less.
Below, each requirement of this embodiment is demonstrated.
 C:0.08~0.70%
 Cは、焼入れ処理後にマルテンサイト組織を得て高強度を得るために必要である。このため、C含有量は、0.08%以上とする。更に、切削性の観点からC含有量は0.12%以上としてもよい。一方、過剰な量のCを含有すると、焼鈍時に粗大な炭化物が生成し、切削加工時に構成刃先の生成を促進して切削面の精度を劣化させるため、C含有量は0.70%以下とする。好ましくは0.40%以下である。
C: 0.08 to 0.70%
C is necessary in order to obtain a martensite structure and obtain high strength after quenching. For this reason, C content shall be 0.08% or more. Further, from the viewpoint of machinability, the C content may be 0.12% or more. On the other hand, when an excessive amount of C is contained, coarse carbides are generated at the time of annealing, and the generation of the constituent cutting edge is promoted at the time of cutting to deteriorate the accuracy of the cutting surface. Therefore, the C content is 0.70% or less. To do. Preferably it is 0.40% or less.
 Si:0.01~1.0%
 Siは、脱酸のために含有される。このため、Si含有量は0.01%以上とする。Si含有量は0.05%以上であってもよい。一方で、Siが1.0%を超えると、ステンレス鋼を熱間圧延して棒線にする際に圧延時のスケール生成を促し、熱間圧延疵の生成を助長するため、Si含有量は、1.0%以下とする。
Si: 0.01 to 1.0%
Si is contained for deoxidation. For this reason, Si content shall be 0.01% or more. The Si content may be 0.05% or more. On the other hand, when Si exceeds 1.0%, when stainless steel is hot-rolled into a bar wire, the scale generation at the time of rolling is promoted, and the formation of hot-rolled iron is promoted. 1.0% or less.
 Mn:0.1~1.50%
 Mnは、Crと共に介在物を生成し、被削性、特に表面精度を向上させる元素である。このため、Mn含有量は、0.10%以上とする。一方、Mn含有量が1.50%を超えると、介在物におけるMn/Crの組成比が高くなり、介在物が展伸してアスペクト比が大きくなる。そのため、Mn含有量は1.50%以下とする。Mn含有量は1.40%以下でもよく、1.10%以下でもよい。
Mn: 0.1 to 1.50%
Mn is an element that generates inclusions together with Cr and improves machinability, particularly surface accuracy. For this reason, Mn content shall be 0.10% or more. On the other hand, when the Mn content exceeds 1.50%, the composition ratio of Mn / Cr in the inclusions becomes high, and the inclusions expand to increase the aspect ratio. Therefore, the Mn content is 1.50% or less. The Mn content may be 1.40% or less, or 1.10% or less.
 S:0.15~0.60%
 Sは、硫化物系介在物を形成し、介在物には切削加工時に応力が集中する。また、切りくず生成時におけるせん断変形域で介在物を起点にき裂が発生し、構成刃先の成長が抑制される。このため、鋼の切削面の精度が向上する。この効果を得るために、S含有量は、0.15%以上とする。S含有量は0.20%以上であってもよい。一方で、Sが0.60%を超えて含有すると、熱間加工性が著しく劣化する。そのため、S含有量は0.60%以下とする。S含有量は0.40%以下としてもよい。
S: 0.15-0.60%
S forms sulfide inclusions, and stress concentrates on the inclusions during cutting. In addition, cracks are generated starting from inclusions in the shear deformation region at the time of chip generation, and the growth of the constituent cutting edges is suppressed. For this reason, the precision of the cutting surface of steel improves. In order to obtain this effect, the S content is 0.15% or more. The S content may be 0.20% or more. On the other hand, when S exceeds 0.60%, hot workability is remarkably deteriorated. Therefore, the S content is set to 0.60% or less. S content is good also as 0.40% or less.
 P:0.010~0.050%
 Pは、粒界偏析して切削加工時の材料延性を低下させて、表面精度を向上させる。このため、P含有量は、0.010%以上とする。P含有量は、0.020%以上であってもよい。一方、P含有量が0.050%を超えると、製造性が著しく劣化する。そのため、P含有量は、0.050%以下とする。
P: 0.010 to 0.050%
P segregates at the grain boundaries to lower the material ductility during the cutting process and improve the surface accuracy. For this reason, the P content is set to 0.010% or more. The P content may be 0.020% or more. On the other hand, if the P content exceeds 0.050%, the productivity is significantly deteriorated. Therefore, the P content is 0.050% or less.
 Cr:10~16%
 Crは、Mnと共に硫化物系介在物を形成し、特に介在物中のMnとCrの組成比(Mn/Cr)を適正化することで、介在物のアスペクト比を制御できる。アスペクト比を小さくし、切削面の精度を向上させるためには、Cr含有量は、10%以上とする。Cr含有量は、12%以上であってもよい。しかしながら、Crを多量に含有させると、介在物中のMn/Crの組成比が小さくなりすぎて、介在物が展伸しやすくなり、アスペクト比が大きくなる。そのため、Cr含有量は16%以下とする。Cr含有量は15%以下であってもよい。
Cr: 10-16%
Cr forms sulfide inclusions with Mn, and the aspect ratio of inclusions can be controlled by optimizing the composition ratio (Mn / Cr) of Mn and Cr in the inclusions. In order to reduce the aspect ratio and improve the accuracy of the cutting surface, the Cr content is 10% or more. The Cr content may be 12% or more. However, when a large amount of Cr is contained, the composition ratio of Mn / Cr in the inclusions becomes too small, and the inclusions are easily spread and the aspect ratio is increased. Therefore, the Cr content is 16% or less. The Cr content may be 15% or less.
 N:0.005~0.15%
 Nは、マトリックスに固溶し、切削温度域でマトリックスを脆化させ、また、製品の強度を高める。このため、N含有量は0.005%以上とする。好ましくは0.02%超の量でNを含有させる。しかし、0.15%を超えてNを含有させると、ブローホールの生成や熱間加工性の劣化から製造性が著しく劣化する。そのため、N含有量は、0.15%以下とする。
N含有量は0.12%以下であってもよい。
N: 0.005 to 0.15%
N dissolves in the matrix, embrittles the matrix in the cutting temperature range, and increases the strength of the product. For this reason, N content shall be 0.005% or more. Preferably N is contained in an amount of more than 0.02%. However, if N is contained exceeding 0.15%, the manufacturability is remarkably deteriorated due to the formation of blow holes and the deterioration of hot workability. Therefore, the N content is 0.15% or less.
The N content may be 0.12% or less.
 Al:0.004%以下
 Alは、脱酸元素として使用するが、硬質なAl系の酸化物を形成して低酸素化するために、棒状の硫化物(共晶型)を生成させる。そのため、Al含有量は0.004%以下とする。Al含有量は、0.003%以下でもよく、0.002%未満でもよい。本実施形態において効果を発現するには0.001%以上の量でAlを含有するとよい。
Al: 0.004% or less Al is used as a deoxidizing element, but forms rod-like sulfides (eutectic type) in order to form hard Al-based oxides and reduce oxygen. Therefore, the Al content is 0.004% or less. The Al content may be 0.003% or less and may be less than 0.002%. In order to exhibit the effect in the present embodiment, Al is preferably contained in an amount of 0.001% or more.
 Mg:0.0020%以下
 Mgは、脱酸元素として使用するが、硬質なMg系の酸化物を形成して低酸素化するために、棒状の硫化物(共晶型)を生成させる。そのため、Mg含有量は0.0020%以下とする。Mg含有量は、0.0010%以下でもよく、0.0005%未満でもよい。本実施形態において効果を発現するには0.0001%以上の量でMgを含有するとよい。
 AlとMgの両者を本実施形態の範囲の量で含有することにより、粒状の硫化物系介在物(偏晶型)が生成し、被削性が向上する。
Mg: 0.0020% or less Mg is used as a deoxidizing element, but forms a rod-like sulfide (eutectic type) in order to form a hard Mg-based oxide to reduce oxygen. Therefore, the Mg content is 0.0020% or less. The Mg content may be 0.0010% or less or less than 0.0005%. In order to exhibit the effect in the present embodiment, it is preferable to contain Mg in an amount of 0.0001% or more.
By containing both Al and Mg in an amount within the range of this embodiment, granular sulfide inclusions (clinotropic type) are generated, and machinability is improved.
 O:0.007~0.030%
 Oは、凝固時の脱酸生成物を粗大化させるとともに、粒状の硫化物系介在物(偏晶型)を生成させることで被削性を向上させる。このため、O含有量は0.007%以上とする。O含有量は0.012%以上であってもよい。さらに、0.016%以上であってもよい。しかし、0.030%を超えてOを含有させると、硬質な介在物が増加して被削性を劣化させるため、O含有量は0.030%以下とする。
O: 0.007 to 0.030%
O coarsens the deoxidation product at the time of solidification and improves the machinability by generating granular sulfide inclusions (clinotropic type). For this reason, the O content is set to 0.007% or more. The O content may be 0.012% or more. Furthermore, it may be 0.016% or more. However, if O is contained in an amount exceeding 0.030%, hard inclusions increase and machinability is deteriorated, so the O content is set to 0.030% or less.
 本実施形態のマルテンサイト系S快削ステンレス鋼は、上記した元素以外は、Feおよび不純物からなる。但し、本実施形態の技術特徴が奏する効果を阻害しない範囲で、上記以外の以下に記載する元素を、選択的に含有させることができる。以下に限定理由を記載する。これらの元素の下限は0%である。 The martensitic S free-cutting stainless steel of the present embodiment is composed of Fe and impurities other than the elements described above. However, the elements described below other than the above can be selectively contained within a range that does not impair the effects exhibited by the technical features of the present embodiment. The reasons for limitation are described below. The lower limit of these elements is 0%.
 Ni:0~1.0%
 Niは、固溶強化により材料の硬さを高めて構成刃先の生成を防止し、切削加工時の表面精度を向上させるため、含有させてもよい。その場合は、Ni含有量が0.1%以上であるのが好ましい。しかしながら、1.0%を超えると、硬質化して工具寿命の劣化を引き起こす。そのため、Ni含有量は、1.0%以下とする。Ni含有量は、0.8%以下であってもよい。Ni含有量は0%であってもよい。
Ni: 0 to 1.0%
Ni may be contained in order to increase the hardness of the material by solid solution strengthening to prevent the formation of the constituent cutting edge and improve the surface accuracy during cutting. In that case, the Ni content is preferably 0.1% or more. However, if it exceeds 1.0%, it hardens and causes deterioration of the tool life. Therefore, the Ni content is 1.0% or less. The Ni content may be 0.8% or less. The Ni content may be 0%.
 Mo:0~3.0%
 Moは、耐食性を向上させる元素であり、含有させてもよい。しかしながら、Moを多量に含有させると、硬質化して工具寿命の劣化を引き起こす。このため、Mo含有量は3.0%以下とする。Mo含有量は2.0%以下であってもよい。一方で、上記効果を得るためには、Mo含有量は0.1%以上であるのが好ましい。Mo含有量は0%であってもよい。
Mo: 0 to 3.0%
Mo is an element that improves the corrosion resistance, and may be contained. However, when Mo is contained in a large amount, it hardens and causes deterioration of the tool life. For this reason, Mo content shall be 3.0% or less. The Mo content may be 2.0% or less. On the other hand, in order to acquire the said effect, it is preferable that Mo content is 0.1% or more. The Mo content may be 0%.
 Ca:0~0.003%
 Caは、粒状の硫化物系介在物(偏晶型)を生成させることで被削性を向上させるので、含有させてもよい。また、酸化物系介在物を軟質化して、工具寿命を改善する効果もあるため、含有させてもよい。これらの効果を得るには、0.0005%以上含有させるとよい。しかしながら、Caを0.003%を超えて含有させると、その効果が飽和して逆に熱間加工性が低下する。このため、Ca含有量は、0.003%以下とする。Ca含有量は、0.001%以上0.002%以下であることがより好ましい。Caは0%であってもよい。
Ca: 0 to 0.003%
Ca improves the machinability by generating granular sulfide inclusions (clinotropic type), so Ca may be contained. Moreover, since there exists an effect which softens an oxide type inclusion and improves a tool life, you may make it contain. In order to acquire these effects, it is good to make it contain 0.0005% or more. However, when Ca is contained exceeding 0.003%, the effect is saturated and hot workability is reduced. For this reason, Ca content is made into 0.003% or less. The Ca content is more preferably 0.001% or more and 0.002% or less. Ca may be 0%.
 Te:0~0.024%
 Teは、本実施形態において被削性、特に切削面の精度を向上させるために重要な元素であるので、含有させてもよい。Teは、介在物中へ1質量%以上固溶することにより介在物の変形を抑制して、アスペクト比を小さくする。その結果、構成刃先の成長を抑制し、切削面の精度を向上させる。Teを含有させる場合のTe含有量は0.010%以上であるのが好ましい。一方で、Teが0.024%を超えて含有すると、その効果は飽和するばかりか、介在物の周囲にMnTeが形成され、製造性が著しく劣化する。そのため、Te含有量は0.024%以下とする。Te含有量は0.015%以下であってもよい。Teは0%であってもよい。
Te: 0 to 0.024%
Te is an important element for improving the machinability, in particular, the accuracy of the cutting surface in the present embodiment, and therefore, Te may be contained. Te suppresses deformation of inclusions by dissolving at least 1% by mass in the inclusions, thereby reducing the aspect ratio. As a result, the growth of the cutting edge is suppressed and the accuracy of the cutting surface is improved. When Te is contained, the Te content is preferably 0.010% or more. On the other hand, when Te exceeds 0.024%, not only the effect is saturated, but also MnTe is formed around the inclusions, and the productivity is remarkably deteriorated. Therefore, the Te content is set to 0.024% or less. The Te content may be 0.015% or less. Te may be 0%.
 REM:0~0.003%
 REMは、Caと同様に粒状の硫化物系介在物(偏晶型)を生成させることで被削性を向上させるので、含有させてもよい。また、酸化物系介在物を軟質化して、工具寿命を改善する効果もあるため、含有させてもよい。REMを含有させる場合は0.0005%以上にするとよい。しかしながら、REMが0.003%を超えて含有すると、その効果が飽和するだけでなく、介在物の一部に硬質なREM系酸硫化物が生成して、工具寿命の劣化を引き起こす。このため、REM含有量は、0.003%以下とする。REM含有量は、0.001%以上0.002%以下であることが好ましい。REMは0%であってもよい。
REM: 0 to 0.003%
Since REM improves the machinability by generating granular sulfide inclusions (clinotropic type) like Ca, it may be included. Moreover, since there exists an effect which softens an oxide type inclusion and improves a tool life, you may make it contain. When it contains REM, it is good to make it 0.0005% or more. However, when the content of REM exceeds 0.003%, not only the effect is saturated, but also a hard REM-based oxysulfide is generated in a part of the inclusions, causing deterioration of the tool life. For this reason, REM content shall be 0.003% or less. The REM content is preferably 0.001% or more and 0.002% or less. REM may be 0%.
 REM(希土類元素)は、一般的な定義に従い、スカンジウム(Sc)、イットリウム(Y)の2元素と、周期律表においてランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)の総称を指す。1種を単独で含有させてもよいし、2種以上の混合物であってもよい。 REM (rare earth element) is a generic name of two elements of scandium (Sc) and yttrium (Y) and 15 elements (lanthanoid) from lanthanum (La) to lutetium (Lu) in the periodic table according to the general definition. Point to. 1 type may be contained independently and 2 or more types of mixtures may be sufficient.
 B:0~0.02%
 Bは、熱間加工性を改善するために使用する元素であり、安定した効果を得るために、含有させてもよい。しかしながら、過剰な量でBを含有させると、Bの化合物が析出し、熱間加工性を劣化させるので、B含有量は0.02%以下とする。B含有量は、0.015%以下であるのが好ましい。一方で、上記効果を得るためには、B含有量は0.0001%以上であるのが好ましく、B含有量は0.0002%以上であるのがより好ましい。Bは0%であってもよい。
B: 0 to 0.02%
B is an element used for improving hot workability, and may be contained in order to obtain a stable effect. However, if B is contained in an excessive amount, the B compound is precipitated and the hot workability is deteriorated, so the B content is set to 0.02% or less. The B content is preferably 0.015% or less. On the other hand, in order to acquire the said effect, it is preferable that B content is 0.0001% or more, and it is more preferable that B content is 0.0002% or more. B may be 0%.
 Nb:0~1.00%
 Ti:0~1.00%
 V:0~0.50%
 Ta:0~0.5%
 W:0~0.5%
 Nb、Ti、V、Ta、Wは炭窒化物を形成し、耐食性を改善する効果があるため、含有させてもよい。しかしながら、これら元素を多量に含有すると、被削性が劣化することから、Nb含有量は、1.00%以下とし、Ti含有量は、1.00%以下とする。また、V含有量は、0.50%以下とし、Ta含有量は、0.5%以下とし、W含有量は、0.5%以下とする。一方で、上記効果を得るためには、Nb含有量は、0.05%以上であるのが好ましく、Ti含有量は、0.05%以上であるのが好ましく、V含有量は、0.05%以上であるのが好ましい。また、Ta含有量は、0.1%以上であるのが好ましく、W含有量は、0.1%以上であるのが好ましい。Nb、Ti、V、Ta、Wは0%であってもよい。
Nb: 0 to 1.00%
Ti: 0 to 1.00%
V: 0 to 0.50%
Ta: 0 to 0.5%
W: 0-0.5%
Nb, Ti, V, Ta, and W may form carbonitride and have an effect of improving corrosion resistance, and thus may be contained. However, if these elements are contained in large quantities, the machinability deteriorates, so the Nb content is 1.00% or less and the Ti content is 1.00% or less. Further, the V content is 0.50% or less, the Ta content is 0.5% or less, and the W content is 0.5% or less. On the other hand, in order to obtain the above effect, the Nb content is preferably 0.05% or more, the Ti content is preferably 0.05% or more, and the V content is 0.00%. It is preferably at least 05%. The Ta content is preferably 0.1% or more, and the W content is preferably 0.1% or more. Nb, Ti, V, Ta, and W may be 0%.
 Co:0~1.00%
 Coは、マトリックスの靭性を高めるため、含有させてもよい。しかしながら、過剰な量でCoを含有させると、硬質化して被削性を劣化させるため、Co含有量は1.00%以下とする。Co含有量は、0.60%以下であってもよい。一方で、上記効果を得るためには、Co含有量は、0.05%以上であるのが好ましい。Coは0%であってもよい。
Co: 0 to 1.00%
Co may be contained in order to increase the toughness of the matrix. However, if Co is contained in an excessive amount, it hardens and deteriorates the machinability, so the Co content is 1.00% or less. The Co content may be 0.60% or less. On the other hand, in order to acquire the said effect, it is preferable that Co content is 0.05% or more. Co may be 0%.
 Zr:0~0.020%
 Zrは、強度を向上させる効果があるので、含有させてもよい。しかしながら、多量にZrを含有させると、靭性を低下させるため、Zr含有量は、0.020%以下とする。一方で、強度を向上させる効果を十分に得るためには、Zr含有量は、0.001%以上であるのが好ましい。Zrは0%であってもよい。
Zr: 0 to 0.020%
Zr has the effect of improving the strength and may be contained. However, if a large amount of Zr is contained, the toughness is reduced, so the Zr content is 0.020% or less. On the other hand, in order to sufficiently obtain the effect of improving the strength, the Zr content is preferably 0.001% or more. Zr may be 0%.
 Cu:0~3.0%
 Cuは、固溶強化により材料の硬さを高めて構成刃先の生成を防止し、切削加工時の表面精度を向上させるため、含有させてもよい。しかしながら、3.0%を超えて含有させても、その効果は飽和し、鋳片割れが発生するなど、製造性が劣化するため、Cu含有量は、3.0%以下とする。一方で、上記効果を得るためには、Cu含有量は、0.1%以上であるのが好ましい。Cuは0%であってもよい。
Cu: 0 to 3.0%
Cu may be contained in order to increase the hardness of the material by solid solution strengthening to prevent the formation of the constituent cutting edge and to improve the surface accuracy during the cutting process. However, even if the content exceeds 3.0%, the effect is saturated and manufacturability deteriorates such as occurrence of cracks in the slab, so the Cu content is 3.0% or less. On the other hand, in order to acquire the said effect, it is preferable that Cu content is 0.1% or more. Cu may be 0%.
 Sn:0~0.5%
 Sb:0~0.5%
 Sn、Sbは、耐食性を劣化させる硫化物と共存させることで、耐食性の劣化を抑制するため、含有させてもよい。しかしながら、Sn、Sbが0.5%を超えて含有すると、製造性を劣化させるため、Sn,Sb含有量はそれぞれ0.5%以下とする。Sn,Sb含有量はそれぞれ0.3%以下であってもよい。一方で、上記効果を得るためには、Sn,Sb含有量はそれぞれ0.005%以上であるのが好ましい。Sn,Sb含有量はそれぞれ0.010%以上であってもよい。また、Sn,Sb含有量はそれぞれ0%であってもよい。
Sn: 0 to 0.5%
Sb: 0 to 0.5%
Sn and Sb may be contained in order to suppress deterioration of corrosion resistance by coexisting with a sulfide that deteriorates corrosion resistance. However, if the content of Sn and Sb exceeds 0.5%, manufacturability is deteriorated, so the Sn and Sb contents are 0.5% or less, respectively. Each of Sn and Sb contents may be 0.3% or less. On the other hand, in order to acquire the said effect, it is preferable that Sn and Sb content are 0.005% or more, respectively. The Sn and Sb contents may be 0.010% or more, respectively. Moreover, Sn and Sb content may be 0%, respectively.
 Ga:0~0.0050%
 Gaは冷間加工性の向上のために必要に応じて0.0005%以上の量で含有してもよい。しかしながら、Gaが0.0050%を超えると鍛造性が劣化する。そのため、Ga含有量の上限を0.0050%以下とするとよい。Gaは0%であってもよい。
Ga: 0 to 0.0050%
Ga may be contained in an amount of 0.0005% or more as necessary for improving cold workability. However, when Ga exceeds 0.0050%, forgeability deteriorates. Therefore, the upper limit of the Ga content is preferably 0.0050% or less. Ga may be 0%.
 本実施形態のマルテンサイト系S快削ステンレス鋼は、PbとSeを不可避的に混入する場合もあるが、Pb含有量は0.03%未満に制御し、Se含有量は0.02%未満に制御する必要がある。 The martensitic S free-cutting stainless steel of this embodiment may inevitably contain Pb and Se, but the Pb content is controlled to be less than 0.03% and the Se content is less than 0.02%. Need to control.
 なお、不純物とは、鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入されるものであって、本実施形態の鋼材に悪影響を与えない範囲で許容されるものを意味する。 Impurities are introduced from ore, scrap, or production environment as raw materials when industrially manufacturing steel materials, and are allowed within a range that does not adversely affect the steel materials of this embodiment. Means something.
 本実施形態においては、介在物の組成を制御することが重要である。介在物の変形抵抗が高まると、本実施形態に係るマルテンサイト系S快削ステンレス鋼を線材に圧延した後の介在物のアスペクト比を小さいままとすることができる。その結果として構成刃先の形成が抑制されて、切削加工時に高い寸法精度や良好な表面性状が得られることになる。 In this embodiment, it is important to control the composition of inclusions. When the deformation resistance of the inclusions increases, the aspect ratio of the inclusions after rolling the martensitic S free-cutting stainless steel according to the present embodiment into a wire can be kept small. As a result, the formation of the constituent cutting edges is suppressed, and high dimensional accuracy and good surface properties can be obtained during cutting.
 介在物の組成を制御するには、精錬工程において鋼の溶解時にAl,Mgなどの脱酸成分の量を本実施形態の含有量の上限以下に制御することにより、溶鋼中の酸素含有量を高める。また、実機製造においてはAOD(もしくはVOD)において、スラグの塩基度CaO/SiOを1.8以下、好ましくは1.5程度とすることが好ましい。上記精錬の終了後は、Al,Mgなどの脱酸成分を一切添加しない操業により溶鋼中の酸素含有量を高めることができる。これによって粒状の硫化物系介在物(偏晶型)として、Oを0.5質量%以上含む(Mn,Cr)(S,O)系介在物を生成させることができる。この段階での介在物のアスペクト比は、4.0以下、好ましくは3.0以下になる。介在物が生成したステンレス鋼は、その後の熱間圧延工程において総熱間圧延減面率(熱間圧延での減面率の合計)が95%以上の条件で圧延を行った場合であっても介在物が変形せず、アスペクト比を目標である4.0以下、好ましくは3.0以下に制御できる。アスペクト比が4.0を超えると、部品等に切削加工する際に被削性が低下するので好ましくない。介在物のアスペクト比は、好ましくは1以上である。介在物のアスペクト比が1未満の場合、その介在物は延伸しにくい非常に硬質な介在物であり、製造時に割れの原因や表面傷の原因になると考えられる。 In order to control the composition of inclusions, the oxygen content in the molten steel is controlled by controlling the amount of deoxidizing components such as Al and Mg during melting of the steel to be equal to or lower than the upper limit of the content of the present embodiment. Increase. Further, in the actual production, it is preferable that the basicity CaO / SiO 2 of slag is 1.8 or less, preferably about 1.5 in AOD (or VOD). After completion of the refining, the oxygen content in the molten steel can be increased by an operation in which no deoxidizing components such as Al and Mg are added. As a result, (Mn, Cr) (S, O) inclusions containing 0.5% by mass or more of O can be generated as granular sulfide inclusions (clinotropic type). The aspect ratio of the inclusion at this stage is 4.0 or less, preferably 3.0 or less. The stainless steel in which inclusions were produced was when the total hot rolling area reduction (total area reduction in hot rolling) was 95% or more in the subsequent hot rolling process. However, the inclusions are not deformed, and the aspect ratio can be controlled to 4.0 or less, preferably 3.0 or less. If the aspect ratio exceeds 4.0, it is not preferable because machinability deteriorates when cutting a part or the like. The aspect ratio of the inclusion is preferably 1 or more. When the aspect ratio of inclusions is less than 1, the inclusions are very hard inclusions that are difficult to stretch, and are considered to cause cracks and surface scratches during production.
 さらに、Ca、Te、REMの1種または2種以上を含有させると、0.3質量%以上のCa、1質量%以上のTe、及び0.3質量%以上のREMの1種以上を含む複合介在物である、(Mn,Cr,Ca,REM)(S,O,Te)系介在物を生成させることができる。生成した介在物のアスペクト比は、4.0以下、好ましくは3.0以下になる。このような複合介在物は変形抵抗が高いため、その後の熱間圧延工程において熱間圧延の減面率が95%以上の条件で圧延を行った場合であっても介在物が変形せず、介在物のアスペクト比を4.0以下、好ましくは3.0以下に制御でき、被削性を大幅に改善することができる。アスペクト比が4.0を超えると、被削性が低下するので好ましくない。介在物のアスペクト比は、好ましくは1以上である。 Furthermore, when one or more of Ca, Te, and REM are contained, 0.3% by mass or more of Ca, 1% by mass or more of Te, and 0.3% by mass or more of REM or more are included. (Mn, Cr, Ca, REM) (S, O, Te) type inclusions, which are composite inclusions, can be generated. The aspect ratio of the produced inclusions is 4.0 or less, preferably 3.0 or less. Since such composite inclusions have high deformation resistance, the inclusions are not deformed even when the rolling reduction is performed under the condition that the area reduction rate of hot rolling is 95% or more in the subsequent hot rolling process, The aspect ratio of inclusions can be controlled to 4.0 or less, preferably 3.0 or less, and the machinability can be greatly improved. If the aspect ratio exceeds 4.0, the machinability is lowered, which is not preferable. The aspect ratio of the inclusion is preferably 1 or more.
 本実施形態のマルテンサイト系S快削ステンレス鋼は、鋳造後の鋼材であってもよく、鋼材を熱間圧延することによって得られる線材でもよく、線材をさらに冷間伸線することによって得られる鋼線でもよく、また、鋳造後の鋼材または熱間圧延後の線材を鍛造した鍛造材であってもよい。これらの鋼材、線材、鋼線または鍛造材は、本実施形態に係る化学成分を有する鋼であり、(Mn,Cr)(S,O)系介在物または(Mn,Cr,Ca,REM)(S,O,Te)系介在物を含んでいる。また、鋼中に含まれる(Mn,Cr)(S,O)系介在物または(Mn,Cr,Ca,REM)(S,O,Te)系介在物は、比較的変形しにくい介在物であるため、上記のいずれの段階においても、4.0以下のアスペクト比を有するものとなる。 The martensitic S free-cutting stainless steel of the present embodiment may be a steel material after casting, may be a wire obtained by hot rolling the steel material, and is obtained by further cold-drawing the wire. It may be a steel wire, or a forged material obtained by forging a steel material after casting or a wire material after hot rolling. These steel materials, wire materials, steel wires or forged materials are steels having chemical components according to the present embodiment, and include (Mn, Cr) (S, O) -based inclusions or (Mn, Cr, Ca, REM) ( S, O, Te) inclusions are included. In addition, (Mn, Cr) (S, O) inclusions or (Mn, Cr, Ca, REM) (S, O, Te) inclusions contained in steel are inclusions that are relatively difficult to deform. Therefore, in any of the above steps, the aspect ratio is 4.0 or less.
 また、CaやTe、REMの1種または2種以上を含有させることで(Mn,Cr,Ca,REM)(S,O,Te)系介在物が生成するが、この場合であっても、本実施形態に係るマルテンサイト系S快削ステンレス鋼には、(Mn,Cr)(S,O)系介在物を含んでいてもよい。 In addition, (Mn, Cr, Ca, REM) (S, O, Te) -based inclusions are produced by containing one or more of Ca, Te, and REM. Even in this case, The martensitic S free-cutting stainless steel according to the present embodiment may contain (Mn, Cr) (S, O) inclusions.
 なお、Oを0.5%以上含む(Mn,Cr)(S,O)系介在物とは、Mn、Cr、S、Oを全て含み、O濃度が0.5%以上の介在物である。
 また、(Mn,Cr,Ca,REM)(S,O,Te)系介在物とは、Mn、Cr、S、Oを全て含み、0.3%以上のCa、1%以上のTe、及び0.3%以上のREMの1種または2種以上を含む介在物である。更に(Mn,Cr,Ca,REM)(S,O,Te)系介在物は、Oを0.5%以上含んでもよい。
 介在物中のOおよびTeのそれぞれの量は、好ましくは10%以下である。介在物中のCaおよびREMのそれぞれの量は、好ましくは20%以下である。
The (Mn, Cr) (S, O) inclusions containing 0.5% or more of O are inclusions containing all of Mn, Cr, S and O and having an O concentration of 0.5% or more. .
The (Mn, Cr, Ca, REM) (S, O, Te) inclusions include all of Mn, Cr, S, and O, 0.3% or more of Ca, 1% or more of Te, and It is an inclusion containing one or more of 0.3% or more of REM. Further, the (Mn, Cr, Ca, REM) (S, O, Te) type inclusions may contain 0.5% or more of O.
Each amount of O and Te in the inclusion is preferably 10% or less. Each amount of Ca and REM in the inclusion is preferably 20% or less.
 これらの介在物の組成は、走査型電子顕微鏡(SEM)に付属のエネルギー分散型X線分析装置(EDS)により分析する。SEMで特定した介在物から、Cr、Mn、S、Oが全て検出され、かつ、0.5質量%以上のOが含まれる場合に、その介在物を(Mn,Cr)(S,O)系介在物とする。また、SEMで特定した介在物から、Mn、Cr、S、Oを全て検出し、0.3質量%以上のCa、1質量%以上のTe、及び0.3質量%以上のREMの1種または2種以上を検出した場合に、その介在物を(Mn,Cr,Ca,REM)(S,O,Te)系介在物とする。これらの介在物が混在するかどうかは、10個以上の介在物を特定して分析することで、その結果から、介在物が混在するかどうかを確認すればよい。 The composition of these inclusions is analyzed by an energy dispersive X-ray analyzer (EDS) attached to a scanning electron microscope (SEM). When all of Cr, Mn, S, and O are detected from the inclusion specified by SEM and 0.5 mass% or more of O is contained, the inclusion is (Mn, Cr) (S, O). System inclusions. In addition, Mn, Cr, S, and O are all detected from the inclusions specified by SEM, and one of 0.3% by mass or more of Ca, 1% by mass or more of Te, and 0.3% by mass or more of REM. Alternatively, when two or more types are detected, the inclusions are (Mn, Cr, Ca, REM) (S, O, Te) type inclusions. Whether or not these inclusions are mixed may be determined by identifying and analyzing 10 or more inclusions, and confirming whether or not the inclusions are mixed from the result.
 また、介在物のアスペクト比は、SEM-EDSに供した試料を用い、光学顕微鏡観察により、100倍の倍率で10視野撮影し、介在物に外接する圧延方向に水平な径(水平フェレ径)と圧延方向に垂直な径(垂直フェレ径)を画像解析法により測定する。各介在物の水平フェレ径/垂直フェレ径の比をアスペクト比として算出し、全介在物のアスペクト比の平均値を当該試料のアスペクト比とする。上記2種類の介在物が含まれる場合は、全ての介在物のアスペクト比を平均すればよい。 In addition, the aspect ratio of inclusions was measured using a sample subjected to SEM-EDS, and 10 fields of view were taken at a magnification of 100 by observation with an optical microscope. The diameter was horizontal in the rolling direction circumscribing the inclusions (horizontal ferret diameter). The diameter perpendicular to the rolling direction (vertical ferret diameter) is measured by image analysis. The ratio of the horizontal ferret diameter / vertical ferret diameter of each inclusion is calculated as an aspect ratio, and the average value of the aspect ratios of all inclusions is taken as the aspect ratio of the sample. When the two types of inclusions are included, the aspect ratios of all the inclusions may be averaged.
 以上、本実施形態のマルテンサイト系S快削ステンレス鋼は、快削元素としてSを含有して被削性に優れる。この鋼を鋼線材にした場合に、例えば、被削性および耐食性が要求されるOA機器、電子機器等の精密部品の素材やネジ、ボルト等の部品の素材として好適に用いることができる。 As described above, the martensitic S free-cutting stainless steel of this embodiment contains S as a free-cutting element and has excellent machinability. When this steel is used as a steel wire, for example, it can be suitably used as a material for precision parts such as OA equipment and electronic equipment that require machinability and corrosion resistance, and a material for parts such as screws and bolts.
 真空溶解炉にて150kgの合金原料を溶解し、Al,Mgなどの脱酸成分の量を本実施形態の含有量の上限以下に制御することで、溶鋼中の酸素含有量が高い状態のまま、直径200mmの鋳型に鋳造した。その後、1200℃で加熱し、次いで熱間鍛造して直径70mmまで加工した。次に、780℃で1時間焼鈍(空冷)し、直径66mmにピーリングした。次いで、棒鋼の圧延に相当する熱間押出しにより直径10mmに加工した。酸洗し、次いで、再び780℃で1時間焼鈍し、空冷(5℃/s)を行った(総熱間圧延減面率:98%)。次いで、φ6mmまで冷間伸線加工し、得られた線材を再び780℃で3分間炉内に保持してストランド焼鈍(冷却は急冷)を行った。最後に、抽伸機で線材を加工して直径5.5mmの磨棒を得た。この磨棒を評価用素材として用い、各評価試験を実施した。なお、表1~表3に示す鋼成分において、Pbは0.03%未満、Seは0.02%未満であった。 By melting 150 kg of alloy raw material in a vacuum melting furnace and controlling the amount of deoxidizing components such as Al and Mg below the upper limit of the content of this embodiment, the oxygen content in the molten steel remains high. And cast into a mold having a diameter of 200 mm. Then, it heated at 1200 degreeC and then processed by hot forging to a diameter of 70 mm. Next, it was annealed at 780 ° C. for 1 hour (air-cooled) and peeled to a diameter of 66 mm. Subsequently, it processed into the diameter of 10 mm by the hot extrusion equivalent to rolling of steel bar. Pickling and then annealing again at 780 ° C. for 1 hour and air cooling (5 ° C./s) was performed (total hot rolling area reduction: 98%). Subsequently, it cold-drawn to (phi) 6 mm, and the obtained wire was again hold | maintained in the furnace at 780 degreeC for 3 minute (s), and strand annealing (cooling was rapidly cooled) was performed. Finally, the wire rod was processed with a drawing machine to obtain a polishing rod having a diameter of 5.5 mm. Each polishing test was carried out using this polishing bar as a material for evaluation. In the steel components shown in Tables 1 to 3, Pb was less than 0.03% and Se was less than 0.02%.
 前記線材を、その中心線を含む長手方向の断面上を観察するように樹脂に埋め込み、鏡面研磨を行って、介在物の組成を走査型電子顕微鏡(SEM)に付属のエネルギー分散型X線分析装置(EDS)により分析した。SEMで特定した介在物から、Cr、Mn、S、Oが全て検出され、かつ、0.5質量%以上のOが含まれる場合に、その介在物を(Mn,Cr)(S,O)系介在物とした。また、SEMで特定した介在物から、Mn、Cr、S、Oを全て検出し、0.3質量%以上のCa、1質量%以上のTe、及び0.3質量%以上のREMの1種または2種以上を検出した場合に、その介在物を(Mn,Cr,Ca,REM)(S,O,Te)系介在物とした。これらの介在物が混在するかどうかは、10個以上の介在物を特定して分析することで、その結果から、介在物が混在するかどうかを確認した。表4及び表5に、介在物の組成比を示す。 The wire is embedded in a resin so as to observe a cross section in the longitudinal direction including the center line, mirror-polished, and the composition of inclusions is analyzed by energy dispersive X-ray analysis attached to a scanning electron microscope (SEM). Analyzed by instrument (EDS). When all of Cr, Mn, S, and O are detected from the inclusion specified by SEM and 0.5 mass% or more of O is contained, the inclusion is (Mn, Cr) (S, O). System inclusions were used. In addition, Mn, Cr, S, and O are all detected from the inclusions specified by SEM, and one of 0.3 mass% or more of Ca, 1 mass% or more of Te, and 0.3 mass% or more of REM. Alternatively, when two or more kinds are detected, the inclusions are (Mn, Cr, Ca, REM) (S, O, Te) type inclusions. Whether or not these inclusions were mixed was determined by analyzing 10 or more inclusions, and the results confirmed whether or not inclusions were mixed. Tables 4 and 5 show the composition ratio of inclusions.
 介在物のアスペクト比は、SEM-EDSに供した試料を用い、光学顕微鏡観察により、100倍の倍率で10視野撮影し、介在物に外接する圧延方向に水平な径(水平フェレ径)と圧延方向に垂直な径(垂直フェレ径)を画像解析法により測定した。各介在物の水平フェレ径/垂直フェレ径の比をアスペクト比として算出し、全介在物のアスペクト比の平均値を当該試料のアスペクト比とした。結果を表6及び表7に示す。なお、表6及び表7では、上記2種類の介在物が含まれる場合、全ての介在物のアスペクト比を平均した値を、当該試料のアスペクト比として表記した。 The aspect ratio of inclusions was measured using a sample subjected to SEM-EDS, and was observed with an optical microscope at 10 magnifications at a magnification of 100. The horizontal diameter in the rolling direction circumscribing the inclusions (horizontal ferret diameter) and rolling The diameter perpendicular to the direction (vertical ferret diameter) was measured by an image analysis method. The ratio of the horizontal ferret diameter / vertical ferret diameter of each inclusion was calculated as an aspect ratio, and the average value of the aspect ratios of all inclusions was taken as the aspect ratio of the sample. The results are shown in Tables 6 and 7. In Tables 6 and 7, when the above two types of inclusions are included, a value obtained by averaging the aspect ratios of all the inclusions is expressed as the aspect ratio of the sample.
 線材の外周を切削した後の表面粗さは、切削表面の中心線平均粗さ(Ra)で評価した。切削は旋削加工であり、材質が超硬P種であり、刃先Rが0.4mmの工具を用い、切削速度50m/min、送り量0.02mm/rev、切込み0.1mmの条件で、切削油(鉱物油)を塗布しながら切削した。 The surface roughness after cutting the outer periphery of the wire was evaluated by the centerline average roughness (Ra) of the cutting surface. Cutting is turning, material is P type carbide, cutting edge R is 0.4mm, cutting speed is 50m / min, feed rate is 0.02mm / rev, cutting depth is 0.1mm. Cutting was performed while applying oil (mineral oil).
 表面粗さRaは、15分間の旋削加工後の試料で測定した。測定には接触式の粗さ測定機を用い、基準長さ2.5mmで、各5点ずつ測定して、その平均値を測定値とした。本実施形態では表面粗さRaが0.50μm以下の場合に良好と判断した。結果を表6及び表7に示す。 The surface roughness Ra was measured on a sample after turning for 15 minutes. For the measurement, a contact-type roughness measuring machine was used, and the average length was measured at 5 points each with a reference length of 2.5 mm. In this embodiment, it was determined that the surface roughness Ra was good when it was 0.50 μm or less. The results are shown in Tables 6 and 7.
 また、工具寿命は、逃げ面の平均摩耗量が0.2mmに達するまでの時間で評価し、15分間の加工で逃げ面の平均摩耗量が0.2mm未満であれば、寿命達成とした。すなわち、15分間の加工で逃げ面の平均摩耗量が0.2mm未満の場合、工具寿命が長く被削性に優れると評価した。15分間の加工で逃げ面の平均摩耗量が0.2mm以上の場合、工具寿命が短く被削性に劣ると評価した。結果を表6及び表7に示す。 Also, the tool life was evaluated by the time until the average flank wear amount reached 0.2 mm. If the average flank wear amount was less than 0.2 mm after 15 minutes of machining, the tool life was achieved. That is, it was evaluated that the tool life was long and the machinability was excellent when the average wear amount of the flank was less than 0.2 mm after 15 minutes of machining. When the average wear amount of the flank face was 0.2 mm or more after 15 minutes of machining, the tool life was short and the machinability was inferior. The results are shown in Tables 6 and 7.
 製造性は、高温引張試験により評価した。上記の直径70mmの鍛造材の中心と表面の中間部より丸棒長手方向に直径10mmの熱間延性の評価試験片を採取した。試験温度1000℃、引張速度10mm/sの条件で引張破断した後の絞り値で製造性を評価した。この際の試験片の形状はφ10mm×100mmである。製造性は、1000℃での絞り値が50%以上で製造性達成とした。すなわち、1000℃での絞り値が50%以上の場合、製造性に優れると評価した。1000℃での絞り値が50%未満の場合、製造性に劣ると評価した。結果を表6及び表7に示す。 Manufacturability was evaluated by a high temperature tensile test. A hot ductility evaluation test piece having a diameter of 10 mm was collected in the longitudinal direction of the round bar from the center of the forged material having a diameter of 70 mm and the middle portion of the surface. Manufacturability was evaluated by a drawing value after tensile fracture at a test temperature of 1000 ° C. and a tensile speed of 10 mm / s. The shape of the test piece at this time is φ10 mm × 100 mm. Manufacturability was achieved when the aperture value at 1000 ° C. was 50% or more. That is, when the aperture value at 1000 ° C. was 50% or more, it was evaluated that the productivity was excellent. When the aperture value at 1000 ° C. was less than 50%, it was evaluated that the productivity was inferior. The results are shown in Tables 6 and 7.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 試料No.1~49は、本発明鋼(本発明例)であり、試料No.50~65は、比較鋼(比較例)である。
 表中の*印は、値が本実施形態の範囲から外れていることを示す。
 表4及び表5の介在物の組成について補足すると、Ca、Te,REMの何れか1種または2種以上が検出されたNo.25~37及び63~65については、(Mn,Cr)(S,O)系介在物と、(Mn,Cr,Ca,REM)(S,O,Te)系介在物の両方が含まれていた。また、2種類の介在物を含む場合、(Mn,Cr)(S,O)系介在物、(Mn,Cr,Ca,REM)(S,O,Te)系介在物のそれぞれのアスペクト比は、いずれも4.0以下であった。
 また、No.59,60,62では、介在物組成において酸素量が0.5質量%未満であった。これらNo.59,60,62では、アスペクト比が4.0以下の(Mn,Cr)(S,O)系介在物が含まれなかった。No.52では、Mn量が本実施形態の範囲外であった。No.55では、Cr量が本実施形態の範囲外であった。これらNo.52,55では、アスペクト比が4.0以下の(Mn,Cr)(S,O)系介在物が含まれなかった。
 上記以外の試料では、アスペクト比が4.0以下の(Mn,Cr)(S,O)系介在物が含まれていた。
Sample No. 1 to 49 are steels of the present invention (invention examples). 50 to 65 are comparative steels (comparative examples).
* Mark in a table | surface shows that the value has remove | deviated from the range of this embodiment.
When supplementing about the composition of the inclusion of Table 4 and Table 5, any 1 type or 2 types or more of Ca, Te, and REM were detected. For 25 to 37 and 63 to 65, both (Mn, Cr) (S, O) inclusions and (Mn, Cr, Ca, REM) (S, O, Te) inclusions are included. It was. When two types of inclusions are included, the aspect ratios of (Mn, Cr) (S, O) inclusions and (Mn, Cr, Ca, REM) (S, O, Te) inclusions are as follows: , Both were 4.0 or less.
No. In 59, 60, and 62, the amount of oxygen in the inclusion composition was less than 0.5% by mass. These No. In 59, 60, and 62, (Mn, Cr) (S, O) inclusions having an aspect ratio of 4.0 or less were not included. No. In 52, the amount of Mn was out of the range of the present embodiment. No. In 55, the Cr amount was out of the range of the present embodiment. These No. In Nos. 52 and 55, (Mn, Cr) (S, O) inclusions having an aspect ratio of 4.0 or less were not included.
Samples other than the above contained (Mn, Cr) (S, O) inclusions having an aspect ratio of 4.0 or less.
 本発明鋼のNo.1~No.49は、マルテンサイト系S快削ステンレス鋼の介在物の組成を制御することによって、切削加工後の表面粗さRaが0.50μm以下となり、工具摩耗量も0.2mm未満で目標の工具寿命の基準を達成した。また、製造性も1000℃における絞り値が50%以上であり製造性の基準を達成した。一方、比較鋼のNo.50~No.65は実施形態の規定範囲を満たしておらず、いずれかの特性を満足していなかった。 No. of steel of the present invention 1-No. 49, by controlling the composition of inclusions in martensitic S free-cutting stainless steel, the surface roughness Ra after cutting becomes 0.50 μm or less, the tool wear amount is less than 0.2 mm, and the target tool life Achieved the criteria. In addition, the aperture value at 1000 ° C. was 50% or more, and the manufacturability standard was achieved. On the other hand, no. 50-No. No. 65 did not satisfy the specified range of the embodiment and did not satisfy any of the characteristics.
 実施例から明らかなように、本実施形態により、毒性の高いPb等を含有させることなく、被削性および製造性に優れたなマルテンサイト系S快削ステンレス鋼を製造できる。 As is clear from the examples, according to this embodiment, martensitic S free-cutting stainless steel excellent in machinability and manufacturability can be produced without containing highly toxic Pb or the like.
 本実施形態のマルテンサイト系S快削ステンレス鋼は、例えば、被削性および耐食性が要求されるOA機器、電子機器等の精密部品の素材やシャフト、ネジ、ボルト等の部品として利用することができる。 The martensitic S free-cutting stainless steel of the present embodiment can be used as materials for precision parts such as OA equipment and electronic equipment that require machinability and corrosion resistance, and parts such as shafts, screws, and bolts. it can.

Claims (6)

  1.  質量%で、
    C:0.08~0.70%、
    Si:0.01~1.0%、
    Mn:0.1~1.50%、
    S:0.15~0.60%、
    P:0.010~0.050%、
    Cr:10~16%、
    N:0.005~0.15%、
    Al:0.004%以下、
    Mg:0.0020%以下、
    O:0.007~0.030%、
    Ni:0~1.0%、
    Mo:0~3.0%、
    Ca:0~0.003%、
    Te:0~0.024%、
    REM:0~0.003%、
    B:0~0.02%、
    Nb:0~1.00%、
    Ti:0~1.00%、
    V:0~0.50%、
    Ta:0~0.5%、
    W:0~0.5%、
    Co:0~1.00%、
    Zr:0~0.020%、
    Cu:0~3.0%、
    Sn:0~0.5%、
    Sb:0~0.5%、
    Ga:0~0.0050%を含有し、
    残部がFeおよび不純物よりなり、
     Oを0.5質量%以上含む(Mn,Cr)(S,O)系介在物を含有することを特徴とするマルテンサイト系S快削ステンレス鋼。
    % By mass
    C: 0.08 to 0.70%,
    Si: 0.01 to 1.0%,
    Mn: 0.1 to 1.50%,
    S: 0.15-0.60%,
    P: 0.010 to 0.050%,
    Cr: 10 to 16%,
    N: 0.005 to 0.15%,
    Al: 0.004% or less,
    Mg: 0.0020% or less,
    O: 0.007 to 0.030%,
    Ni: 0 to 1.0%,
    Mo: 0 to 3.0%,
    Ca: 0 to 0.003%,
    Te: 0 to 0.024%,
    REM: 0 to 0.003%,
    B: 0 to 0.02%,
    Nb: 0 to 1.00%,
    Ti: 0 to 1.00%,
    V: 0 to 0.50%,
    Ta: 0 to 0.5%
    W: 0 to 0.5%
    Co: 0 to 1.00%,
    Zr: 0 to 0.020%,
    Cu: 0 to 3.0%,
    Sn: 0 to 0.5%
    Sb: 0 to 0.5%,
    Ga: 0 to 0.0050% is contained,
    The balance consists of Fe and impurities,
    A martensitic S free-cutting stainless steel characterized by containing (Mn, Cr) (S, O) -based inclusions containing 0.5 mass% or more of O.
  2.  質量%で、
    Ca:0.0005~0.003%、
    Te:0.010~0.024%、
    REM:0.0005~0.003%の1種または2種以上を含有することを特徴とする請求項1に記載のマルテンサイト系S快削ステンレス鋼。
    % By mass
    Ca: 0.0005 to 0.003%,
    Te: 0.010 to 0.024%,
    The martensitic S free-cutting stainless steel according to claim 1, characterized by containing one or more of REM: 0.0005 to 0.003%.
  3.  0.3質量%以上のCa、1質量%以上のTe、0.3質量%以上のREMのいずれか1種または2種以上を含む(Mn,Cr,Ca,REM)(S,O,Te)系介在物を含有することを特徴とする請求項1または請求項2に記載のマルテンサイト系S快削ステンレス鋼。 0.3% by mass or more of Ca, 1% by mass or more of Te, 0.3% by mass or more of REM including one or more of (Mn, Cr, Ca, REM) (S, O, Te 3) Martensitic S free-cutting stainless steel according to claim 1 or 2, characterized by containing system inclusions.
  4.  質量%で、
    B:0.0001~0.02%、
    Nb:0.05~1.00%、
    Ti:0.05~1.00%、
    V:0.05~0.50%、
    Ta:0.1~0.5%、
    W:0.1~0.5%、
    Co:0.05~1.00%、
    Zr:0.001~0.020%、
    Cu:0.1~3.0%、
    Sn:0.005~0.5%、
    Sb:0.005~0.5%、
    Ga:0.0005~0.0050%
    から選択される1種または2種以上を含有する、請求項1~請求項3の何れか一項に記載のマルテンサイト系S快削ステンレス鋼。
    % By mass
    B: 0.0001 to 0.02%,
    Nb: 0.05 to 1.00%,
    Ti: 0.05 to 1.00%,
    V: 0.05 to 0.50%,
    Ta: 0.1 to 0.5%
    W: 0.1-0.5%
    Co: 0.05 to 1.00%,
    Zr: 0.001 to 0.020%,
    Cu: 0.1 to 3.0%,
    Sn: 0.005 to 0.5%,
    Sb: 0.005 to 0.5%,
    Ga: 0.0005 to 0.0050%
    The martensitic S free-cutting stainless steel according to any one of claims 1 to 3, comprising one or more selected from the group consisting of:
  5.  前記(Mn,Cr)(S,O)系介在物のアスペクト比が4.0以下である、請求項1~請求項4の何れか一項に記載のマルテンサイト系S快削ステンレス鋼。 The martensitic S free-cutting stainless steel according to any one of claims 1 to 4, wherein an aspect ratio of the (Mn, Cr) (S, O) inclusions is 4.0 or less.
  6.  前記(Mn,Cr,Ca,REM)(S,O,Te)系介在物のアスペクト比が4.0以下である、請求項3または請求項4に記載のマルテンサイト系S快削ステンレス鋼。 The martensitic S free-cutting stainless steel according to claim 3 or 4, wherein an aspect ratio of the (Mn, Cr, Ca, REM) (S, O, Te) inclusions is 4.0 or less.
PCT/JP2019/023437 2018-06-13 2019-06-13 Martensitic s free-cutting stainless steel WO2019240209A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207028397A KR102471016B1 (en) 2018-06-13 2019-06-13 Martensitic S free-cutting stainless steel
JP2020525645A JP6918238B2 (en) 2018-06-13 2019-06-13 Martensitic S Free-cutting stainless steel
CN201980023405.8A CN111989418B (en) 2018-06-13 2019-06-13 Martensitic S free-cutting stainless steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018112652 2018-06-13
JP2018-112652 2018-06-13

Publications (1)

Publication Number Publication Date
WO2019240209A1 true WO2019240209A1 (en) 2019-12-19

Family

ID=68842205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023437 WO2019240209A1 (en) 2018-06-13 2019-06-13 Martensitic s free-cutting stainless steel

Country Status (5)

Country Link
JP (1) JP6918238B2 (en)
KR (1) KR102471016B1 (en)
CN (1) CN111989418B (en)
TW (1) TWI707047B (en)
WO (1) WO2019240209A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111850407A (en) * 2020-07-29 2020-10-30 成都先进金属材料产业技术研究院有限公司 850 MPa-grade titanium-containing free-cutting stainless steel forged bar and preparation method thereof
WO2024070413A1 (en) * 2022-09-26 2024-04-04 日鉄ステンレス株式会社 Martensitic free-cutting stainless steel bar material and method for producing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022138194A1 (en) * 2020-12-24 2022-06-30
EP4279618A1 (en) * 2021-01-13 2023-11-22 NIPPON STEEL Stainless Steel Corporation Martensite-based stainless steel material and method for producing same
CN114196875B (en) * 2021-09-25 2022-10-28 浙江吉森金属科技有限公司 Stainless steel for valve plate and heat treatment method thereof
CN116445819A (en) * 2023-04-19 2023-07-18 徐工集团工程机械股份有限公司 Cast iron product and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193249A (en) * 1994-03-19 1996-07-30 Sanyo Special Steel Co Ltd Ferritic stainless steel and martensitic stainless steel, excellent in machinability
JP2008111186A (en) * 2006-10-03 2008-05-15 Daido Steel Co Ltd Martensitic free-cutting stainless steel
JP2011184716A (en) * 2010-03-05 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Martensitic stainless free-cutting steel bar wire having excellent forgeability

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135918B2 (en) 1973-09-03 1976-10-05
JPH0756064A (en) 1993-08-09 1995-03-03 Sumitomo Electric Ind Ltd Method and apparatus for production optical fiber inserted into metallic pipe
JP3483800B2 (en) * 1999-06-25 2004-01-06 山陽特殊製鋼株式会社 Free-cutting stainless steel with excellent outgassing properties
JP2001152298A (en) 1999-11-29 2001-06-05 Daido Steel Co Ltd Free cutting martensitic stainless steel part free from emission of sulfurizing gas
JP4502519B2 (en) 2001-01-15 2010-07-14 新日鐵住金ステンレス株式会社 Martensitic free-cutting stainless steel
JP2002212684A (en) * 2001-01-23 2002-07-31 Sumitomo Metal Ind Ltd Martensitic stainless steel having high temperature strength
JP3877590B2 (en) * 2001-12-25 2007-02-07 日新製鋼株式会社 Highly elastic metastable austenitic stainless steel sheet and its manufacturing method
JP4264247B2 (en) * 2002-11-15 2009-05-13 新日本製鐵株式会社 Steel with excellent machinability and method for producing the same
JP4108506B2 (en) * 2003-02-26 2008-06-25 山陽特殊製鋼株式会社 Martensitic free-cutting stainless steel
JP5505487B2 (en) * 2004-12-28 2014-05-28 Jfeスチール株式会社 High-strength, high-tough steel plate with excellent cut crack resistance and DWTT properties
US20100054984A1 (en) * 2006-11-28 2010-03-04 Masayuki Hashimura Machining steel superior in manufacturability
JP4193998B1 (en) * 2007-06-28 2008-12-10 株式会社神戸製鋼所 Machine structural steel excellent in machinability and manufacturing method thereof
EP2204463B8 (en) * 2007-10-29 2019-08-14 Nippon Steel Corporation Martensite type steel not requiring heat treatment and hot forged non heat-treated steel parts
FR2964668B1 (en) * 2010-09-14 2012-10-12 Snecma OPTIMIZING THE MACHINABILITY OF STAINLESS MARTENSITIC STEELS
JP5907760B2 (en) * 2012-03-07 2016-04-26 新日鐵住金ステンレス株式会社 Martensitic free-cutting stainless steel bar wire and manufacturing method thereof
CN102676955B (en) * 2012-06-06 2013-08-07 安徽工业大学 Low-carbon high-sulfur free-cutting steel with excellent cutting performance and manufacturing method thereof
JP6194696B2 (en) 2013-08-27 2017-09-13 大同特殊鋼株式会社 Martensite Bi free-cutting stainless steel
JP6197591B2 (en) * 2013-11-12 2017-09-20 新日鐵住金株式会社 Martensitic Cr-containing steel
WO2016174500A1 (en) * 2015-04-30 2016-11-03 Aperam Martensitic stainless steel, method for producing a semi-finished product made from said steel and cutting tool produced from said semi-finished product
FI127450B (en) * 2016-06-30 2018-06-15 Outokumpu Oy Martensitic stainless steel and method for the manufacture
JP6635890B2 (en) * 2016-07-15 2020-01-29 日鉄ステンレス株式会社 Martensitic stainless steel sheet for cutting tools with excellent manufacturability and corrosion resistance
JP6849360B2 (en) * 2016-09-26 2021-03-24 山陽特殊製鋼株式会社 Martensitic free-cutting stainless steel with excellent rolling fatigue life characteristics
CN106591730B (en) * 2016-11-25 2019-02-19 邢台钢铁有限责任公司 Low-carbon martensite free cutting stainless steel and its production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193249A (en) * 1994-03-19 1996-07-30 Sanyo Special Steel Co Ltd Ferritic stainless steel and martensitic stainless steel, excellent in machinability
JP2008111186A (en) * 2006-10-03 2008-05-15 Daido Steel Co Ltd Martensitic free-cutting stainless steel
JP2011184716A (en) * 2010-03-05 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Martensitic stainless free-cutting steel bar wire having excellent forgeability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111850407A (en) * 2020-07-29 2020-10-30 成都先进金属材料产业技术研究院有限公司 850 MPa-grade titanium-containing free-cutting stainless steel forged bar and preparation method thereof
CN111850407B (en) * 2020-07-29 2021-10-08 成都先进金属材料产业技术研究院有限公司 850 MPa-grade titanium-containing free-cutting stainless steel forged bar and preparation method thereof
WO2024070413A1 (en) * 2022-09-26 2024-04-04 日鉄ステンレス株式会社 Martensitic free-cutting stainless steel bar material and method for producing same

Also Published As

Publication number Publication date
JP6918238B2 (en) 2021-08-11
CN111989418A (en) 2020-11-24
TWI707047B (en) 2020-10-11
TW202000943A (en) 2020-01-01
CN111989418B (en) 2022-02-22
KR102471016B1 (en) 2022-11-28
JPWO2019240209A1 (en) 2020-12-17
KR20200124294A (en) 2020-11-02

Similar Documents

Publication Publication Date Title
KR102471016B1 (en) Martensitic S free-cutting stainless steel
JP4424503B2 (en) Steel bar and wire rod
EP3492614A1 (en) Steel for machine structures
JP6642237B2 (en) Cold forging steel and method for producing the same
JP2010270346A (en) Non-heat treated steel for hot-forging, having high bending fatigue strength and small amount of deformation due to repeating stress, and method for manufacturing parts of the same
JP7199231B2 (en) Ferritic S free-cutting stainless steel
JP5092578B2 (en) Low carbon sulfur free cutting steel
JP2012162760A (en) Free-cutting ferritic stainless steel and method for producing the same
JP2000034538A (en) Steel for machine structure excellent in machinability
JP6814655B2 (en) Ferritic free-cutting stainless steel wire
JP2018035423A (en) Steel for carburization, carburization steel member and manufacturing method of carburization steel member
JP2011184716A (en) Martensitic stainless free-cutting steel bar wire having excellent forgeability
JP3912308B2 (en) Steel for machine structure
JP5957241B2 (en) Ferritic free-cutting stainless steel bar wire and method for producing the same
JP5474616B2 (en) Ferritic stainless free-cutting steel rod with excellent forgeability
JP6668741B2 (en) Hot rolled bar
JP2013185195A (en) Free-cutting martensitic stainless steel rod wire and method for producing the same
JP2018035420A (en) Steel for carburization, carburization steel member and manufacturing method of carburization steel member
JP5583986B2 (en) Austenitic stainless free-cutting steel rod with excellent forgeability
CN109790604B (en) Cold forging steel and method for producing same
JP4687617B2 (en) Steel for machine structure
JP6683073B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
JP6683072B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
JP6766531B2 (en) Cold forging steel and its manufacturing method
WO2021201179A1 (en) Free-cutting steel and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525645

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207028397

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819985

Country of ref document: EP

Kind code of ref document: A1