JP5583986B2 - Austenitic stainless free-cutting steel rod with excellent forgeability - Google Patents

Austenitic stainless free-cutting steel rod with excellent forgeability Download PDF

Info

Publication number
JP5583986B2
JP5583986B2 JP2010035658A JP2010035658A JP5583986B2 JP 5583986 B2 JP5583986 B2 JP 5583986B2 JP 2010035658 A JP2010035658 A JP 2010035658A JP 2010035658 A JP2010035658 A JP 2010035658A JP 5583986 B2 JP5583986 B2 JP 5583986B2
Authority
JP
Japan
Prior art keywords
forgeability
austenitic stainless
steel
machinability
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010035658A
Other languages
Japanese (ja)
Other versions
JP2011168859A (en
Inventor
裕也 日笠
光司 高野
成雄 福元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2010035658A priority Critical patent/JP5583986B2/en
Publication of JP2011168859A publication Critical patent/JP2011168859A/en
Application granted granted Critical
Publication of JP5583986B2 publication Critical patent/JP5583986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、鍛造性と被削性に優れるオーステナイト系ステンレス鋼に関するものであり、例えば、これまで切削加工のみで製造している複雑な形状を有した精密部品の製造を、鍛造加工でニアネットシェイプ化を行い、仕上げ加工として切削加工を行うことにより、材料歩留よく加工することが可能なオーステナイト系ステンレス鋼に関するものである。 The present invention relates to an austenitic stainless steel excellent in forgeability and machinability. For example, the production of precision parts having a complicated shape that has been produced only by cutting until now can be carried out by forging. The present invention relates to an austenitic stainless steel that can be processed with a high material yield by performing shaping and cutting as finishing.

オーステナイト系ステンレス鋼は加工性、耐食性などに優れた性質を有することから、様々な分野において広く使用されている。ネジ、ボルトなどの各種機器部品は一般に鍛造によって成形加工して製造されることが多い。この鍛造による加工方法は能率、歩留が高い利点を有するが、精密な加工精度に劣る。一方、複雑な形状を有する精密部品では、すべて切削加工で製造されている。切削加工による方法では複雑な形状への加工が可能であり、非常に精密な寸法精度を満足することができる利点があるものの、太い線径の材料から加工されるため材料歩留が悪いという欠点がある。 Austenitic stainless steel is widely used in various fields because it has excellent properties such as workability and corrosion resistance. In general, various equipment parts such as screws and bolts are generally manufactured by being formed by forging. This forging processing method has the advantages of high efficiency and yield, but is inferior in precise processing accuracy. On the other hand, all precision parts having complicated shapes are manufactured by cutting. The cutting method allows processing into complex shapes and has the advantage of satisfying very precise dimensional accuracy, but has the disadvantage of poor material yield because it is processed from a material with a large wire diameter. There is.

従来、鍛造加工により製造される部品にはSUS304(18%Cr−8%Ni)やSUSXM7(17%Cr−9%Ni−3%Cu−低C、N系)が、切削加工により製造される部品にはSUS303(18%Cr−9%Ni−0.3%S)などが用いられてきた。
鍛造性に優れたSUS304やSUSXM7は被削性が悪く、被削性の優れたSUS303は鍛造性が悪いという相反する特徴を有している。従って、複雑な形状を有する部品では材料歩留が悪くても被削性の高い鋼を使用し、切削加工にて製造しているのが通常であった。
Conventionally, SUS304 (18% Cr-8% Ni) and SUSXM7 (17% Cr-9% Ni-3% Cu-low C, N-based) are manufactured by cutting for parts manufactured by forging. SUS303 (18% Cr-9% Ni-0.3% S) or the like has been used for parts.
SUS304 and SUSXM7, which have excellent forgeability, have the contradictory characteristics that machinability is poor, and SUS303, which has excellent machinability, has poor forgeability. Therefore, parts having a complicated shape are usually manufactured by cutting using steel having high machinability even if the material yield is low.

そこで、複雑な形状を有する部品を歩留・生産性よく製造するために、下記特許文献1、2に記載されているように、冷間加工性、被削性を向上させたオーステナイト系ステンレス鋼が提案され、また、下記特許文献3、4に記載されているように、脱酸による介在物の形態を変えることで被削性を改善させた鋼も提案されている。 Therefore, in order to manufacture parts having complicated shapes with high yield and productivity, as described in Patent Documents 1 and 2 below, austenitic stainless steel with improved cold workability and machinability. In addition, as described in Patent Documents 3 and 4 below, steels with improved machinability by changing the form of inclusions by deoxidation have also been proposed.

特許文献1には加工性に優れたCu系のオーステナイト系ステンレス鋼に重金属のPbを添加し、かつCa添加により酸化物量をコントロールすることで被削性を付与させ、Pb添加による熱間加工性の低下をB添加により向上させることを特徴とした鋼が記載されている。しかし、Pbは有毒であることからその使用は制限されつつあり、かつ後述するCa系の酸化物系介在物の組成については何も検討されていなかった。 In Patent Document 1, the machinability is imparted by adding heavy metal Pb to Cu-based austenitic stainless steel having excellent workability and controlling the amount of oxide by adding Ca, and hot workability by adding Pb. The steel is characterized by improving the decrease in the content by addition of B. However, since Pb is toxic, its use is being limited, and nothing has been studied about the composition of Ca-based oxide inclusions described later.

特許文献2に記載された発明は、耐食性を劣化させることなく被削性を向上させるために、耐食性の低下が少ないとされているCaを添加し、また硬質な介在物であるAl23の生成を可能な限り抑制し、鋼中の介在物をCaO・SiO2とMnO・SiO2の複合体とすることで被削性が向上することを見出し、かつこれらの介在物が冷間での引抜き加工や転造加工時にダイスとの材料間で潤滑効果をもたらし、焼付き防止に大きな効果があることを新規に見出したものである。しかし、これらの介在物が鍛造加工にどのような影響を示すのかは検討されていなかった。 In the invention described in Patent Document 2, in order to improve machinability without deteriorating the corrosion resistance, Ca, which is considered to have a small decrease in corrosion resistance, is added, and Al 2 O 3 which is a hard inclusion is added. It is found that machinability is improved by making the inclusions in the steel a composite of CaO · SiO 2 and MnO · SiO 2 and that these inclusions are cold. It has been found that it has a great effect in preventing seizure by providing a lubrication effect between the material with the die during the drawing process and rolling process. However, the influence of these inclusions on the forging process has not been studied.

特許文献3に記載された発明は、ステンレス鋼の被削性向上を耐食性の低下を伴うことなく実現させるため、Ca、Al、O量を規制することにより、酸化物系介在物をゲーレナイト(2CaO・Al23・SiO2)系とし、被削性を向上させたことを特徴とするものである。しかし、S無添加のため被削性に問題があり、切削加工を行うには更なる被削性の向上が求められていた。 In the invention described in Patent Document 3, in order to realize the machinability improvement of stainless steel without lowering the corrosion resistance, the oxide inclusions are made to be galenite (2CaO) by regulating the amount of Ca, Al, and O. -Al 2 O 3 · SiO 2 ) system, which is characterized by improved machinability. However, since there is no addition of S, there is a problem in machinability, and further machinability improvement has been required to perform cutting.

特許文献4に記載された発明は、低濃度かつ狭い範囲でAl量をコントロールし、かつCa量についても制御することにより、Al、Ca等を含有した低融点型酸化物を生成させ被削性を改善させることを特徴としたものである。しかし、Al量が非常に低い値であるため、原料の選定や製造時間など製造コストが高くなるという問題点があった。 The invention described in Patent Document 4 controls the amount of Al at a low concentration and in a narrow range, and also controls the amount of Ca, thereby generating a low melting point oxide containing Al, Ca, etc., and machinability. It is characterized by improving. However, since the amount of Al is a very low value, there has been a problem that manufacturing costs such as selection of raw materials and manufacturing time are increased.

以上のように、これまで、Pbなどの重金属を使用しないで、Ca、Al、Oの成分バランスによりコストアップさせることなく、介在物の形態を制御し、鍛造性と被削性の両特性をバランスよく付与したオーステナイト系ステンレス快削鋼は提案されていなかった。   As described above, until now, without using heavy metals such as Pb, without increasing the cost due to the balance of components of Ca, Al, O, the form of inclusions is controlled, and both forgeability and machinability are achieved. An austenitic stainless free-cutting steel imparted in a well-balanced manner has not been proposed.

特開昭63−18039号公報JP 63-18039 A 特開2004−256900号公報JP 2004-256900 A 特開平6−145908号公報JP-A-6-145908 特開2001−234298号公報JP 2001-234298 A

本発明は、環境に悪影響を与える重金属(Pb、Bi、Se、Te)を使用しないで、介在物の制御により、鍛造性にすぐれたオーステナイト系ステンレス快削鋼を提供することで、これまで切削加工のみで行われてきた部品加工の歩留を鍛造加工との組み合わせにより向上させることを課題とする。 The present invention provides an austenitic stainless free-cutting steel excellent in forgeability by controlling inclusions without using heavy metals (Pb, Bi, Se, Te) that adversely affect the environment. It is an object to improve the yield of component processing that has been performed only by processing by combination with forging.

本発明は、前記課題を解決するためになされたもので、酸化物系介在物の組成をコントロールすることにより、酸化物と硫化物の複合介在物を形成、微細分散させることによって、鍛造性を向上させようとした結果、極微量のAl、Ca、Oの量、比率を制御することで、鍛造性を劣化させることなく、被削性を確保できることを見出したものである。
すなわち、本発明の要旨とするところは特許請求の範囲の記載した通りの下記内容である。
(1)質量%で、C≦0.150%、Si:0.1〜2.0%、Mn0.1〜3.0%、P≦0.05%、S:0.01〜0.15%、 Ni:6.0〜25.0%、 Cr:14.0〜26.0%、N≦0.250%、Al:0.002〜0.010%、Ca:0.001〜0.010%、O:0.001%〜0.025%、Cu:1.0〜4.0%、残部Feおよび不可避的不純物からなる鋼で、かつ質量比で0.25≦Ca/Al≦2.50および0.10≦Ca/O≦0.30の条件を満たすことにより、低軟化点を有するCaO−SiO2−Al23系の酸化物と(Mn,Cr)Sの硫化物との複合介在物を形成することを特徴とする鍛造性に優れるオーステナイト系ステンレス快削鋼線材。
(2)前記鋼は、質量%で、B≦0.010%を含有することを特徴とする(1)に記載の鍛造性に優れるオーステナイト系ステンレス快削鋼線材。
)前記鋼は、質量%で、Mo≦1.50%を含有することを特徴とする(1)または(2)に記載の鍛造性に優れるオーステナイト系ステンレス快削鋼線材。
The present invention has been made to solve the above-mentioned problems. By controlling the composition of oxide inclusions, the composite inclusions of oxide and sulfide are formed and finely dispersed. As a result of the improvement, the inventors have found that machinability can be ensured by controlling the amounts and ratios of trace amounts of Al, Ca, and O without degrading forgeability.
That is, the gist of the present invention is the following contents as described in the claims.
(1) By mass%, C ≦ 0.150%, Si: 0.1 to 2.0%, Mn 0.1 to 3.0%, P ≦ 0.05%, S: 0.01 to 0.15 %, Ni: 6.0-25.0%, Cr: 14.0-26.0%, N ≦ 0.250%, Al: 0.002-0.010%, Ca: 0.001-0. 010%, O: 0.001% to 0.025%, Cu: 1.0 to 4.0%, steel composed of the balance Fe and inevitable impurities, and 0.25 ≦ Ca / Al ≦ 2 in mass ratio .50 and 0.10 ≦ Ca / O ≦ 0.30, the CaO—SiO 2 —Al 2 O 3 -based oxide having a low softening point and the sulfide of (Mn, Cr) S An austenitic stainless free-cutting steel wire excellent in forgeability characterized by forming a composite inclusion.
(2) The austenitic stainless free-cutting steel wire excellent in forgeability according to (1), wherein the steel contains mass% and B ≦ 0.010%.
( 3 ) The austenitic stainless free-cutting steel wire excellent in forgeability as described in (1) or (2) , wherein the steel contains, by mass%, Mo ≦ 1.50%.

本発明による鍛造性に優れたオーステナイト系ステンレス快削鋼によれば鍛造加工と切削加工で効率よく部品を加工することが可能となり、部品加工の低コスト化の効果を発揮するなど産業上有用な著しい効果を奏する。 The austenitic stainless free-cutting steel excellent in forgeability according to the present invention enables efficient machining of parts by forging and cutting, and is industrially useful, for example, by showing the effect of reducing the cost of parts machining. There is a remarkable effect.

介在物制御を行った鋼と行っていない鋼のS量と鍛造性(限界据込率)の関係を示す図である。It is a figure which shows the relationship between the amount of S of the steel which performed inclusion control, and the steel which is not performed, and forgeability (limit upsetting rate). Ca/Al比とCa/O比の値と鍛造性(限界据込率)の関係を示す図である。It is a figure which shows the relationship between the value of Ca / Al ratio and Ca / O ratio, and forgeability (limit upsetting rate).

以下に、先ず、本発明の(1)に記載の限定理由について説明する。
C≦0.150%
Cはオーステナイト相安定化元素であるが多量に含有させると耐食性、鍛造性、耐工具磨耗性が劣化するため上限を0.150%とした。好ましくは0.050%以下、さらに好ましくは0.030%以下である。
Below, the limitation reason as described in (1) of this invention is demonstrated first.
C ≦ 0.150%
C is an austenite phase stabilizing element, but if contained in a large amount, corrosion resistance, forgeability, and tool wear resistance deteriorate, so the upper limit was made 0.150%. Preferably it is 0.050% or less, More preferably, it is 0.030% or less.

Si:0.1〜2.0%
Siは脱酸剤として作用し、耐酸化性を向上させるにも有効な元素であるので0.1%以上含有させるが、必要以上の含有は鍛造性、耐工具磨耗性を劣化させるため2.0%を上限とした。好ましくは0.1〜0.4%である。
Si: 0.1 to 2.0%
Si acts as a deoxidizer and is an element effective for improving oxidation resistance, so it is contained in an amount of 0.1% or more. However, inclusion of more than necessary deteriorates forgeability and tool wear resistance. The upper limit was 0%. Preferably it is 0.1 to 0.4%.

Mn:0.1〜3.0%
MnはMnSとして被削性を向上させる効果があるため、0.1%以上含有させるが、過剰な含有は耐食性や靭性を低下させるためその上限を3.0%とした。好ましくは1.0〜2.5%である。
Mn: 0.1 to 3.0%
Since Mn has the effect of improving machinability as MnS, it is contained in an amount of 0.1% or more. However, excessive addition reduces the corrosion resistance and toughness, so the upper limit was made 3.0%. Preferably it is 1.0 to 2.5%.

P≦0.05%
Pは含有量が多いと熱間加工性を低下させるため0.05%を上限とした。好ましくは0.04%以下である。
P ≦ 0.05%
When P content is large, the hot workability is lowered, so 0.05% was made the upper limit. Preferably it is 0.04% or less.

S:0.01〜0.15%
Sは被削性を改善する元素であるため0.01%以上含有させるが、大量に含有させると硫化物を中心とした介在物が粗大化し、鍛造性が劣化する。そのため微量Al、Caを添加(制御)して、低融点酸化物と硫化物の複合介在物とさせ、被削性と鍛造性を兼備させるために0.15%の範囲とした。好ましくは0.01%〜0.12%である。
S: 0.01 to 0.15%
Since S is an element that improves machinability, it is contained in an amount of 0.01% or more. However, if it is contained in a large amount, inclusions centering on sulfides become coarse and forgeability deteriorates. Therefore, a small amount of Al and Ca are added (controlled) to form a composite inclusion of a low melting point oxide and a sulfide, and in order to combine machinability and forgeability, the range is 0.15%. Preferably, it is 0.01% to 0.12%.

図1に18%Cr−8%Ni−0.030%C−0.020%Nの成分系でS量を変化させ、低融点酸化物と硫化物の複合介在物となるようにAl、Ca、O量を制御した本発明鋼と比較鋼の限界据込率に及ぼすS量の影響を示す。限界据込率の測定方法は実施例の項で述べる。一般に限界据込率が70%以上あればヘッダー加工など鍛造において良好な作業性・生産性を示すことが知られている。図1から被削性を向上させる元素であるS量の増加によって鍛造性が低下していることが分かる。また、0.14%S量材に介在物制御を行うと70%の限界据込率を示した。しかし、0.15%以上のS量の材料では、介在物制御を実施しても70%以上の限界据込率にはならなかった。この試験結果より、鍛造性を高く保つためにはS量を制限する必要がある。従ってSの上限を0.15%とした。   In FIG. 1, the amount of S is changed in a component system of 18% Cr-8% Ni-0.030% C-0.020% N, and Al, Ca so as to be a composite inclusion of low melting point oxide and sulfide. The influence of the S amount on the limit upsetting rate of the steel of the present invention and the comparative steel in which the O amount is controlled is shown. The method for measuring the limit upsetting rate will be described in the section of Examples. In general, it is known that if the limit upsetting ratio is 70% or more, good workability and productivity are exhibited in forging such as header processing. It can be seen from FIG. 1 that the forgeability is reduced by increasing the amount of S, which is an element improving machinability. Moreover, when inclusion control was performed on the 0.14% S amount material, a limit upsetting rate of 70% was shown. However, the material with an S amount of 0.15% or more did not reach a limit upsetting rate of 70% or more even when inclusion control was performed. From this test result, it is necessary to limit the amount of S in order to keep the forgeability high. Therefore, the upper limit of S is set to 0.15%.

Ni:6.0〜25.0%
Niは耐食性を向上させるとともに、鍛造性を改善させる元素である。そのため下限を6.0%とした。また、Niは高価な元素であり、過度の添加は固溶強化により材料を硬質化し、鍛造性劣化、工具寿命の劣化を引き起こす。そのため上限を25.0%とした。鍛造性の点から、より好ましくは8.0%〜11.0%である。
Ni: 6.0 to 25.0%
Ni is an element that improves corrosion resistance and improves forgeability. Therefore, the lower limit was made 6.0%. Ni is an expensive element. Excessive addition hardens the material by solid solution strengthening, and causes deterioration of forgeability and tool life. Therefore, the upper limit was made 25.0%. From the viewpoint of forgeability, it is more preferably 8.0% to 11.0%.

Cr:14.0〜26.0%
Crはマトリックスに固溶し、耐食性向上にさせる元素である。14.0%以下では耐食性が悪くなり、多いとオーステナイト相が不安定となるとともに、熱間でスケール生成を抑制し、熱間圧延疵の原因となることから、上限を26.0%とした。好ましくは17.0%〜19.0%である。
Cr: 14.0 to 26.0%
Cr is an element that dissolves in the matrix and improves corrosion resistance. If the amount is less than 14.0%, the corrosion resistance is deteriorated. If the amount is too large, the austenite phase becomes unstable and the formation of hot scale is suppressed, causing hot rolling defects. Therefore, the upper limit is set to 26.0%. . Preferably, it is 17.0% to 19.0%.

N≦0.250%
Nはオーステナイト相を安定化させるために有効な元素である。しかし過度の添加は固溶強化により材料を硬質化させ、鍛造性劣化、工具寿命を低下させる。そのため上限を0.250%とした。好ましくは0.010%〜0.030%である。
N ≦ 0.250%
N is an element effective for stabilizing the austenite phase. However, excessive addition hardens the material by solid solution strengthening and degrades forgeability and tool life. Therefore, the upper limit was made 0.250%. Preferably it is 0.010%-0.030%.

Al:0.002〜0.010%
Alは脱酸剤として作用するとともに、後述の低軟化点を有するCaO−SiO2−Al23系の酸化物を生成し、硫化物との複合介在物とさせ、硫化物の微細分散に重要な元素であるが、多量に含有すると硬質な粗大非金属酸化物として存在するために鍛造性を低下させる。そこで、その範囲を0.002%以上0.010%以下とした。好ましくは0.002〜0.008%である。
Al: 0.002 to 0.010%
Al acts as a deoxidizer and generates a CaO—SiO 2 —Al 2 O 3 -based oxide having a low softening point, which will be described later, to form a composite inclusion with sulfide, thereby finely dispersing sulfide. Although it is an important element, when it is contained in a large amount, it exists as a hard coarse non-metal oxide, so that forgeability is lowered. Therefore, the range is made 0.002% to 0.010%. Preferably it is 0.002 to 0.008%.

Ca:0.001〜0.010%
Caは低軟化点のCaO−SiO2−Al23系の酸化物を生成させるのに重要な元素である。Al、Siなどの脱酸元素とOの微妙なコントロールにより後述する低融点のCaO−SiO2−Al23系酸化物を生成し、硫化物との複合介在物として、硫化物を微細に分散させる。これらの効果を得るためには少なくとも0.001%以上の添加が必要である。しかし、多量に含有させると、これらの効果が得られなくなることに加え、製造性も低下することから、その上限を0.010%とした。好ましくは0.001〜0.007%である。
Ca: 0.001 to 0.010%
Ca is an important element for producing a CaO—SiO 2 —Al 2 O 3 oxide having a low softening point. Low-melting CaO—SiO 2 —Al 2 O 3 -based oxides described later are produced by delicate control of deoxidizing elements such as Al and Si and O, and the sulfides are finely formed as composite inclusions with sulfides. Disperse. In order to obtain these effects, addition of at least 0.001% is necessary. However, if contained in a large amount, these effects cannot be obtained, and the manufacturability also decreases, so the upper limit was made 0.010%. Preferably it is 0.001 to 0.007%.

O:0.001%〜0.025%
OはAl、Caと同じく、CaO−SiO2−Al23系酸化物となり、硫化物との複合介在物として、微細に分散させるため、Oの含有は必須である。0.001%以下ではその効果は小さく、0.025%を超えると硬質のCr2O3が増大して鍛造性及び被削性を低下させるので、その範囲を0.001%以上0.025%以下とした。好ましくは0.005〜0.020%である。
O: 0.001% to 0.025%
O, like Al and Ca, becomes a CaO—SiO 2 —Al 2 O 3 -based oxide and is finely dispersed as a composite inclusion with sulfide, so the inclusion of O is essential. If it is less than 0.001%, the effect is small, and if it exceeds 0.025%, hard Cr2O3 increases and forgeability and machinability deteriorate, so the range is 0.001% or more and 0.025% or less. did. Preferably it is 0.005-0.020%.

質量比で0.25≦Ca/Al≦2.50
CaO−SiO2−Al23系の酸化物を生成させ、(Mn,Cr)Sの硫化物と複合介在物にするためにはCa/Al比をコントロールすることが必要である。Ca/Al比が0.25未満であると、CaO量が少なくなり、SiO2−Al23系の酸化物が多く存在し、複合介在物になりにくくなるとともに、硬質な酸化物が多くなることから鍛造性、被削性が劣化する。また、Ca/Al比が2.50を超えると、2CaO・SiO2が多く生成され、複合介在物になりにくくなり、複合介在物の微細化による鍛造性の向上代が低下することに加え、鋳造時にノズルが溶損し、製造性に問題が発生するため、質量比で0.25≦Ca/Al≦2.5とした。
0.25 ≦ Ca / Al ≦ 2.50 in mass ratio
In order to produce a CaO—SiO 2 —Al 2 O 3 -based oxide and make it a sulfide and a composite inclusion of (Mn, Cr) S, it is necessary to control the Ca / Al ratio. When the Ca / Al ratio is less than 0.25, the amount of CaO is reduced, and a large amount of SiO 2 -Al 2 O 3 -based oxides are present, making it difficult to form composite inclusions, and there are many hard oxides Therefore, forgeability and machinability deteriorate. In addition, when the Ca / Al ratio exceeds 2.50, a large amount of 2CaO · SiO 2 is generated and it becomes difficult to become a composite inclusion, and in addition to a reduction in forgeability improvement due to refinement of the composite inclusion, Since the nozzle melts at the time of casting and a problem occurs in manufacturability, the mass ratio is set to 0.25 ≦ Ca / Al ≦ 2.5.

質量比で0.10≦Ca/O≦0.30
Ca/OについてもCaO−SiO2−Al23系の酸化物を生成させ、(Mn,Cr)Sの硫化物と複合介在物にするためにはCa/O比をコントロールすることが重要である。Ca/O比が0.10未満であると、SiO2−MnO−Cr23系の酸化物が多くなり、CaO−SiO2−Al23系の酸化物が少なるため、複合介在物が生成しにくくなり鍛造性が劣化する。また0.30を超えると、MnO量が減少し、複合介在物を生成しにくくなり鍛造性が劣化し、また鋳造時にノズルが溶損し、製造性に問題が発生するため、質量比で0.10≦Ca/O≦0.30とした。
0.10 ≦ Ca / O ≦ 0.30 in mass ratio
For Ca / O, it is important to control the Ca / O ratio in order to produce CaO—SiO 2 —Al 2 O 3 -based oxides and to make (Mn, Cr) S sulfide and composite inclusions. It is. When the Ca / O ratio is less than 0.10, SiO 2 —MnO—Cr 2 O 3 -based oxides increase, and CaO—SiO 2 —Al 2 O 3 -based oxides decrease, resulting in complex interposition. It becomes difficult to produce things and forgeability deteriorates. On the other hand, if it exceeds 0.30, the amount of MnO decreases, it becomes difficult to form composite inclusions, the forgeability deteriorates, and the nozzle melts during casting, causing problems in manufacturability. 10 ≦ Ca / O ≦ 0.30.

CaO−SiO2−Al23系酸化物
極微量のAl、O、Caをコントロールすることにより、(Mn,Cr)S系の硫化物の接種核として働き、複合介在物として、硫化物を微細に分散させる低融点のCaO−SiO2−Al23系の酸化物となり、その結果、鍛造性、被削性が向上することを見出した。
CaO—SiO 2 —Al 2 O 3 oxide By controlling trace amounts of Al, O, and Ca, it acts as an inoculation nucleus for (Mn, Cr) S sulfide, and as a composite inclusion, sulfide is added. It has been found that a low melting point CaO—SiO 2 —Al 2 O 3 -based oxide that is finely dispersed is obtained, and as a result, forgeability and machinability are improved.

図2に18%Cr−8%Ni−0.03%C−0.02%N−0.1%S鋼のCa/AlとCa/Oの値と鍛造性(限界据込率)の関係を示す。Ca/Al、Ca/Oの値により鍛造性が変化しており、0.25≦Ca/Al≦2.50かつ0.10≦Ca/O≦0.30の値では70%以上の限界据込率を示している。   Fig. 2 shows the relationship between the Ca / Al and Ca / O values of 18% Cr-8% Ni-0.03% C-0.02% N-0.1% S steel and the forgeability (limit upsetting rate). Indicates. The forgeability varies depending on the values of Ca / Al and Ca / O, and the limit setting is 70% or more at the values of 0.25 ≦ Ca / Al ≦ 2.50 and 0.10 ≦ Ca / O ≦ 0.30. The rate of inclusion is shown.

本発明の(2)記載の限定理由について述べる。
B≦0.010%
Bは熱間加工性や軟質化を改善するために添加される元素であり、0.002%以上の添加により安定した効果が得られる。しかし過剰に添加するとBの化合物が析出し、熱間加工性を劣化させるので、その上限を0.010%とした。好ましくは0.002〜0.004%である。
The reason for limitation described in (2) of the present invention will be described.
B ≦ 0.010%
B is an element added to improve hot workability and softening, and a stable effect can be obtained by adding 0.002% or more. However, if added in excess, the B compound precipitates and deteriorates hot workability, so the upper limit was made 0.010%. Preferably it is 0.002 to 0.004%.

本発明の(3)記載の限定理由について述べる。
Cu:1.0〜4.0%
Cuはオーステナイト相安定元素であり、鍛造性を改善させる重要な元素である。後述する更に好ましい鍛造性を得るためには少なくとも1.0%以上の添加が必要であるが、4.0%を超えて含有すると熱間加工性が悪化することから上限を4.0%とした。好ましくは2.0〜4.0%である。
The reason for limitation described in (3) of the present invention will be described.
Cu: 1.0-4.0%
Cu is an austenite phase stable element and is an important element for improving forgeability. Addition of at least 1.0% or more is necessary to obtain a more preferable forgeability to be described later, but if the content exceeds 4.0%, the hot workability deteriorates, so the upper limit is 4.0%. did. Preferably it is 2.0 to 4.0%.

本発明の(4)記載の限定理由について述べる。
Mo≦1.50%
MoはCrと同様に耐食性を向上させるのに有効な元素であり0.1%以上の添加により安定した効果が得られる。しかし、多量に添加すると熱間加工性が低下するために上限を1.50%とした。好ましくは0.10〜1.40%である。
また、本願発明の好ましい形態として、更に鍛造性を向上させるためには、S:0.05%以下、C:0.030%以下、N:0.030%以下にすることが好ましく、かつその時の試験片の横断面における表層から深さ1mmの間の長径2μm未満の硫化物、酸化物などの介在物数の割合が80%以上であることにより、80%以上の鍛造性を示す。表層から深さ1mmの間は鍛造加工時に応力が集中するため、介在物が破壊の起点になりやすいため、介在物の大きさとその割合は重要である。2μm未満の介在物数の割合が少なくなると鍛造性が劣化することから、80%以上の鍛造性を確保するためには、2μm未満の介在物の割合が80%以上必要である。
The reason for limitation described in (4) of the present invention will be described.
Mo ≦ 1.50%
Mo is an element effective for improving the corrosion resistance like Cr, and a stable effect can be obtained by addition of 0.1% or more. However, since the hot workability deteriorates when added in a large amount, the upper limit was made 1.50%. Preferably it is 0.10 to 1.40%.
Further, as a preferred form of the present invention, in order to further improve forgeability, S: 0.05% or less, C: 0.030% or less, N: 0.030% or less are preferable, and at that time When the ratio of the number of inclusions such as sulfides and oxides having a major axis of less than 2 μm between the surface layer and a depth of 1 mm in the cross section of the test piece is 80% or more, forgeability of 80% or more is exhibited. Since stress concentrates at the depth of 1 mm from the surface layer at the time of forging, inclusions are likely to be the starting point of destruction, and therefore the size and the ratio of inclusions are important. Since the forgeability deteriorates when the ratio of the number of inclusions less than 2 μm decreases, the ratio of the inclusions less than 2 μm needs to be 80% or more in order to ensure forgeability of 80% or more.

これらの鋼の製造方法として、粗圧延から仕上げ圧延までの全熱間圧延工程での鋼材表面の最低温度を1000以上1200℃以下とし、その時の減面率を98.0%以上にすることにより、Al、Ca、Oの制御により微細分散させた介在物がより細かく分散し、鍛造性が更に向上することを見出した。圧延最低温度が1000℃未満になると、Ca系酸化物の軟化温度以下となり、微細に分散した介在物がさらに分断しにくくなり、更なる鍛造性の向上は期待できず、本発明の好ましい形態における鍛造性が満足されない。また、1200℃より高くなると、粒界溶融による脆化や有害元素の完全固溶・再析出による脆化が生じやすく、製造性の問題が表れてくる。減面率は98.0%未満であると加工による鋼中の介在物の分断が起こりにくくなるため、更なる鍛造性の向上なく、本発明の好ましい形態における鍛造性が満足されなくなる。 As a manufacturing method of these steels, the minimum temperature of the steel surface in the entire hot rolling process from rough rolling to finish rolling is set to 1000 to 1200 ° C., and the area reduction rate at that time is set to 98.0% or more. It was found that inclusions finely dispersed by controlling Al, Ca, and O were more finely dispersed, and the forgeability was further improved. When the rolling minimum temperature is less than 1000 ° C., it becomes lower than the softening temperature of the Ca-based oxide, and the finely dispersed inclusions are more difficult to break, and further improvement in forgeability cannot be expected. The forgeability is not satisfied. On the other hand, when the temperature is higher than 1200 ° C., embrittlement due to grain boundary melting and embrittlement due to complete solid solution / reprecipitation of harmful elements tend to occur, resulting in a problem in manufacturability. If the area reduction is less than 98.0%, it becomes difficult for the inclusions in the steel to be broken by the processing, so that the forgeability in the preferred embodiment of the present invention is not satisfied without further improvement in forgeability.

以下に本発明の実施例について説明する。
表1、2に本発明の実施例の化学成分と鍛造性、被削性(切屑処理性、耐工具磨耗性)の評価結果を示す。
Examples of the present invention will be described below.
Tables 1 and 2 show the evaluation results of chemical components, forgeability, and machinability (chip treatability and tool wear resistance) of the examples of the present invention.

Figure 0005583986
Figure 0005583986

Figure 0005583986
これら化学成分の鋼は100kg真空溶解炉にてφ180mm角の鋳片に鋳込み、その後、最低鋼材表面温度を990〜1210℃、減面率を97.8〜99.8%で熱間圧延を行い、1050℃(オーステナイト系ステンレス鋼線で組織を安定化させる温度)で溶体化処理を施し、棒鋼サンプルを製造した。その後、鍛造性、被削性(切屑処理性、耐工具磨耗性)を調査した。
Figure 0005583986
These chemical components are cast into φ180 mm square slabs in a 100 kg vacuum melting furnace, and then hot rolled at a minimum steel surface temperature of 990 to 1210 ° C. and a reduction in area of 97.8 to 99.8%. A solution treatment was performed at 1050 ° C. (temperature at which the structure was stabilized with an austenitic stainless steel wire) to produce a steel bar sample. Thereafter, the forgeability and machinability (chip disposal, tool wear resistance) were investigated.

鍛造性は圧縮試験によって得られる限界据込率によって評価した。圧縮試験は直径11mmの線材から高さ12mm、直径8mmの円柱状の試験片を作製して供試材とし、同心円状の溝をもつ拘束型ダイスでの圧縮試験により評価した。試験片の初期の高さをH0、割れが発生した圧縮後の高さをHとし以下の式で求めた値を限界据込率とした。
(1−H/H0)×100(%)
Forgeability was evaluated by the limit upsetting rate obtained by the compression test. In the compression test, a cylindrical test piece having a height of 12 mm and a diameter of 8 mm was prepared from a wire material having a diameter of 11 mm as a test material, and evaluation was performed by a compression test with a constraining die having concentric grooves. The initial height of the test piece was H 0 , the height after compression at which cracking occurred was H, and the value obtained by the following formula was defined as the limit upsetting rate.
(1-H / H 0) × 100 (%)

圧縮試験機によって歪み速度10/sの一定速度で試験片を圧縮し、試験片側面の割れの有無を目視で判定し、限界据込率によって大小で評価した。
本発明鋼No.1〜26は限界据込率が70%以上であった。
切削試験は直径22mmに熱間鍛伸した棒鋼を供試材として、超硬工具(P20種)を用いて、切削速度(50〜200m/min)、切込み(0.1〜1.0mm)、送り速度(0.01〜0.1mm/rev)で外周切削をおこなった。被削性の評価は切屑処理性、耐工具磨耗性にて評価した。
The test specimen was compressed at a constant speed of 10 / s with a compression tester, the presence or absence of cracks on the side face of the specimen was visually determined, and the size was evaluated based on the limit upsetting rate.
Invention Steel No. 1 to 26 had a limit upsetting rate of 70% or more.
The cutting test uses a steel bar hot forged to a diameter of 22 mm as a test material, using a carbide tool (P20 type), cutting speed (50 to 200 m / min), cutting (0.1 to 1.0 mm), Peripheral cutting was performed at a feed rate (0.01 to 0.1 mm / rev). The machinability was evaluated based on chip disposal and tool wear resistance.

切屑処理性の評価は短く破損しているものおよび規則的ならせん状のものを○、無規則で長く繋がったものを×とした。これは、短く破損した切屑を排出するものは切削中に表面に疵をつける可能性が低いが、無規則で長く繋がった切屑は表面に疵をつけたり、工具に絡まったりするためである。本発明鋼は短く破損したものと規則的ならせん状の切屑が観察された。 In the evaluation of the chip disposability, the short-damaged and regular spiral-shaped ones were marked with ◯, and the ones that were irregularly connected for a long time were marked with ×. This is because chips that discharge short and broken chips are less likely to wrinkle the surface during cutting, but chips that are irregularly connected for a long time are wrinkled on the surface or entangled with the tool. The steel of the present invention was observed to be short and broken and regular spiral chips.

耐工具磨耗は約4000m切削時の工具を観察して評価した。工具磨耗がないものは○、局所的に大きな工具磨耗が観察されるものを×とした。本発明鋼は一部微量の工具磨耗が観察されるものもあるが、大きな工具磨耗は観察されなかった。
製造性は熱間圧延後の表面疵の有無で評価した。本発明鋼については表面疵は確認されなかった。
Tool wear resistance was evaluated by observing the tool when cutting about 4000 m. The case where there was no tool wear was rated as ◯, and the case where large tool wear was observed locally was marked as x. Some of the steels of the present invention have a small amount of tool wear observed, but no significant tool wear was observed.
Manufacturability was evaluated by the presence or absence of surface defects after hot rolling. No surface flaws were observed for the inventive steel.

硫化物、酸化物などの介在物サイズ及びその数の測定は、試験片の横断面について埋め込み・鏡面研磨を行ったものについて、表層から深さ1mmの間を光学顕微鏡にて1画素0.125μm観察できるカメラを用いて、400倍で250視野観察し、確認された硫化物、酸化物などの介在物について圧延方向に平行の長さを測定し、その数の割合を求め評価した。最低鋼材表面温度及び減面率を制御し、Ca/AlとCa/Oが範囲内であり、且つS量が0.05%以下のものは2μm以下の介在物数の割合が80%以上であった。 The size of inclusions such as sulfides and oxides and the number thereof were measured by embedding and mirror-polishing the cross section of the test piece. One pixel was 0.125 μm from the surface layer to a depth of 1 mm with an optical microscope. Using a observable camera, 250 field observations were performed at 400 times, and the lengths parallel to the rolling direction were measured for the confirmed inclusions such as sulfides and oxides, and the ratio of the number was obtained and evaluated. The minimum steel surface temperature and the area reduction rate are controlled, Ca / Al and Ca / O are within the range, and the S content is 0.05% or less, the ratio of inclusions of 2 μm or less is 80% or more. there were.

引張強度はJIS9号A(G.L100mm)を用いて試験を行い引張強度を測定した。
一方、比較例No.27〜46は本発明に比べ、鍛造性、被削性(切屑処理性、耐工具磨耗性)製造性、コストのいずれかが劣っていた。
以上実施例から分かるように本発明例に優位性は明らかである。
Tensile strength was tested using JIS No. 9A (G.L100 mm) and the tensile strength was measured.
On the other hand, Comparative Example No. 27 to 46 were inferior in any of forgeability, machinability (chip disposability, tool wear resistance) manufacturability and cost as compared with the present invention.
As can be seen from the embodiments, the advantages of the present invention are clear.

以上の実施例から明らかなように、本発明により鍛造性に優れるオーステナイト系ステンレス快削鋼の提供が可能であり、これまで切削加工のみで複雑な形状を製造していた部品を鍛造加工と切削加工によって、材料歩留まり、生産性よく製造する上で極めて有用である。 As is clear from the above examples, the present invention can provide austenitic stainless free-cutting steel with excellent forgeability by the present invention, and forging and cutting parts that have so far been manufactured with complicated shapes only by cutting. By processing, it is extremely useful for producing materials with high yield and productivity.

Claims (3)

質量%で、
C≦0.150%、
Si:0.1〜2.0%、
Mn0.1〜3.0%、
P≦0.05%、
S:0.01〜0.15%、
Ni:6.0〜25.0%、
Cr:14.0〜26.0%、
N≦0.250%、
Al:0.002〜0.010%、
Ca:0.001〜0.010%、
O:0.001%〜0.025%、
Cu:1.0〜4.0%、残部Feおよび不可避的不純物からなる鋼で、かつ質量比で0.25≦Ca/Al≦2.50および0.10≦Ca/O≦0.30の条件を満たすことにより、低軟化点を有するCaO−SiO2−Al23系の酸化物と(Mn,Cr)Sの硫化物との複合介在物を形成することを特徴とする鍛造性に優れるオーステナイト系ステンレス快削鋼線材。
% By mass
C ≦ 0.150%,
Si: 0.1 to 2.0%,
Mn 0.1-3.0%,
P ≦ 0.05%,
S: 0.01 to 0.15%,
Ni: 6.0 to 25.0%,
Cr: 14.0 to 26.0%,
N ≦ 0.250%,
Al: 0.002 to 0.010%,
Ca: 0.001 to 0.010%,
O: 0.001% to 0.025%,
Cu: 1.0 to 4.0%, a steel composed of the balance Fe and inevitable impurities, and in a mass ratio of 0.25 ≦ Ca / Al ≦ 2.50 and 0.10 ≦ Ca / O ≦ 0.30 By satisfying the conditions, the forgeability is characterized by forming a composite inclusion of a CaO—SiO 2 —Al 2 O 3 oxide having a low softening point and a sulfide of (Mn, Cr) S. Excellent austenitic stainless free-cutting steel wire.
前記鋼は、質量%で、B≦0.010%を含有することを特徴とする請求項1に記載の鍛造性に優れるオーステナイト系ステンレス快削鋼線材。   The austenitic stainless free-cutting steel wire rod having excellent forgeability according to claim 1, wherein the steel contains B ≦ 0.010% by mass. 前記鋼は、質量%で、Mo≦1.50%を含有することを特徴とする請求項1または請求項2に記載の鍛造性に優れるオーステナイト系ステンレス快削鋼線材。 The austenitic stainless free-cutting steel wire excellent in forgeability according to claim 1 or 2 , wherein the steel contains, by mass%, Mo ≦ 1.50%.
JP2010035658A 2010-02-22 2010-02-22 Austenitic stainless free-cutting steel rod with excellent forgeability Active JP5583986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010035658A JP5583986B2 (en) 2010-02-22 2010-02-22 Austenitic stainless free-cutting steel rod with excellent forgeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010035658A JP5583986B2 (en) 2010-02-22 2010-02-22 Austenitic stainless free-cutting steel rod with excellent forgeability

Publications (2)

Publication Number Publication Date
JP2011168859A JP2011168859A (en) 2011-09-01
JP5583986B2 true JP5583986B2 (en) 2014-09-03

Family

ID=44683271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010035658A Active JP5583986B2 (en) 2010-02-22 2010-02-22 Austenitic stainless free-cutting steel rod with excellent forgeability

Country Status (1)

Country Link
JP (1) JP5583986B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109988972B (en) * 2019-04-23 2021-05-04 中天钢铁集团有限公司 Round steel for low-carbon sulfur-containing air conditioning pipe and production process thereof
CN112251665A (en) * 2020-09-28 2021-01-22 无锡市法兰锻造有限公司 Austenitic stainless steel forging for ultralow-temperature liquid hydrogen container and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188861A (en) * 1993-12-28 1995-07-25 Daido Steel Co Ltd High cleanliness austenitic stainless steel
JP3265930B2 (en) * 1995-06-30 2002-03-18 日本鋼管株式会社 High Cr steel sheet excellent in weldability and method for producing the same
JP3966190B2 (en) * 2003-02-27 2007-08-29 愛知製鋼株式会社 Stainless steel with excellent machinability and cold workability
JP4018021B2 (en) * 2003-04-10 2007-12-05 新日鐵住金ステンレス株式会社 Nonmagnetic sulfur free-cutting stainless steel wire with excellent cold-drawing workability and corrosion resistance
JP2006249517A (en) * 2005-03-11 2006-09-21 Aichi Steel Works Ltd Austenitic stainless steel with excellent machinability

Also Published As

Publication number Publication date
JP2011168859A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
AU2005264481B2 (en) Steel for steel pipe
JP4424503B2 (en) Steel bar and wire rod
KR102471016B1 (en) Martensitic S free-cutting stainless steel
CN101921970A (en) High anti-corrosion, high strength and non-magnetic stainless steel, high anti-corrosion, high strength and non-magnetic stainless steel product and production method thereof
JP2010070812A (en) Free-cutting austenitic stainless steel wire rod excellent in cold forgeability, and manufacturing method therefor
JP6642237B2 (en) Cold forging steel and method for producing the same
JP5092578B2 (en) Low carbon sulfur free cutting steel
JP5474615B2 (en) Martensitic stainless free-cutting steel bar wire with excellent forgeability
JP5474616B2 (en) Ferritic stainless free-cutting steel rod with excellent forgeability
JP5556778B2 (en) Free-cutting steel for cold forging
JP7199231B2 (en) Ferritic S free-cutting stainless steel
JP5583986B2 (en) Austenitic stainless free-cutting steel rod with excellent forgeability
AU2006241390B2 (en) Free-cutting steel having excellent high temperature ductility
JP6814655B2 (en) Ferritic free-cutting stainless steel wire
JP3912308B2 (en) Steel for machine structure
JP5957241B2 (en) Ferritic free-cutting stainless steel bar wire and method for producing the same
JP4949100B2 (en) Austenitic stainless free-cutting steel with excellent cold forgeability and machinability
JP2012197513A (en) Bn free cutting steel excellent in service life as tool
JP6801717B2 (en) Cold forging steel and its manufacturing method
JP2001152279A (en) Free cutting steel
JP2001152280A (en) Free cutting steel
JP3966190B2 (en) Stainless steel with excellent machinability and cold workability
JP6766531B2 (en) Cold forging steel and its manufacturing method
JP2019035126A (en) Steel for machine structure use
JP2014028997A (en) Austenitic s-containing free-cutting stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140717

R150 Certificate of patent or registration of utility model

Ref document number: 5583986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250