US20180127858A1 - Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product - Google Patents

Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product Download PDF

Info

Publication number
US20180127858A1
US20180127858A1 US15/570,574 US201615570574A US2018127858A1 US 20180127858 A1 US20180127858 A1 US 20180127858A1 US 201615570574 A US201615570574 A US 201615570574A US 2018127858 A1 US2018127858 A1 US 2018127858A1
Authority
US
United States
Prior art keywords
traces
semi
finished product
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/570,574
Inventor
Francis Chassagne
Françoise Haegeli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aperam SA
Original Assignee
Aperam SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aperam SA filed Critical Aperam SA
Assigned to APERAM reassignment APERAM ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAEGELI, FRANCOISE, CHASSAGNE, FRANCIS
Publication of US20180127858A1 publication Critical patent/US20180127858A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • C21C7/0685Decarburising of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/18Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for knives, scythes, scissors, or like hand cutting tools

Definitions

  • the invention relates to a martensitic stainless steel.
  • This steel is primarily intended to manufacture cutting tools, in particular pieces of cutlery, such as scalpels, scissor blades, or knife blades or household food processors.
  • Steels intended for cutlery must have a high corrosion resistance, ability to be polished and hardness.
  • the martensitic stainless steels currently used to produce the blades of cutting tools such as steels of type EN 1.4021, EN 1.4028 and EN 1.4034, have Cr content levels of less than or equal to 14 or 14.5 wt % and variable C content levels, i.e., 0.16%-0.25% for EN 1.4021, 0.26-0.35% for EN 1.4028 and 2.43-0.50% for EN 1.4034.
  • the hardness level of the steel depends primarily on this C content level.
  • grade EN 1.4419 with 0.36-0.42% C, 13.0-14.5% Cr and 0.60-1.00% Mo can be used.
  • these steels are typically melted in an AOD or VOD converter, then poured continuously in the form of slabs, blooms or billets, then hot-rolled so as to obtain a coil, a rolled bar or a wire rod. They next undergo annealing to obtain a ferritic structure containing carbides, which is soft enough for it to be possible to perform cold rolling for the flat products, or to facilitate sawing before forging the hot-rolled semi-finished product for long products.
  • the product next undergoes a recrystallization annealing.
  • the product is cut to give it its final shape, for example that of a knife blade, before undergoing a thermal treatment comprising high-temperature austenitizing, typically between 950° C. and 1150° C., followed by quenching to ambient temperature, which leads to a primarily martensitic structure.
  • the product In this martensitic state, the product has a high hardness, which is higher when the carbon content is high, but is also very fragile.
  • An annealing treatment typically between 100° C. and 300° C., is then done to reduce the fragility without lowering the hardness too much.
  • the blade next undergoes various operations, including sharpening and polishing to give it its cutting quality and aesthetic appearance.
  • Grade EN 1.4419 has good corrosion resistance and a high hardness, but it is cost prohibitive due to the addition of a large quantity of Mo.
  • Grade EN 1.4034 has a high hardness, but also has a mediocre surface appearance after polishing, due to the presence of a large number of carbides not dissolved during austenitizing, due to the high C content level of this grade.
  • the corrosion resistance is insufficient, since the Cr content level is not high enough in the matrix, particularly given that part of the Cr is trapped in the non-dissolved carbides.
  • the cutting edge of the blade is often subjected to crevice corrosion, coming from the cleavage of large primary carbides that appear at the end of solidification during continuous casting.
  • Grades EN 1.4021 and 1.4028 which contain less C, have lower hardnesses, but without having sufficient corrosion resistance due to the excessively low Cr content levels.
  • the present invention aims to resolve the aforementioned problems. It in particular seeks to propose a martensitic stainless steel for a cutting tool that is as cost-effective as possible, which nevertheless has good corrosion resistance, good polishing ability and a high hardness.
  • the invention relates to a martensitic stainless steel, characterized in that its composition consists of, in weight percentages:
  • the invention also relates to a method for producing a semi-finished product made from martensitic stainless steel, characterized in that:
  • Said semi-finished product can be a sheet, and said shaping operation can be a cold rolling.
  • Said semi-finished product can be a bar or a wire rod, and said shaping operation can be a forging.
  • Said shaped semi-finished product if its Cr content level is comprised between 15 and 17%, can next be austenitized between 950 and 1150° C., then cooled at a speed of at least 15° C./s to a temperature of less than or equal to 20° C., then undergoes annealing at a temperature comprised between 100 and 300° C.
  • Said shaped semi-finished product can next be austenitized between 950 and 1150° C., then cooled at a speed of at least 15° C./s to a temperature of less than or equal to 20° C., then undergoes a cryogenic treatment at a temperature from ⁇ 220 to ⁇ 50° C., then an annealing at a temperature comprised between 100 and 300° C.
  • the invention also relates to a cutting tool, characterized in that it has been made from a semi-finished product prepared according to the preceding method.
  • the cutting tool can be a cutlery item such as a knife blade, a food processor blade, a scalpel, or a scissor blade.
  • the invention consists of using, to produce the cutting tool, a martensitic stainless steel with a specific composition, free of costly elements with high content levels, but containing relatively large quantities of nitrogen situated in a well-defined range. Particular balancing of the Cr, C and N content levels is also necessary.
  • FIG. 1 shows the evolution of the Vickers hardness of the steel under a load of 1 kg, based on the martensite level after austenitizing, quenching and annealing, of a steel according to the invention.
  • the C content level must therefore be at least 0.10% to obtain a sufficient hardness, and no more than 0.45% to obtain good corrosion resistance and a satisfactory surface appearance after polishing.
  • the optimal range in particular makes it possible to avoid a high hardness while limiting carbide formation to within acceptable proportions, the possible loss of hardness due to the decrease in the maximum C content level relative to the more general range being able to be compensated by a sufficient nitrogen presence to that end, as will be seen later.
  • the C content level must satisfy formulas linking it with the N content level and with the N and Cr content levels, as will be explained later.
  • Mn is a so-called gammagenous element, since it stabilizes the austenitic structure.
  • An excessive Mn content level leads to an insufficient martensite level after austenitizing and quenching treatment, which leads to decreased hardness.
  • the Mn content level must be comprised between traces resulting from melting and 1.0%.
  • its content level is limited to 0.6% to help obtain an optimally low Ms temperature.
  • Si is a useful element during the steelmaking process. It is highly reducing, and therefore makes it possible to reduce the Cr oxides in the reduction phase of the steel that follows the decarburization phase in the AOD or VOD converter.
  • the Si content level in the final steel must be comprised between traces and 1.0%, since this element has a hot hardening effect that limits the possibilities for hot deformation during hot rolling or during forging.
  • its content level is limited to 0.6% to help obtain an optimally low Ms temperature.
  • S and P are impurities that decrease the hot ductility. P segregates easily at the grain boundaries and facilitates cleavage thereof. Furthermore, S reduces the resistance to corrosion caused by pitting, by forming compounds with the Mn that serve as initiating sites for this type of corrosion. To that end, the S and P content levels must respectively be comprised between traces and, respectively, 0.01 wt % and 0.04 wt %. Preferably, the S content level does not exceed 0.005% to still better ensure sufficient corrosion resistance.
  • Cr is an essential element for corrosion resistance.
  • its content level must be limited, since a high content level risks lowering the temperature Mf (the temperature at the end of martensitic transformation) below the ambient temperature. This would lead, after austenitizing and quenching to ambient temperature, to an excessively incomplete martensitic transformation and an insufficient hardness.
  • the Cr content level must be comprised between 15.0 wt % and 18.0 wt %.
  • the Cr content level it is, however, advisable to limit the Cr content level to 15.0-17.0%, better 15.2-17.0%, still better 15.5-16.0%, above all when a cryogenic treatment of the steel is not done, so as not to have an excessively high temperature Ms at the beginning of martensitic transformation, and therefore not to leave too much residual austenite, which would limit the hardness, therefore the tensile strength Rm, which is not desirable in a martensitic steel.
  • the decreased corrosion resistance caused by the decrease in the maximum Cr content level may be compensated by a high N content level, within the limits stipulated elsewhere.
  • the solubility of N in the liquid metal decreases when the Cr content level decreases, such that it is no longer possible below 15% Cr to retain, in the liquid metal, enough dissolved N at the solidification temperature of the steel, which leads to the formation of N 2 bubbles during solidification, and no longer allows N to compensate the decrease in Cr with respect to the corrosion resistance.
  • This lower Cr limit for the solubility of N also increases when the ferrostatic pressure at solidification decreases. It may be preferable to increase the minimum Cr content level from 15.0% to 15.2% or 15.5% depending on the type of casting method and the casting conditions used in order to protect against any risk of N 2 bubble formation.
  • the Cr content level must also satisfy a formula linking it to the N and C content levels, as will be explained below.
  • the elements Ni, Cu, Mo and V are expensive, and also decrease the temperature Mf.
  • the content level of each of these elements must therefore be limited, between traces and 0.50 wt %, preferably no more than 0.10% for Mo. It is therefore not necessary to add any after melting the raw materials. It is still more favorable for the Mo content level not to exceed 0.05%, to help obtain an optimally low temperature Ms. For the same reason, it is preferable for the Cu content level not to exceed 0.3%, and for the V content level not to exceed 0.2%.
  • Nb, Ti and Zr are so-called “stabilizing” elements, which means that they form, in the presence of N and C and at high temperatures, carbides and nitrides more stable than the carbides and nitrides of Cr.
  • stabilizing elements which means that they form, in the presence of N and C and at high temperatures, carbides and nitrides more stable than the carbides and nitrides of Cr.
  • These elements are, however, undesirable, since their respective carbides and nitrides, once formed during the production process, can no longer easily be dissolved during austenitizing, which limits the content levels of C and N in the austenite, and therefore the corresponding hardness of the martensite after quenching.
  • the content level of each of these elements must therefore be comprised between traces and 0.03%.
  • the Al content level must likewise be comprised between traces and 0.010% to avoid the formation of Al nitrides, the dissolution temperature of which would be too high and would decrease the N content level of the austenite, therefore the hardness of the martensite after quenching.
  • the O content level results from the production method of the steel and its composition. It must be comprised between traces and 0.0080% (80 ppm) maximum, so as to avoid forming too many and/or overly large oxide inclusions, which could constitute favored initiation sites for corrosion by pitting, and also be stripped during polishing, such that the surface appearance of the product would not be satisfactory.
  • the O content level also influences the mechanical properties of the steel, and it may optionally be possible, traditionally, to set a limit lower than 80 ppm that may not be exceeded, depending on the requirements of the users of the end product.
  • the Pb, Bi and Sn content levels may be limited to traces resulting from melting, and each must not exceed 0.02% so as not to make hot transformations too difficult.
  • Controlling the N content level with respect to a well-defined level is an essential aspect of the invention. Like C, it makes it possible, when it is in a solid solution, to increase the hardness of the martensite without having the drawback of forming precipitates during solidification. If one does not wish to have an overly high C content level so as to avoid forming too many precipitates, adding N makes it possible to compensate the loss of hardness. Nitrides form at temperatures lower than carbides, which makes them easier to put in solution during austenitizing. The presence of N in solid solution also improves the corrosion resistance.
  • the N content level must be comprised between 0.10 wt % and 0.20 wt %, preferably between 0.15 and 0.20 wt %.
  • the N content level must also satisfy a formula linking it to the Cr and C content levels.
  • the hardness of the martensite depends on its C and N content levels.
  • the inventors have shown that the hardening effects of these two elements are similar, and therefore that the hardness of the martensite depends on its overall C+N content level. It has been established by the inventors that the hardness after quenching and annealing will be sufficient if the following formula is respected:
  • an even higher hardness is obtained after quenching and annealing if the following formula is respected:
  • Cr and N are beneficial, whereas C has a negative effect, since it is generally not possible to dissolve all of the Cr carbides during austenitizing, for productivity and cost reasons that, in industrial practice, limit the treatment duration and temperature.
  • the undissolved Cr carbides reduce the Cr content level of the austenitic matrix, and thus reduce the corrosion content level.
  • Steels according to the invention have been subject to austenitizing tests at different temperatures before quenching in water at 20° C. with a cooling speed greater than 100° C./s, followed by annealing at 200° C., in order to vary the proportion of dissolved carbides, and consequently the carbon content level in the austenite, then in the martensite after quenching.
  • the martensite level, as well as the Vickers hardness, were measured in order to trace the evolution of the hardness as a function of the martensite level, and the results are shown in FIG. 1 , for a steel having the composition of example I4 of table 1.
  • FIG. 1 shows that the hardness begins by increasing with the drop in the martensite level, since the martensite hardens by carbon enrichment. The hardness reaches a maximum, then decreases when the martensite level becomes too low. Below 75% martensite, the hardening of the martensite no longer offsets the softening related to the presence of residual austenite, which has a lower hardness.
  • the martensite level of the steel after austenitizing quenching at a speed of at least 15° C./s to a temperature below or equal to 20° C., then annealing at a temperature of 100 to 300° C., typically 200° C., is greater than or equal to 75%.
  • the obtainment of a high martensite level able to reach 100% can be better ensured if, after quenching to 20° C. or less, a cryogenic treatment is done, i.e., quenching is done in a medium at a very low temperature from ⁇ 220 to ⁇ 50° C., typically in liquid nitrogen at ⁇ 196° C. or in carbon dioxide snow at ⁇ 80° C., before performing annealing at 100-300° C.
  • the remaining microstructure is typically made up essentially of residual austenite. There may also be ferrite.
  • compositions of the different tested steel samples appear in table 1, expressed in weight percentages.
  • the underlined values are those which do not comply with the invention.
  • these steels were heated to a temperature above 1100° C., hot rolled to a thickness of 3 mm, annealed at a temperature of 800° C., then pickled and cold rolled to a thickness of 1.5 mm.
  • the steel sheets were next annealed at a temperature of 800° C.
  • the annealed steel sheets next underwent an austenitizing treatment of 15 minutes at 1050° C., followed by quenching in water to a temperature of 20° C.
  • Table 2 shows the result of tests and observations done on these steels. The underlined values correspond to performance levels deemed insufficient.
  • the internal health is evaluated on a raw solidification state after pouring, knowing that the subsequent transformation operations will not damage it.
  • the martensite level is measured after quenching in water at 20° C. and after a cryogenic treatment by quenching at ⁇ 80° C., this quenching, or the second of these quenching operations, having been followed by annealing at 200° C.
  • the martensite level is greater than or equal to 75% after quenching in water at 20° C.
  • the other results given in table 2 relate to the state quenched at 20° C. followed by annealing at 200° C.
  • the other results given in table 2 relate to the state after a cryogenic treatment (quenching to a very low temperature, for example done in carbon dioxide snow) at ⁇ 80° C., followed by annealing at 200° C.
  • the corrosion resistance is evaluated by an electrochemical corrosion test by pitting in an environment made up of NaCl 0.02M, at 23° C. and at a pH of 6.6.
  • the electrochemical test done on 24 samples makes it possible to determine the potential E 0.1 for which the elementary pitting probability is equal to 0.1 cm ⁇ 2 .
  • the corrosion resistance is considered unsatisfactory if the potential E 0.1 is less than 350 mV, measured relative to the calomel electrode saturated with KCl (350 mV/ECS). It is considered satisfactory if the potential E 0.1 is comprised between 350 mV/ECS and 450 mV/ECS. It is considered very satisfactory if the potential E 0.1 is greater than 450 mV/ECS.
  • the Vickers hardness is measured in the thickness on a mirror polished cut, under a load of 1 kg with a diamond pyramidal tip with a square base, according to standard EN ISO 6507.
  • the mean of the obtained hardnesses is calculated by performing 10 imprints.
  • the hardness is considered insufficient if the mean hardness is less than 500 HV. It is considered satisfactory if the mean hardness is comprised between 500 HV and 550 HV. It is considered very satisfactory if the mean hardness is comprised between 551 and 600 HV. It is considered excellent if the mean hardness is greater than 600 HV.
  • the polishability is evaluated by performing flat polishing at mid-thickness of the sample, successively using SiC 180, 320, 500, 800 and 1200 papers with a force of 30N, then polishing on sheet imbibed with diamond paste with particle size 3 ⁇ m, then 1 ⁇ m under a force of 20N. The surface is next observed by optical microscopy with a magnification of ⁇ 100.
  • the polishability is considered insufficient if the flaw density, traditionally called “comet-tail”, is greater than or equal to 100/cm 2 .
  • the polishability is considered satisfactory if this density is comprised between 10/cm 2 and 99/cm 2 .
  • the polishability is considered very satisfactory if this density is comprised between 1 and 9/cm 2 .
  • the polishability is considered excellent if this density is less than 1/cm 2 .
  • the internal health is evaluated by observing a cut of the raw solidification steel by optical metallography with magnification ⁇ 25.
  • the internal health is not satisfactory and is indicated by value “0” in table 2 if globular cavities (blowholes) reflecting the formation of nitrogen bubbles upon solidification are observed. Otherwise, the internal health is considered satisfactory and indicated by value “1” in table 2.
  • the martensite level is determined by X-ray diffraction by measuring the intensity of the characteristic rays of the martensite compared to the intensity of the characteristic rays of the austenite, knowing that, in all of the examined samples, these are the only two phases present. In general, it would not be ruled out that other phases may be observed marginally in samples according to the invention. It is the martensite level first and foremost that should be considered in the context of the invention.
  • the steels according to the invention I1 to I6, as well as steels I8 to I0, combine good corrosion resistance, hardness and polishability properties, and have a good internal health, as well as a martensite level greater than or equal to 75% after quenching at 20° C.
  • Steel I7 according to the invention combines good corrosion resistance, hardness and polishability properties, and has a good internal health, as well as a martensite level greater than or equal to 75%, but on the condition that a cryogenic treatment is done at ⁇ 80° C. Indeed, after a mere quenching in water at 20° C., the martensite level is still not sufficient, which is related to the presence of Cr at a level higher than that of the other samples according to the invention.
  • Reference steels R1 to R3 have Cr and N content levels, as well as C+N and/or Cr+16N ⁇ 5C sums, that are unsatisfactory, which does not allow sufficient corrosion resistance.
  • Reference steels R4 and R5 have insufficient Cr content levels. Without compensation by an addition of N, steel R4 also has an insufficient Cr+16N ⁇ 5C combination leading to an unsatisfactory corrosion resistance. For steel R5, the compensation for the lack of Cr by adding N reestablishes a satisfactory corrosion resistance, but no longer makes it possible to ensure good internal health, since the Cr content level is no longer sufficient to allow complete dissolution of N in the liquid metal.
  • Reference steel R6 has too high a C content level and an insufficient N content level.
  • the excessively high C content level does not have a sufficient polishability due to excessive carbide formation.
  • Reference steel R7 has too high a N content level, which damages the internal health. The same is true for reference steel R14.
  • Reference steel R8 has an excessive C content level, which leads to poor polishability and an overly low martensite level, even after cryogenic quenching at ⁇ 80° C.
  • Reference steel R9 contains too much Cr, which leads to an insufficient martensite level, even after cryogenic quenching at ⁇ 80° C.
  • Reference steels R10 and R11 have excessively low C content levels as well as insufficient C+N sums, leading to overly low hardnesses.
  • Reference steels R12 and R13 would have compositions according to the invention on the individual content levels of each element, but their Cr+16N ⁇ 5C content level, which is below 16.0%, is insufficient to guarantee a corrosion resistance as high as that of steels that comply with the invention on all points, including those which only slightly exceed the value of 16.0% for this sum Cr+16N ⁇ 5C.
  • the steels according to the invention are used for good reason to produce cutting tools, for example scalpels, scissors, knife blades or circular blades for food processors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Martensitic stainless steel, characterized in that its composition consists of, in percentages by weight: 0.10%≤C≤0.45%; traces≤Mn≤1.0%; traces≤Si≤1.0%; traces≤S≤0.01%; traces≤P≤0.04%; 15.0%≤Cr≤18.%; traces≤Ni≤0.50%; traces≤Mo≤0.50%; traces≤Cu≤0.50%; traces≤V≤0.50%; traces≤Nb≤0.03%; traces≤Ti≤0.03%; traces≤Zr≤0.03%; traces≤Al≤0.010%; traces≤O≤0.0080%; traces≤Pb≤0.02%; traces≤Bi≤0.02%; traces≤Sn≤0.02%; 0.10%≤N≤0.20%; C+N≥0.25%; Cr+16N−5C≥16.0%; preferably 17Cr+500C+500N≤570%;
the rest being iron and impurities resulting from the development.
A method for the production of a semi-finished product from this martensitic stainless steel, and cutting tool produced from this semi-finished product.

Description

  • The invention relates to a martensitic stainless steel. This steel is primarily intended to manufacture cutting tools, in particular pieces of cutlery, such as scalpels, scissor blades, or knife blades or household food processors.
  • Steels intended for cutlery must have a high corrosion resistance, ability to be polished and hardness.
  • The martensitic stainless steels currently used to produce the blades of cutting tools, such as steels of type EN 1.4021, EN 1.4028 and EN 1.4034, have Cr content levels of less than or equal to 14 or 14.5 wt % and variable C content levels, i.e., 0.16%-0.25% for EN 1.4021, 0.26-0.35% for EN 1.4028 and 2.43-0.50% for EN 1.4034. The hardness level of the steel depends primarily on this C content level.
  • When an even better corrosion resistance is sought, grade EN 1.4419 with 0.36-0.42% C, 13.0-14.5% Cr and 0.60-1.00% Mo can be used.
  • During manufacturing, these steels are typically melted in an AOD or VOD converter, then poured continuously in the form of slabs, blooms or billets, then hot-rolled so as to obtain a coil, a rolled bar or a wire rod. They next undergo annealing to obtain a ferritic structure containing carbides, which is soft enough for it to be possible to perform cold rolling for the flat products, or to facilitate sawing before forging the hot-rolled semi-finished product for long products.
  • The product next undergoes a recrystallization annealing. In this softened state of re-crystallized ferrite containing carbides, the product is cut to give it its final shape, for example that of a knife blade, before undergoing a thermal treatment comprising high-temperature austenitizing, typically between 950° C. and 1150° C., followed by quenching to ambient temperature, which leads to a primarily martensitic structure.
  • In this martensitic state, the product has a high hardness, which is higher when the carbon content is high, but is also very fragile. An annealing treatment, typically between 100° C. and 300° C., is then done to reduce the fragility without lowering the hardness too much. The blade next undergoes various operations, including sharpening and polishing to give it its cutting quality and aesthetic appearance.
  • None of the four cited grades simultaneously allows good corrosion resistance, good surface condition and high hardness, for a reasonable cost.
  • Grade EN 1.4419 has good corrosion resistance and a high hardness, but it is cost prohibitive due to the addition of a large quantity of Mo.
  • Grade EN 1.4034 has a high hardness, but also has a mediocre surface appearance after polishing, due to the presence of a large number of carbides not dissolved during austenitizing, due to the high C content level of this grade. The corrosion resistance is insufficient, since the Cr content level is not high enough in the matrix, particularly given that part of the Cr is trapped in the non-dissolved carbides. Furthermore, the cutting edge of the blade is often subjected to crevice corrosion, coming from the cleavage of large primary carbides that appear at the end of solidification during continuous casting.
  • Grades EN 1.4021 and 1.4028, which contain less C, have lower hardnesses, but without having sufficient corrosion resistance due to the excessively low Cr content levels.
  • The present invention aims to resolve the aforementioned problems. It in particular seeks to propose a martensitic stainless steel for a cutting tool that is as cost-effective as possible, which nevertheless has good corrosion resistance, good polishing ability and a high hardness.
  • To that end, the invention relates to a martensitic stainless steel, characterized in that its composition consists of, in weight percentages:
      • 0.10%≤C≤0.45%; preferably 0.20%≤C≤0.38%; better 0.20%≤C≤0.35%; optimally 0.30%≤C≤0.35%;
      • traces≤Mn≤1.0%; preferably traces≤Mn≤0.6%;
      • traces≤Si≤1.0%;
      • traces≤S≤0.01%; preferably traces≤S≤0.005%;
      • traces≤P≤0.04%;
      • 15.0%≤Cr≤18.0%; preferably 15.0%≤Cr≤17.0%; better 15.2%≤Cr≤17.0%; optimally 15.5%≤Cr≤16.0%;
      • traces≤Ni≤0.50%;
      • traces≤Mo≤0.50%; preferably traces≤Mo≤0.01%; better traces≤Mo≤0.05%;
      • traces≤Cu≤0.50%; preferably traces≤Cu≤0.3%;
      • traces≤V≤0.50%; preferably traces≤V≤0.2%;
      • traces≤Nb≤0.03%;
      • traces≤Ti≤0.03%;
      • traces≤Zr≤0.03%;
      • traces≤Al≤0.010%;
      • traces≤O≤0.0080%;
      • traces≤Pb≤0.02%;
      • traces≤Bi≤0.02%;
      • traces≤Sn≤0.02%;
      • 0.10%≤N≤0.20%; preferably 0.15%≤N≤0.20%;
      • C+N≥0.25%; preferably C+N≥0.30%; better C+N≥0.45%;
      • Cr+16N−5C≥16.0%;
      • preferably 17Cr+500C+500N≤570%;
  • the rest being iron and impurities resulting from the melting.
  • Its microstructure preferably includes at least 75% martensite. The invention also relates to a method for producing a semi-finished product made from martensitic stainless steel, characterized in that:
      • a semi-finished product is molten and cast from a steel having the preceding composition;
      • said semi-finished product is heated to a temperature greater than or equal to 1000° C.;
      • it is hot rolled to obtain a sheet, bar or wire rod;
      • said sheet, bar or wire rod is annealed at a temperature comprised between 700 and 900° C.; and
      • a shaping operation is carried out on said sheet, bar or wire rod.
  • Said semi-finished product can be a sheet, and said shaping operation can be a cold rolling.
  • Said semi-finished product can be a bar or a wire rod, and said shaping operation can be a forging.
  • Said shaped semi-finished product, if its Cr content level is comprised between 15 and 17%, can next be austenitized between 950 and 1150° C., then cooled at a speed of at least 15° C./s to a temperature of less than or equal to 20° C., then undergoes annealing at a temperature comprised between 100 and 300° C.
  • Said shaped semi-finished product can next be austenitized between 950 and 1150° C., then cooled at a speed of at least 15° C./s to a temperature of less than or equal to 20° C., then undergoes a cryogenic treatment at a temperature from −220 to −50° C., then an annealing at a temperature comprised between 100 and 300° C.
  • The invention also relates to a cutting tool, characterized in that it has been made from a semi-finished product prepared according to the preceding method.
  • The cutting tool can be a cutlery item such as a knife blade, a food processor blade, a scalpel, or a scissor blade.
  • As one will have understood, the invention consists of using, to produce the cutting tool, a martensitic stainless steel with a specific composition, free of costly elements with high content levels, but containing relatively large quantities of nitrogen situated in a well-defined range. Particular balancing of the Cr, C and N content levels is also necessary.
  • Other features and advantages of the invention will appear upon reading the description below, provided as an example and done in reference to the appended FIG. 1, which shows the evolution of the Vickers hardness of the steel under a load of 1 kg, based on the martensite level after austenitizing, quenching and annealing, of a steel according to the invention.
  • Regarding the chemical composition of the steel according to the invention, the following support is submitted. It must be clear that the content level ranges of the various elements considered to be preferential are independent of one another, and that any combination of the ranges defined in the description that follows can be considered in the context of the invention, as long as the individual content levels of C, N and Cr that they allow at the same time can respect the relationships that must exist between them according to the invention.
  • C increases the hardness in the martensitic state after austenitizing, quenching and annealing. However, it also favors the precipitation of M7C3 primary carbides during solidification, which can be stripped during polishing or sharpening of the blade, which deteriorates the surface appearance of the product. The sites where they were found before polishing may also become the seat of crevice corrosion. An excessive C content level also leads, depending on the austenitizing temperature, either to an overly high C content level in the austenitic matrix that no longer makes it possible to obtain a sufficient martensite fraction after annealing, or to the persistence of undissolved M23C6 carbides that deplete the Cr in the austenitic matrix. They thus reduce the corrosion resistance and are detrimental to polishability.
  • The C content level must therefore be at least 0.10% to obtain a sufficient hardness, and no more than 0.45% to obtain good corrosion resistance and a satisfactory surface appearance after polishing. Depending on the casting and solidification method used, it may, however, prove useful to limit the maximum C content level a bit more, for the case where this method risks not guaranteeing sufficient homogeneity of the steel during solidification to avoid M7C3 primary carbides precipitation. In this case, it is advisable to limit the C content level to 0.38%, preferably 0.20%≤C≤0.38%; better 0.20%≤C≤0.35%; optimally 0.30%≤C≤0.35%.
  • The optimal range in particular makes it possible to avoid a high hardness while limiting carbide formation to within acceptable proportions, the possible loss of hardness due to the decrease in the maximum C content level relative to the more general range being able to be compensated by a sufficient nitrogen presence to that end, as will be seen later.
  • Furthermore, the C content level must satisfy formulas linking it with the N content level and with the N and Cr content levels, as will be explained later.
  • Mn is a so-called gammagenous element, since it stabilizes the austenitic structure. An excessive Mn content level leads to an insufficient martensite level after austenitizing and quenching treatment, which leads to decreased hardness. For this reason, the Mn content level must be comprised between traces resulting from melting and 1.0%. Preferably, its content level is limited to 0.6% to help obtain an optimally low Ms temperature.
  • Si is a useful element during the steelmaking process. It is highly reducing, and therefore makes it possible to reduce the Cr oxides in the reduction phase of the steel that follows the decarburization phase in the AOD or VOD converter. However, the Si content level in the final steel must be comprised between traces and 1.0%, since this element has a hot hardening effect that limits the possibilities for hot deformation during hot rolling or during forging. Preferably, its content level is limited to 0.6% to help obtain an optimally low Ms temperature.
  • S and P are impurities that decrease the hot ductility. P segregates easily at the grain boundaries and facilitates cleavage thereof. Furthermore, S reduces the resistance to corrosion caused by pitting, by forming compounds with the Mn that serve as initiating sites for this type of corrosion. To that end, the S and P content levels must respectively be comprised between traces and, respectively, 0.01 wt % and 0.04 wt %. Preferably, the S content level does not exceed 0.005% to still better ensure sufficient corrosion resistance.
  • Cr is an essential element for corrosion resistance. However, its content level must be limited, since a high content level risks lowering the temperature Mf (the temperature at the end of martensitic transformation) below the ambient temperature. This would lead, after austenitizing and quenching to ambient temperature, to an excessively incomplete martensitic transformation and an insufficient hardness. For these various reasons, the Cr content level must be comprised between 15.0 wt % and 18.0 wt %. It is, however, advisable to limit the Cr content level to 15.0-17.0%, better 15.2-17.0%, still better 15.5-16.0%, above all when a cryogenic treatment of the steel is not done, so as not to have an excessively high temperature Ms at the beginning of martensitic transformation, and therefore not to leave too much residual austenite, which would limit the hardness, therefore the tensile strength Rm, which is not desirable in a martensitic steel. If necessary, the decreased corrosion resistance caused by the decrease in the maximum Cr content level may be compensated by a high N content level, within the limits stipulated elsewhere.
  • However, the solubility of N in the liquid metal decreases when the Cr content level decreases, such that it is no longer possible below 15% Cr to retain, in the liquid metal, enough dissolved N at the solidification temperature of the steel, which leads to the formation of N2 bubbles during solidification, and no longer allows N to compensate the decrease in Cr with respect to the corrosion resistance. This lower Cr limit for the solubility of N also increases when the ferrostatic pressure at solidification decreases. It may be preferable to increase the minimum Cr content level from 15.0% to 15.2% or 15.5% depending on the type of casting method and the casting conditions used in order to protect against any risk of N2 bubble formation.
  • The Cr content level must also satisfy a formula linking it to the N and C content levels, as will be explained below.
  • The elements Ni, Cu, Mo and V are expensive, and also decrease the temperature Mf. The content level of each of these elements must therefore be limited, between traces and 0.50 wt %, preferably no more than 0.10% for Mo. It is therefore not necessary to add any after melting the raw materials. It is still more favorable for the Mo content level not to exceed 0.05%, to help obtain an optimally low temperature Ms. For the same reason, it is preferable for the Cu content level not to exceed 0.3%, and for the V content level not to exceed 0.2%.
  • Nb, Ti and Zr are so-called “stabilizing” elements, which means that they form, in the presence of N and C and at high temperatures, carbides and nitrides more stable than the carbides and nitrides of Cr. These elements are, however, undesirable, since their respective carbides and nitrides, once formed during the production process, can no longer easily be dissolved during austenitizing, which limits the content levels of C and N in the austenite, and therefore the corresponding hardness of the martensite after quenching. The content level of each of these elements must therefore be comprised between traces and 0.03%.
  • The Al content level must likewise be comprised between traces and 0.010% to avoid the formation of Al nitrides, the dissolution temperature of which would be too high and would decrease the N content level of the austenite, therefore the hardness of the martensite after quenching.
  • The O content level results from the production method of the steel and its composition. It must be comprised between traces and 0.0080% (80 ppm) maximum, so as to avoid forming too many and/or overly large oxide inclusions, which could constitute favored initiation sites for corrosion by pitting, and also be stripped during polishing, such that the surface appearance of the product would not be satisfactory. The O content level also influences the mechanical properties of the steel, and it may optionally be possible, traditionally, to set a limit lower than 80 ppm that may not be exceeded, depending on the requirements of the users of the end product.
  • The Pb, Bi and Sn content levels may be limited to traces resulting from melting, and each must not exceed 0.02% so as not to make hot transformations too difficult.
  • Controlling the N content level with respect to a well-defined level is an essential aspect of the invention. Like C, it makes it possible, when it is in a solid solution, to increase the hardness of the martensite without having the drawback of forming precipitates during solidification. If one does not wish to have an overly high C content level so as to avoid forming too many precipitates, adding N makes it possible to compensate the loss of hardness. Nitrides form at temperatures lower than carbides, which makes them easier to put in solution during austenitizing. The presence of N in solid solution also improves the corrosion resistance.
  • However, an excessive N content level no longer allows complete dissolution thereof during solidification, and leads to the formation of N2 bubbles, which form blowholes (pores) during solidification of the steel, detrimental to the internal health of the metal.
  • For these various reasons, the N content level must be comprised between 0.10 wt % and 0.20 wt %, preferably between 0.15 and 0.20 wt %.
  • The N content level must also satisfy a formula linking it to the Cr and C content levels.
  • Indeed, the hardness of the martensite depends on its C and N content levels. The inventors have shown that the hardening effects of these two elements are similar, and therefore that the hardness of the martensite depends on its overall C+N content level. It has been established by the inventors that the hardness after quenching and annealing will be sufficient if the following formula is respected:

  • C+N≥0.25%, preferably C+N≥0.30%
  • In one still more preferred embodiment of the invention, an even higher hardness is obtained after quenching and annealing if the following formula is respected:

  • C+N≥0.45%.
  • Three elements affect the corrosion resistance. Cr and N are beneficial, whereas C has a negative effect, since it is generally not possible to dissolve all of the Cr carbides during austenitizing, for productivity and cost reasons that, in industrial practice, limit the treatment duration and temperature. The undissolved Cr carbides reduce the Cr content level of the austenitic matrix, and thus reduce the corrosion content level.
  • From the study of the corrosion resistance of martensitic steels with different weight contents of Cr, N and C, the inventors have found a formula associating these various elements that makes it possible to ensure very good corrosion resistance.

  • Cr+16N−5C≥16.0%
  • One preferred, but non-mandatory, condition is that:

  • 17Cr+500C+500N≤570%
  • This condition makes it possible to ensure that the temperature Ms will not be too high, since compliance therewith would represent a decrease in Ms of about 60° C. relative to what would be allowed by simultaneous satisfaction of the selected upper C, N and Cr content level limits.
  • Steels according to the invention have been subject to austenitizing tests at different temperatures before quenching in water at 20° C. with a cooling speed greater than 100° C./s, followed by annealing at 200° C., in order to vary the proportion of dissolved carbides, and consequently the carbon content level in the austenite, then in the martensite after quenching. The martensite level, as well as the Vickers hardness, were measured in order to trace the evolution of the hardness as a function of the martensite level, and the results are shown in FIG. 1, for a steel having the composition of example I4 of table 1.
  • FIG. 1 shows that the hardness begins by increasing with the drop in the martensite level, since the martensite hardens by carbon enrichment. The hardness reaches a maximum, then decreases when the martensite level becomes too low. Below 75% martensite, the hardening of the martensite no longer offsets the softening related to the presence of residual austenite, which has a lower hardness. For this reason, in one preferred embodiment of the invention, adapted to producing a cutting tool from cast steel, the martensite level of the steel after austenitizing, quenching at a speed of at least 15° C./s to a temperature below or equal to 20° C., then annealing at a temperature of 100 to 300° C., typically 200° C., is greater than or equal to 75%.
  • The obtainment of a high martensite level able to reach 100% can be better ensured if, after quenching to 20° C. or less, a cryogenic treatment is done, i.e., quenching is done in a medium at a very low temperature from −220 to −50° C., typically in liquid nitrogen at −196° C. or in carbon dioxide snow at −80° C., before performing annealing at 100-300° C.
  • When the martensite content level does not reach 100%, the remaining microstructure is typically made up essentially of residual austenite. There may also be ferrite.
  • As non-limiting examples, the following results will show the advantageous characteristics imparted by the invention.
  • The compositions of the different tested steel samples appear in table 1, expressed in weight percentages. The underlined values are those which do not comply with the invention. We have also reported the values of C+N, Cr+16N−5C and 17Cr+500C+500N for each sample.
  • TABLE 1
    Compositions of the tested samples
    C Mn Si P S Ni Cr Cu Mo V
    Invention I1 0.104 0.36 0.26 0.007 0.003 0.29 15.1 0.21 0.03 0.08
    I2 0.112 0.47 0.43 0.012 0.003 0.34 16.7 0.16 0.03 0.09
    I3 0.244 0.29 0.30 0.009 0.002 0.37 15.1 0.10 0.03 0.07
    I4 0.443 0.36 0.31 0.024 0.003 0.26 16.8 0.24 0.02 0.13
    I5 0.445 0.32 0.29 0.009 0.001 0.34 15.3 0.22 0.03 0.11
    I6 0.410 0.39 0.42 0.007 0.001 0.41 16.8 0.18 0.02 0.09
    I7 0.432 0.39 0.42 0.007 0.001 0.41 17.9 0.18 0.02 0.09
    I8 0.345 0.31 0.38 0.010 0.001 0.25 15.3 0.18 0.02 0.07
    I9 0.332 0.38 0.27 0.006 0.002 0.34 15.8 0.23 0.03 0.10
    I10 0.340 0.26 0.32 0.009 0.001 0.28 16.3 0.23 0.02 0.09
    I11 0.342 0.28 0.30 0.012 0.001 0.39 17.8 0.14 0.02 0.08
    I12 0.376 0.34 0.35 0.015 0.003 0.30 16.1 0.16 0.02 0.11
    I13 0.335 0.29 0.32 0.007 0.002 0.28 15.9 0.20 0.03 0.07
    I14 0.442 0.38 0.29 0.010 0.002 0.36 16.0 0.14 0.03 0.06
    I15 0.245 0.34 0.33 0.016 0.001 0.40 16.1 0.19 0.02 0.10
    I16 0.366 0.28 0.28 0.013 0.002 0.29 16.0 0.11 0.03 0.07
    I17 0.356 0.30 0.31 0.019 0.003 0.21 17.3 0.18 0.02 0.12
    I18 0.163 0.27 0.40 0.011 0.001 0.33 16.0 0.20 0.03 0.06
    I19 0.239 0.33 0.29 0.010 0.002 0.32 15.9 0.15 0.03 0.07
    References R1 0.223 0.38 0.35 0.012 0.003 0.18 13.4 0.12 0.02 0.08
    R2 0.312 0.33 0.42 0.008 0.001 0.35 13.8 0.08 0.03 0.09
    R3 0.478 0.42 0.28 0.017 0.002 0.21 13.7 0.13 0.02 0.11
    R4 0.392 0.35 0.24 0.021 0.001 0.37 13.9 0.24 0.03 0.21
    R5 0.298 0.26 0.35 0.006 0.002 0.36 14.3 0.18 0.02 0.13
    R6 0.465 0.27 0.43 0.007 0.002 0.28 16.3 0.28 0.02 0.08
    R7 0.405 0.46 0.46 0.015 0.002 0.43 16.1 0.14 0.02 0.07
    R8 0.520 0.30 0.24 0.018 0.001 0.41 16.4 0.19 0.03 0.14
    R9 0.448 0.39 0.29 0.024 0.001 0.26 18.5 0.14 0.02 0.09
    R10 0.112 0.27 0.34 0.010 0.001 0.34 15.1 0.07 0.02 0.10
    R11 0.447 0.34 0.34 0.018 0.002 0.24 15.4 0.14 0.02 0.17
    R12 0.246 0.18 0.41 0.019 0.001 0.36 15.2 0.14 0.02 0.10
    R13 0.123 0.41 0.31 0.016 0.002 0.38 16.7 0.23 0.02 0.23
    R14 0.211 0.27 0.34 0.009 0.003 0.24 16.2 0.15 0.02 0.10
    17Cr +
    Cr + 500C +
    16N − 500N
    Nb Ti Al Zr Sn O N C + N 5C (preferred)
    Invention I1 0.004 0.004 0.002 0.001 0.008 0.002 0.197 0.301 17.73 407.2
    I2 0.004 0.002 0.001 0.002 0.006 0.002 0.192 0.304 19.21 435.9
    I3 0.002 0.002 0.001 0.001 0.009 0.003 0.194 0.438 16.98 475.7
    I4 0.002 0.003 0.003 0.002 0.015 0.002 0.102 0.545 16.22 558.1
    I5 0.005 0.003 0.001 0.001 0.016 0.003 0.194 0.639 16.18 579.6
    I6 0.003 0.002 0.002 0.001 0.007 0.003 0.184 0.594 17.69 582.6
    I7 0.003 0.002 0.002 0.001 0.007 0.003 0.175 0.607 18.54 607.8
    I8 0.003 0.005 0.002 0.001 0.006 0.001 0.179 0.524 16.44 522.1
    I9 0.002 0.002 0.003 0.001 0.010 0.003 0.176 0.508 16.96 522.6
    I10 0.004 0.004 0.002 0.002 0.012 0.002 0.180 0.520 17.48 537.1
    I11 0.003 0.003 0.002 0.002 0.009 0.002 0.178 0.520 18.94 562.6
    I12 0.004 0.002 0.001 0.001 0.013 0.001 0.182 0.558 17.13 552.7
    I13 0.002 0.001 0.002 0.001 0.006 0.003 0.125 0.460 16.23 500.3
    I14 0.002 0.003 0.003 0.002 0.008 0.003 0.177 0.619 16.62 581.5
    I15 0.003 0.002 0.001 0.001 0.010 0.002 0.105 0.350 16.56 447.2
    I16 0.002 0.003 0.002 0.002 0.007 0.003 0.134 0.500 16.31 522.0
    I17 0.004 0.005 0.002 0.001 0.011 0.003 0.106 0.462 17.22 525.1
    I18 0.003 0.004 0.002 0.001 0.010 0.003 0.112 0.275 16.98 409.5
    I19 0.003 0.002 0.001 0.002 0.012 0.002 0.164 0.403 17.33 471.8
    References R1 0.005 0.003 0.003 0.002 0.006 0.003 0.002 0.225 12.32 340.3
    R2 0.002 0.002 0.003 0.001 0.011 0.002 0.003 0.315 12.29 392.1
    R3 0.005 0.004 0.002 0.001 0.010 0.001 0.003 0.481 11.36 473.4
    R4 0.003 0.004 0.001 0.002 0.006 0.002 0.109 0.501 13.68 483.4
    R5 0.002 0.001 0.002 0.002 0.009 0.004 0.197 0.495 15.96 490.6
    R6 0.004 0.002 0.001 0.001 0.013 0.003 0.032 0.497 14.51 525.6
    R7 0.003 0.002 0.001 0.001 0.014 0.003 0.253 0.658 18.12 602.7
    R8 0.005 0.002 0.002 0.002 0.012 0.003 0.198 0.718 16.97 637.8
    R9 0.002 0.001 0.001 0.001 0.008 0.002 0.195 0.643 19.38 636.0
    R10 0.002 0.003 0.003 0.001 0.006 0.002 0.114 0.226 16.36 369.7
    R11 0.003 0.001 0.003 0.001 0.008 0.002 0.106 0.553 14.86 538.3
    R12 0.002 0.001 0.002 0.002 0.012 0.002 0.105 0.351 15.65 433.9
    R13 0.003 0.001 0.002 0.002 0.011 0.003 0.112 0.235 17.88 401.4
    R14 0.002 0.002 0.003 0.001 0.011 0.002 0.217 0.428 18.62 489.4
  • After casting, these steels were heated to a temperature above 1100° C., hot rolled to a thickness of 3 mm, annealed at a temperature of 800° C., then pickled and cold rolled to a thickness of 1.5 mm.
  • The steel sheets were next annealed at a temperature of 800° C.
  • The annealed steel sheets next underwent an austenitizing treatment of 15 minutes at 1050° C., followed by quenching in water to a temperature of 20° C.
  • After cutting the sheets into two parts, one of the parts was next submerged, for 10 minutes, in a thermostated bath at −80° C., so as to be able to evaluate the effects of a cryogenic treatment, added to a mere quenching in water.
  • Annealing for 1 h at 200° C. was next done on each sheet part.
  • Table 2 shows the result of tests and observations done on these steels. The underlined values correspond to performance levels deemed insufficient.
  • The internal health is evaluated on a raw solidification state after pouring, knowing that the subsequent transformation operations will not damage it.
  • The martensite level is measured after quenching in water at 20° C. and after a cryogenic treatment by quenching at −80° C., this quenching, or the second of these quenching operations, having been followed by annealing at 200° C. When the martensite level is greater than or equal to 75% after quenching in water at 20° C., the other results given in table 2 relate to the state quenched at 20° C. followed by annealing at 200° C. When the martensite level is lower than or equal at 75% after quenching in water at 20° C., the other results given in table 2 relate to the state after a cryogenic treatment (quenching to a very low temperature, for example done in carbon dioxide snow) at −80° C., followed by annealing at 200° C.
  • The corrosion resistance is evaluated by an electrochemical corrosion test by pitting in an environment made up of NaCl 0.02M, at 23° C. and at a pH of 6.6. The electrochemical test done on 24 samples makes it possible to determine the potential E0.1 for which the elementary pitting probability is equal to 0.1 cm−2. The corrosion resistance is considered unsatisfactory if the potential E0.1 is less than 350 mV, measured relative to the calomel electrode saturated with KCl (350 mV/ECS). It is considered satisfactory if the potential E0.1 is comprised between 350 mV/ECS and 450 mV/ECS. It is considered very satisfactory if the potential E0.1 is greater than 450 mV/ECS.
  • The Vickers hardness is measured in the thickness on a mirror polished cut, under a load of 1 kg with a diamond pyramidal tip with a square base, according to standard EN ISO 6507. The mean of the obtained hardnesses is calculated by performing 10 imprints. The hardness is considered insufficient if the mean hardness is less than 500 HV. It is considered satisfactory if the mean hardness is comprised between 500 HV and 550 HV. It is considered very satisfactory if the mean hardness is comprised between 551 and 600 HV. It is considered excellent if the mean hardness is greater than 600 HV.
  • The polishability is evaluated by performing flat polishing at mid-thickness of the sample, successively using SiC 180, 320, 500, 800 and 1200 papers with a force of 30N, then polishing on sheet imbibed with diamond paste with particle size 3 μm, then 1 μm under a force of 20N. The surface is next observed by optical microscopy with a magnification of ×100. The polishability is considered insufficient if the flaw density, traditionally called “comet-tail”, is greater than or equal to 100/cm2. The polishability is considered satisfactory if this density is comprised between 10/cm2 and 99/cm2. The polishability is considered very satisfactory if this density is comprised between 1 and 9/cm2. The polishability is considered excellent if this density is less than 1/cm2.
  • The internal health is evaluated by observing a cut of the raw solidification steel by optical metallography with magnification ×25. The internal health is not satisfactory and is indicated by value “0” in table 2 if globular cavities (blowholes) reflecting the formation of nitrogen bubbles upon solidification are observed. Otherwise, the internal health is considered satisfactory and indicated by value “1” in table 2.
  • The martensite level is determined by X-ray diffraction by measuring the intensity of the characteristic rays of the martensite compared to the intensity of the characteristic rays of the austenite, knowing that, in all of the examined samples, these are the only two phases present. In general, it would not be ruled out that other phases may be observed marginally in samples according to the invention. It is the martensite level first and foremost that should be considered in the context of the invention.
  • A martensite level greater than or equal to 75% after quenching at 20° C. and annealing at 200° C., or greater than or equal to 75% after annealing at 20° C., cryogenic treatment at −80° C. and annealing at 200° C., is satisfactory. If a martensite level of 75% or more cannot be obtained by one of these treatments, the sample is considered unsatisfactory.
  • TABLE 2
    results of tests done on the samples of table 1
    Polishability Martensite (%) Martensite (%)
    E0.1 Hardness (comet- Internal quenching quenching
    (mV/ECS) HV tails/cm2) health 20° C. −80° C.
    Invention I1 610 554 0 1 100 100
    I2 695 536 0 1 97 100
    I3 570 650 0 1 95 100
    I4 510 698 47  1 88  95
    I5 510 689 36  1 78  86
    I6 610 648 43  1 76  85
    I7 660 687 51  1 69  81
    I8 515 700   0.8 1 97 100
    I9 565 690   0.6 1 96 100
    I10 580 689   0.5 1 94  97
    I11 690 680   0.5 1 90  94
    I12 565 689 8 1 92  98
    I13 510 670   0.4 1 95 100
    I14 540 628 49  1 76  86
    I15 535 580 0 1 98 100
    I16 520 682 3 1 90  97
    I17 580 653 2 1 93 100
    I18 565 520 0 1 100 100
    I19 585 621 0 1 96 100
    References R1 240 488 0 1 100 100
    R2 240 566   0.2 1 100 100
    R3 190 683 124 1 97 100
    R4 330 693 18  1 95 100
    R5 490 680   0.2 0 93  99
    R6 400 686 109 1 93  98
    R7 630 650 24  0 63  79
    R8 550 699 215 1 48 70
    R9 705 615 56  1 50 72
    R10 510 479 0 1 100 100
    R11 445 583 68  1 100 100
    R12 390 708 0 1 92  97
    R13 605 489 0 1 100 100
    R14 655 632 0 0 95 100
  • The steels according to the invention I1 to I6, as well as steels I8 to I0, combine good corrosion resistance, hardness and polishability properties, and have a good internal health, as well as a martensite level greater than or equal to 75% after quenching at 20° C.
  • Steel I7 according to the invention combines good corrosion resistance, hardness and polishability properties, and has a good internal health, as well as a martensite level greater than or equal to 75%, but on the condition that a cryogenic treatment is done at −80° C. Indeed, after a mere quenching in water at 20° C., the martensite level is still not sufficient, which is related to the presence of Cr at a level higher than that of the other samples according to the invention.
  • At a comparable level of N, one can see that the hardness increases between samples I1, I2, where C is between 0.10 and 0.20%, on the one hand, and samples I3, where C is between 0.20 and 0.30%, and above all I8, I9, I10, where C is between 0.30 and 0.35%, on the other hand.
  • I14, where C is still high and N is at the same level as in the previous cases, has a lower hardness than them, since the martensite fraction after quenching begins to decrease due to the decrease in the temperature Mf related to a high value of the sum 17Cr+500C+500N (see table 1). Also at comparable levels of N and other essential elements, one can see that the increase in Cr makes it possible to improve the corrosion resistance (see samples 18 and 19). Conversely, the increase in the Cr content level tends to decrease the hardness; see samples I8, I10 and I11, the compositions of which only differ significantly regarding Cr. Going beyond 18% Cr could increase the corrosion resistance, but would lead to decreased C and N content levels to retain a satisfactory Ms, and a correct hardness would no longer be insured.
  • Reference steels R1 to R3 have Cr and N content levels, as well as C+N and/or Cr+16N−5C sums, that are unsatisfactory, which does not allow sufficient corrosion resistance.
  • Reference steels R4 and R5 have insufficient Cr content levels. Without compensation by an addition of N, steel R4 also has an insufficient Cr+16N−5C combination leading to an unsatisfactory corrosion resistance. For steel R5, the compensation for the lack of Cr by adding N reestablishes a satisfactory corrosion resistance, but no longer makes it possible to ensure good internal health, since the Cr content level is no longer sufficient to allow complete dissolution of N in the liquid metal.
  • Reference steel R6 has too high a C content level and an insufficient N content level. The excessively high C content level does not have a sufficient polishability due to excessive carbide formation.
  • Reference steel R7 has too high a N content level, which damages the internal health. The same is true for reference steel R14. Reference steel R8 has an excessive C content level, which leads to poor polishability and an overly low martensite level, even after cryogenic quenching at −80° C. Reference steel R9 contains too much Cr, which leads to an insufficient martensite level, even after cryogenic quenching at −80° C.
  • Reference steels R10 and R11 have excessively low C content levels as well as insufficient C+N sums, leading to overly low hardnesses. Reference steels R12 and R13 would have compositions according to the invention on the individual content levels of each element, but their Cr+16N −5C content level, which is below 16.0%, is insufficient to guarantee a corrosion resistance as high as that of steels that comply with the invention on all points, including those which only slightly exceed the value of 16.0% for this sum Cr+16N−5C.
  • The steels according to the invention are used for good reason to produce cutting tools, for example scalpels, scissors, knife blades or circular blades for food processors.

Claims (26)

1-9. (canceled)
10. A martensitic stainless steel, characterized in that its composition consists of, in weight percentages:
0.10%≤C≤0.45%;
traces≤Mn≤1.0%;
traces≤Si≤1.0%;
traces≤S≤0.01%;
traces≤P≤0.04%;
15.0%≤Cr≤18.0%;
traces≤Ni≤0.50%;
traces≤Mo≤0.50%;
traces≤Cu≤0.50%;
traces≤V≤0.50%;
traces≤Nb≤0.03%;
traces≤Ti≤0.03%;
traces≤Zr≤0.03%;
traces≤Al≤0.010%;
traces≤O≤0.0080%;
traces≤Pb≤0.02%;
traces≤Bi≤0.02%;
traces≤Sn≤0.02%;
0.10%≤N≤0.20%;
C+N≥0.25%;
Cr+16N−5C≥16.0%;
the rest being iron and impurities resulting from the melting.
11. The steel according to claim 10, wherein its microstructure includes at least 75% martensite.
12. The steel according to claim 10, wherein 0.20%≤C≤0.38%.
13. The steel according to claim 12, wherein 0.20%≤C≤0.35%.
14. The steel according to claim 12, wherein 0.30%≤C≤0.35%.
15. The steel according to claim 10, wherein traces≤Mn≤0.6%.
16. The steel according to claim 10, wherein traces≤S≤0.005%.
17. The steel according to claim 10, wherein 15.0%≤Cr≤17.0%.
18. The steel according to claim 17, wherein 15.2%≤Cr≤17.0%.
19. The steel according to claim 18, wherein 15.5%≤Cr≤16.0%
20. The steel according to claim 10, wherein traces≤Mo≤0.01%.
21. The steel according to claim 20, wherein traces≤Mo≤0.05%.
22. The steel according to claim 10, wherein traces≤Cu≤0.3%.
23. The steel according to claim 10, wherein traces≤V≤0.2%.
24. The steel according to claim 10, wherein 0.15%≤N≤0.20%.
25. The steel according to claim 10, wherein C+N≥0.30%.
26. The steel according to claim 25, wherein C+N≥0.45%.
27. The steel according to claim 10, wherein 17Cr+500C+500N≤570%.
28. A method for producing a semi-finished product made from martensitic stainless steel, comprising:
developing and pouring a semi-finished product from a steel having the composition according to claim 10;
heating said semi-finished product to a temperature greater than or equal to 1000° C.;
hot rolling to obtain a sheet, bar or wire rod;
annealing said sheet, bar or wire rod at a temperature comprised between 700 and 900° C.; and
carrying out a shaping operation on said sheet, bar or wire rod.
29. The method according to claim 28, wherein said semi-finished product is a sheet, and said shaping operation is a cold rolling.
30. The method according to claim 28, wherein said semi-finished product is a bar or wire rod, and said shaping operation is a forging.
31. A method for producing a semi-finished product made from martensitic stainless steel, comprising:
developing and pouring a semi-finished product from a steel having the composition according to claim 11;
heating said semi-finished product to a temperature greater than or equal to 1000° C.;
hot rolling to obtain a sheet, bar or wire rod;
annealing said sheet, bar or wire rod at a temperature comprised between 700 and 900° C.;
carrying out a shaping operation on said sheet, bar or wire rod;
austenitizing the shaped semi-finished product at a temperature between 950 and 1150° C.;
cooling at a speed of at least 15° C./s to a temperature of less than or equal to 20° C.; and
annealing at a temperature comprised between 100 and 300° C.
32. The method according to claim 28 further comprising:
austenitizing the shaped semi-finished product at a temperature between 950 and 1150° C.;
cooling at a speed of at least 15° C./s to a temperature of less than or equal to 20° C.; and
undergoing a cryogenic treatment at a temperature from −220 to −50° C.; and
annealing at a temperature comprised between 100 and 300° C.
33. A cutting tool comprising the semi-finished product prepared according to the method of claim 28.
34. The cutting tool according to claim 33, wherein the cutting tool is a cutlery item including a knife blade, a food processor blade, a scalpel, or a scissor blade.
US15/570,574 2015-04-30 2016-04-29 Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product Abandoned US20180127858A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IBPCT/IB2015/053144 2015-04-30
PCT/IB2015/053144 WO2016174500A1 (en) 2015-04-30 2015-04-30 Martensitic stainless steel, method for producing a semi-finished product made from said steel and cutting tool produced from said semi-finished product
PCT/EP2016/059684 WO2016146857A1 (en) 2015-04-30 2016-04-29 Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product

Publications (1)

Publication Number Publication Date
US20180127858A1 true US20180127858A1 (en) 2018-05-10

Family

ID=53177712

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/570,574 Abandoned US20180127858A1 (en) 2015-04-30 2016-04-29 Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product

Country Status (12)

Country Link
US (1) US20180127858A1 (en)
EP (1) EP3289109B1 (en)
JP (1) JP6767389B2 (en)
KR (1) KR20170141250A (en)
CN (1) CN107567507A (en)
BR (1) BR112017023361B1 (en)
CA (1) CA2984514A1 (en)
ES (1) ES2796354T3 (en)
MX (1) MX2017013834A (en)
RU (1) RU2017137708A (en)
UA (1) UA120119C2 (en)
WO (2) WO2016174500A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190127829A1 (en) * 2016-04-22 2019-05-02 Aperam A Method For Manufacturing A Martensitic Stainless Steel Part From A Sheet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636893A (en) * 2016-11-25 2017-05-10 邢台钢铁有限责任公司 Stainless steel wire rod easy to cut and manufacturing method thereof
DE102017003965B4 (en) * 2017-04-25 2019-12-12 Zapp Precision Metals Gmbh Martensitic chrome steel, steel foil, perforated and / or perforated steel foil component, process for producing a steel foil
KR102471016B1 (en) * 2018-06-13 2022-11-28 닛테츠 스테인레스 가부시키가이샤 Martensitic S free-cutting stainless steel
CN109022728B (en) * 2018-07-20 2020-05-26 西安建筑科技大学 High-temperature quenching-deep supercooling-low-temperature partitioning heat treatment method for metastable austenitic stainless steel and stainless steel
CN109666779B (en) * 2018-12-06 2021-01-01 南京理工大学 Cutting edge martensite reinforced medical surgical scissors and manufacturing method thereof
CN110438404A (en) * 2019-09-09 2019-11-12 山东泰山钢铁集团有限公司 A kind of the ingredient design and control technology of measurer slide calliper rule steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358333B1 (en) * 1997-04-16 2002-03-19 Nsk Ltd. Rolling member

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE301656B (en) * 1967-06-30 1968-06-17 Sandvikens Jernverks Ab
US3575737A (en) * 1968-06-25 1971-04-20 Sandvikens Jernverks Ab Razor blades and other thin cutting edge tools and method of manufacture of such tools
US4180420A (en) * 1977-12-01 1979-12-25 The Gillette Company Razor blades
JPS6134161A (en) * 1984-07-25 1986-02-18 Kawasaki Steel Corp Stainless steel for cutlery
JPH07113126B2 (en) * 1987-12-26 1995-12-06 新日本製鐵株式会社 Method for producing stainless steel with excellent resistance to stress corrosion cracking
JPH07110970B2 (en) * 1987-12-26 1995-11-29 新日本製鐵株式会社 Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
FR2708939B1 (en) * 1993-08-11 1995-11-03 Sima Sa Low carbon nitrogen martensitic steel and its manufacturing process.
JP3219128B2 (en) * 1996-03-19 2001-10-15 日新製鋼株式会社 High-strength martensitic stainless steel with excellent antibacterial properties
JP3965779B2 (en) * 1998-05-22 2007-08-29 大同特殊鋼株式会社 Steel for plastic molds
JP2000144332A (en) * 1998-11-02 2000-05-26 Sanyo Special Steel Co Ltd Steel for die for plastic excellent in corrosion resistance and mirror finishing property
US6273973B1 (en) * 1999-12-02 2001-08-14 Ati Properties, Inc. Steelmaking process
JP3452354B2 (en) * 2000-01-20 2003-09-29 日本高周波鋼業株式会社 Martensitic stainless steel for piston rings and deformed wires for piston rings
FR2896514B1 (en) * 2006-01-26 2008-05-30 Aubert & Duval Soc Par Actions STAINLESS STEEL MARTENSITIC STEEL AND METHOD FOR MANUFACTURING A WORKPIECE IN THIS STEEL, SUCH AS A VALVE.
JP4857811B2 (en) * 2006-02-27 2012-01-18 Jfeスチール株式会社 Steel for knives
JP5368887B2 (en) * 2008-09-01 2013-12-18 ミネベア株式会社 Martensitic stainless steel and rolling bearings
CN101768700A (en) * 2009-02-01 2010-07-07 裘德鑫 Antibacterial martensitic stainless steel applied in hardware industry
KR101318274B1 (en) * 2009-12-28 2013-10-15 주식회사 포스코 Martensitic stainless steels by twin roll strip casting process and manufacturing method thereof
CN102337461B (en) * 2010-07-23 2013-10-16 宝山钢铁股份有限公司 High-hardness martensitic stainless steel and its production method
KR101239589B1 (en) * 2010-12-27 2013-03-05 주식회사 포스코 High corrosion resistance martensite stainless steel and method of manufacturing the same
CN102168226B (en) * 2011-04-02 2013-04-10 裘德鑫 Martensite antibacterial stainless steel and manufacturing method thereof
KR101423826B1 (en) * 2012-07-16 2014-07-25 주식회사 포스코 Martensitic stainless steel and the method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358333B1 (en) * 1997-04-16 2002-03-19 Nsk Ltd. Rolling member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tanaka US 333 6,358, B1, thereafter *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190127829A1 (en) * 2016-04-22 2019-05-02 Aperam A Method For Manufacturing A Martensitic Stainless Steel Part From A Sheet
US11001916B2 (en) * 2016-04-22 2021-05-11 Aperam Method for manufacturing a martensitic stainless steel part from a sheet

Also Published As

Publication number Publication date
BR112017023361B1 (en) 2021-07-13
BR112017023361A2 (en) 2018-07-17
JP2018521215A (en) 2018-08-02
RU2017137708A3 (en) 2019-10-21
UA120119C2 (en) 2019-10-10
CA2984514A1 (en) 2016-09-22
WO2016174500A1 (en) 2016-11-03
RU2017137708A (en) 2019-04-30
MX2017013834A (en) 2018-03-21
EP3289109A1 (en) 2018-03-07
EP3289109B1 (en) 2020-03-04
ES2796354T3 (en) 2020-11-26
JP6767389B2 (en) 2020-10-14
WO2016146857A1 (en) 2016-09-22
KR20170141250A (en) 2017-12-22
CN107567507A (en) 2018-01-09

Similar Documents

Publication Publication Date Title
US20180127858A1 (en) Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product
AU2009355404B2 (en) High-toughness abrasion-resistant steel and manufacturing method therefor
JP4857811B2 (en) Steel for knives
JP5335502B2 (en) Martensitic stainless steel with excellent corrosion resistance
JP6353839B2 (en) Martensitic stainless steel excellent in wear resistance and corrosion resistance and method for producing the same
JP6126881B2 (en) Stainless steel wire excellent in torsion workability and manufacturing method thereof, and stainless steel wire rod and manufacturing method thereof
JP2010174319A (en) Steel for plastic molding mold, and plastic molding mold
KR20150074697A (en) Low-nickel containing stainless steels
JP7404792B2 (en) Martensitic stainless steel parts and their manufacturing method
CN110997952B (en) Method for producing Ni-containing steel sheet
JP7163639B2 (en) Steel bars or steel products and their manufacturing methods
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
KR102351770B1 (en) Manufacturing method of Ni-containing steel sheet
JP7229827B2 (en) Manufacturing method of high carbon steel sheet
JP2007302977A (en) Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone
JPH0244891B2 (en)
JPS61272316A (en) Manufacture of high tension steel having more than 100kgf/mm2 yield strength and superior in stress corrosion cracking resistance
JP5466897B2 (en) Low carbon martensitic stainless steel and its manufacturing method
JPH07316744A (en) Martensitic stainless steel wire rod excellent in cold workability and its production
KR900005374B1 (en) Making process for high tensile strength steel
JP2006257500A (en) Dicing saw tape frame

Legal Events

Date Code Title Description
AS Assignment

Owner name: APERAM, LUXEMBOURG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHASSAGNE, FRANCIS;HAEGELI, FRANCOISE;SIGNING DATES FROM 20171023 TO 20171120;REEL/FRAME:044659/0977

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION