KR900005374B1 - Making process for high tensile strength steel - Google Patents

Making process for high tensile strength steel Download PDF

Info

Publication number
KR900005374B1
KR900005374B1 KR1019870015117A KR870015117A KR900005374B1 KR 900005374 B1 KR900005374 B1 KR 900005374B1 KR 1019870015117 A KR1019870015117 A KR 1019870015117A KR 870015117 A KR870015117 A KR 870015117A KR 900005374 B1 KR900005374 B1 KR 900005374B1
Authority
KR
South Korea
Prior art keywords
temperature
less
quenching
tensile strength
high tensile
Prior art date
Application number
KR1019870015117A
Other languages
Korean (ko)
Other versions
KR890010235A (en
Inventor
유호천
Original Assignee
포항종합제철 주식회사
정명식
재단법인 산업과학기술연구소
박태준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 정명식, 재단법인 산업과학기술연구소, 박태준 filed Critical 포항종합제철 주식회사
Priority to KR1019870015117A priority Critical patent/KR900005374B1/en
Publication of KR890010235A publication Critical patent/KR890010235A/en
Application granted granted Critical
Publication of KR900005374B1 publication Critical patent/KR900005374B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

High tensile strength steel is obtained by two-stage quenching process after hot rolling steel slab comprising (in wt.) 0.010.20% C, 0./005-1.0% Si, 0.20-2.0% Mn, up to 0.025% P and S, 0.050.30% Cu, up to 9.0% Ni, up to 3% Cr and Mo, 0.001-0.15% sol. Al, up to 0.05 T and Nb, up to 0.10% V, upto 0.0025% B and the balance Fe. The first stage quenching is carried out within the range of (reheating temp.+20 deg.C) to (reheating temp. + 70 deg.C). The second stage quenching is carried out within the range of (Ac3 + 30 deg.C) to (Ac3 + 100 deg.C) following by tempering treatment.

Description

2회 소입법에 의한 조질고장력강 제조방법Manufacturing method of tempered high tensile strength steel by 2 times hardening method

제1도는 본 발명재 및 종래재의 현미경사진.1 is a micrograph of the present invention and the prior art.

제2도는 본 발명재 및 종래재의 인장시험 결과를 나타낸 그래프.2 is a graph showing the tensile test results of the present invention and the prior art material.

제3도는 본 발명재 및 종래재의 인장시험 결과를 나타낸 그래프.3 is a graph showing the tensile test results of the present invention and the prior art material.

제4도는 본 발명재 및 종래재의 충격인성치를 나타낸 그래프.4 is a graph showing the impact toughness of the present invention and conventional materials.

제5도는 본 발명재 및 종래재의 굴곡강도를 나타낸 그래프.5 is a graph showing the flexural strength of the present invention and the prior art material.

제6도는 본 발명 및 종래 열처리방법을 나타낸 그래프.6 is a graph showing the present invention and the conventional heat treatment method.

본 발명은 2회 소입법에 의해 강도 및 충격인성이 높고 응력부식균열에 대한 감수성과 표면부식속도가 낮은 고장력강의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing high tensile strength steel having high strength and impact toughness, susceptibility to stress corrosion cracking and low surface corrosion rate by two hardening methods.

지금까지 해양구조물을 위시하여 교량, 수력발전소의 수압철관(pens tock), 잠수함 및 심해정에 인장강 80㎏/㎟급 이하가 사용되어져 왔으나 구조물의 대형화, 고성능화, 박판화 및 경제성추구로 인하여 강도가 높은 100㎏/㎟급 조질(소입소려 열처리한) 고장력강의 사용이 필요하게 되었다. 아울러 100㎏/㎟급 강재의 적용시에는 80㎏/㎟급 강재와 같은 정도의 시공관리로 용접가능하고 강도 및 저온충격인성이 우수하고 응력부식균열에 대한 감수성과 표면부식속도가 낮은 재료의 선정이 요구되고 있다.Up to 80 kg / mm2 of tensile steel has been used for bridges, pens tock, submarines and deep-sea wells, including offshore structures, but the strength has been increased due to the large size, high performance, thinness and economic pursuit. The use of high 100 kg / mm2 grade tempered (annealed and heat treated) high tensile strength steels has become necessary. In addition, when applying 100㎏ / ㎠ grade steel, it is possible to weld with the same level of construction management as 80㎏ / ㎜ grade steel, and it has excellent strength and low temperature impact toughness, and is sensitive to stress corrosion cracking and low surface corrosion rate. This is required.

상기 목적을 달성하기 위한 종래방법으로는 값비싼 합금원소인 Ni, Mo, Cr 등을 대량첨가하여 스라브(slab)고온가열, 열간압연후 공냉을 한 다음 소입소려열처리하여 강도, 충격인성 및 내식성을 향상시키는 방법, 소입성중대효과가 있는 Nb, V, Ti, B, Al과 같은 원소를 소량첨가하여 저온스라브가열, 제어압연 및 재가열반복소입법을 실시하여 결정립과 석출물을 미세화시킨 다음 소입소려열처리하여 품질특성을 향상시키는 방법 및 열간압연후 공냉시키지 않고 고온에서 직접소입하고 소려열처리하는 방법이 제안되어 있다.Conventional methods for achieving the above objectives include the addition of expensive alloying elements, such as Ni, Mo, Cr, in large quantities, slab high temperature heating, hot rolling after air rolling, and then quenching and heat treatment to provide strength, impact toughness and corrosion resistance. Method to improve the particle size, and add a small amount of elements such as Nb, V, Ti, B, and Al, which have significant hardening effect, and then carry out low-temperature slab heating, controlled rolling, and reheating repeated annealing to refine the grains and precipitates. It has been proposed a method of improving the quality characteristics by heat treatment and a method of directly quenching and soaking heat at high temperature without air cooling after hot rolling.

그러나, 값비싼 합금원소인 Ni, Mo, Cr 등의 다량첨가에 의한 방법에 있어서는 원가가 상승하여 경제성이 떨어질뿐만 아니라 탄소당량과 용접균열 감수성을 증가시켜서 용접성의 열화(劣化k)와 용접시공상의 어려움을 가져오는 단점이 있었다. 또한, 제어압연 및 재가열반복소입하는 상기방법에 있어서는 저온압연과 재가열잔복소입법에 대한 생산제조조건의 예민화에 따른 품질특성의 불균일과 저온압연으로 인하여 압연률(roll)의 과다하중에 의한 두께편차의 증대, 평탄도불량 및 판변형에 대한 제품불량율이 증대하여 생산성의 저하뿐만 아니라 강도 및 인성의 상승효과가 적어서, 생산제조비 증가에 비해서 품질특성의 상승효과가 적었다.However, in the method by adding a large amount of expensive alloying elements such as Ni, Mo, Cr, etc., the cost increases and the economical efficiency decreases, and the carbon equivalent and the weld cracking sensitivity are increased, thereby deteriorating the weldability and the welding construction. There was a drawback to the difficulty. In addition, in the above-described method of controlled rolling and reheating repeated quenching, the thickness due to overload of the roll due to the nonuniformity of the quality characteristics according to the sensitization of the production manufacturing conditions for the low temperature rolling and the reheating residual quenching method and the low temperature rolling Increasing deviation, flatness, and product defect rate for plate deformation have not only lowered productivity, but also increased strength and toughness.

직접소입을 실시하는 상기방법에 있어서는 직접소입을 실시하면 종래의 재가열소입에 비해서 합금원소는 소입온도에서 그의 평형용해도 이상으로 고용해서 전위밀도는 증가하고 세립화하지만 결정립미세화 효과가 재가열소입열처리에 비해서 적으며 압연가공조직이 잔류하여 불균일한 소려조직을 얻기때문에 균일한 품질 특성을 얻지 못한다.In the above method of direct quenching, when the direct quenching is performed, the alloying element is dissolved at higher than its equilibrium solubility at the quenching temperature, so that the dislocation density increases and fines, but the grain refining effect is higher than that of the reheating heat treatment. It is small and the rolling processing structure remains, so that the non-uniform detail structure is obtained, so that the uniform quality characteristics cannot be obtained.

따라서, 본 발명은 열간압연후 공냉을 하지않고 직접소입한 다음 재가열하여 다시 소입하므로서 기계적 특성이 우수한 고장력강을 제공하고자 하는 것이다.Accordingly, the present invention is to provide a high-tensile steel with excellent mechanical properties by direct quenching without hot air after hot rolling and then reheated and quenched again.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 중량%로 C : 0.01-0.20%, Si : 0.005-1.0%, Mn : 0.20-2.0%, P.S : 0.25% 이하, Cu : 0.05-0.30%, Ni : 9% 이하, Cr, Mo : 3.0% 이하, Sol Al : 0.001-0.15%, Ti, Nb : 0.05% 이하, V : 0.10% 이하, B : 0.0025% 이하 및 잔부 Fe로 조성되는 강재를 1000-1300℃ 범위로 가열하여 열간압연후, 재가열소입온도보다 20-70℃ 높은 온도범위에서 직접소입하고 계속하여 Ac3변태점보다 30-100℃ 높은 온도범위로 재가열소입한 다음, 소려열처리하는 2회 소입법에 의하여 강도 및 충격인성이 높고 응력부식균열에 대한 감수성과 표면부식속도가 낮은 고장력강의 제조방법에 관한 것이다.In the present invention, C: 0.01-0.20%, Si: 0.005-1.0%, Mn: 0.20-2.0%, PS: 0.25% or less, Cu: 0.05-0.30%, Ni: 9% or less, Cr, Mo: 3.0% or less, Sol Al: 0.001-0.15%, Ti, Nb: 0.05% or less, V: 0.10% or less High strength and impact toughness are achieved by the two-annealing method, which is directly annealed in the temperature range 20-70 ℃ higher than the reheating temperature, and then reheated and annealed in the temperature range of 30-100 ℃ higher than the Ac 3 transformation point. The present invention relates to a method of manufacturing high tensile strength steel having low susceptibility to stress corrosion cracking and low surface corrosion rate.

종래 열처리방법을 나타낸 제6도(a)와 본 발명에 의한 열처리방법을 나타낸 제 6도(b)참조).6 (a) showing a conventional heat treatment method and FIG. 6 (b) showing a heat treatment method according to the present invention).

상기 성분 및 한정법위에 대하여 설명한다.The said component and a limiting method are demonstrated.

상기 C은 고장력강으로써 충분한 강도를 확보하기 위해서 적어도 0.01%는 필요하지만 필요이상의 증가는 용접성과 충격인성을 열화시키고, 조대탄화물의 형성으로 인하여 응력부식균열에 대한 감수성이 높아지므로 0.20% 이하가 바람직하다.C is at least 0.01% in order to secure sufficient strength as a high tensile strength steel, but an increase of more than necessary deteriorates weldability and impact toughness, and is highly susceptible to stress corrosion cracking due to formation of coarse carbide, so 0.20% or less is preferable. .

Si은 제강중 탈산제로써 필요한 원소로써 기본으로써 0.005%는 함유되어져야 하고 1.0%를 넘으면 SiO4등의 비금속개재물을 형성할뿐만 아니라 도상(島狀)마르텐사이트를 형성하여 용접성과 인성 및 응력부식균열감수성을 해치므로 0.005-1.0%가 바람직하다.Si is an element necessary as a deoxidizer in steelmaking. It should contain 0.005% as a basic, and if it exceeds 1.0%, Si not only forms non-metallic inclusions such as SiO 4 , but also forms island-like martensite, which leads to weldability, toughness and stress corrosion cracking. 0.005-1.0% is preferable because it impairs sensitivity.

Mn은 제강중 탈산제이며 강도를 상승시키는데 최소한 0.2% 이상 첨가시키여 유효하고 2.0%를 넘으면 MnS 등의 비금속 개재물을 형성하여 충격인성 및 응력부식균열에 대한 감수성을 낮추고 포면부식성을 해치므로 하한선을 0.2%로 하는것이 바람직하다.Mn is a deoxidizer in steelmaking. It is effective by adding at least 0.2% to increase the strength. If it exceeds 2.0%, Mn forms non-metallic inclusions such as MnS, lowering the susceptibility to impact toughness and stress corrosion cracking and damaging the surface corrosion. It is preferable to set it as%.

P는 강중압계에 응고편석하여 강의 용접성과 인성을 심하게 열화시키므로 P의 함량을 0.025% 이하로 한다.P solidifies and segregates in the steel pressure gauge, so the weldability and toughness of the steel are severely degraded, so the content of P is made 0.025% or less.

S는 MnS을 형성하고 입계편석을 함으로써 충격인성, 응력부식균열에 대한 감수성을 저하시키므로 상한선은 0.025%로 한다.S decreases impact toughness and susceptibility to stress corrosion cracking by forming MnS and performing grain boundary segregation, so the upper limit is set to 0.025%.

Cu는 기지조직을 강화시켜 강도를 상승시키고 응력부식균열성에 대한 감수성과 표면부식속도를 낮추는 원소로서, 0.05% 이상 첨가하여야만 효과가 나타나며 0.30% 이상 첨가시에는 열간압연시 열간가공성을 해치며 충격인성을 저하시키므로 0.05-0.30%가 바람직하다.Cu is an element that strengthens the matrix structure to increase strength, susceptibility to stress corrosion cracking and lowers the rate of surface corrosion. It is effective only when added at 0.05% or more, and when added at 0.30% or more, it damages the hot workability during hot rolling. 0.05-0.30% is preferable because it lowers.

Cr, Mo은 미세한 탄화물 및 질화물을 형성하고 조직을 미세차시켜서 강도, 충격인성, 응력부식균열감수성 및 표면부식속도를 상승시키지만, 각각 3% 첨가로 충분한 효과를 낼 수 있으며 이 이상 첨가는 제조비가 높아 경제성이 없으므로 3%를 상한으로 한다.Cr and Mo form fine carbides and nitrides and microstructures to increase strength, impact toughness, stress corrosion cracking susceptibility and surface corrosion rate, but 3% of each adds sufficient effects. As there is no economic feasibility, the upper limit is 3%.

Ni은 소입성을 크게 향상시키는 원소이며 결정립을 미세화시키고 기지조직을 고용강화시켜 강도의 상승에도 불구하고 저온인성을 크게 향상시키며 응력부식균열에 대한 감수성과 표면부식속도를 낮추고, 소입시에 마르텐사이트의 생성량을 많게하여 소려효과를 높이므로 다량첨가시 낮은 냉각속도에서도 충분한 소입효과를 얻을 수 있는데, NI이 9.0% 이상 첨가하면 강도 및 저온인성의 상승은 거의 표화상태에 도달하므로 상한선을 9.0% 이하로 한정한다.Ni is an element that greatly improves the hardenability, and the grain size is refined and the matrix structure is strengthened so that the low temperature toughness is greatly improved despite the increase in strength, the susceptibility to stress corrosion cracking and the surface corrosion rate are lowered. By increasing the amount of produced, the effect of raising the soothing effect can be obtained even at a low cooling rate when a large amount is added.If the addition of more than 9.0%, the increase in strength and low temperature toughness almost reaches the labeling state, so the upper limit is lower than 9.0%. It is limited to.

Nb, V, Ti 및 B은 소입성을 향상시키며 미세한 탄화물 및 질화물을 형성하여 결 정립을 미세화시켜서 강도, 충격인성을 높히고 응력부식균열에 대한 감수성 및 표면부식속도를 낮추는 원소이나 미량첨가시에는 입계취화를 형성하여 상기의 품질을 저하시키므로 Ti, Nb은 각각 0.05% 이하, V은 0.10%이하, B은 0.025% 이하로 한정한다.Nb, V, Ti, and B improve hardenability and form fine carbides and nitrides to refine the grain size, thereby increasing strength and impact toughness, susceptibility to stress corrosion cracking, and lowering the surface corrosion rate. Since embrittlement is formed and said quality is reduced, Ti and Nb are respectively 0.05% or less, V is 0.10% or less, and B is limited to 0.025% or less.

So1, Al은 제강중 탈산제로써 필요하며 결정립을 미세화시켜서 충격인성 및 내식성을 상승시키는데 0.001% 이상 첨가시 유효하며 0.15% 이상 첨가시에는 강중 불순물로 작용하여 용접성자 충격인성을 저하시키기 때문에 첨가범위를 0.001%-0 15%로 한다.So1 and Al are required as deoxidizers in steelmaking and are effective when added over 0.001% to refine crystal grains and increase impact toughness and corrosion resistance. 0.001% -0 15%.

열간압연하기전에 가열로에서 1000-1300℃로 가열(soaking)하는데, 1300℃ 이상 가열하면 결정립의 조대화현상이 일어나고 1000℃ 이하로 가열하면 석출물이 완전히 고용되지 않아서 기계적 성질이 저하된다.Before hot rolling, it is heated (soaking) at 1000-1300 ℃ in the heating furnace. If it is heated above 1300 ℃, coarsening of grains occurs. If it is heated below 1000 ℃, precipitates are not completely dissolved and mechanical properties are degraded.

본 발명에 의한 방법인 직접소입과 재가열소입을 동시에 실시하는 경우 합금원소는 소입온도(소스테나이트화 온도)에서 그이 평행용해도 이상으로 고용해서 전위밀도를 증가시키고 세립화시켜서, 소려시의 탄질화물의 미세분산석출등이 가능해지며 미세석출물의 양이 많아지고, 열간압연후 종래의 방법인 공냉을 실시하면 Ac3와 Ac1사이의 온도구간인 오스테나이트와 페라이트의 이상(二相)혼합구역에서는 오스테나이트와 페라이트의 경계면에서 Nb, V, B 등의 원소가 탄화물 및 질화물을 형성하여 입체에 석출하여 열간가공성을 저하시키고 입계취화를 조장한다.In case of carrying out direct quenching and reheating quenching by the method according to the present invention, the alloying element is dissolved at higher than the parallel solubility at the quenching temperature (sostenitization temperature) to increase the dislocation density and finer the carbonitride during sourcing. Microdispersion precipitation is possible, and the amount of fine precipitates increases, and after hot rolling, air cooling, which is a conventional method, is performed in the ideal mixed zone of austenite and ferrite, which is a temperature section between Ac 3 and Ac 1. At the interface between austenite and ferrite, elements such as Nb, V, and B form carbides and nitrides to precipitate in three dimensions, degrading hot workability and facilitating grain embrittlement.

그래서 본 발명에 의한 방법인 직점소입을 실시하면 이러한 입계취화되는 온도구역을 급냉함으로서 품질 특성에 해로운 임계취성을 방지하고 Nb, V, B 및 Ti과 같은 원소가 입내에 골고루 분산되면 종전의 방법인 공냉에서는 열간압연후 냉각시간이 길기 때문에 입내 및 입계에 Mn, Mo, Cr, Cu 등의 복합석출물이 압연방향과 거의 평행한 전위 및 결정경계를 따라서 쉽게 형성되는데, 이러한 석출들이 재가열소입시에 고용되었다가 소려시에 다시 입내 및 입계에 우선적으로 길게 성장하는 반면에, 본 발명에 의한 방법인 직접소입을 실시하면 석출물이 길게 성장할 시간적인 여유가 없어서 구상의 복합석출물이 형성된다.So, by performing direct point quenching, the method according to the invention prevents critical brittleness, which is detrimental to the quality characteristics by quenching the temperature-absorption temperature zone, and when the elements such as Nb, V, B and Ti are evenly dispersed in the mouth, In air cooling, since the cooling time is long after hot rolling, complex precipitates such as Mn, Mo, Cr, Cu, etc. are easily formed in grains and grain boundaries along dislocations and crystal boundaries almost parallel to the rolling direction. While it grows first, it grows preferentially in the mouth and grain boundary at the time of solubility, whereas direct quenching, which is a method according to the present invention, does not have time for long growth of precipitates, thereby forming spherical composite precipitates.

열간압연후 직접소입온도는 재가열소입온도보다 높은 온도이어야 하는데 이는 직접소입온도에서 급냉효과로 고용되는 석출물의 량과 재가열소입온도에서 급냉효과로 고용되는 석출물의 량과의 차이가 커져야 직접소입에 대한 효과를 배가시킬 수 있기 때문이다. 온도차이의 범위가 20℃ 이내에 있으면 고용되는 석출물의 차이에 대한 효과가 적고 70℃ 이상의 온도가 되면 Ac3변태점보다 170℃ 이상이 되기 때문에 결정립조대화현상을 가져와 충격인성이 떨어져서 직접소입효과가 적어진다. 그래서 최적의 직접소입온도를 재가열소입온도보다 20-70℃ 높은 범위로 한정한다.After hot rolling, the direct quenching temperature should be higher than the reheating quenching temperature, which means that the difference between the amount of precipitates employed by the quenching effect at the direct quenching temperature and the amount of precipitates employed by the quenching effect at the reheating quenching temperature should be large. Because it can double the effect. If the temperature difference is within the range of 20 ℃, the effect on the difference of the precipitates employed is less. If the temperature is over 70 ℃, it becomes 170 ℃ above the Ac 3 transformation point, resulting in grain coarsening phenomenon and impact toughness. Lose. Therefore, the optimum direct quenching temperature is limited to 20-70 ℃ higher than the reheating quenching temperature.

최적의 재가열소입온도는 Ac3변태점과 직접적인 관련이 있는데, 재가열소입온포가 Ac3변태점상에서 30℃내의 범위에 있으면 작업시 강판열처리 조건상의 오차로 인하여 강판의 온도가 어느일정 부위에서 Ac3변태점보다 더 낮게되어 페라이트가 석출될 가능성이 많으므로 30℃ 이상의 간격을 두고 작업을 해야한다.The optimum reheat quenching temperature is directly related to the Ac 3 transformation point. If the reheating quenching cell is in the range of 30 ° C on the Ac 3 transformation point, the temperature of the steel sheet is higher than that of the Ac 3 transformation point due to an error in the steel sheet heat treatment conditions during operation. It is much lower and the ferrite is more likely to precipitate, so work should be done at intervals of 30 ° C or higher.

재가열소입온도가 Ac3변태점보다 100℃ 이상이되면 결정립의 미세화효과가 적어지므로 최적의 재가열소입온도를 Ac3변태점보다 30-100℃ 높은 온도로 한정한다.If the reheating quenching temperature is more than 100 ℃ above the Ac 3 transformation point, the effect of refining grains becomes less, so limit the optimal reheating quenching temperature to 30-100 ℃ higher than the Ac 3 transformation point.

본 발명강은 종래강에 비해서 전위밀도가 증가하여 세립화되고 탄질화물의 미세석출물이 형성되고 미세석출물의 량이 많아진다.Compared with the conventional steel, the inventive steel has an increased dislocation density to finer, fine precipitates of carbonitrides are formed, and the amount of fine precipitates increases.

아울러 입계에 Nb, V, B과 같은 원소가 과다하게 석출치 않고 입내에 골고루 분산석출함으로써 입계취화를 제거할 수 있고 길게 성장한 복합석출물의 성장이 억제되고 구상의 복합석출물이 형성되기 때문에 강도, 충격인성, 내응력부식균열감수성 및 내표면부식성이 우수한다.In addition, the grain boundary embrittlement can be eliminated by evenly dispersing the precipitate evenly in the mouth without excessive precipitation of elements such as Nb, V, and B in the grain boundary, and the growth of long-growing composite precipitates is suppressed and spherical composite precipitates are formed. Excellent toughness, stress corrosion cracking resistance and surface corrosion resistance.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

하기 표 1과 같이 조성된 강을 진공유도용해로를 사용하여 주조된 강괴를 내부의 성분편석 및 주조조직을 제거하기 위하여 1300℃에서 1시간동안 가열한 다음, 열간단조하여 소형슬라브로 만들었다.The steel ingots formed as shown in Table 1 were heated at 1300 ° C. for 1 hour in order to remove component segregation and casting structure therein, using a vacuum induction furnace, and then hot forged into small slabs.

[표 1]TABLE 1

Figure kpo00002
Figure kpo00002

상기 표 1과 같이 조성된 강종 A, B를 표 2와 같은 조건으로 열간압연한후 종래재의 경우는 바로 공냉하고, 본 발명재의 경우는 910℃에서 수냉시켰다.Steel grades A and B, as shown in Table 1, were hot-rolled under the same conditions as in Table 2, followed by air cooling in the case of the conventional materials, and water cooled in the case of the present invention at 910 ° C.

[표 2]TABLE 2

Figure kpo00003
Figure kpo00003

다음에, 상기 종래재 및 발명재를 880℃로 50분동안 오스테나이트화시켜서 20℃ 물속에 소입시킨후 이후 이를 600℃로 60분간 소려시킨 다음 발명재(1) 및 종래재(3)에 대한 현미경조직을 관찰하여 제1도에 나타내었다.Next, the prior art material and the invention material was austenized at 880 ° C. for 50 minutes and quenched in water at 20 ° C., followed by 60 minutes at 600 ° C., followed by invention material (1) and prior art material (3). The microscopic tissue was observed and shown in FIG.

직접소입한 본 발명재(1)을 나타낸 제1도의(d), (e), (f) 및 공냉한 종래재 (3)을 나타낸 제도(a), (b), (c)에서 알수 있는 바와같이, 본 발명재(1)은 종래재(3)에 비하여 조직이 전체적으로 미세하다((d)와 (a) 참조).(D), (e), (f) of FIG. 1 showing the present invention material (1) directly quenched, and (a), (b), (c) showing the air-cooled conventional material (3). As described above, the present invention (1) is generally finer in structure than the conventional material (3) (see (d) and (a)).

또한, 본 발명재(1)은, 석출물이 입내 및 입계에 길게 산재되어 있는 종래재(3)에 비하여, 입내 및 입계에 구상의 석출물이 형성된다. ((b : 입내), (c : 입계)와 (e : 입내), (f : 입계) 참조).In addition, in this invention material 1, spherical precipitates are formed in a grain and a grain boundary compared with the prior art material 3 in which a precipitate is scattered long in a grain and a grain boundary. (see (b: intragranular), (c: intergranular) and (e: intragranular), (f: intergranular)).

상기 석출물은 Mn, Mo, Cr, Fe 등이 혼재한 복합석출물로 이루어지고, 작고 미세한 석출물은 Nb, Ti, B 등의 복합석출물로 이루어져 있는데, 미세한 석출물의 양은 직접소임한 본 발명재의 경우가 공냉한 종래재보다 더 많은 양이 관찰되었다.The precipitate is composed of a composite precipitate mixed with Mn, Mo, Cr, Fe, etc., the small and fine precipitate is composed of a composite precipitate, such as Nb, Ti, B, the amount of fine precipitate is directly cooled in the case of the present invention Larger amounts were observed than one prior art.

[실시예 2]Example 2

상기 실시예 1과 같이 제조된 본 발명재(1,2)와 종래재(3,4)의 기계적성길 즉, 인장강도를 측정하여 본 발명재(1)과 종래재(3)에 대해서는 제2도에 본 발명재(b)와 종래재(4)에 대해서는 제3도에 각각 나타내었다.By measuring the mechanical length, that is, the tensile strength of the invention material (1,2) and the conventional material (3,4) manufactured as in Example 1, the second invention is about the invention material (1) and the conventional material (3) The invention material (b) and the prior art material 4 are shown in Fig. 3, respectively.

상기 제2도 및 제3도에서 알수 있는 바와같이, 본 발명재는 종래재에 비하여 우수한 인장강도(약 8%)를 갖는다.As can be seen in FIGS. 2 and 3, the present invention has excellent tensile strength (about 8%) as compared with the conventional material.

[실시예 3]Example 3

상기 실시예 1과 같이 제조된 본 발명재(1)과 종래재(3)에 대하여 상온에서 -80℃까지 충격시험을 하여 그 결과치를 제4도에 각각 나타내었다.The inventive material (1) and the conventional material (3) prepared as in Example 1 were subjected to an impact test at room temperature to -80 ° C, and the results are shown in FIG.

상기 제4도에 나타난 바와같이, 본 발명재(1)은 전온도범위에 걸쳐서 종레재 (3)보다 평균 2Kg.m의 상승치를 보였으며, 연성취성천이온도도 9℃만큼 저온쪽으로 이동하였다.As shown in FIG. 4, the present invention (1) showed an average increase of 2 Kg.m over the seed material (3) over the entire temperature range, and the soft brittle transition temperature also moved toward the lower temperature by 9 ℃.

[실시예 4]Example 4

상기 실시예 1과 같이 제조된 본 발명재(1)과 종래재(3, 4)에 대한 응력부식균열감수성을 측정하기 위하여 45℃로 굴곡한 소형인장시험편(16-25㎜φ), 평형부길이 32㎜)을 3.5% NaCl 용액중에서 50℃ 유지한다음 30일간 침적한 후에 역방향에서 굴곡시험하여 굴곡강도를 제5도에 나타내었다.In order to measure the stress corrosion cracking susceptibility for the inventive material (1) and the conventional materials (3, 4) prepared as in Example 1, a small tensile test piece (16-25 mmφ) bent at 45 ° C, an equilibrium length The 32 mm) was maintained at 50 ° C. in a 3.5% NaCl solution, and then immersed for 30 days, followed by bending test in the reverse direction to show flexural strength in FIG. 5.

상기 제5도에서 알수 있는 바와같이, 본 발명재(1)은 동일한 Ni을 포함하는 종래(3)에 비하여 굴곡강도가 우수하므로, 본 발명재(1)이 종래재 (3)에 비하여 응력부식균열에 대한 감수성이 더 낮다.As can be seen in FIG. 5, the present invention material (1) is superior in flexural strength as compared with the prior art (3) containing the same Ni, the present invention material (1) is stress corrosion compared to the conventional material (3) Lower susceptibility to cracking

[실시예 5]Example 5

상기 실시예 1과 같이 제조된 본 발명재(1,2)와 종래재(3, 4)에 대한 표면부식성을 측정하기 위하여 5% NaCl 응액중에서 50℃ 유지한후 30일간 침지하여 부식감량을 단면적과 시간으로 나눈값인 부식속도(g/㎡.h)로서 측정하여 하기 표 3에 각각 나타내었다.In order to measure the surface corrosion resistance of the inventive materials (1, 2) and the conventional materials (3, 4) prepared as in Example 1, after maintaining 50 ℃ in 5% NaCl solution to immerse for 30 days to reduce the corrosion loss It was measured as a corrosion rate (g / ㎡.h) divided by time is shown in Table 3, respectively.

[표 3]TABLE 3

Figure kpo00004
Figure kpo00004

상기 표 3에서 알수 있는 바와같이, 동일한 Ni 함량인 경우 본 발명재가 종래재에 비하여 부식속도가 느리게 나타났다.As can be seen in Table 3, when the same Ni content, the present invention appeared to have a lower corrosion rate than the prior art.

상기와 같이, 본 발명은 Ni, Mo, Cr등의 다량첨가에 따른 생산제조비용의 증가를 감소시킬 수 있고 저온압연과 재가열반복소압법에 의한 생산성감소 및 불량품증가즐 줄일 수 있으며, 직접소입과 소려열처리방법에 의해서 세립화효과가 적은 불균일한 조직으로 인한 균일치 못한 품질특성을 감소시킬 수 있는 효과가 있는 것이다.As described above, the present invention can reduce the increase in production manufacturing cost according to the large amount of Ni, Mo, Cr, etc., and can reduce the productivity decrease and increase of defective products by low temperature rolling and reheating repeated pressure method. By the heat treatment method, it is possible to reduce the uneven quality characteristics due to the non-uniform tissue with little refining effect.

Claims (1)

조질고장력강을 제조하는데 있어서, 중량%로 C : 0.01-0.20%, Si : 0.005-1.%, Mn : 0.20-2.0%, P,S : 0.025% 이하, Cu : 0.05-0.3% 이하, Ni : 90% 이하, Cr. Mo : 3% 이하, Sol Al : 0.001-0.15% T, Nb : 0.05%이하, V : 0.10 이하, B : 0.0025%이하 및 잔부 Fe로 조성된 강을 1000-1300℃로 가열하여 열간압연한후 재가열소입온도보다 20-70℃ 높은 온도범위내에서 직접소입하고 계속하여 Ac3변태점보다 30-100℃ 높은 온도범위로 재가열소입한 다음, 소려열처리함을 특징으로 하는 2회 소입법에 의한 조질고장력강 제조방법.In the preparation of tempered high tensile steel, C: 0.01-0.20%, Si: 0.005-1.%, Mn: 0.20-2.0%, P, S: 0.025% or less, Cu: 0.05-0.3% or less, Ni: 90% or less, Cr. After Mo: 3% or less, Sol Al: 0.001-0.15% T, Nb: 0.05% or less, V: 0.10 or less, B: 0.0025% or less Tempered high tensile strength steel by two times hardening method characterized by direct heat quenching in the temperature range 20-70 ℃ higher than reheating temperature, then reheat quenching in the temperature range 30-100 ℃ higher than Ac 3 transformation point Manufacturing method.
KR1019870015117A 1987-12-28 1987-12-28 Making process for high tensile strength steel KR900005374B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019870015117A KR900005374B1 (en) 1987-12-28 1987-12-28 Making process for high tensile strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019870015117A KR900005374B1 (en) 1987-12-28 1987-12-28 Making process for high tensile strength steel

Publications (2)

Publication Number Publication Date
KR890010235A KR890010235A (en) 1989-08-07
KR900005374B1 true KR900005374B1 (en) 1990-07-28

Family

ID=19267478

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019870015117A KR900005374B1 (en) 1987-12-28 1987-12-28 Making process for high tensile strength steel

Country Status (1)

Country Link
KR (1) KR900005374B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480000B1 (en) * 1999-12-27 2005-03-30 주식회사 포스코 A method for manufacturing abrasion resistant steel with high toughness

Also Published As

Publication number Publication date
KR890010235A (en) 1989-08-07

Similar Documents

Publication Publication Date Title
CN109161791B (en) 690 MPa-grade ship and ocean engineering steel with excellent low-temperature toughness and manufacturing method thereof
KR900006605B1 (en) Process for making a hogh strength stainless steel having excellent workability and free form weld softening
US7670547B2 (en) Low alloy steel for oil country tubular goods having high sulfide stress cracking resistance
CN110846580B (en) high-Mo high-performance Mn-Cr series steel for wind power output gear and production method thereof
KR102031446B1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
JP7441858B2 (en) Steel, steel bars and their manufacturing methods
EP0320003B1 (en) Method of producing steel having a low yield ratio
CN107130172B (en) 400HBW grades of Brinell hardness whole constrictive type high tenacity easily weld special thick wear-resisting steel plate and its manufacturing method
JPH06104849B2 (en) Method for producing low alloy high strength oil well steel excellent in sulfide stress cracking resistance
JP2020508393A (en) Hardened steel
EP3330398A1 (en) Steel pipe for line pipe and method for manufacturing same
JPH10265846A (en) Production of thermally refined high tensile strength steel plate by continuous casting excellent in toughness
JPS5983719A (en) Preparation of unnormalized high strength steel
JPS583011B2 (en) Manufacturing method of steel plate with stable strength and toughness by direct quenching and tempering
WO2024001078A1 (en) 80 mm thick 690 mpa-grade ultra-high strength and toughness marine steel plate and preparation method therefor
JPH01279709A (en) Production of pre-hardened steel for plastic die by directly quenching
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
KR900005374B1 (en) Making process for high tensile strength steel
JPH0643605B2 (en) Manufacturing method of non-heat treated steel for hot forging
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP2017071859A (en) Non-heat-treated steel and method for producing the same
KR100435481B1 (en) Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface
JPS62149811A (en) Production of prehardened steel by direct hardening
CN112760567A (en) Steel plate with excellent toughness for high-speed train bogie and manufacturing method thereof
JPS6137333B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19990629

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee