JP2006257500A - Dicing saw tape frame - Google Patents

Dicing saw tape frame Download PDF

Info

Publication number
JP2006257500A
JP2006257500A JP2005076929A JP2005076929A JP2006257500A JP 2006257500 A JP2006257500 A JP 2006257500A JP 2005076929 A JP2005076929 A JP 2005076929A JP 2005076929 A JP2005076929 A JP 2005076929A JP 2006257500 A JP2006257500 A JP 2006257500A
Authority
JP
Japan
Prior art keywords
mass
dicing saw
tape frame
stainless steel
saw tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005076929A
Other languages
Japanese (ja)
Inventor
Akira Hironaka
明 弘中
Sadayuki Nakamura
定幸 中村
Satoshi Suzuki
聡 鈴木
Toshihiko Takemoto
敏彦 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2005076929A priority Critical patent/JP2006257500A/en
Publication of JP2006257500A publication Critical patent/JP2006257500A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dicing saw tape frame whose shape is not changed even after surface polishing, and capable of cutting chips from a wafer at a high yield. <P>SOLUTION: The dicing saw tape frame is produced from a subzero-treated type high strength stainless steel sheet in which the difference in surface residual stress between the front and rear is controlled to ±100 MPa. The stainless steel sheet comprises, by mass, 0.09 to 0.17% C, ≤1.0% Si, ≤1.5% Mn, 4.0 to 7.0% Ni, 14.0 to 17.0% Cr, ≤0.10% N and 0.001 to 0.010% B, and the components are also regulated in such a manner that AHV=985-135C-14Si-30Mn-43Ni-29Cr-265N≤250, and SHV=1882-255C-43Si-101Mn-70Ni-55Cr-921N≥350 are satisfied. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体ウエハからチップを切り出す際に使用されるダイシングソーテープフレームに関する。   The present invention relates to a dicing saw tape frame used when cutting a chip from a semiconductor wafer.

半導体ウエハは、所定領域に集積回路を作り込んだ後で個々のチップにダイシングされる。ダイシング工程では、ダイシングテープを半導体ウエハ1とダイシングソーテープフレーム2に貼り付けることにより半導体ウエハ1を固定し、ダイシングソー3で半導体ウエハ1を切断している(図1)。   The semiconductor wafer is diced into individual chips after an integrated circuit is formed in a predetermined area. In the dicing process, the semiconductor wafer 1 is fixed by attaching a dicing tape to the semiconductor wafer 1 and the dicing saw tape frame 2, and the semiconductor wafer 1 is cut by the dicing saw 3 (FIG. 1).

ダイシングソーテープフレームは、焼入れ・焼戻しの熱処理で400HV以上に硬質化したSUS420J2等のマルテンサイト系ステンレス鋼板を目標形状にレーザカットした後、2パス程度の#350研磨でバリ取りすることにより作製されている。   A dicing saw tape frame is manufactured by laser-cutting a martensitic stainless steel plate such as SUS420J2 hardened to 400HV or higher by heat treatment of quenching and tempering, and then deburring by # 350 polishing of about 2 passes. ing.

ダイシングソーテープフレームは、半導体ウエハを均一に切断するため0.3mm以下の平坦度が要求される。しかし、レーザカット後の平坦度が良好であっても、研磨時に導入される応力や歪によって形状変化すると平坦度が要求レベルを下回ることがある。平坦度の劣るダイシングソーテープフレームは、チップの切断精度に劣り、歩留低下の要因になりやすい。   The dicing saw tape frame is required to have a flatness of 0.3 mm or less in order to cut the semiconductor wafer uniformly. However, even if the flatness after laser cutting is good, the flatness may fall below the required level if the shape changes due to stress or strain introduced during polishing. A dicing saw tape frame with inferior flatness is inferior in chip cutting accuracy, and tends to cause a decrease in yield.

本発明者等は、深冷処理したマルテンサイト系ステンレス鋼を素材とするテープフレームについて、表面研磨前後の平坦度と鋼種,硬さ,残留応力等との関係を種々調査・検討した。その結果、所定形状に成形したステンレス鋼板を深冷処理で硬質化するとき、鋼板表面の残留応力が研磨後の平坦度に大きな影響を及ぼしていることを解明した。   The inventors of the present invention conducted various investigations and examinations on the relationship between the flatness before and after surface polishing and the steel type, hardness, residual stress, and the like for a tape frame made of martensitic stainless steel subjected to a deep cooling process. As a result, it was clarified that when the stainless steel plate formed into a predetermined shape is hardened by a deep cooling process, the residual stress on the surface of the steel plate has a great influence on the flatness after polishing.

深冷処理で高強度化したステンレス鋼自体は、特許文献1で本発明者等が紹介したものであるが、拘束状態で深冷処理するとき平坦度に優れ且つ表面残留応力の表裏差が少なくなり研磨後の平坦度悪化が少なくなることを見出した。
特開2002-155346号
The stainless steel itself, which has been strengthened by deep cooling treatment, was introduced by the present inventors in Patent Document 1, but it has excellent flatness when the deep cooling treatment is performed in a restrained state, and there is little difference in surface residual stress. As a result, it was found that the deterioration of flatness after polishing was reduced.
JP 2002-155346 A

本発明は、拘束深冷処理により表面残留応力の表裏差を小さくすることにより、研磨後にも形状変化を起こさず良好な平坦度が維持され、半導体ウエハから歩留良くチップを切り出すことが可能なダイシングソーテープフレームを提供することを目的とする。   In the present invention, the difference in surface residual stress is reduced by confining deep cooling treatment, so that good flatness is maintained without causing a shape change even after polishing, and chips can be cut out from a semiconductor wafer with high yield. An object is to provide a dicing saw tape frame.

本発明のダイシングソーテープフレームは、表面残留応力の表裏差が±100MPa以内にある深冷処理型高強度ステンレス鋼から作製されている。該ステンレス鋼は、C:0.09〜0.17質量%,Si:1.0質量%以下,Mn:1.5質量%以下,Ni:4.0〜7.0質量%,Cr:14.0〜17.0質量%,N:0.10質量%以下,B:0.001〜0.010質量%を含み、式(1)で定義されるAHV値が250以下,式(2)で定義されるSHV値が350以上となるように成分調整されている。   The dicing saw tape frame of the present invention is manufactured from a deep-cooling type high-strength stainless steel having a difference in surface residual stress within ± 100 MPa. The stainless steel has C: 0.09 to 0.17 mass%, Si: 1.0 mass% or less, Mn: 1.5 mass% or less, Ni: 4.0 to 7.0 mass%, Cr: 14 0.0-17.0% by mass, N: 0.10% by mass or less, B: 0.001 to 0.010% by mass, AHV value defined by formula (1) is 250 or less, formula (2) The component is adjusted so that the SHV value defined in (1) is 350 or more.

AHV=985−135C−14Si−30Mn−43Ni−29Cr−265N ・・・・(1)
SHV=1882−255C−43Si−101Mn−70Ni−55Cr−921N ・・・・(2)
焼鈍・酸洗後に形状矯正し、目標サイズに裁断した冷間圧延板が深冷処理されるが、深冷処理時に平坦な上下の定盤間で冷間圧延板を拘束することにより、平坦度が優れ表面残留応力の表裏差を±100MPa以内に収めたステンレス鋼板が得られる。
AHV = 985-135C-14Si-30Mn-43Ni-29Cr-265N (1)
SHV = 1882-255C-43Si-101Mn-70Ni-55Cr-921N (2)
Cold-rolled sheets that have been straightened after annealing and pickling and cut to the target size are deep-cooled, but flatness can be achieved by constraining the cold-rolled sheets between flat upper and lower surface plates during deep-cooling. And a stainless steel plate having a difference in surface residual stress within ± 100 MPa can be obtained.

本発明で使用するステンレス鋼は、準安定オーステナイトステンレス鋼の成分範囲を十分満足するように各元素の含有量を定めると共に、焼鈍後の硬さを表すAHV値,深冷処理後の硬さを表すSHV値がそれぞれAHV≦250,SHV≧350となるように成分調整されている。すなわち、焼鈍状態ではマルテンサイト相の生成量が少なく、オーステナイト相を主体とする比較的軟らかい材質とし、深冷処理でマルテンサイト生成量を増大させて強度,硬度が上昇する成分設計を採用している。   For the stainless steel used in the present invention, the content of each element is determined so as to sufficiently satisfy the component range of the metastable austenitic stainless steel, the AHV value indicating the hardness after annealing, and the hardness after the deep cooling treatment. The components are adjusted so that the expressed SHV values are AHV ≦ 250 and SHV ≧ 350, respectively. In other words, in the annealed state, the amount of martensite phase produced is small, a relatively soft material mainly composed of the austenite phase, and a component design that increases strength and hardness by increasing the amount of martensite produced by deep cooling treatment. Yes.

該成分設計により、焼鈍状態では比較的軟質であり、上下の定盤で挟まれた際に形状が修正される。そして、定盤間で拘束された状態での深冷処理によってオーステナイト相がマルテンサイト相に変態するとき、変態前の残留応力が緩和されると共に何れの方向に関しても均一な応力分布となる。そのため、深冷処理されたステンレス鋼板は平坦で表面残留応力の表裏差が小さいため、研磨しても形状変化がなく良好な平坦度が維持される。   The component design is relatively soft in the annealed state, and the shape is corrected when sandwiched between upper and lower surface plates. When the austenite phase is transformed into the martensite phase by a deep cooling process in a state where the plates are constrained between the platens, the residual stress before transformation is relaxed and the stress distribution is uniform in any direction. For this reason, the deep-cooled stainless steel plate is flat and has a small difference in surface residual stress, so that it does not change in shape even when polished and maintains a good flatness.

準安定オーステナイトステンレス鋼の安定度を表す指標には、焼入れ時のマルテンサイト変態開始点Ms,加工誘起マルテンサイトの発生指標Md30が通常使用されている。Ms,Md30は、オーステナイト相の安定度及びマルテンサイト生成量を推定する指標であり、たとえば焼鈍後の透磁率や加工の難易度を問題とする場合に適用される。これに対し、形状修正が必要な用途では、焼鈍後のマルテンサイト生成量よりも形状修正が容易な強度レベル、換言すれば焼鈍後の硬さが重要な要因になる。 As an index indicating the stability of the metastable austenitic stainless steel, the martensite transformation start point M s during quenching and the generation index Md 30 of the processing induced martensite are usually used. M s and Md 30 are indicators for estimating the stability of the austenite phase and the amount of martensite generated, and are applied when, for example, the permeability after annealing or the difficulty of processing is a problem. On the other hand, in applications that require shape correction, the strength level at which shape correction is easier than the amount of martensite generated after annealing, in other words, hardness after annealing, becomes an important factor.

本発明者等は、このような前提で種々の成分について実験し、データ解析した結果、焼鈍後の硬さを表すAHV値,深冷処理後の硬さを表すSHV値が焼鈍状態での形状修正,深冷処理による高強度化を支配する要因であり、AHV≦250,SHV≧350を満足する合金設計により高品質のダイシングソーテープフレームが得られることを見出した。   As a result of experiments and data analysis on various components based on such premise, the inventors have found that the AHV value indicating the hardness after annealing and the SHV value indicating the hardness after deep cooling treatment are shapes in the annealed state. It has been found that a high quality dicing saw tape frame can be obtained by an alloy design satisfying AHV ≦ 250 and SHV ≧ 350, which is a factor governing the improvement of strength by modification and deep cooling.

AHV値,SHV値でオーステナイト相の安定度を適度に管理することにより、高強度化に有効なマルテンサイト生成量を調整できる。オーステナイト相が安定になりすぎると、深冷処理によってもマルテンサイト相がほとんど生成せず、強度,硬度の上昇が図れない。逆に、オーステナイト相が不安定になりすぎると、焼鈍状態で多量のマルテンサイト相が生成し、平坦化が困難になる。   By appropriately controlling the stability of the austenite phase with the AHV value and SHV value, it is possible to adjust the amount of martensite that is effective for increasing the strength. If the austenite phase becomes too stable, the martensite phase is hardly generated even by the deep cooling treatment, and the strength and hardness cannot be increased. Conversely, if the austenite phase becomes too unstable, a large amount of martensite phase is generated in the annealed state, and flattening becomes difficult.

AHV値,SHV値の定義式(1),(2)における各元素の係数は何れも負の値であり、各元素の増量に伴い焼鈍後及び深冷処理後の硬さが低下する。また、各元素の係数は、その値が大きくなるほど同量の添加量でも硬さに大きな影響を及ぼすことを示し、特にC,Nの影響力が大きいといえる。   The coefficient of each element in the definition formulas (1) and (2) of the AHV value and the SHV value is a negative value, and the hardness after annealing and after the deep cooling treatment decreases as the amount of each element increases. In addition, the coefficient of each element indicates that the larger the value, the greater the influence on hardness even with the same added amount, and it can be said that the influence of C and N is particularly large.

以下、ステンレス鋼に含まれる合金成分,含有量等を個別に説明する。
Cは、深冷処理で生成するマルテンサイト相の高強度化に重要な成分であり、0.09質量%以上で深冷処理により十分な強度,硬度が付与される。しかし、0.17質量%を超える過剰量のCが含まれると、焼鈍時の冷却過程で炭化物が形成され、研磨時に表面欠陥が発生しやすくなる。
Hereinafter, alloy components and contents contained in stainless steel will be individually described.
C is an important component for increasing the strength of the martensite phase produced by the deep cooling treatment, and sufficient strength and hardness are imparted by the deep cooling treatment at 0.09% by mass or more. However, when an excessive amount of C exceeding 0.17% by mass is contained, carbides are formed during the cooling process during annealing, and surface defects are likely to occur during polishing.

Siは、製鋼段階で脱酸剤として添加され、マルテンサイト相の硬度上昇にも働く。Siの添加効果は0.05質量%以上で顕著になるが、1.0質量%を超える過剰量では焼鈍後に強度が高くなりすぎ、焼鈍材を定盤で挟んで形状修正することが困難になる。
Mnは、オーステナイト生成元素であり、脱酸剤としても働く。焼鈍状態でオーステナイト相にする上で必要な成分であり、0.05質量%以上でMnの添加効果が顕著になる。しかし、1.5質量%を超える過剰量のMnが含まれると、MnS等の介在物が増量し、ピット状の表面欠陥が発生しやすくなる。
Si is added as a deoxidizer in the steelmaking stage, and also works to increase the hardness of the martensite phase. The effect of adding Si becomes noticeable at 0.05% by mass or more, but if it exceeds 1.0% by mass, the strength becomes too high after annealing, making it difficult to correct the shape by sandwiching the annealed material with a surface plate. Become.
Mn is an austenite generating element and also functions as a deoxidizer. It is a component necessary for making the austenite phase in the annealed state, and the effect of adding Mn becomes remarkable at 0.05 mass% or more. However, when an excessive amount of Mn exceeding 1.5% by mass is contained, inclusions such as MnS increase and pit-like surface defects are likely to occur.

Niは、オーステナイト生成元素であり、焼鈍状態でオーステナイト相にする上で必要な成分である。また、焼鈍後及び深冷処理後の硬さを調整する上で重要な成分であり、4.0〜7.0質量%の範囲にNi含有量を規制することによりオーステナイト相が適度に安定化する。4.0質量%未満のNi含有量ではオーステナイト相が不安定になりすぎ、7.0質量%を超えるNi含有量ではオーステナイト相が安定になりすぎる。
Crは、ステンレス鋼の耐食性を維持するために必要な成分であり、14.0質量%以上で目標の耐食性が得られる。しかし、17.0質量%を超える過剰量のCrは、組織の安定度を損ない、マルテンサイト相の靭性低下を引き起こす原因にもなる。
Ni is an austenite-forming element and is a component necessary for obtaining an austenite phase in the annealed state. In addition, it is an important component for adjusting the hardness after annealing and after deep cooling treatment, and the austenite phase is appropriately stabilized by regulating the Ni content in the range of 4.0 to 7.0% by mass. To do. When the Ni content is less than 4.0% by mass, the austenite phase becomes too unstable, and when the Ni content exceeds 7.0% by mass, the austenite phase becomes too stable.
Cr is a component necessary for maintaining the corrosion resistance of stainless steel, and a target corrosion resistance can be obtained at 14.0% by mass or more. However, an excessive amount of Cr exceeding 17.0% by mass impairs the stability of the structure and causes a decrease in the toughness of the martensite phase.

Nは、Cと同様にマルテンサイト相を高強度化する成分であり、0.005質量%以上でNの効果が顕著になる。しかし、0.10質量%を超える過剰量のNが含まれると、窒化物の生成量が増大し、表面欠陥が発生しやすくなる。
Bは、熱間加工性,焼入れ性の改善に有効な成分であり、0.001質量%以上で熱間加工割れの発生を抑制する効果がみられる。しかし、0.010質量%を超える過剰量のBが含まれると、硼化物の生成量が増大し、表面欠陥が発生しやすくなる。
N is a component that increases the strength of the martensite phase in the same manner as C, and the effect of N becomes remarkable when it is 0.005% by mass or more. However, when an excessive amount of N exceeding 0.10% by mass is included, the amount of nitride generated increases and surface defects are likely to occur.
B is an effective component for improving hot workability and hardenability, and an effect of suppressing the occurrence of hot work cracks is observed at 0.001% by mass or more. However, when an excessive amount of B exceeding 0.010% by mass is contained, the amount of borides generated increases and surface defects are likely to occur.

各成分の含有量を規制することに加え、式(1)で定義されるAHV値及び式(2)で定義されるSHV値がそれぞれAHV≦250,SHV≧350となるように成分調整している。AHV≦250,SHV≧350は、多数の実験結果から得られた条件であり、焼鈍状態ではマルテンサイト生成量を少量に留めて比較的軟らかい材質に調質し、深冷処理で多量のマルテンサイト相を生成させて高強度化する。したがって、焼鈍後の比較的軟質な状態で平坦形状に修正でき、平坦化した後の深冷処理で強度,硬度が上昇するので、ダイシングソーテープフレームに必要な耐疵付き性も改善される。   In addition to regulating the content of each component, adjust the components so that the AHV value defined by Equation (1) and the SHV value defined by Equation (2) are AHV ≦ 250 and SHV ≧ 350, respectively. Yes. AHV ≦ 250 and SHV ≧ 350 are conditions obtained from a number of experimental results. In the annealed state, the amount of martensite produced is kept small and tempered to a relatively soft material, and a large amount of martensite is obtained by deep cooling. A phase is formed to increase the strength. Therefore, it can be corrected to a flat shape in a relatively soft state after annealing, and the strength and hardness are increased by a deep cooling process after the flattening, so that the scratch resistance required for the dicing saw tape frame is also improved.

次いで、ステンレス鋼からダイシングソーテープフレームを製造する方法を簡単に説明する。
所定組成に調整されたステンレス鋼を、好ましくは真空溶解炉で溶解した後、鋳造する。鋳造方法に特段の制約が加わらないが、連続鋳造法の採用が効率的である。鋳片は、必要に応じて熱間鍛造を経て熱間圧延される。熱間圧延条件は特に規制する必要はなく、通常の準安定オーステナイトステンレス鋼製造時の熱延条件が採用される。
Next, a method for manufacturing a dicing saw tape frame from stainless steel will be briefly described.
Stainless steel adjusted to a predetermined composition is preferably melted in a vacuum melting furnace and then cast. Although there are no particular restrictions on the casting method, it is efficient to use the continuous casting method. The slab is hot-rolled through hot forging as necessary. Hot rolling conditions do not need to be particularly restricted, and normal hot rolling conditions during the production of metastable austenitic stainless steel are adopted.

熱延鋼板を溶体化処理後に冷間圧延し、焼鈍することによりオーステナイト単相又はオーステナイト相中にマルテンサイト相が少量生成した焼鈍組織の鋼板が得られる。焼鈍条件も、通常の範囲内で十分である。冷間圧延及び焼鈍は、冷延鋼板がダイシングソーテープフレームとしての目標板厚になるまで繰り返される。なお、焼鈍後には酸洗工程が組み込まれており、鋼板表面からスケールを酸洗除去する。   A hot-rolled steel sheet is cold-rolled after solution treatment and annealed to obtain a steel sheet having an annealed structure in which a small amount of martensite phase is formed in the austenite single phase or austenite phase. The annealing conditions are also sufficient within the normal range. Cold rolling and annealing are repeated until the cold-rolled steel sheet reaches a target plate thickness as a dicing saw tape frame. In addition, the pickling process is incorporated after annealing, and a scale is pickled and removed from the steel plate surface.

目標板厚に圧延された冷延鋼板は、ロール等で形状矯正された後、ダイシングソーテープフレームの作製に必要な形状,サイズに裁断される。裁断された切板を上下の定盤に挟んで拘束し深冷処理する。切板を拘束する定盤としては、1.0〜5.0mm程度の板厚で、切板より広いステンレス鋼板の使用が好ましい。   The cold-rolled steel sheet rolled to the target thickness is straightened with a roll or the like and then cut into a shape and size necessary for manufacturing a dicing saw tape frame. The cut sheet is clamped between upper and lower surface plates and subjected to deep cooling. As the surface plate for restraining the cut plate, it is preferable to use a stainless steel plate having a plate thickness of about 1.0 to 5.0 mm and wider than the cut plate.

深冷処理は、−50℃以下の温度が好ましい。−50℃以下になる条件を容易に確保する上で、専用冷媒や液体窒素の気化を利用した極低温槽に切板を保持し、或いはドライアイス/アルコールの混合液に切板を浸漬する。深冷処理で完全にマルテンサイト変態させるため、−50℃以下の極低温雰囲気に好ましくは1時間以上保持する。深冷処理でオーステナイト相がマルテンサイト相に変態すると共に、拘束状態での深冷処理であるため変態前の残留応力が緩和され何れの方向にも均一な応力分布となる。すなわち、応力分布が均一で平坦度の高い鋼板に調質される。因みに、無負荷で深冷処理した後に形状修正する場合、表面残留応力の表裏差が大きくなるので研磨後に形状悪化,平坦度低下が生じやすい。   The deep cooling treatment is preferably performed at a temperature of −50 ° C. or lower. In order to easily secure the condition of −50 ° C. or lower, the cutting plate is held in a cryogenic tank using vaporization of a dedicated refrigerant or liquid nitrogen, or is immersed in a dry ice / alcohol mixture. In order to completely transform the martensite by deep cooling treatment, it is preferably kept in an extremely low temperature atmosphere of −50 ° C. or lower for 1 hour or longer. The austenite phase is transformed into the martensite phase by the deep cooling treatment, and the residual stress before the transformation is relaxed because of the deep cooling treatment in the constrained state, resulting in a uniform stress distribution in any direction. That is, the steel sheet is tempered to have a uniform stress distribution and a high flatness. Incidentally, when shape correction is performed after deep cooling without load, the difference between the front and back of the surface residual stress increases, so that shape deterioration and flatness reduction are likely to occur after polishing.

次いで、拘束深冷処理した切板を目標フレーム形状に加工する。加工法は、切板に導入される加工歪みを極力少なくする上でレーザ加工が好ましい。図2は、切板から得られるフレーム形状の一例を示す。レーザ加工でもバリ等の発生が避けられないので、レーザ加工後の研磨でバリを除去することによりダイシングソーテープフレームに仕上げる。   Next, the constrained deep-cooled cut plate is processed into a target frame shape. The processing method is preferably laser processing in order to minimize processing distortion introduced into the cut plate. FIG. 2 shows an example of a frame shape obtained from a cut plate. Since the generation of burrs and the like is unavoidable even by laser processing, the dicing saw tape frame is finished by removing the burrs by polishing after laser processing.

表1の組成をもつステンレス鋼80トンを真空溶解した後、厚さ:200mmの鋼塊に鋳造し、熱間圧延により板厚:3.0mmの熱延板を製造した。表中、鋼種Aが本発明で既定した成分条件を満足し、鋼種BがSUS420J2,鋼種CがSUS304,鋼種DがSUS430に相当する。   After 80 tons of stainless steel having the composition shown in Table 1 was vacuum-melted, it was cast into a steel ingot having a thickness of 200 mm, and a hot rolled sheet having a thickness of 3.0 mm was manufactured by hot rolling. In the table, steel type A satisfies the component conditions defined in the present invention, steel type B corresponds to SUS420J2, steel type C corresponds to SUS304, and steel type D corresponds to SUS430.

Figure 2006257500
Figure 2006257500

鋼種Aに関しては、熱延板を焼鈍・酸洗した後、板厚:1.5mmに冷間圧延し、更に焼鈍・酸洗した。得られた冷間焼鈍板をステンレス鋼板に挟んで拘束し、専用冷媒を用いた−70℃の保冷庫に6時間装入した。試験No.1では板厚:3mm,試験No.2では板厚:1mmのステンレス鋼板で冷間焼鈍板を拘束した。試験No.3では、ステンレス鋼板で拘束せずに無負荷で深冷処理した。   For steel type A, the hot-rolled sheet was annealed and pickled, then cold-rolled to a thickness of 1.5 mm, and further annealed and pickled. The obtained cold-annealed plate was restrained by being sandwiched between stainless steel plates and charged into a −70 ° C. cool box using a dedicated refrigerant for 6 hours. In the test No. 1, the plate thickness: 3 mm, and in the test No. 2, the cold-annealed plate was restrained with a stainless steel plate having a plate thickness of 1 mm. In test No. 3, the steel plate was not cooled with a stainless steel plate and was subjected to a deep cooling treatment with no load.

鋼種Bに関しては、熱延板を長時間焼鈍した後で酸洗し、板厚:1.5mmに冷間圧延した。次いで、冷延板を焼鈍・酸洗し、更に溶体化:1000℃×30分→水冷で焼き入れ、板厚:5mmのステンレス鋼板に挟んで拘束した状態で400℃×30分→空冷の焼戻しを施した。
鋼種Cでは、熱延板を焼鈍・酸洗した後、板厚:1.5mmに冷間圧延した。
鋼種Dでは、熱延板を長時間焼鈍した後で酸洗し、板厚:1.5mmに冷間圧延した。
Regarding steel type B, the hot-rolled sheet was annealed for a long time and then pickled and cold-rolled to a thickness of 1.5 mm. Next, the cold-rolled sheet is annealed and pickled, and further solutionized: 1000 ° C. × 30 minutes → quenched by water cooling, and plate thickness: 400 ° C. × 30 minutes restrained by sandwiching between 5 mm stainless steel plates → air-cooled tempered Was given.
In steel type C, the hot-rolled sheet was annealed and pickled, and then cold-rolled to a thickness of 1.5 mm.
In steel type D, the hot-rolled sheet was annealed for a long time and then pickled and cold-rolled to a sheet thickness of 1.5 mm.

各ステンレス鋼板から300mm角の試験片を切り出し、中心部周辺の三箇所を測定点に定め、各測定点で測定した結果を平均化して表面残留応力を算出した。
硬さ試験は、荷重98Nでビッカース硬度を測定し、五箇所の測定点における測定値を平均化した。
研磨には平面研削盤を用い、目標研削量を片面当り50μmに設定した。
また、表面残留応力測定後の試験片を形状測定用の定盤に載置し、隙間ゲージを用いて平坦度を測定した。測定値がダイシングソーテープフレームの要求平坦度:0.3mm以下であれば良好(○),0.3mmを超えると不良(×)として平坦度を評価した。
A 300 mm square test piece was cut out from each stainless steel plate, three locations around the center were determined as measurement points, and the results measured at each measurement point were averaged to calculate the surface residual stress.
In the hardness test, Vickers hardness was measured at a load of 98 N, and the measured values at five measurement points were averaged.
A surface grinder was used for polishing, and the target grinding amount was set to 50 μm per side.
Moreover, the test piece after surface residual stress measurement was mounted on the surface plate for shape measurement, and the flatness was measured using the clearance gauge. When the measured value is the required flatness of the dicing saw tape frame: 0.3 mm or less, the flatness was evaluated as good (◯), and when it exceeded 0.3 mm, the flatness was evaluated as defective (×).

表2の調査結果にみられるように、鋼種Aを用いた試験No.1,2では、表面残留応力の表裏差が8MPa,79MPa,硬さが448HV,研磨後の平坦度が0.15mm,0.25mmであり、何れの評価においても良好な結果であった。同じ鋼種Aを用いた場合でも、無負荷で深冷処理した試験No.3では、形状が悪化したため深冷処理後の形状修正が必要であった。この場合、表面残留応力の表裏差が121MPa,研磨後の平坦度が0.4mmとなっており、ダイシングソーテープフレームの要求平坦度が満足されなかった。試験No.1,2と試験No.3との対比から、表面残留応力の表裏差を±100MPa以内に収めることが平坦度の良好なダイシングソーテープフレームを得る上で必要なことが確認される。   As can be seen from the investigation results in Table 2, in Test Nos. 1 and 2 using steel type A, the difference in surface residual stress is 8 MPa, 79 MPa, the hardness is 448 HV, the flatness after polishing is 0.15 mm, It was 0.25 mm and was a good result in any evaluation. Even in the case of using the same steel type A, in Test No. 3 in which the cryogenic treatment was performed with no load, the shape was deteriorated, so that the shape correction after the cryogenic treatment was necessary. In this case, the difference between the front and back of the surface residual stress was 121 MPa, and the flatness after polishing was 0.4 mm, and the required flatness of the dicing saw tape frame was not satisfied. The comparison between Test No. 1 and No. 2 and Test No. 3 confirms that it is necessary to obtain a dicing saw tape frame with good flatness so that the difference in surface residual stress is within ± 100 MPa. .

試験No.4では、良好な硬さが得られるものの、表面残留応力の表裏差が大きいため、研磨後の平坦度が研磨前の平坦度に比べて悪化している。研磨による平坦度の悪化は、研磨後に残留応力の分布が不均一になったことが原因である。
試験No.5,6では、鋼種A,Bに比較して表面残留応力の表裏差が大きく硬さも低くなっている。大きな表面残留応力の表裏差は、硬さを得るため鋼種A,BをHT仕上げ(冷延仕上げ)した結果、表面残留応力が表裏で大きくばらついた現れであり、良好な平坦度が冷間圧延で得られ難いことを意味する。
In Test No. 4, although good hardness is obtained, the flatness after polishing is worse than the flatness before polishing because the front and back difference in surface residual stress is large. The deterioration of the flatness due to the polishing is caused by the uneven distribution of the residual stress after the polishing.
In Test Nos. 5 and 6, the difference in surface residual stress is large and the hardness is low compared to steel types A and B. The difference between the front and back of the large surface residual stress is a manifestation that the steel types A and B are HT-finished (cold-rolled) to obtain hardness, and the surface residual stress varies greatly between the front and back. It means that it is difficult to obtain with.

Figure 2006257500
Figure 2006257500

以上に説明したように、AHV≦250,SHV≧350となるように成分調整されたステンレス鋼板を目標形状に成形した後で深冷処理することにより得られるダイシングソーテープフレームは、表面残留応力の表裏差が小さいため研磨に伴う形状変化が少なく、良好な平坦度を維持している。そのため、チップ切出し時に十分な拘束力が半導体ウエハにかけられるので、生産性の高いダイシングが可能になる。   As described above, the dicing saw tape frame obtained by subjecting a stainless steel plate whose components have been adjusted to AHV ≦ 250 and SHV ≧ 350 to a target shape and then subjected to a deep cooling treatment has a surface residual stress of Since the difference between the front and back is small, the shape change accompanying polishing is small, and good flatness is maintained. For this reason, a sufficient restraining force is applied to the semiconductor wafer when cutting out the chips, so that dicing with high productivity becomes possible.

ダイシングソーテープフレームで拘束した半導体ウエハをダイシングしている説明図Explanatory drawing of dicing a semiconductor wafer restrained by a dicing saw tape frame 実施例で作製したダイシングソーテープフレームの形状,寸法を示す図Diagram showing the shape and dimensions of the dicing saw tape frame produced in the example

符号の説明Explanation of symbols

1:半導体ウエハ 2:ダイシングソーテープフレーム 3:ダイシングソー 1: Semiconductor wafer 2: Dicing saw tape frame 3: Dicing saw

Claims (1)

C:0.09〜0.17質量%,Si:1.0質量%以下,Mn:1.5質量%以下,Ni:4.0〜7.0質量%,Cr:14.0〜17.0質量%,N:0.10質量%以下,B:0.001〜0.010質量%を含み、式(1)で定義されるAHV値が250以下,式(2)で定義されるSHV値が350以上となるように成分調整された深冷処理型高強度ステンレス鋼板から作製され、表面残留応力の表裏差が±100MPa以内にあることを特徴とするダイシングソーテープフレーム。
AHV=985−135C−14Si−30Mn−43Ni−29Cr−265N ・・・・(1)
SHV=1882−255C−43Si−101Mn−70Ni−55Cr−921N ・・・・(2)
C: 0.09 to 0.17 mass%, Si: 1.0 mass% or less, Mn: 1.5 mass% or less, Ni: 4.0 to 7.0 mass%, Cr: 14.0 to 17. SHV including 0 mass%, N: 0.10 mass% or less, B: 0.001 to 0.010 mass%, AHV value defined by formula (1) is 250 or less, formula (2) A dicing saw tape frame produced from a deep-cooled high-strength stainless steel plate whose components have been adjusted to a value of 350 or more, and having a difference in surface residual stress within ± 100 MPa.
AHV = 985-135C-14Si-30Mn-43Ni-29Cr-265N (1)
SHV = 1882-255C-43Si-101Mn-70Ni-55Cr-921N (2)
JP2005076929A 2005-03-17 2005-03-17 Dicing saw tape frame Pending JP2006257500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076929A JP2006257500A (en) 2005-03-17 2005-03-17 Dicing saw tape frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005076929A JP2006257500A (en) 2005-03-17 2005-03-17 Dicing saw tape frame

Publications (1)

Publication Number Publication Date
JP2006257500A true JP2006257500A (en) 2006-09-28

Family

ID=37097078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076929A Pending JP2006257500A (en) 2005-03-17 2005-03-17 Dicing saw tape frame

Country Status (1)

Country Link
JP (1) JP2006257500A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110819913A (en) * 2019-11-27 2020-02-21 攀钢集团江油长城特殊钢有限公司 Chalcogenide free-cutting stainless steel and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110819913A (en) * 2019-11-27 2020-02-21 攀钢集团江油长城特殊钢有限公司 Chalcogenide free-cutting stainless steel and preparation method thereof
CN110819913B (en) * 2019-11-27 2020-12-04 攀钢集团江油长城特殊钢有限公司 Chalcogenide free-cutting stainless steel and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4857811B2 (en) Steel for knives
KR101631521B1 (en) Carburizing steel having excellent cold forgeability and method of manufacturing the same
JP5387073B2 (en) Steel plate for hot pressing, method for manufacturing the same, and method for manufacturing steel plate member for hot pressing
JP5440203B2 (en) Manufacturing method of high carbon hot rolled steel sheet
WO2014038510A1 (en) Stainless steel sheet and method for producing same
KR20120107148A (en) Hot-rolled steel sheet having excellent cold working properties and hardening properties, and method for producing same
JP2008069452A (en) Hot-rolled high-carbon steel sheet and process for production of the same
JP2018178197A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
US20180127858A1 (en) Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product
KR20190031278A (en) High frequency quenching steel
US20140076469A1 (en) High carbon thin steel sheet and method for producing same
KR20190028782A (en) High frequency quenching steel
KR20190028492A (en) High frequency quenching steel
KR20190028757A (en) High frequency quenching steel
EP2801635B1 (en) High carbon hot-rolled steel sheet with excellent hardenability and minimal in-plane anisotropy, and method for producing same
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JP2011202247A (en) Two-phase stainless steel material having excellent corrosion resistance
JP2006257500A (en) Dicing saw tape frame
JP2022069229A (en) Austenite stainless steel and method for manufacturing the same
JP2006249559A (en) Surface supporting plate made from stainless steel
JP5248222B2 (en) Cold tool steel manufacturing method
JP3219117B2 (en) Stainless steel strip for ID saw blade plate and manufacturing method thereof
JP2005344196A (en) High-carbon cold-rolled steel sheet superior in formability for extension flange
TWI815504B (en) Cold-rolled steel plate, steel parts, manufacturing method of cold-rolled steel plate, and manufacturing method of steel parts
JP4073844B2 (en) Stainless steel for motorcycle brake disc

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090507