WO2014038510A1 - Stainless steel sheet and method for producing same - Google Patents

Stainless steel sheet and method for producing same Download PDF

Info

Publication number
WO2014038510A1
WO2014038510A1 PCT/JP2013/073537 JP2013073537W WO2014038510A1 WO 2014038510 A1 WO2014038510 A1 WO 2014038510A1 JP 2013073537 W JP2013073537 W JP 2013073537W WO 2014038510 A1 WO2014038510 A1 WO 2014038510A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
less
stainless steel
annealing
alloy
Prior art date
Application number
PCT/JP2013/073537
Other languages
French (fr)
Japanese (ja)
Inventor
渋谷 将行
一芳 藤澤
正美 澤田
脇田 昌幸
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201380043929.6A priority Critical patent/CN104583440B/en
Priority to JP2014517304A priority patent/JP5960809B2/en
Priority to KR1020157003002A priority patent/KR101707345B1/en
Publication of WO2014038510A1 publication Critical patent/WO2014038510A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a stainless steel plate and a method for producing the same. More specifically, a stainless steel plate excellent in corrosion resistance and shape flatness, having a sufficiently fine crystal grain suitable for etching processing and laser processing that require recent precision, and suitable for precision processing, and its It relates to a manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2012-194214 for which it applied to Japan on September 4, 2012, and uses the content here.
  • stainless steel plates with fine crystal grains are suitable for fine processing such as photoetching and laser cutting.
  • Examples of such stainless steel plates include the following.
  • Patent Document 1 C: 0.03% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.1% or less, Ni: 4.0% or more and 20.0% or less Cr: 12.0% or more and 25.0% or less, N: 0.20% or less, and Nb: 0.01% or more and 0.3% or less, with the balance being Fe and impurities, average
  • a stainless steel plate for photoetching with a crystal grain size of 15 ⁇ m or less and a method for producing the same are disclosed.
  • Patent Document 2 as described above, C: 0.08% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.045% or less, S: 0.05% or less, Ni: 5.0% or more and 15% or less, Cr: 15% or more and 20% or less, and the balance is made of Fe and inevitable impurities, and the average crystal grain size is 15 ⁇ m or less.
  • the manufacturing method is disclosed.
  • Patent Documents 3 and 4 disclose a stainless steel plate for photoetching.
  • metastable austenitic stainless steel is used, work strain is introduced by cold rolling and work-induced martensitic transformation is promoted, and reverse transformation to austenitic structure is performed at a relatively low temperature. Is known to be effective.
  • SUS301 and SUS301L which have low austenite stability and are easy to process-induced martensite transformation, are known as component systems that are relatively easy to refine. These steel plates have been put to practical use in automobile cylinder head gaskets and diaphragm plates for diaphragm compressors. Or the material refined as a base material for photo-etching processing or laser processing is put into practical use.
  • the average crystal grain size is 6, 7, 8, 15 ⁇ m.
  • the average crystal grain size is 7, 8 ⁇ m.
  • the average crystal grain size is 6, 7, and 9 ⁇ m.
  • alloy B in Table 2 of Patent Document 4 the average crystal grain size is 6, 9 ⁇ m.
  • the conventional stainless steel plate containing 18% or more of Cr and 8% or more of Ni has a problem that the average crystal grain size is too coarse to be used in recent highly integrated metal mask applications. there were.
  • the average crystal grain size satisfying 5 ⁇ m or less is a composition range inferior in corrosion resistance of Cr: less than 18% and Ni: less than 8%.
  • an average crystal grain size of a stainless steel plate excellent in corrosion resistance containing 18% or more of Cr and 8% or more of Ni should be 5 ⁇ m or less. Can be confirmed to be difficult.
  • Patent Documents 1 to 4 described above have the following description as rolling reduction ratios before grain refinement annealing.
  • the rolling reduction during cold rolling before the final annealing is not particularly limited and may be a rolling reduction of about 40% or more that is normally performed”. Also, in this document, the experimental conditions for laboratory examples are described in [Table 2]. However, the rolling reduction before annealing is 50% in 13 cases out of 14 cases, and 65% in only one case.
  • Claim 3 of Patent Document 4 states that “after cold rolling at a rolling rate of 30% or more, heat treatment is performed at a temperature of 700 ° C. or more and 900 ° C. or less to make the average crystal grain size 10 ⁇ m or less”. Has been. Also, paragraph [0026] of the same document states that “If the rolling rate is less than 30%, sufficient strain that becomes a driving force for recrystallization does not occur, and a mixed grain structure is formed in the subsequent heat treatment, and the etched surface becomes rough. Therefore, the rolling ratio is set to 30% or more. " As described above, this document confirms that the rolling rate is as low as about 30%.
  • paragraphs [0030] to [0032] of the same document describe that, as an example, after cold rolling from 2.5 mm thickness to 1 mm thickness, fine grain annealing was performed at low temperature.
  • the rolling rate at this time is only 60%.
  • Patent Document 3 describes the rolling reduction before the fine grain annealing as in Patent Document 4. However, there is no description that the reduction rate before the grain refinement annealing contributes to the promotion of the grain refinement, and the condition of a very low reduction rate that only requires recrystallization.
  • Patent Document 2 does not describe the influence of the rolling reduction before grain refinement annealing on the average crystal grain size after grain refinement annealing. In the example of this document, only 60% of cases rolled from 2.5 mm to 1 mm are described.
  • Patent Document 7 and Patent Document 8 have been reported for the adverse effect of the oxide film formed on the stainless steel plate during the bright annealing on the etching processability.
  • JP 2003-3244 A Japanese Patent Application Laid-Open No. 2005-314772 JP 2005-320586 A JP 2005-320587 A JP 2009-299171 A JP 2011-1117024 A JP 2002-275541 A JP-A-11-269613
  • stainless steel sheets with a product thickness of 150 ⁇ m or less are frequently used in precision machining applications, but it is more difficult to secure a large rolling reduction with such thin sheet thickness, and it is not flat. Since it is difficult to correct the shape with a tension leveler or the like, a solution has been desired.
  • the present invention has been made in view of the above situation, and in order to ensure corrosion resistance equivalent to or higher than that of SUS304 that is generally used, it contains 18% or more of Cr and 8% or more of Ni, while maintaining an average.
  • An object is to provide a stainless steel plate suitable for precision machining with a crystal grain size of 5 ⁇ m or less.
  • the present inventors paid attention to the fact that the amount of C greatly affects the hardness of the generated martensite structure, and adjusted the component system so as to reduce the amount of C added. Furthermore, the amount of Nb added, which is highly effective in suppressing crystal grain growth, was optimized.
  • the present invention based on the above findings is as follows. [1] % By mass, C ⁇ 0.030%, Si ⁇ 0.80%, Mn ⁇ 1.20%, P ⁇ 0.045%, S ⁇ 0.01%, Cu ⁇ 0.60%, Mo ⁇ 0. 60%, Al ⁇ 0.02%, 18.0% ⁇ Cr ⁇ 19.0%, 8.0% ⁇ Ni ⁇ 9.0%, 0.03% ⁇ Nb ⁇ 0.12%, 0.02% ⁇ N ⁇ 0.1%, the balance consists of iron and impurities,
  • the Md30 value defined by the formula (1) is 25 to 55, A stainless steel plate having an average crystal grain size of 5 ⁇ m or less.
  • the present invention can sufficiently promote the work-induced martensite transformation without carrying out special cold rolling by reviewing all the composition ranges forming the alloy in detail and controlling them to an appropriate range.
  • a stainless steel plate suitable for metastable austenitic precision machining with excellent workability, rollability and shape flatness after rolling, suitable for crystal grain refinement, and excellent corrosion resistance is realized.
  • the effect of the present invention is remarkable when the thickness tolerance of variation such as thickness is small and the thickness of the product, which is difficult to correct the product shape, is 150 ⁇ m or less.
  • C content strongly enhances austenite stability and suppresses martensitic transformation, remarkably increases the strength of the transformed martensite structure, and lowers rolling workability. Therefore, the upper limit of C is limited to 0.030%.
  • C produces chromium carbide when annealed at a low temperature, and lowers the corrosion resistance. It also makes the recrystallization behavior unstable. Therefore, it is preferable that it is 0.025% or less. Although there is no particular lower limit, it is 0.003% or more in normal production.
  • the upper limit of Si is set to 0.80%. If there is no problem such as insufficient deoxidation in the production process, it is preferably 0.7% or less. Although there is no particular lower limit, it is usually 0.10% or more.
  • Mn is an austenite generating element and lowers the Md value. Therefore, the upper limit of Mn is 1.20%.
  • a large amount of Mn is preferably 1.0% or less in order to reduce the corrosion resistance. Although there is no particular lower limit, it is preferably 0.30% or more because it also contributes to the strength of the steel.
  • the amount of P that impairs hot workability is preferably small, and the upper limit is 0.045%.
  • the amount of S that impairs hot workability is preferably small, and the upper limit is 0.01%. More preferably, it is 0.007% or less.
  • Cu is an austenite generating element and lowers the Md value. Therefore, the upper limit of Cu is set to 0.60%. It is preferable that it is 0.5% or less. Although a lower limit is not particularly provided, it may be contained by 0.05% or more by bringing in from a scrap raw material or the like.
  • ⁇ 18.0% ⁇ Cr ⁇ 19.0% Cr is required to be 18.0% or more from the viewpoint of corrosion resistance. From the viewpoint of increasing the Md value, the upper limit of Cr is 19.0%. From the balance between corrosion resistance and cost, it is preferably 18.5% or less.
  • Ni is required to be 8.0% or more from the viewpoint of corrosion resistance. From the viewpoint of increasing the Md value, the upper limit of Ni is limited to 9.0%. Ni increases the austenite stability and is an expensive element, so it is preferably 8.5% or less.
  • Mo limits the upper limit to 0.60% from the viewpoint of increasing the Md value. Since Mo is an expensive material, its content is preferably 0.50% or less. Although there is no particular lower limit, 0.05% or more is effective because it contributes to the improvement of corrosion resistance.
  • Nb is an indispensable element for suppressing the growth of crystal grains and promoting the refinement, and it is essential to contain more than 0.03%. If it is 0.03% or less, these sufficient effects cannot be exhibited.
  • the chemical composition of the present invention is less likely to be finer than the 301L system, it is preferable to contain more than 0.05% Nb. Excess content not only causes an increase in cost, but also inhibits recrystallization, so the upper limit is made 0.12%. In order to ensure a stable recrystallization behavior, the content is preferably 0.10% or less.
  • N like C, greatly increases the austenite stability, so its upper limit is limited to 0.1%. N lowers the rollability in hot rolling and increases surface scratches, so 0.08% or less is preferable. However, 0.02% or more is added because it contributes to improving the strength of the steel by solid solution strengthening. From the viewpoint of improving the strength, addition of 0.03% or more is preferable.
  • the upper limit of Al is 0.02%. Preferably, it is 0.015% or less.
  • Al will reduce diffusion bonding property, and in such a use, it is preferable to set it as 0.01% or less. More preferably, it is 0.008% or less.
  • the lower limit is not particularly set, even when no intentional addition is performed and Al is not used as a deoxidizer, it is often contained in an amount of about 0.001%.
  • Md30 value 25-55
  • the Md30 value indicating the stability of the austenite structure is a value obtained from the chemical composition of steel by the equation (1) (Gladman's equation).
  • the Md30 value means the temperature at which 50% martensitic transformation occurs when 30% strain is applied. The higher the Md30 value, the more martensitic transformation is promoted, and the finer graining by reverse transformation becomes easier.
  • the Md30 value that can realize an average crystal grain size of 5 ⁇ m or less is not limited to 25 or more, without performing cold rolling with special cooling or cold rolling with significantly multiple passes. From the viewpoint of promoting martensitic transformation, the Md30 value is preferably 28 or more, and more preferably 30 or more. On the other hand, when Md30 is high and the stability of austenite is low, work hardening during cold rolling is large and the rolling load is large, so the upper limit is 55.
  • the Md30 value is preferably 48 or less, more preferably 40 or less. It is.
  • ⁇ Average crystal grain size ⁇ 5 ⁇ m The average grain size is limited to 5 ⁇ m or less. The reason for the limitation is shown below. It is known that the etched surface and the laser processed surface are affected by the crystal grain size, and the smoother the processed surface, the finer the particle. In recent high performance metal masks, stainless steel plates with a thickness of 150 ⁇ m to 80 ⁇ m are mainly used. For materials provided for high-performance metal masks and precision etching applications, a thickness accuracy of ⁇ 4% is guaranteed, and variations in the thickness of actual products are generally within ⁇ 3%. .
  • the plate thickness accuracy of ⁇ 3.2 to 6.0 ⁇ m is guaranteed, and the actual product is limited to plate thickness variations of ⁇ 2.4 to 4.5 ⁇ m. is there.
  • the average crystal grain size is preferably 4.5 ⁇ m or less.
  • the average crystal grain size is more preferably 3.0 ⁇ m or less.
  • the stainless steel sheet of the present invention is effective in applications that require corrosion resistance and refinement of crystal grains other than precision processing applications.
  • applications include applications where fatigue strength is expected to be improved by refining crystal grains (for example, diaphragm plates for cylinder head gasket diaphragm type compressors for automobiles) or cases where surface roughening does not occur after molding.
  • Preferable uses equipment parts such as a stainless steel housing, a mechanical chassis, or a toner blade of a printing apparatus can be mentioned.
  • the manufacturing method of the stainless steel plate of this invention is demonstrated.
  • the raw material is melted so as to have a predetermined chemical composition, and a static casting or continuous casting is hot-rolled and annealed. Thereafter, the hot-rolled steel sheet from which the oxide scale on the surface is removed is cold-rolled at a predetermined rolling rate and annealed at a predetermined temperature.
  • a hot rolled coil as a base material is required to have excellent flatness.
  • a plate thickness deviation sheet crown
  • the rolling is such that only one side is stretched and the stable rolling becomes difficult.
  • a 600 mm wide hot rolled coil is employed from the beginning, cold rolling becomes stable and it is relatively easy to ensure a large reduction ratio.
  • a rolling reduction exceeding 65% is essential from the viewpoint of promoting the processing-induced martensitic transformation and introducing sufficient processing strain. From the viewpoint of reducing the grain size after annealing, the higher the rolling reduction, the better.
  • a rolling reduction of more than 70% is preferable in order to stably realize fine graining even if there is manufacturing variation during mass production. If the rolling shape does not deteriorate during cold rolling, it is more preferable to set the rolling reduction to 75% or more.
  • the thickness before cold rolling is generally 300 ⁇ m or less, and a large reduction ratio is ensured due to the fact that the thickness of the rolled material is thin relative to the work roll diameter. Is particularly difficult.
  • the hardness increase of the transformed martensite structure is suppressed, and even the component system in which martensitic transformation is likely to proceed is reduced.
  • cold rolling exceeding 70% can be stably performed.
  • the upper limit of the rolling reduction is not particularly defined, but is usually 90% or less because the hardness of the material increases with rolling, making rolling difficult.
  • -Annealing temperature 810-940 ° C If the annealing temperature is high, crystal grains grow and become coarse, so the upper limit of the annealing temperature is 940 ° C. From the viewpoint of preventing grain growth, 900 ° C. or lower is preferable. In order to make the average particle size 3 ⁇ m or less, 875 ° C. or less is preferable. On the other hand, if the annealing temperature is too low, the number of non-recrystallized regions increases and the molding processability decreases, so the annealing temperature is limited to 810 ° C. or higher. Preferably it is 825 ° C or more. Since the recrystallization behavior changes depending on the selected component system and the rolling reduction before annealing, it is necessary to determine an appropriate annealing temperature within the above temperature range in order to stably secure a refined structure. preferable.
  • the influence of the annealing time is relatively small, and recrystallization proceeds in a short time, so the lower limit of the annealing time is not particularly limited. What is necessary is just to implement on general manufacturing conditions, and what is necessary is just to hold
  • Example 1 For chemical compositions A to I shown in Table 1, 30 kg test dissolution was performed. The setting concept of each alloy is as follows. In the following table, the underline indicates outside the scope of the present invention. The chemical composition “-” indicates that inclusion is not intended.
  • Alloy A invention example, an example of a preferred form of the present invention.
  • Alloy B Invention example, within the scope of the present invention, the Md30 value is increased by lowering the C content.
  • Alloy C Inventive example, within the scope of the present invention, the Md30 value is lowered by increasing the C content.
  • Alloy D Comparative example, a general SUS304 component system in which the C content and Md30 value are outside the scope of the present invention.
  • Alloy E Comparative example, alloy D with reduced Cu and Mo contents and Md30 value within the scope of the present invention. C is out of range.
  • Alloy F Comparative example, general SUS304L component system. Ni amount and Md30 value are outside the scope of the present invention.
  • Alloy G Comparative example, the chemical composition is excessively reduced, and the Md30 value exceeds the range of the present invention.
  • Alloy H Comparative example, SUS301L system proven as a fine-grained material. Low Cr and Ni contents are outside the scope of the present invention.
  • Alloy I Comparative example, the content of Cr and Ni was too high, and the Md30 value was below the range of the present invention.
  • Alloys A to I were melted in a high frequency melting furnace and statically cast into an ingot to obtain an ingot (60 mm ⁇ 200 mm ⁇ 340 mm) of about 30 kg. After the surface of the ingot was carefully treated by mechanical cutting, it was heated to 1150 ° C. and rolled to a thickness of 6 mm by hot rolling. After hot rolling, annealing was performed by holding at 1130 ° C. for 4 minutes, and the thickness of the plate was adjusted to 5 mm while removing the oxide scale on the surface by mechanical grinding. Thereafter, it was cold-rolled to 2 mm with a cold rolling mill to produce 6 cold-rolled steel sheets each exceeding 2 mm ⁇ 180 mm ⁇ 1000 mm and heated to 1100 ° C. in an Ax gas atmosphere (75% hydrogen—25% nitrogen). Annealed by holding for 2 minutes.
  • Ax gas atmosphere 75% hydrogen—25% nitrogen
  • test piece thus rolled was heat-treated by holding it at temperatures of 800 ° C., 820 ° C., 870 ° C., 920 ° C., and 960 ° C. for 30 seconds in an Ax gas atmosphere.
  • test piece after the heat treatment was cut in a direction perpendicular to the rolling, and the average crystal grain size was measured by observing the cross section with an optical microscope.
  • Alloy H alone has a particle size of 5 ⁇ m or less even when the rolling reduction is 60%, and it was reconfirmed that it is a component system suitable for refinement.
  • alloys A, B, C, E, G, and H are selected and cold-rolled at a rolling reduction exceeding 65% (60 for alloy H). % Or more is acceptable).
  • the final judgment of the rolling load was determined that the rolling load was excessive when the maximum current (mill current) consumed by the rolling motor during rolling exceeded 80A.
  • Table 4 shows the survey results.
  • Alloys A, B, C, E, G, and H were confirmed to have an average grain size of less than 5 ⁇ m when held at an annealing temperature of 820 ° C. to 920 ° C. for 30 seconds.
  • Alloys A, B, G, and H were confirmed to have an average particle size of 3.0 ⁇ m or less when held for 30 seconds in the above annealing temperature range.
  • the corrosion resistance was evaluated by measuring the pitting potential by the dynamic potential method according to JIS G 0577, using a test piece annealed at 920 ° C. after cold rolling at a rolling reduction of 75%.
  • the evaluation was performed based on Vc′100, and it was determined that 300 mV or more passed on the basis of the saturated calomel electrode, and less than that was rejected.
  • the alloy A was at a pass level, but the alloy H having a low Cr and Ni content was rejected.
  • the test piece annealed at 870 ° C. for 30 seconds was confirmed to have a clear etching process with a rectangular shape according to the resist pattern, and was judged to have no problem as a stainless steel plate for precision processing.
  • the sample annealed at 800 ° C. for 3600 seconds it was confirmed that the etching processed part was inferior in linearity, and the shape of the processed hole varied from pattern to pattern, and used as a stainless steel plate for precision processing. I decided I could't.
  • the measurement result of the slit opening width is that the average value is 102 ⁇ m and the standard deviation is 3 ⁇ m (2.9% with respect to the average value) in the specimen annealed at 870 ° C. for 30 seconds.
  • the specimens annealed at 800 ° C for 3600 seconds have a large variation of 104 ⁇ m in average value and 7 ⁇ m in standard deviation (6.7% of the average value), which is not suitable as a material for precision processing. Was confirmed.
  • the cause of the deterioration of the linearity of the etched portion is considered to be due to the poor adhesion between the stainless steel plate and the photoresist.
  • the cause of the variation in the shape of the processing hole for each pattern is thought to be due to the difference in the amount of dissolution depending on the location because the activation time at the initial stage of etching processing was different due to the presence of a strong coating layer. It is done.
  • Alloy J Inventive example, an example of a preferred embodiment of the present invention, which corresponds to alloy A in laboratory tests.
  • Alloy K Comparative example, a general SUS304 component system, the amount of C and the Md30 value are out of the scope of the present invention, and correspond to the laboratory test alloy D.
  • Alloy L Comparative example, Cu and Mo are reduced from alloy D, and Md30 value is within the range of the present invention.
  • C is out of range chemical composition and corresponds to alloy E in the laboratory test.
  • Alloy M Comparative example, general SUS304L component system.
  • the amount of Ni and the Md30 value are chemical compositions outside the scope of the present invention and correspond to laboratory test alloy F.
  • the alloy of each component was melted in the atmosphere of 2.5 tons and continuously cast to obtain a continuously cast slab of 90 mm ⁇ 640 mm ⁇ 5400 mm.
  • the surface was cared for by cutting to make it 85 mm ⁇ 640 mm ⁇ 4800 mm.
  • the hot-rolled coil was subjected to air annealing at 1150 ° C. and then pickled with a mixed solution of hydrofluoric acid and nitric acid.
  • first cold rolling After cold rolling, it was subjected to atmospheric annealing at 1150 ° C. and then pickled with a mixed solution of hydrofluoric acid and nitric acid.
  • cold rolling (second cold rolling) was performed to 0.37 mmt using a reversible 6-stage cold rolling mill.
  • the rolling reduction at this time is 82%.
  • annealing heat treatment was performed at 850 ° C. for 48 seconds in a reducing Ax gas atmosphere (hydrogen 75% -nitrogen 25%).
  • finish rolling to 0.15 mm was performed using a reversible 6-stage cold rolling mill.
  • heat treatment was performed in the range of 600 to 800 ° C. to reduce residual stress.
  • the average crystal grain size was measured by cutting out a small amount of sample after heat treatment in a bright annealing furnace and performing micro observation using an optical microscope in a cross section perpendicular to rolling.
  • the manufactured rolled stainless steel plate was cut into 0.15 mm ⁇ 600 mm ⁇ 420 mm and subjected to etching. Etching is performed using a ferric chloride aqueous solution with a liquid temperature of 50 ° C. and a Baume degree of 43 degrees (about 40 mass% in mass percent), pressurized to 0.5 MPa, and sprayed with an etching solution only on one side for 100 seconds from a spray nozzle. And carried out. By measuring the surface roughness of the half-etched surface in which about half of the plate thickness was etched in this way, using a stylus type surface roughness meter, the center line average roughness (Ra) in the direction perpendicular to rolling was measured. The etching processability was evaluated. The measurement length was 4.0 mm, and the cut-off value for removing waviness was 0.80 mm.
  • Table 7 shows the number of rolling passes in the second cold rolling in each alloy, the value obtained by dividing the total rolling reduction (82%) by the number of rolling passes, the average crystal grain size after bright annealing, and measurement after finish rolling.
  • the centerline average roughness (Ra) of the half-etched surface and the overall judgment result are shown.
  • the intended cold rolling with a rolling rate of 82% was carried out for all alloys, but the number of passes and the rolling load at that time varied depending on the alloy.
  • the final 4 passes of Alloy K and the final 5 passes of Alloy L are rolled with a large tensile tension and rolling load, but the rolling rate per pass is less than 10%.
  • the rolling load is not only high, but the product shape after rolling is apt to be deteriorated, and rolling under a condition of a large load and a low pressure reduction rate is unavoidable.
  • alloys J and L the average crystal grain size after grain refinement annealing using a bright annealing furnace was 3.0 ⁇ m or less for alloys J and L. Alloys K and M are also refined to 10 ⁇ m or less by carrying out the large rolling and low-temperature heat treatment, but they are not 5.0 ⁇ m or less, which is the object of the present invention.
  • the center line average roughness of the half-etched surface after half-etching in the final product is confirmed to be smoother than that of other alloys in alloys J and L, 0.28 ⁇ m and 0.32 ⁇ m, respectively. .
  • alloys K and L are inferior in rolling productivity, and alloys K and M cannot have an average crystal grain size of 5 ⁇ m or less, and as a comprehensive judgment, only alloy J is superior. It was.

Abstract

A stainless steel sheet suitable for precision machining, which comprises, in mass%, C ≤ 0.030%, Si ≤ 0.80%, Mn ≤ 1.20%, P ≤ 0.045%, S ≤ 0.01%, Cu ≤ 0.60%, Mo ≤ 0.60%, Al ≤ 0.02%, 18.0% ≤ Cr ≤ 19.0%, 8.0% ≤ Ni ≤ 9.0%, 0.03% < Nb ≤ 0.12%, 0.02% ≤ N ≤ 0.1% and a remainder made up by iron and impurities, wherein the Md30 value as defined by formula (1) is 25 to 55, and the average crystal grain diameter is 5 μm or less. Formula (1): Md30 = 497-462(C+N)-9.2(Si)-8.1(Mn)-13.7(Cr)-20(Ni+Cu)-18.5(Mo) In formula (1), C, N, Si, Mn, Cr, Ni, Cu and Mo respectively represent the contents (unit: mass%) of the corresponding elements in the steel.

Description

ステンレス鋼板およびその製造方法Stainless steel sheet and manufacturing method thereof
 本発明は、ステンレス鋼板およびその製造方法に関する。より詳しくは、耐食性と形状の平坦性に優れ、最近の精密性が要求されるエッチング加工やレーザー加工に適するように結晶粒が十分に微細化された、精密加工用に好適なステンレス鋼板およびその製造方法に関する。本願は、2012年9月4日に日本に出願された特願2012-194214号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a stainless steel plate and a method for producing the same. More specifically, a stainless steel plate excellent in corrosion resistance and shape flatness, having a sufficiently fine crystal grain suitable for etching processing and laser processing that require recent precision, and suitable for precision processing, and its It relates to a manufacturing method. This application claims priority based on Japanese Patent Application No. 2012-194214 for which it applied to Japan on September 4, 2012, and uses the content here.
 近年、精密加工技術は急速に進歩し、従来よりも加工性に優れたステンレス材料が求められている。特に要求されている点は、耐食性、形状の平坦性、結晶粒が十分に細粒化されていることおよび経済的であることである。 In recent years, precision processing technology has advanced rapidly, and there is a demand for stainless steel materials that are superior in workability. Particularly required are corrosion resistance, flatness of the shape, sufficiently fine crystal grains, and economical.
 フォトエッチング加工やレーザーカット加工のような微細加工には、結晶粒が微細化されたステンレス鋼板が適している。このようなステンレス鋼板は、例えば、以下に示すものが挙げられる。 ¡Stainless steel plates with fine crystal grains are suitable for fine processing such as photoetching and laser cutting. Examples of such stainless steel plates include the following.
 特許文献1には、C:0.03%以下、Si:1.0%以下、Mn:2.0%以下、P:0.1%以下、Ni:4.0%以上20.0%以下、Cr:12.0%以上25.0%以下、N:0.20%以下、およびNb:0.01%以上0.3%以下の範囲で含有し、残部がFeおよび不純物からなり、平均結晶粒径が15μm以下のフォトエッチング加工用ステンレス鋼板とその製法が開示されている。 In Patent Document 1, C: 0.03% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.1% or less, Ni: 4.0% or more and 20.0% or less Cr: 12.0% or more and 25.0% or less, N: 0.20% or less, and Nb: 0.01% or more and 0.3% or less, with the balance being Fe and impurities, average A stainless steel plate for photoetching with a crystal grain size of 15 μm or less and a method for producing the same are disclosed.
 特許文献2には、上記と同様にC:0.08%以下、Si:1.0%以下、Mn:2.0%以下、P:0.045%以下、S:0.05%以下、Ni:5.0%以上15%以下、Cr:15%以上20%以下の範囲で含有し、残部がFeおよび不可避的不純物からなり、平均結晶粒径が15μm以下のフォトエッチング加工用ステンレス鋼板とその製法が開示されている。 In Patent Document 2, as described above, C: 0.08% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.045% or less, S: 0.05% or less, Ni: 5.0% or more and 15% or less, Cr: 15% or more and 20% or less, and the balance is made of Fe and inevitable impurities, and the average crystal grain size is 15 μm or less. The manufacturing method is disclosed.
 また、特許文献3や4にも、フォトエッチング加工用ステンレス鋼板が開示されている。 Also, Patent Documents 3 and 4 disclose a stainless steel plate for photoetching.
 ここで、結晶粒を微細化するには、準安定オーステナイト系ステンレス鋼を用い、冷間圧延で加工歪を導入すると共に加工誘起マルテンサイト変態を促進し、比較的低温でオーステナイト組織へ逆変態させることが有効であることが知られている。 Here, in order to refine the crystal grains, metastable austenitic stainless steel is used, work strain is introduced by cold rolling and work-induced martensitic transformation is promoted, and reverse transformation to austenitic structure is performed at a relatively low temperature. Is known to be effective.
 また、オーステナイト安定度が低く、加工誘起マルテンサイト変態が容易なSUS301やSUS301Lが比較的細粒化し易い成分系として知られている。これらの鋼板は、自動車のシリンダーヘッドガスケットやダイヤフラム用圧縮機のダイヤフラム板などで実用化されている。あるいはフォトエッチング加工やレーザー加工用の母材として細粒化した材料が実用化されている。 Also, SUS301 and SUS301L, which have low austenite stability and are easy to process-induced martensite transformation, are known as component systems that are relatively easy to refine. These steel plates have been put to practical use in automobile cylinder head gaskets and diaphragm plates for diaphragm compressors. Or the material refined as a base material for photo-etching processing or laser processing is put into practical use.
 しかしながら、このような301系材料ではCrとNiの含有量がSUS304よりも低く、耐食性が要求される環境では安心して使用できないという問題がある。このため、最も一般的に使用されているステンレス鋼板は、18%以上のCrと8%以上のNiを含有するSUS304である。 However, such 301-based materials have a problem that the contents of Cr and Ni are lower than SUS304 and cannot be used in an environment where corrosion resistance is required. For this reason, the most commonly used stainless steel sheet is SUS304 containing 18% or more of Cr and 8% or more of Ni.
 しかし、SUS304と同等以上の耐食性を持ち、十分に結晶粒が微細化された材料は以前より強く求められていたが、工業的には実現されていなかった。例えば、特許文献1の表2の鋼種Dでは、平均結晶粒径が、6、7、8、15μmである。特許文献2の表3の鋼種C、Dでは、平均結晶粒径が、7、8μmである。特許文献3の表2の合金Bでは、平均結晶粒径が、6、7、9μmである。特許文献4の表2の合金Bでは、平均結晶粒径が、6、9μmである。このように、18%以上のCrと8%以上のNiを含有する従来のステンレス鋼板では、近年の高集積化したメタルマスク用途等で使用するには、平均結晶粒径が粗すぎるという問題があった。これら特許文献1~4において、平均結晶粒径が5μm以下を満足しているのは、いずれもCr:18%未満、Ni:8%未満の耐食性に劣る組成範囲である。このように、細粒化を目的としたこれら特許文献1~4により、18%以上のCrと8%以上のNiを含有した耐食性に優れるステンレス鋼板では、平均結晶粒径を5μm以下とすることが困難であることが確認できる。 However, a material having a corrosion resistance equivalent to or better than that of SUS304 and sufficiently refined crystal grains has been sought more strongly than before, but has not been realized industrially. For example, in the steel type D of Table 2 of Patent Document 1, the average crystal grain size is 6, 7, 8, 15 μm. In steel types C and D in Table 3 of Patent Document 2, the average crystal grain size is 7, 8 μm. In alloy B in Table 2 of Patent Document 3, the average crystal grain size is 6, 7, and 9 μm. In alloy B in Table 2 of Patent Document 4, the average crystal grain size is 6, 9 μm. As described above, the conventional stainless steel plate containing 18% or more of Cr and 8% or more of Ni has a problem that the average crystal grain size is too coarse to be used in recent highly integrated metal mask applications. there were. In these Patent Documents 1 to 4, the average crystal grain size satisfying 5 μm or less is a composition range inferior in corrosion resistance of Cr: less than 18% and Ni: less than 8%. As described above, according to Patent Documents 1 to 4 for the purpose of refining, an average crystal grain size of a stainless steel plate excellent in corrosion resistance containing 18% or more of Cr and 8% or more of Ni should be 5 μm or less. Can be confirmed to be difficult.
 その理由は次の通りである。オーステナイト安定度が比較的高いSUS304の成分系では、通常の圧延を実施しただけでは加工誘起マルテンサイト変態が不十分であり、低温焼鈍を実施したとしても十分な細粒材を得ることは困難であるためである。 The reason is as follows. In the component system of SUS304 having a relatively high austenite stability, the processing-induced martensite transformation is insufficient only by carrying out ordinary rolling, and it is difficult to obtain sufficient fine-grained materials even if low-temperature annealing is carried out. Because there is.
 また、上記の特許文献1~4には細粒化焼鈍前の圧延圧下率として以下の記載がある。 In addition, Patent Documents 1 to 4 described above have the following description as rolling reduction ratios before grain refinement annealing.
 特許文献1の段落0024には、「最終焼鈍前の冷間圧延時の圧下率も特に制限はなく通常行っている40%程度以上の圧下率であればよい。」と記載されている。また、同文献には、実験室的な実施例の試作条件が[表2]に記載されている。しかし、焼鈍前圧下率は、全14例中の13例で50%、1例だけ65%で実施されている。 In paragraph 0024 of Patent Document 1, it is described that “the rolling reduction during cold rolling before the final annealing is not particularly limited and may be a rolling reduction of about 40% or more that is normally performed”. Also, in this document, the experimental conditions for laboratory examples are described in [Table 2]. However, the rolling reduction before annealing is 50% in 13 cases out of 14 cases, and 65% in only one case.
 特許文献4の請求項3には、「圧延率が30%以上で冷間圧延した後、700℃以上900℃以下の温度で熱処理することによって平均結晶粒径を10μm以下とする」ことが記載されている。また、同文献の段落[0026]には、「圧延率が30%未満では再結晶の駆動力となる十分な歪が入らず、その後の熱処理において混粒組織となり、エッチング面が粗面化する。したがって、圧延率を30%以上とする。」と記載されている。このように、同文献では、30%程度の低い圧延率であることが確認される。 Claim 3 of Patent Document 4 states that “after cold rolling at a rolling rate of 30% or more, heat treatment is performed at a temperature of 700 ° C. or more and 900 ° C. or less to make the average crystal grain size 10 μm or less”. Has been. Also, paragraph [0026] of the same document states that “If the rolling rate is less than 30%, sufficient strain that becomes a driving force for recrystallization does not occur, and a mixed grain structure is formed in the subsequent heat treatment, and the etched surface becomes rough. Therefore, the rolling ratio is set to 30% or more. " As described above, this document confirms that the rolling rate is as low as about 30%.
 さらに同文献の段落[0030]~[0032]には、実施例として、2.5mm厚さから1mm厚さまで冷間圧延した後に、低温での細粒化焼鈍したことが記載されている。このときの圧延率は60%に過ぎない。 Furthermore, paragraphs [0030] to [0032] of the same document describe that, as an example, after cold rolling from 2.5 mm thickness to 1 mm thickness, fine grain annealing was performed at low temperature. The rolling rate at this time is only 60%.
 特許文献3には、特許文献4と同様に細粒化焼鈍前の圧下率に関して記載されている。しかし、細粒化焼鈍前の圧下率が細粒化の促進に寄与することについての記載はなく、単に再結晶が起きれば良いというだけの極めて低い圧下率の条件が記載されている。 Patent Document 3 describes the rolling reduction before the fine grain annealing as in Patent Document 4. However, there is no description that the reduction rate before the grain refinement annealing contributes to the promotion of the grain refinement, and the condition of a very low reduction rate that only requires recrystallization.
 特許文献2には、細粒化焼鈍前の圧下率が細粒化焼鈍後の平均結晶粒径に及ぼす影響についての記載はない。同文献の実施例には、2.5mmから1mmまで圧延した、60%の事例が記載されているだけである。 Patent Document 2 does not describe the influence of the rolling reduction before grain refinement annealing on the average crystal grain size after grain refinement annealing. In the example of this document, only 60% of cases rolled from 2.5 mm to 1 mm are described.
 焼鈍前の加工歪が結晶粒の微細化に寄与することは古くから知られている。にもかかわらず、結晶粒の微細化を目指したこれらの発明において、細粒化焼鈍前の圧下率についての十分な記載がない理由は、実際の量産製造において、大きな圧延率を確保することが生産性と品質の観点から困難であるからに他ならない。 It has long been known that processing strain before annealing contributes to the refinement of crystal grains. Nonetheless, in these inventions aimed at crystal grain refinement, the reason why there is not enough description about the reduction rate before grain refinement annealing is to ensure a large rolling reduction in actual mass production. This is because it is difficult from the viewpoint of productivity and quality.
 SUS304系の成分系であっても、特別に冷却して圧延した場合や、生産性の低下を許容して何パスも繰り返すような圧延を実施して徹底的な大圧下を加えた場合には、マルテンサイトへの変態が進んで結晶粒を微細化できる可能性はある。しかし、そのような特別な圧延による結晶粒の微細化は、工業的に効率的な生産とはなり難く、事実そのような製品は見当たらない。 Even if it is a SUS304-based component system, when it is specially cooled and rolled, or when rolling is repeated so as to allow a number of passes to allow a reduction in productivity, a thorough large reduction is applied. There is a possibility that the crystal grains can be refined by the transformation to martensite. However, refinement of crystal grains by such special rolling is unlikely to be industrially efficient production, and in fact no such product is found.
 ここで、特別な圧延による結晶粒の微細化に関して、例えば次の報告がある。特許文献5、6には、プレス成形性の改善を目的として、冷間圧延時のステンレス鋼板を水冷することによってマルテンサイト変態を促進した結果、SUS304系の成分でも5μm以下の細粒化ができたとの記載がある(特許文献5の表2の鋼No.25、表3の試験No.31、特許文献6の表2の鋼No.25、表3の試験No.32)。しかしながら、水冷という特別な冷間圧延を実施しなかった場合には、細粒化させやすいSUS301L系の成分(鋼No.1)でさえ、7μmまでしか細粒化できていない。細粒化が困難なSUS304系の成分については、水冷なしの試験すら実施されていない。 Here, for example, there are the following reports regarding the refinement of crystal grains by special rolling. In Patent Documents 5 and 6, martensitic transformation is promoted by water-cooling a stainless steel plate during cold rolling for the purpose of improving press formability. As a result, even SUS304-based components can be refined to 5 μm or less. (Steel No. 25 in Table 2 of Patent Document 5, Test No. 31 in Table 3, Steel No. 25 in Table 2 in Patent Document 6, Test No. 32 in Table 3). However, when the special cold rolling called water cooling is not performed, even the SUS301L-based component (steel No. 1) that can be easily refined can be refined only to 7 μm. SUS304-based components that are difficult to refine are not even tested without water cooling.
 加えて、これらの特許文献5、6の実施例では、粒成長が防止可能な低温で1~12時間の長時間焼鈍をすることによって細粒化を達成している。しかし、そのような長時間焼鈍は生産性に劣る。そればかりか、材料表面の酸化皮膜が成長したり、材料に含まれているSiが表層部に濃化するなどして、後段のエッチング加工性やレーザー加工性を低下させてしまうので、精密加工用ステンレス鋼板の熱処理としては相応しくない。 In addition, in these Examples of Patent Documents 5 and 6, fine graining is achieved by annealing for 1 to 12 hours at a low temperature at which grain growth can be prevented. However, such long annealing is inferior in productivity. Not only that, the oxide film on the surface of the material grows, or the Si contained in the material concentrates on the surface layer, reducing the subsequent etching processability and laser processability, so precision processing It is not suitable as a heat treatment for stainless steel plates.
 なお、光輝焼鈍の際にステンレス鋼板に生成する酸化皮膜がエッチング加工性に及ぼす悪影響については、以前より特許文献7や特許文献8が報告されている。 It should be noted that Patent Document 7 and Patent Document 8 have been reported for the adverse effect of the oxide film formed on the stainless steel plate during the bright annealing on the etching processability.
特開2003-3244号公報JP 2003-3244 A 特開2005-314772号公報Japanese Patent Application Laid-Open No. 2005-314772 特開2005-320586号公報JP 2005-320586 A 特開2005-320587号公報JP 2005-320587 A 特開2009-299171号公報JP 2009-299171 A 特開2011-117024号公報JP 2011-1117024 A 特開2002-275541号公報JP 2002-275541 A 特開平11-269613号公報JP-A-11-269613
 生産性の低下を許容して多パスの冷間圧延を実施した場合には、単に圧延コストが上昇するだけでなく、大きな圧延荷重で圧延することによって製品形状を平坦に維持することが困難となり、本来の目的である精密加工用途に適用することが難しくなるという問題もある。 When multi-pass cold rolling is performed while allowing for a decrease in productivity, not only does the rolling cost increase, but it becomes difficult to maintain a flat product shape by rolling with a large rolling load. However, there is also a problem that it is difficult to apply to the original precision processing application.
 また、精密加工用途では製品板厚が150μm以下のステンレス鋼板が多用されているが、このような板厚が薄いものは、大きな圧下率を確保することがより困難であり、しかも平坦ではなくなった形状をテンションレベラ等で矯正することも難しいので、解決策が望まれていた。 In addition, stainless steel sheets with a product thickness of 150 μm or less are frequently used in precision machining applications, but it is more difficult to secure a large rolling reduction with such thin sheet thickness, and it is not flat. Since it is difficult to correct the shape with a tension leveler or the like, a solution has been desired.
 本発明は上記現状に鑑みてなされたものであり、一般的に使用されているSUS304と同等以上の耐食性を確保するために、18%以上のCrと8%以上のNiを含有しつつ、平均結晶粒径を5μm以下とした精密加工に好適なステンレス鋼板を提供することを目的とする。 The present invention has been made in view of the above situation, and in order to ensure corrosion resistance equivalent to or higher than that of SUS304 that is generally used, it contains 18% or more of Cr and 8% or more of Ni, while maintaining an average. An object is to provide a stainless steel plate suitable for precision machining with a crystal grain size of 5 μm or less.
 加工誘起マルテンサイト変態を促進するためには、添加元素の量を減らし、オーステナイト組織の安定度を低くすることが有効である。ただし、CrとNiは耐食性の観点から制約を受けるため、それ以外の元素の添加量を悪影響がでない範囲で慎重に減ずることが大切である。 In order to promote the processing-induced martensitic transformation, it is effective to reduce the amount of additive elements and lower the stability of the austenite structure. However, since Cr and Ni are restricted from the viewpoint of corrosion resistance, it is important to carefully reduce the addition amount of other elements within a range where no adverse effect is caused.
 単純に、硬い組織であるマルテンサイトへの変態を促進しただけでは、材料は硬くなり、安定した圧延あるいは経済的な圧延が困難となってしまう。そこで本発明者らは、生成したマルテンサイト組織の硬度にC量が大きく影響することに注目し、Cの添加量を減らす方向で成分系を調整した。さらに結晶粒成長の抑制に大きな効果的であるNbの添加量を適正化した。 Simply by promoting the transformation to martensite, which is a hard structure, the material becomes hard and stable or economical rolling becomes difficult. Therefore, the present inventors paid attention to the fact that the amount of C greatly affects the hardness of the generated martensite structure, and adjusted the component system so as to reduce the amount of C added. Furthermore, the amount of Nb added, which is highly effective in suppressing crystal grain growth, was optimized.
 本発明では、合金を形成する全ての組成範囲を詳細に見直して適正な範囲に制御することにより、特別な冷間圧延を実施することなく、加工誘起マルテンサイト変態を十分に促進できるが、大きな加工硬化は生じず、圧延性と圧延後の形状平坦性に優れ、結晶粒の微細化に適した、しかも耐食性に優れた準安定オーステナイト系の精密加工用ステンレス鋼板を実現した。 In the present invention, it is possible to sufficiently promote the work-induced martensitic transformation without carrying out special cold rolling by reviewing all the composition ranges forming the alloy in detail and controlling them to an appropriate range. Work-hardening did not occur, and a metastable austenitic stainless steel plate for precision machining that was excellent in rollability and shape flatness after rolling, suitable for refinement of crystal grains, and excellent in corrosion resistance was realized.
 上記知見に基づいてなされた本発明は、次の通りである。
[1]
 質量%で、C≦0.030%、Si≦0.80%、Mn≦1.20%、P≦0.045%、S≦0.01%、Cu≦0.60%、Mo≦0.60%、Al≦0.02%、18.0%≦Cr≦19.0%、8.0%≦Ni≦9.0%、0.03%<Nb≦0.12%、0.02%≦N≦0.1%、残部が鉄と不純物からなり、
 (1)式で定義されるMd30値が25~55であり、
 平均結晶粒径が5μm以下である、ステンレス鋼板。
 Md30=497-462(C+N)-9.2(Si)-8.1(Mn)-13.7(Cr)-20(Ni+Cu)-18.5(Mo) ・・・ (1)式
 ここで、(1)式において、C、N、Si、Mn、Cr、Ni、Cu、Moは、鋼中の各元素の含有量(単位:質量%)を意味する。
[2]
 板厚が0.15mm以下である、[1]に記載のステンレス鋼板。
[3]
 板厚ばらつきが該板厚の±4%以下である、[2]に記載のステンレス鋼板。
[4]
 質量%で、C≦0.030%、Si≦0.80%、Mn≦1.20%、P≦0.045%、S≦0.01%、Cu≦0.60%、Mo≦0.60%、Al≦0.02%、18.0%≦Cr≦19.0%、8.0%≦Ni≦9.0%、0.03%<Nb≦0.12%、0.02%≦N≦0.1%、残部が鉄と不純物からなり、(1)式で定義されるMd30値が25~55であるオーステナイトステンレス鋼板を、65%を超える冷間圧延率で冷間圧延を施した後、810~940℃の焼鈍を行う、ステンレス鋼板の製造方法。
The present invention based on the above findings is as follows.
[1]
% By mass, C ≦ 0.030%, Si ≦ 0.80%, Mn ≦ 1.20%, P ≦ 0.045%, S ≦ 0.01%, Cu ≦ 0.60%, Mo ≦ 0. 60%, Al ≦ 0.02%, 18.0% ≦ Cr ≦ 19.0%, 8.0% ≦ Ni ≦ 9.0%, 0.03% <Nb ≦ 0.12%, 0.02% ≦ N ≦ 0.1%, the balance consists of iron and impurities,
The Md30 value defined by the formula (1) is 25 to 55,
A stainless steel plate having an average crystal grain size of 5 μm or less.
Md30 = 497-462 (C + N) -9.2 (Si) -8.1 (Mn) -13.7 (Cr) -20 (Ni + Cu) -18.5 (Mo) (1) Formula where In the formula (1), C, N, Si, Mn, Cr, Ni, Cu, and Mo mean the content (unit: mass%) of each element in the steel.
[2]
The stainless steel plate according to [1], wherein the plate thickness is 0.15 mm or less.
[3]
The stainless steel plate according to [2], wherein the plate thickness variation is ± 4% or less of the plate thickness.
[4]
% By mass, C ≦ 0.030%, Si ≦ 0.80%, Mn ≦ 1.20%, P ≦ 0.045%, S ≦ 0.01%, Cu ≦ 0.60%, Mo ≦ 0. 60%, Al ≦ 0.02%, 18.0% ≦ Cr ≦ 19.0%, 8.0% ≦ Ni ≦ 9.0%, 0.03% <Nb ≦ 0.12%, 0.02% ≦ N ≦ 0.1%, the balance is iron and impurities, and austenitic stainless steel sheet having an Md30 value defined by equation (1) of 25 to 55 is cold rolled at a cold rolling rate exceeding 65%. A method for producing a stainless steel sheet, which is annealed at 810 to 940 ° C. after being applied.
 本発明は、合金を形成する全ての組成範囲を詳細に見直して適正な範囲に制御することにより、特別な冷間圧延を実施することなく、加工誘起マルテンサイト変態を十分に促進できるが、大きな加工硬化は生じない、圧延性と圧延後の形状平坦性に優れ、結晶粒の微細化に適した、しかも耐食性に優れた準安定オーステナイト系の精密加工に好適なステンレス鋼板を実現する。 The present invention can sufficiently promote the work-induced martensite transformation without carrying out special cold rolling by reviewing all the composition ranges forming the alloy in detail and controlling them to an appropriate range. A stainless steel plate suitable for metastable austenitic precision machining with excellent workability, rollability and shape flatness after rolling, suitable for crystal grain refinement, and excellent corrosion resistance is realized.
 特に、板厚等のばらつき許容公差が小さく、製品の形状矯正が困難な板厚が150μm以下の場合には、本発明の効果は顕著である。 In particular, the effect of the present invention is remarkable when the thickness tolerance of variation such as thickness is small and the thickness of the product, which is difficult to correct the product shape, is 150 μm or less.
 まず、本発明のステンレス鋼板について説明する。本発明において化学組成を上記のように限定した理由について説明する。なお、本明細書において化学組成を規定する「%」は全て「質量%」である。 First, the stainless steel plate of the present invention will be described. The reason why the chemical composition is limited as described above in the present invention will be described. In the present specification, “%” defining the chemical composition is “mass%”.
 ・C≦0.030%
 Cは本特許において重要な意味を持つ元素である。
・ C ≦ 0.030%
C is an element having an important meaning in this patent.
 Cの含有は、オーステナイト安定度を強力に高めてマルテンサイト変態を抑制し、変態したマルテンサイト組織の強度を著しく高め、圧延加工性を低下させる。そのため、Cの上限は0.030%に限定する。Cは、低温で焼鈍した際にクロム炭化物を生成し、耐食性を低下させる。また、再結晶挙動を不安定にする。そのため、0.025%以下であることが好ましい。下限は特に設けないが、通常の製造では0.003%以上である。 C content strongly enhances austenite stability and suppresses martensitic transformation, remarkably increases the strength of the transformed martensite structure, and lowers rolling workability. Therefore, the upper limit of C is limited to 0.030%. C produces chromium carbide when annealed at a low temperature, and lowers the corrosion resistance. It also makes the recrystallization behavior unstable. Therefore, it is preferable that it is 0.025% or less. Although there is no particular lower limit, it is 0.003% or more in normal production.
 ・Si≦0.80%
 Siは、製鋼時の脱酸剤として使用される。Siの化合物はエッチング加工時にスマットとなりエッチング速度を低下させる。また、含有量が多いとMd値は低くなり、加工誘起マルテンサイト変態が抑制される。そのため、Siの上限を0.80%とする。製造工程上で脱酸不足などの問題がなければ、0.7%以下であることが好ましい。下限は特に設けないが、通常は0.10%以上である。
・ Si ≦ 0.80%
Si is used as a deoxidizer during steelmaking. The compound of Si becomes a smut at the time of etching processing and decreases the etching rate. Moreover, when there is much content, Md value will become low and a process induction martensitic transformation will be suppressed. Therefore, the upper limit of Si is set to 0.80%. If there is no problem such as insufficient deoxidation in the production process, it is preferably 0.7% or less. Although there is no particular lower limit, it is usually 0.10% or more.
 ・Mn≦1.20%
 Mnは、オーステナイト生成元素であり、Md値を低くする。そのため、Mnの上限を1.20%とする。多量のMnは、耐食性を低下させるため、1.0%以下であることが好ましい。下限は特に設けないが、鋼の強度への寄与もあるため、0.30%以上であることが好ましい。
・ Mn ≦ 1.20%
Mn is an austenite generating element and lowers the Md value. Therefore, the upper limit of Mn is 1.20%. A large amount of Mn is preferably 1.0% or less in order to reduce the corrosion resistance. Although there is no particular lower limit, it is preferably 0.30% or more because it also contributes to the strength of the steel.
 ・P≦0.045%
 熱間加工性を損なうPは少ない方が好ましく、0.045%を上限とする。
・ P ≦ 0.045%
The amount of P that impairs hot workability is preferably small, and the upper limit is 0.045%.
 ・S≦0.01%
 熱間加工性を損なうSは少ない方が好ましく、0.01%を上限とする。より好ましくは、0.007%以下である。
・ S ≦ 0.01%
The amount of S that impairs hot workability is preferably small, and the upper limit is 0.01%. More preferably, it is 0.007% or less.
 ・Cu≦0.60%
 Cuは、オーステナイト生成元素であり、Md値を低くする。そのため、Cuの上限を0.60%とする。0.5%以下であることが好ましい。下限は特に設けないが、スクラップ原料等から持ち込みにより0.05%以上含有することがある。
・ Cu ≦ 0.60%
Cu is an austenite generating element and lowers the Md value. Therefore, the upper limit of Cu is set to 0.60%. It is preferable that it is 0.5% or less. Although a lower limit is not particularly provided, it may be contained by 0.05% or more by bringing in from a scrap raw material or the like.
 ・18.0%≦Cr≦19.0%
 Crは、耐食性の観点から18.0%以上を必須とする。Md値を高くする観点から、Crの上限は19.0%とする。耐食性とコストのバランスから、18.5%以下であることが好ましい。
・ 18.0% ≦ Cr ≦ 19.0%
Cr is required to be 18.0% or more from the viewpoint of corrosion resistance. From the viewpoint of increasing the Md value, the upper limit of Cr is 19.0%. From the balance between corrosion resistance and cost, it is preferably 18.5% or less.
 ・8.0≦Ni≦9.0%
 Niは、耐食性の観点から8.0%以上を必須とする。Md値を高くする観点から、Niの上限を9.0%に限定する。Niはオーステナイト安定度を高め、しかも高価な元素であることから、8.5%以下であることが好ましい。
・ 8.0 ≦ Ni ≦ 9.0%
Ni is required to be 8.0% or more from the viewpoint of corrosion resistance. From the viewpoint of increasing the Md value, the upper limit of Ni is limited to 9.0%. Ni increases the austenite stability and is an expensive element, so it is preferably 8.5% or less.
 ・Mo≦0.60%
 Moは、Md値を高くする観点から、その上限を0.60%に限定する。Moは高価な材料であるため、その含有量は0.50%以下とすることが好ましい。下限は特に設けないが、耐食性の向上に寄与するため、0.05%以上の添加が有効である。
・ Mo ≦ 0.60%
Mo limits the upper limit to 0.60% from the viewpoint of increasing the Md value. Since Mo is an expensive material, its content is preferably 0.50% or less. Although there is no particular lower limit, 0.05% or more is effective because it contributes to the improvement of corrosion resistance.
 ・0.03%<Nb≦0.12%
 Nbは、結晶粒の成長を抑制し、細粒化を進めるために必須な元素であり0.03%を超える含有を必須とする。0.03%以下では、これらの十分な効果を発揮することができない。
・ 0.03% <Nb ≦ 0.12%
Nb is an indispensable element for suppressing the growth of crystal grains and promoting the refinement, and it is essential to contain more than 0.03%. If it is 0.03% or less, these sufficient effects cannot be exhibited.
 本発明の化学組成は301L系よりも細粒化し難いため、0.05%を超えるNbを含有することが好ましい。過剰な含有はコスト上昇を招くだけでなく、再結晶を阻害するためその上限は0.12%とする。安定した再結晶挙動を確保するためには、0.10%以下であることが好ましい。 Since the chemical composition of the present invention is less likely to be finer than the 301L system, it is preferable to contain more than 0.05% Nb. Excess content not only causes an increase in cost, but also inhibits recrystallization, so the upper limit is made 0.12%. In order to ensure a stable recrystallization behavior, the content is preferably 0.10% or less.
 ・0.02%≦N≦0.1%
 Nは、Cと同様にオーステナイト安定度を大きく高めるため、その上限は0.1%に制限する。Nは熱間圧延での圧延性を低下させ、表面キズを増加させるので、0.08%以下が好ましい。ただし、固溶強化により鋼の強度向上に寄与するので、0.02%以上を添加する。強度向上の観点からは、0.03%以上の添加が好ましい。
・ 0.02% ≦ N ≦ 0.1%
N, like C, greatly increases the austenite stability, so its upper limit is limited to 0.1%. N lowers the rollability in hot rolling and increases surface scratches, so 0.08% or less is preferable. However, 0.02% or more is added because it contributes to improving the strength of the steel by solid solution strengthening. From the viewpoint of improving the strength, addition of 0.03% or more is preferable.
 ・Al≦0.02%
 Alは脱酸剤として使用されるが、圧延で破砕され難い硬質の介在物を生成して、最終製品に悪影響を及ぼすことがある。そのため、Alの上限は0.02%とする。好ましくは、0.015%以下である。また、エッチング加工されたステンレス鋼板を拡散接合により積層する用途では、Alが拡散接合性を低下させることが知られており、このような用途では0.01%以下とすることが好ましい。より好ましくは、0.008%以下である。下限は特に設定しないが、意図的な添加をせずかつ脱酸剤としてAlを使用しない場合でも、0.001%程度は含有していることが多い。
・ Al ≦ 0.02%
Al is used as a deoxidizer, but it may produce hard inclusions that are not easily crushed by rolling, and may adversely affect the final product. Therefore, the upper limit of Al is 0.02%. Preferably, it is 0.015% or less. Moreover, in the use which laminates | stacks the etched stainless steel plate by diffusion bonding, it is known that Al will reduce diffusion bonding property, and in such a use, it is preferable to set it as 0.01% or less. More preferably, it is 0.008% or less. Although the lower limit is not particularly set, even when no intentional addition is performed and Al is not used as a deoxidizer, it is often contained in an amount of about 0.001%.
 ・Md30値:25~55
 オーステナイト組織の安定度を示すMd30値は、(1)式(Gladmanの式)によって鋼の化学組成から求められる値である。
Md30 value: 25-55
The Md30 value indicating the stability of the austenite structure is a value obtained from the chemical composition of steel by the equation (1) (Gladman's equation).
 Md30=497-462(C+N)-9.2(Si)-8.1(Mn)-13.7(Cr)-20(Ni+Cu)-18.5(Mo) ・・・ (1)式
 ここで、(1)式におけるC、N、Si、Mn、Cr、Ni、Cu、Moは鋼中の各元素の含有量(単位:質量%)を意味する。
Md30 = 497-462 (C + N) -9.2 (Si) -8.1 (Mn) -13.7 (Cr) -20 (Ni + Cu) -18.5 (Mo) (1) Formula where C, N, Si, Mn, Cr, Ni, Cu, and Mo in the formula (1) mean the content (unit: mass%) of each element in the steel.
 Md30値が意味するところは、30%の歪みを加えた際に50%のマルテンサイト変態が起こる温度である。Md30値が高い程マルテンサイト変態が促進され、逆変態による細粒化は容易となる。特別な冷却をする冷間圧延や著しく多パスの冷間圧延を行うことなく、5μm以下の平均結晶粒径を実現できるMd30値は、25以上に限定される。マルテンサイト変態を促進する観点から、Md30値は28以上が好ましく、さらに好ましくは30以上である。他方、Md30が高くオーステナイトの安定度が低い場合には、冷間圧延時の加工硬化が大きく、圧延負荷が大きくなるのでその上限は55とする。また、オーステナイト安定度が低い場合には焼鈍温度を高くすることが必要となり、細粒化することが難しくなるため、焼鈍温度を下げる観点から、Md30値は48以下が好ましく、さらに好ましくは40以下である。 The Md30 value means the temperature at which 50% martensitic transformation occurs when 30% strain is applied. The higher the Md30 value, the more martensitic transformation is promoted, and the finer graining by reverse transformation becomes easier. The Md30 value that can realize an average crystal grain size of 5 μm or less is not limited to 25 or more, without performing cold rolling with special cooling or cold rolling with significantly multiple passes. From the viewpoint of promoting martensitic transformation, the Md30 value is preferably 28 or more, and more preferably 30 or more. On the other hand, when Md30 is high and the stability of austenite is low, work hardening during cold rolling is large and the rolling load is large, so the upper limit is 55. Further, when the austenite stability is low, it is necessary to increase the annealing temperature, and it is difficult to make fine particles. Therefore, from the viewpoint of lowering the annealing temperature, the Md30 value is preferably 48 or less, more preferably 40 or less. It is.
 ・平均結晶粒径≦5μm
 平均結晶粒径は5μm以下に限定する。その限定理由を以下に示す。エッチング加工面やレーザー加工面は結晶粒径の影響を受け、細粒であればあるほど平滑な加工面が得られることが知られている。最近の高性能メタルマスクでは、板厚150μm~80μmのステンレス鋼板が主に採用されている。高性能なメタルマスクや精密なエッチング加工用途に提供される材料では、±4%の板厚精度が保証され、実製品の板厚ばらつきは±3%以内に収まっていることが一般的である。
・ Average crystal grain size ≦ 5μm
The average grain size is limited to 5 μm or less. The reason for the limitation is shown below. It is known that the etched surface and the laser processed surface are affected by the crystal grain size, and the smoother the processed surface, the finer the particle. In recent high performance metal masks, stainless steel plates with a thickness of 150 μm to 80 μm are mainly used. For materials provided for high-performance metal masks and precision etching applications, a thickness accuracy of ± 4% is guaranteed, and variations in the thickness of actual products are generally within ± 3%. .
 上記のケースにおいて板厚で表現すると、±3.2~6.0μmの板厚精度が保証され、実製品では±2.4~4.5μm以下の板厚ばらつきに抑えられているということである。 In terms of the plate thickness in the above case, the plate thickness accuracy of ± 3.2 to 6.0 μm is guaranteed, and the actual product is limited to plate thickness variations of ± 2.4 to 4.5 μm. is there.
 このように板厚が高精度で管理されていたとしても、結晶粒径が粗大であれば加工面の平滑性が損なわれてしまい、製品の最終的な精度が結晶粒径によって大きく支配されてしまう。つまり、製品板厚が薄く、板厚ばらつきが小さい範囲に抑制されている材料では、その特性を活かすために特別に小さい平均結晶粒径が要求され、その数値は5μm以下であることが必要となる。 Even if the plate thickness is managed with high accuracy in this way, if the crystal grain size is coarse, the smoothness of the processed surface is impaired, and the final accuracy of the product is largely governed by the crystal grain size. End up. In other words, in a material where the product plate thickness is thin and the variation in the plate thickness is small, a particularly small average crystal grain size is required to make use of the characteristics, and the value needs to be 5 μm or less. Become.
 一般的な高性能メタルマスク材の板厚を考慮すると、平均結晶粒径は4.5μm以下であることが好ましい。特に高性能メタルマスクとして多用されている板厚が100μm以下の製品のことを考慮すると、平均結晶粒径は3.0μm以下であることがさらに好ましい。 Considering the plate thickness of a general high performance metal mask material, the average crystal grain size is preferably 4.5 μm or less. In particular, considering a product having a plate thickness of 100 μm or less that is frequently used as a high-performance metal mask, the average crystal grain size is more preferably 3.0 μm or less.
 本発明のステンレス鋼板は、精密加工用途以外でも、耐食性と結晶粒の微細化が要求される用途で有効である。そのような用途例としては、結晶粒の微細化により疲労強度の向上が期待される用途(例えば、自動車のシリンダーヘッドガスケットダイヤフラム式圧縮機のダイヤフラム板等)あるいは成形加工後に粗面化しないことが好ましい用途(ステンレス筺体やメカシャーシあるいは印刷装置のトナーブレードなどの機器部品)があげられる。 The stainless steel sheet of the present invention is effective in applications that require corrosion resistance and refinement of crystal grains other than precision processing applications. Examples of such applications include applications where fatigue strength is expected to be improved by refining crystal grains (for example, diaphragm plates for cylinder head gasket diaphragm type compressors for automobiles) or cases where surface roughening does not occur after molding. Preferable uses (equipment parts such as a stainless steel housing, a mechanical chassis, or a toner blade of a printing apparatus) can be mentioned.
 メタルマスクやトナーブレード等、表面の平滑性が求められる用途では、通常Ra(平均粗さ)で0.1μm以下のステンレス鋼板が使用され、最近は0.05μm以下のものも使用されつつある。本願の細粒材と組み合わせることによって、加工面の平滑性が格段に良好となる。表面の平滑化は、特に最終圧延のロール表面粗度を低くするように研磨して、圧延することによって容易に達成でき、また必要に応じて無潤滑圧延などを併用すれば、Raで0.01μm以下程度のものは、コストアップとはなるが、十分に製造可能である。 In applications where smoothness of the surface is required, such as metal masks and toner blades, stainless steel sheets with an Ra (average roughness) of 0.1 μm or less are usually used, and recently 0.05 μm or less are also being used. By combining with the fine grain material of the present application, the smoothness of the processed surface is remarkably improved. The smoothing of the surface can be easily achieved by polishing and rolling so as to reduce the roll surface roughness of the final rolling, and when using a non-lubricating rolling or the like, if necessary, Ra is set to 0. Although the thing of about 01 micrometer or less increases a cost, it can fully manufacture.
 次に、本発明のステンレス鋼板の製造方法について説明する。
 本発明では、所定の化学組成となるように原料を溶解し、静止鋳造または連続鋳造したものを熱間圧延して焼鈍する。その後、表面の酸化スケールを除去した熱延鋼板について、所定の圧延率で冷間圧延を行い、所定の温度で焼鈍する。
Next, the manufacturing method of the stainless steel plate of this invention is demonstrated.
In the present invention, the raw material is melted so as to have a predetermined chemical composition, and a static casting or continuous casting is hot-rolled and annealed. Thereafter, the hot-rolled steel sheet from which the oxide scale on the surface is removed is cold-rolled at a predetermined rolling rate and annealed at a predetermined temperature.
 ・熱間圧延
 本発明のステンレス鋼板では、材料の平坦度が強く要求される。そのため、母材の熱間圧延コイルにも平坦度に優れたものが要求される。一般に熱間圧延コイルでは、幅方向中央部の板厚が厚く端部が薄いという板厚偏差(シートクラウン)が存在する。本発明では、製品幅と同様な幅を有する熱間圧延コイルを用いることが有効である。例えば、600mm幅の製品を製造する場合、1200mm幅の熱間圧延コイルを母材とし、幅方向で半分に分割して使用すると、600mm幅の圧延時に初期状態での左右の板厚(母材での幅中央部と端部の板厚)が異なるため片側だけが伸びる圧延となり、安定した圧延は困難となる。この逆に、始めから600mm幅の熱間圧延コイルを採用すれば、冷間圧延は安定し、大きな圧下率を確保することも比較的容易となる。本発明の精密加工用ステンレス鋼板では、製品幅と同様な幅を有する熱間圧延コイルを母材とすることが望ましい。
-Hot rolling In the stainless steel plate of this invention, the flatness of material is requested | required strongly. Therefore, a hot rolled coil as a base material is required to have excellent flatness. Generally, in a hot-rolled coil, there is a plate thickness deviation (sheet crown) in which the plate thickness at the center in the width direction is thick and the end is thin. In the present invention, it is effective to use a hot rolled coil having a width similar to the product width. For example, when manufacturing a product having a width of 600 mm, when a hot rolled coil having a width of 1200 mm is used as a base material and divided in half in the width direction, the left and right plate thicknesses in the initial state (base material) when rolling the width of 600 mm are used. In this case, the rolling is such that only one side is stretched and the stable rolling becomes difficult. On the other hand, if a 600 mm wide hot rolled coil is employed from the beginning, cold rolling becomes stable and it is relatively easy to ensure a large reduction ratio. In the stainless steel plate for precision processing of the present invention, it is desirable to use a hot rolled coil having a width similar to the product width as a base material.
 ・冷間圧延率(圧下率)>65%
 細粒化の焼鈍を実施する直前の冷間圧延では、加工誘起マルテンサイト変態の促進と十分な加工歪を導入する観点から65%を超える圧下率を必須とする。焼鈍後の粒径を微細化する観点からは、この圧下率は高ければ高い程良い。量産時に製造ばらつきがあっても安定して細粒化を実現するためには、70%超の圧下率が好ましい。冷間圧延時に圧延形状が悪化しないのであれば、75%以上の圧下率とすることが、さらに好ましい。
・ Cold rolling ratio (rolling ratio)> 65%
In the cold rolling immediately before the refinement annealing is performed, a rolling reduction exceeding 65% is essential from the viewpoint of promoting the processing-induced martensitic transformation and introducing sufficient processing strain. From the viewpoint of reducing the grain size after annealing, the higher the rolling reduction, the better. A rolling reduction of more than 70% is preferable in order to stably realize fine graining even if there is manufacturing variation during mass production. If the rolling shape does not deteriorate during cold rolling, it is more preferable to set the rolling reduction to 75% or more.
 一般に、Md30値が25を超える準安定オーステナイト鋼で、65%を超える圧下率で冷間圧延を行うと加工硬化が進み、安定した圧延は難しくなってくる。特に最終製品の板厚が150μm以下の場合、冷間圧延前の板厚は概ね300μm以下となり、ワークロール径に対して圧延材の板厚が薄いことが影響して大きな圧下率を確保することが特に困難となる。 Generally, when a cold rolling is performed at a rolling reduction exceeding 65% with a metastable austenitic steel having an Md30 value exceeding 25, work hardening proceeds and stable rolling becomes difficult. In particular, when the final product has a thickness of 150 μm or less, the thickness before cold rolling is generally 300 μm or less, and a large reduction ratio is ensured due to the fact that the thickness of the rolled material is thin relative to the work roll diameter. Is particularly difficult.
 本発明では、ステンレス鋼板の化学組成において、Cの含有量を0.030%以下に限定することにより、変態したマルテンサイト組織の硬度上昇を抑制し、マルテンサイト変態が進みやすい成分系でも圧下率が70%を超える冷間圧延を安定して実施できるようにした。 In the present invention, in the chemical composition of the stainless steel plate, by limiting the C content to 0.030% or less, the hardness increase of the transformed martensite structure is suppressed, and even the component system in which martensitic transformation is likely to proceed is reduced. Thus, cold rolling exceeding 70% can be stably performed.
 圧下率の上限は特に定めないが、圧延に伴って材料の硬度が上昇して圧延が困難となるため、通常は90%以下である。 The upper limit of the rolling reduction is not particularly defined, but is usually 90% or less because the hardness of the material increases with rolling, making rolling difficult.
 ・焼鈍温度:810~940℃
 焼鈍温度が高いと結晶粒が成長・粗大化してしまうので、焼鈍温度の上限は940℃とする。粒成長を防止する観点から、900℃以下が好ましい。平均粒径を3μm以下とするためには、875℃以下が好ましい。一方、焼鈍温度が低すぎると未再結晶領域が多くなり成形加工性が低下するため、焼鈍温度は810℃以上に限定する。好ましくは825℃以上である。再結晶挙動は選択した成分系と焼鈍前の圧下率に依存して変化するため、微細化した組織を安定して確保するためには、上記の温度範囲内で適切な焼鈍温度を定めることが好ましい。
-Annealing temperature: 810-940 ° C
If the annealing temperature is high, crystal grains grow and become coarse, so the upper limit of the annealing temperature is 940 ° C. From the viewpoint of preventing grain growth, 900 ° C. or lower is preferable. In order to make the average particle size 3 μm or less, 875 ° C. or less is preferable. On the other hand, if the annealing temperature is too low, the number of non-recrystallized regions increases and the molding processability decreases, so the annealing temperature is limited to 810 ° C. or higher. Preferably it is 825 ° C or more. Since the recrystallization behavior changes depending on the selected component system and the rolling reduction before annealing, it is necessary to determine an appropriate annealing temperature within the above temperature range in order to stably secure a refined structure. preferable.
 成分や圧下率が本発明の範囲内であれば、焼鈍時間の影響は比較的小さく、短時間で再結晶が進むため、焼鈍時間の下限は特に限定しない。一般的な製造条件で実施すれば良く、具体的には、目的の温度に1秒以上保持すればよい。再結晶挙動だけを考慮するのであれば、過剰な粒成長をしない範囲であれば上限値も特に限定する必要はないが、通常は生産性の観点から600秒未満である。 If the component and the rolling reduction are within the range of the present invention, the influence of the annealing time is relatively small, and recrystallization proceeds in a short time, so the lower limit of the annealing time is not particularly limited. What is necessary is just to implement on general manufacturing conditions, and what is necessary is just to hold | maintain at the target temperature for 1 second or more specifically. If only the recrystallization behavior is considered, the upper limit is not particularly limited as long as it does not cause excessive grain growth, but it is usually less than 600 seconds from the viewpoint of productivity.
 より低い温度で600秒以上の長時間の焼鈍を実施することにより、粒成長を防止しつつ細粒化した再結晶組織を得ることが可能となる。しかし、600秒以上の長時間の焼鈍は、生産性に劣るだけでなく、表面皮膜の成長やSi酸化物の表面への濃縮が進行するため、エッチング加工性やレーザー加工性が低下してしまうという問題がある。 By performing annealing at a lower temperature for 600 seconds or longer, it is possible to obtain a recrystallized structure that is refined while preventing grain growth. However, long-time annealing of 600 seconds or more not only deteriorates productivity, but also progresses in the growth of the surface film and the concentration of Si oxide on the surface, so that etching workability and laser workability deteriorate. There is a problem.
 本発明の実施例を以下に説明する。 Examples of the present invention will be described below.
(実施例1)
 表1に示す化学組成A~Iについて、30kgの試験溶解を実施した。各合金の設定思想は以下の通りである。以下の表において、アンダーラインは、本発明の範囲外を示す。化学組成の「-」は、含有を意図していないことを示す。
(Example 1)
For chemical compositions A to I shown in Table 1, 30 kg test dissolution was performed. The setting concept of each alloy is as follows. In the following table, the underline indicates outside the scope of the present invention. The chemical composition “-” indicates that inclusion is not intended.
 合金A:発明例、本発明の好ましい形態の一例。 Alloy A: invention example, an example of a preferred form of the present invention.
 合金B:発明例、本発明範囲内で、Cの含有量を低めとすることにより、Md30値を高くしたもの。 Alloy B: Invention example, within the scope of the present invention, the Md30 value is increased by lowering the C content.
 合金C:発明例、本発明範囲内で、Cの含有量を高めとすることにより、Md30値を低くしたもの。 Alloy C: Inventive example, within the scope of the present invention, the Md30 value is lowered by increasing the C content.
 合金D:比較例、一般的なSUS304の成分系で、Cの含有量とMd30値が本発明の範囲外となるもの。 Alloy D: Comparative example, a general SUS304 component system in which the C content and Md30 value are outside the scope of the present invention.
 合金E:比較例、合金DからCuとMoの含有量を減らしてMd30値を本発明範囲としたもの。Cは範囲外。 Alloy E: Comparative example, alloy D with reduced Cu and Mo contents and Md30 value within the scope of the present invention. C is out of range.
 合金F:比較例、一般的なSUS304Lの成分系。Ni量とMd30値が本発明の範囲外となるもの。 Alloy F: Comparative example, general SUS304L component system. Ni amount and Md30 value are outside the scope of the present invention.
 合金G:比較例、化学組成を減らし過ぎて、Md30値が本発明の範囲を超過したもの。 Alloy G: Comparative example, the chemical composition is excessively reduced, and the Md30 value exceeds the range of the present invention.
 合金H:比較例、細粒材として実績のあるSUS301L系。CrとNiの含有量が低く本発明の範囲外となるもの。 Alloy H: Comparative example, SUS301L system proven as a fine-grained material. Low Cr and Ni contents are outside the scope of the present invention.
 合金I:比較例、CrとNiの含有量を高くし過ぎて、Md30値が本発明の範囲を下回ったもの。 Alloy I: Comparative example, the content of Cr and Ni was too high, and the Md30 value was below the range of the present invention.
 なお、圧延加工性と耐食性に劣ることが明らかなSUS301の成分系については、試験を実施していない。 Note that the SUS301 component system, which is clearly inferior in rolling workability and corrosion resistance, has not been tested.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 合金A~Iを高周波溶解炉で溶解し、インゴットに静止鋳造して約30kgの鋳塊(60mm×200mm×340mm)得た。鋳塊の表面に機械的な切削による手入を実施した後に、1150℃に加熱して熱間圧延により板厚6mmまで圧延した。熱延後、1130℃で4分間保持して焼き鈍し、機械的な研削により表面の酸化スケールを除去しつつ、板厚を5mmに調整した。その後、冷間圧延機により2mmまで冷間圧延し、2mm×180mm×1000mm超の冷延鋼板を各々6枚ずつ作製し、Axガス(水素75%-窒素25%)雰囲気中にて1100℃に2分間保持することにより焼き鈍した。 Alloys A to I were melted in a high frequency melting furnace and statically cast into an ingot to obtain an ingot (60 mm × 200 mm × 340 mm) of about 30 kg. After the surface of the ingot was carefully treated by mechanical cutting, it was heated to 1150 ° C. and rolled to a thickness of 6 mm by hot rolling. After hot rolling, annealing was performed by holding at 1130 ° C. for 4 minutes, and the thickness of the plate was adjusted to 5 mm while removing the oxide scale on the surface by mechanical grinding. Thereafter, it was cold-rolled to 2 mm with a cold rolling mill to produce 6 cold-rolled steel sheets each exceeding 2 mm × 180 mm × 1000 mm and heated to 1100 ° C. in an Ax gas atmosphere (75% hydrogen—25% nitrogen). Annealed by holding for 2 minutes.
 その後、板厚0.5mm、0.6mm、0.7mm、0.8mmおよび1.0mmの5水準まで冷間圧延を行い、再びAxガス雰囲気中にて1100℃に1分間保持することにより焼き鈍した。 After that, it is cold-rolled to 5 levels of 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm and 1.0 mm, and annealed by holding again at 1100 ° C. for 1 minute in an Ax gas atmosphere. It was.
 これら5水準の板厚から0.2mmまでの冷間圧延を行い、異なる圧下率(60%、67%、71%、75%、および80%)で加工歪が導入された試験片を製作した。この圧延では、ワークロール径が120mmの可逆式の4段冷間圧延機を使用し、圧延荷重と圧延に要する電流値(ミル電流)が計測され、圧延の負荷を判断した。 Cold rolling from these 5 levels of sheet thickness to 0.2 mm was performed, and test pieces with processing strain introduced at different reduction ratios (60%, 67%, 71%, 75%, and 80%) were produced. . In this rolling, a reversible four-stage cold rolling mill having a work roll diameter of 120 mm was used, the rolling load and the current value (mill current) required for rolling were measured, and the rolling load was judged.
 こうして圧延された試験片は、Axガス雰囲気中で、800℃、820℃、870℃、920℃、および960℃の温度に30秒間保持することにより熱処理が実施された。 The test piece thus rolled was heat-treated by holding it at temperatures of 800 ° C., 820 ° C., 870 ° C., 920 ° C., and 960 ° C. for 30 seconds in an Ax gas atmosphere.
 熱処理後の試験片は、圧延と垂直方向に切断され、その断面を光学顕微鏡で観察することにより平均結晶粒径が測定された。 The test piece after the heat treatment was cut in a direction perpendicular to the rolling, and the average crystal grain size was measured by observing the cross section with an optical microscope.
 <細粒化焼鈍前の圧下率の検討>
 ・焼鈍条件を870℃×30秒保持に固定して、各成分系での圧下率の影響を確認した。表2に細粒化焼鈍前に行った冷間圧延の圧下率と、焼鈍後の平均結晶粒径の関係を示す。
<Examination of rolling reduction before fine grain annealing>
-The annealing condition was fixed at 870 ° C. × 30 seconds, and the influence of the rolling reduction in each component system was confirmed. Table 2 shows the relationship between the rolling reduction of the cold rolling performed before the refined annealing and the average crystal grain size after the annealing.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ・全ての成分系において、焼鈍前の圧下率が高ければ高い程、細粒化している。
 ・合金D、F、およびIでは、粒径が5μm以下となることがなかった。
-In all component systems, the higher the rolling reduction before annealing, the finer the particles.
In Alloys D, F, and I, the particle size did not become 5 μm or less.
 ・合金A、B、C、E、およびGでは、圧下率が65%を超えると粒径は5μm以下となった。 ・ In alloys A, B, C, E, and G, when the rolling reduction exceeded 65%, the particle size became 5 μm or less.
 ・合金Hだけは、圧下率が60%のときでも粒径は5μm以下となり、細粒化に適した成分系であることがあらためて確認された。 ・ Alloy H alone has a particle size of 5 μm or less even when the rolling reduction is 60%, and it was reconfirmed that it is a component system suitable for refinement.
 このように、粒径5μm以下の平均結晶粒径を得るには、合金A、B、C、E、GおよびHを選択し、65%を超える圧下率で冷間圧延(合金Hについては60%以上でも可)すると良いことが確認される。 Thus, in order to obtain an average crystal grain size of 5 μm or less, alloys A, B, C, E, G, and H are selected and cold-rolled at a rolling reduction exceeding 65% (60 for alloy H). % Or more is acceptable).
 <圧延負荷の調査>
 冷間圧延は、1パスの圧延荷重が40トンを超えない範囲で、徒にパス回数が増加しないようなパススケジュールを各々選択して実施された。表3に調査結果を示す。
<Investigation of rolling load>
Cold rolling was performed by selecting each pass schedule that would not increase the number of passes within a range where the rolling load of one pass did not exceed 40 tons. Table 3 shows the survey results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、合金D、E、G、およびHでは、最大の圧延荷重が25トンを超過し、圧延負荷が大きい傾向が確認された。 From Table 3, it was confirmed that in Alloys D, E, G, and H, the maximum rolling load exceeded 25 tons and the rolling load tended to be large.
 圧延負荷の最終的な判断は、圧延時に圧延モーターが消費した最大の電流(ミル電流)値にて、80Aを超過したものを、圧延負荷が過大であると判断した。表4に調査結果を示す。 The final judgment of the rolling load was determined that the rolling load was excessive when the maximum current (mill current) consumed by the rolling motor during rolling exceeded 80A. Table 4 shows the survey results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3および4より、過大な圧延負荷を回避しつつ、65%を超える圧下率を確保するには、合金A、B、C、F、およびIを選択すると良いことが確認される。 From Tables 3 and 4, it is confirmed that it is preferable to select alloys A, B, C, F, and I in order to ensure a rolling reduction exceeding 65% while avoiding an excessive rolling load.
 <焼鈍温度と焼鈍時間の調査>
 圧下率75%で冷間圧延を実施したサンプルを用いて、焼鈍温度を800℃、820℃、870℃、920℃および960℃に変化させて30秒間保持したときの平均結晶粒径を調査した。また、焼鈍温度を800℃として3600秒間保持したときの平均結晶粒径を調査した。表5に調査結果を示す。
<Investigation of annealing temperature and annealing time>
Using a sample that was cold-rolled at a rolling reduction of 75%, the average grain size when the annealing temperature was changed to 800 ° C., 820 ° C., 870 ° C., 920 ° C. and 960 ° C. and held for 30 seconds was investigated. . In addition, the average crystal grain size was investigated when the annealing temperature was 800 ° C. and held for 3600 seconds. Table 5 shows the survey results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 焼鈍温度が800℃で30秒間保持した場合には、全ての合金において未再結晶の組織が支配的であった。
 一方、焼鈍温度が800℃で3600秒間保持した場合には、全ての合金で再結晶が確認された。
 合金A、B、C、E、GおよびHでは、800℃の焼鈍温度で3600秒間保持することによって平均結晶粒径が3μmを下回ることが確認された。
When the annealing temperature was kept at 800 ° C. for 30 seconds, the structure of non-recrystallized was dominant in all alloys.
On the other hand, when the annealing temperature was held at 800 ° C. for 3600 seconds, recrystallization was confirmed in all alloys.
In alloys A, B, C, E, G and H, it was confirmed that the average grain size was less than 3 μm by holding at an annealing temperature of 800 ° C. for 3600 seconds.
 また、焼鈍温度が960℃で30秒間保持した場合には、全ての合金において平均結晶粒径は5μmを超過した。 In addition, when the annealing temperature was maintained at 960 ° C. for 30 seconds, the average crystal grain size exceeded 5 μm in all alloys.
 合金A、B、C、E、G、およびHでは、820℃~920℃の焼鈍温度で30秒間保持した場合に、平均結晶粒径が5μmを下回ることが確認された。 Alloys A, B, C, E, G, and H were confirmed to have an average grain size of less than 5 μm when held at an annealing temperature of 820 ° C. to 920 ° C. for 30 seconds.
 合金A、B、G、およびHは上記の焼鈍温度域で30秒間保持した際に、平均粒径が3.0μm以下になることが確認された。 Alloys A, B, G, and H were confirmed to have an average particle size of 3.0 μm or less when held for 30 seconds in the above annealing temperature range.
<耐食性の評価>
 合金AとHについて、圧下率75%で冷間圧延後に920℃で焼鈍した試験片を用いて、JIS G 0577に準じて動電位法による孔食電位測定を行って耐食性の評価を実施した。
 試験面積は1cm2とし、pH=7.0に調整された200mol/m3の塩化ナトリウム水溶液を用いて、60℃の環境中で0.3mV/s の電位掃引速度で実施した。評価はVc’ 100により行い、飽和カロメル電極基準で300mV以上を合格、それ未満を不合格と判断した。
<Evaluation of corrosion resistance>
For the alloys A and H, the corrosion resistance was evaluated by measuring the pitting potential by the dynamic potential method according to JIS G 0577, using a test piece annealed at 920 ° C. after cold rolling at a rolling reduction of 75%.
The test area was 1 cm 2 and a 200 mol / m 3 aqueous sodium chloride solution adjusted to pH = 7.0 was used in a 60 ° C. environment at a potential sweep rate of 0.3 mV / s. The evaluation was performed based on Vc′100, and it was determined that 300 mV or more passed on the basis of the saturated calomel electrode, and less than that was rejected.
 本評価において、合金Aは合格レベルだったが、CrとNiの含有量が少ない合金Hは不合格となった。 In this evaluation, the alloy A was at a pass level, but the alloy H having a low Cr and Ni content was rejected.
<エッチング加工性の評価>
 合金Aについて、800℃で3600秒間の焼鈍を実施したものと870℃で30秒間の焼鈍をした試験片を0.1mmまで冷間圧延し、0.1mm×150mm×360mmに切断して、エッチング加工性の評価を実施した。この試験片にアルカリ脱脂をした後に、試験片の両面にアクリル樹脂系のフォトレジストを厚さ10μmで塗布し、幅0.1mm、長さ5mmの長方形のスリット状のパターンを多数形成した。その後、液温50℃でボーメ度が45度(質量パーセントで約42mass%)の塩化第二鉄水溶液を用いて、0.5MPaに加圧してスプレーノズルからエッチング液を両面に噴霧してエッチング加工を実施した。その後、フォトレジスト膜を除去して、スリットパターンの形状を実態顕微鏡を用いて観察すると共に、長方形のスリットパターンの狭い方の開口幅を各々36か所について1μm単位で測定した。測定部位は、各スリットパターンの長手方向中央部に限定した。
<Evaluation of etching processability>
For Alloy A, specimens annealed at 800 ° C. for 3600 seconds and annealed at 870 ° C. for 30 seconds are cold-rolled to 0.1 mm, cut into 0.1 mm × 150 mm × 360 mm, and etched The workability was evaluated. After alkali degreasing the test piece, an acrylic resin photoresist was applied to both sides of the test piece with a thickness of 10 μm to form a large number of rectangular slit-like patterns having a width of 0.1 mm and a length of 5 mm. After that, using an aqueous ferric chloride solution with a liquid temperature of 50 ° C. and a Baume degree of 45 degrees (about 42 mass% in mass percent), pressurizing to 0.5 MPa and spraying the etching liquid on both sides from the spray nozzle for etching processing Carried out. Thereafter, the photoresist film was removed, and the shape of the slit pattern was observed with an actual microscope, and the narrower opening width of the rectangular slit pattern was measured in units of 1 μm at 36 locations. The measurement site was limited to the central portion in the longitudinal direction of each slit pattern.
 870℃で30秒間焼鈍した試験片では、レジストパターン通りの長方形で明瞭なエッチング加工が実施できていることが確認され、精密加工用のステンレス鋼板として問題ないと判断した。一方、800℃で3600秒間焼鈍したサンプルでは、エッチング加工部の直線性に劣ることが確認されるとともにパターン毎に加工孔の形状がばらついていることが確認され、精密加工用のステンレス鋼板として使用できないと判断した。 The test piece annealed at 870 ° C. for 30 seconds was confirmed to have a clear etching process with a rectangular shape according to the resist pattern, and was judged to have no problem as a stainless steel plate for precision processing. On the other hand, in the sample annealed at 800 ° C. for 3600 seconds, it was confirmed that the etching processed part was inferior in linearity, and the shape of the processed hole varied from pattern to pattern, and used as a stainless steel plate for precision processing. I decided I couldn't.
 スリット開口幅の測定結果は、870℃で30秒間焼鈍した試験片では、平均値が102μm、標準偏差は3μm(平均値に対して2.9%)である。これに対して、800℃で3600秒間焼鈍した試験片では、平均値は104μm、標準偏差は7μm(平均値に対して6.7%)とばらつきが大きく、精密加工用の素材として相応しくないことが確認された。 The measurement result of the slit opening width is that the average value is 102 μm and the standard deviation is 3 μm (2.9% with respect to the average value) in the specimen annealed at 870 ° C. for 30 seconds. On the other hand, the specimens annealed at 800 ° C for 3600 seconds have a large variation of 104 µm in average value and 7 µm in standard deviation (6.7% of the average value), which is not suitable as a material for precision processing. Was confirmed.
 エッチング加工部の直線性が劣化した原因は、ステンレス鋼板とフォトレジストとの密着性が劣っていることに起因していると考えられる。パターン毎に加工孔の形状がばらついた原因は、強固な皮膜層の存在によりエッチング加工初期の活性化時間に差異が生じたため、場所によって溶解量の違いができたことに起因していると考えられる。 The cause of the deterioration of the linearity of the etched portion is considered to be due to the poor adhesion between the stainless steel plate and the photoresist. The cause of the variation in the shape of the processing hole for each pattern is thought to be due to the difference in the amount of dissolution depending on the location because the activation time at the initial stage of etching processing was different due to the presence of a strong coating layer. It is done.
 以上の実験室試験から、(1)圧延負荷が小さく、細粒化に適し、耐食性に優れた成分系の合金を選択し、(2)圧下率が65%を超える冷間圧延を加えた後に、(3)820℃~920℃で比較的短時間の焼鈍をすることにより、過大な圧延負荷を回避しつつ5μm以下の細粒材を提供できることが確認された。 From the above laboratory tests, (1) after selecting a component alloy having a small rolling load, suitable for fine graining and excellent in corrosion resistance, and (2) applying cold rolling with a rolling reduction exceeding 65%. (3) It was confirmed that by performing annealing at 820 ° C. to 920 ° C. for a relatively short time, a fine grain material of 5 μm or less can be provided while avoiding an excessive rolling load.
 <実施例2>
 上記実験室試験によって得られた知見に基づいて、表6に示す合金J~Mについて、スケールアップした試作と評価を実施した。各合金の設定思想は以下の通りである。
<Example 2>
Based on the knowledge obtained by the laboratory test, alloys J to M shown in Table 6 were scaled up and evaluated. The setting concept of each alloy is as follows.
 合金J:発明例、本発明の好ましい形態の一例で実験室試験の合金Aに相当。 Alloy J: Inventive example, an example of a preferred embodiment of the present invention, which corresponds to alloy A in laboratory tests.
 合金K:比較例、一般的なSUS304の成分系で、C量とMd30値が本発明の範囲外の化学組成であり、実験室試験の合金Dに相当。 Alloy K: Comparative example, a general SUS304 component system, the amount of C and the Md30 value are out of the scope of the present invention, and correspond to the laboratory test alloy D.
 合金L:比較例、合金DからCuとMoを減らしてMd30値は本発明範囲としたもの。Cは範囲外の化学組成であり、実験室試験の合金Eに相当。 Alloy L: Comparative example, Cu and Mo are reduced from alloy D, and Md30 value is within the range of the present invention. C is out of range chemical composition and corresponds to alloy E in the laboratory test.
 合金M:比較例、一般的なSUS304Lの成分系。Ni量とMd30値が本発明の範囲外の化学組成であり、実験室試験の合金Fに相当。 Alloy M: Comparative example, general SUS304L component system. The amount of Ni and the Md30 value are chemical compositions outside the scope of the present invention and correspond to laboratory test alloy F.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 各成分の合金は、2.5トンの大気溶解と連続鋳造を行い、90mm×640mm×5400mmの連続鋳造スラブを得た。切削加工により表面の手入れを実施し、85mm×640mm×4800mmとした。 The alloy of each component was melted in the atmosphere of 2.5 tons and continuously cast to obtain a continuously cast slab of 90 mm × 640 mm × 5400 mm. The surface was cared for by cutting to make it 85 mm × 640 mm × 4800 mm.
 1200℃に加熱して熱間圧延を行い、板厚6mmの熱間圧延コイルを得た。
 熱間圧延コイルは、1150℃で大気焼鈍をした後に、フッ酸と硝酸の混合液により酸洗された。
It was heated to 1200 ° C. and hot-rolled to obtain a hot-rolled coil having a thickness of 6 mm.
The hot-rolled coil was subjected to air annealing at 1150 ° C. and then pickled with a mixed solution of hydrofluoric acid and nitric acid.
 その後、コイル研磨を行って熱延時に生成したコイル表面の疵等が除去された。
 可逆式の20段冷間圧延機を用いて、2mmまで冷間圧延を実施した。(圧下率=67%)この一番最初の冷間圧延を、第1冷間圧延と呼ぶ。冷間圧延後は、1150℃で大気焼鈍をした後に、フッ酸と硝酸の混合液により酸洗された。
Thereafter, coil polishing was performed to remove wrinkles and the like on the coil surface generated during hot rolling.
Using a reversible 20-stage cold rolling mill, cold rolling was performed to 2 mm. (Reduction ratio = 67%) This first cold rolling is called first cold rolling. After cold rolling, it was subjected to atmospheric annealing at 1150 ° C. and then pickled with a mixed solution of hydrofluoric acid and nitric acid.
 その後、可逆式の6段冷間圧延機を用いて、0.37mmtまで冷間圧延(第2冷間圧延)を実施した。このときの圧下率は82%である。 Thereafter, cold rolling (second cold rolling) was performed to 0.37 mmt using a reversible 6-stage cold rolling mill. The rolling reduction at this time is 82%.
 加工硬化により材料が硬くなったものでも、パス回数を増やすことにより目的の0.37mmまでの圧延を実施した。 Even if the material was hardened by work hardening, the target rolling to 0.37 mm was performed by increasing the number of passes.
 光輝焼鈍炉を用いて、還元性のAxガス雰囲気中(水素75%-窒素25%)850℃×48秒の焼き鈍し熱処理を実施した。 Using a bright annealing furnace, annealing heat treatment was performed at 850 ° C. for 48 seconds in a reducing Ax gas atmosphere (hydrogen 75% -nitrogen 25%).
 その後、可逆式の6段冷間圧延機を用いて、0.15mmまでの仕上げ圧延を実施した。テンションレベラによる形状矯正を実施後、600~800℃の範囲で熱処理を実施し、残留応力を低減した。 Thereafter, finish rolling to 0.15 mm was performed using a reversible 6-stage cold rolling mill. After performing shape correction with a tension leveler, heat treatment was performed in the range of 600 to 800 ° C. to reduce residual stress.
 平均結晶粒径は、光輝焼鈍炉での熱処理後に少量のサンプルを切り出し、圧延と垂直方向の断面で光学顕微鏡を用いたミクロ観察を実施することにより測定された。 The average crystal grain size was measured by cutting out a small amount of sample after heat treatment in a bright annealing furnace and performing micro observation using an optical microscope in a cross section perpendicular to rolling.
 また、製造されたステンレス圧延板は、0.15mm×600mm×420mmに切断され、エッチング加工に供された。エッチング加工は、液温50℃でボーメ度が43度(質量パーセントで約40mass%)の塩化第二鉄水溶液を用いて、0.5MPaに加圧しスプレーノズルからエッチング液を片面にのみ100秒間噴霧して実施した。こうして板厚のおよそ半分までがエッチングされたハーフエッチング面の表面粗度を、触針式の表面粗さ計を用いて、圧延と垂直方向の中心線平均粗さ(Ra)を測定することにより、エッチング加工性を評価した。測定長さは4.0mmでうねりを除去するためのカットオフ値は0.80mmとした。 The manufactured rolled stainless steel plate was cut into 0.15 mm × 600 mm × 420 mm and subjected to etching. Etching is performed using a ferric chloride aqueous solution with a liquid temperature of 50 ° C. and a Baume degree of 43 degrees (about 40 mass% in mass percent), pressurized to 0.5 MPa, and sprayed with an etching solution only on one side for 100 seconds from a spray nozzle. And carried out. By measuring the surface roughness of the half-etched surface in which about half of the plate thickness was etched in this way, using a stylus type surface roughness meter, the center line average roughness (Ra) in the direction perpendicular to rolling was measured. The etching processability was evaluated. The measurement length was 4.0 mm, and the cut-off value for removing waviness was 0.80 mm.
 表7に、各合金での第2冷間圧延での圧延パス回数、総圧下率(82%)を各々の圧延パス回数で割った値、光輝焼鈍後の平均結晶粒径、仕上げ圧延後測定されたハーフエッチング面の中心線平均粗さ(Ra)および総合判断結果を示す。 Table 7 shows the number of rolling passes in the second cold rolling in each alloy, the value obtained by dividing the total rolling reduction (82%) by the number of rolling passes, the average crystal grain size after bright annealing, and measurement after finish rolling. The centerline average roughness (Ra) of the half-etched surface and the overall judgment result are shown.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明のポイントの一つとして、過大な圧延負荷を伴わずに細粒化焼鈍前に大きな圧下率を確保できることが重要である。本実施例では、全ての合金において目的とした圧延率82%の冷間圧延を実施したが、その際のパス回数や圧延荷重は合金に依存して変化した。 As one of the points of the present invention, it is important that a large rolling reduction can be ensured before the grain refinement annealing without an excessive rolling load. In this example, the intended cold rolling with a rolling rate of 82% was carried out for all alloys, but the number of passes and the rolling load at that time varied depending on the alloy.
 表7に示すように、合金JとMでは7パスで所定の圧延が完了したのに対して、合金Kでは12パス、合金Lでは14パスのパス回数が必要となった。実際の圧延作業に要した時間は、合金JとMが80分程度だったのに対し、合金Kでは140分、合金Lでは160分と圧延生産性に劣ることが確認された。 As shown in Table 7, while the predetermined rolling was completed in 7 passes for Alloys J and M, 12 passes for Alloy K and 14 passes for Alloy L were required. The time required for the actual rolling operation was about 80 minutes for the alloys J and M, whereas it was 140 minutes for the alloy K and 160 minutes for the alloy L, and it was confirmed that the rolling productivity was inferior.
 圧延の圧下率をその圧延に要したパス回数で割った「総圧下率/パス回数」のパラメータ評価では、合金JとMは11.6%/回の圧延生産性であったに対し、合金KとLでは10%/回を下回り、圧延生産性に劣ることが確認される。 In the parameter evaluation of “total rolling reduction / pass times” obtained by dividing the rolling reduction rate by the number of passes required for the rolling, alloys J and M had a rolling productivity of 11.6% / It is confirmed that K and L are less than 10% / time and inferior in rolling productivity.
 また、合金Kの最終の4パスと合金Lの最終の5パスは、大きな引張張力と圧延荷重を加えて圧延しているにもかかわらず、1パス当たりの圧延率が10%を下回っており、単に圧延負荷が高いだけでなく圧延後の製品形状が悪くなり易い大荷重かつ低圧下率の条件での圧延を余儀なくされた。 In addition, the final 4 passes of Alloy K and the final 5 passes of Alloy L are rolled with a large tensile tension and rolling load, but the rolling rate per pass is less than 10%. In addition, the rolling load is not only high, but the product shape after rolling is apt to be deteriorated, and rolling under a condition of a large load and a low pressure reduction rate is unavoidable.
 光輝焼鈍炉を用いた細粒化焼鈍後の平均結晶粒径は、合金JとLで3.0μm以下になることが確認された。合金KとMでも、大圧下圧延と低温熱処理が実施されたことにより、10μm以下に細粒化されてはいるが、本発明が目的とする5.0μm以下にはなっていない。 It was confirmed that the average crystal grain size after grain refinement annealing using a bright annealing furnace was 3.0 μm or less for alloys J and L. Alloys K and M are also refined to 10 μm or less by carrying out the large rolling and low-temperature heat treatment, but they are not 5.0 μm or less, which is the object of the present invention.
 また、最終製品でのハーフエッチング後のハーフエッチング面の中心線平均粗さは、合金JとLでは、各々0.28μm、0.32μmと他の合金よりも平滑化していることが確認される。 In addition, the center line average roughness of the half-etched surface after half-etching in the final product is confirmed to be smoother than that of other alloys in alloys J and L, 0.28 μm and 0.32 μm, respectively. .
 以上の結果から、合金KとLは圧延生産性に劣り、合金KとMは平均結晶粒径を5μm以下にすることができず、総合判断としては合金Jだけが優れていることが確認された。 From the above results, it is confirmed that alloys K and L are inferior in rolling productivity, and alloys K and M cannot have an average crystal grain size of 5 μm or less, and as a comprehensive judgment, only alloy J is superior. It was.

Claims (5)

  1.  質量%で、C≦0.030%、Si≦0.80%、Mn≦1.20%、P≦0.045%、S≦0.01%、Cu≦0.60%、Mo≦0.60%、Al≦0.02%、18.0%≦Cr≦19.0%、8.0%≦Ni≦9.0%、0.03%<Nb≦0.12%、0.02%≦N≦0.1%、残部が鉄と不純物からなり、
     (1)式で定義されるMd30値が25~55であり、
     平均結晶粒径が5μm以下である、ステンレス鋼板。
     Md30=497-462(C+N)-9.2(Si)-8.1(Mn)-13.7(Cr)-20(Ni+Cu)-18.5(Mo) ・・・ (1)式
     ここで、(1)式において、C、N、Si、Mn、Cr、Ni、Cu、Moは、鋼中の各元素の含有量(単位:質量%)を意味する。
    % By mass, C ≦ 0.030%, Si ≦ 0.80%, Mn ≦ 1.20%, P ≦ 0.045%, S ≦ 0.01%, Cu ≦ 0.60%, Mo ≦ 0. 60%, Al ≦ 0.02%, 18.0% ≦ Cr ≦ 19.0%, 8.0% ≦ Ni ≦ 9.0%, 0.03% <Nb ≦ 0.12%, 0.02% ≦ N ≦ 0.1%, the balance consists of iron and impurities,
    The Md30 value defined by the formula (1) is 25 to 55,
    A stainless steel plate having an average crystal grain size of 5 μm or less.
    Md30 = 497-462 (C + N) -9.2 (Si) -8.1 (Mn) -13.7 (Cr) -20 (Ni + Cu) -18.5 (Mo) (1) Formula where In the formula (1), C, N, Si, Mn, Cr, Ni, Cu, and Mo mean the content (unit: mass%) of each element in the steel.
  2.  板厚が0.15mm以下である、請求項1に記載のステンレス鋼板。 The stainless steel plate according to claim 1, wherein the plate thickness is 0.15 mm or less.
  3.  板厚ばらつきが該板厚の±4%以下である、請求項2に記載のステンレス鋼板。 The stainless steel plate according to claim 2, wherein the plate thickness variation is ± 4% or less of the plate thickness.
  4.  質量%で、C≦0.030%、Si≦0.80%、Mn≦1.20%、P≦0.045%、S≦0.01%、Cu≦0.60%、Mo≦0.60%、Al≦0.02%、18.0%≦Cr≦19.0%、8.0%≦Ni≦9.0%、0.03%<Nb≦0.12%、0.02%≦N≦0.1%、残部が鉄と不純物からなり、(1)式で定義されるMd30値が25~55であるオーステナイトステンレス鋼板を、65%を超える冷間圧延率で冷間圧延を施した後、810~940℃の焼鈍を行う、ステンレス鋼板の製造方法。 % By mass, C ≦ 0.030%, Si ≦ 0.80%, Mn ≦ 1.20%, P ≦ 0.045%, S ≦ 0.01%, Cu ≦ 0.60%, Mo ≦ 0. 60%, Al ≦ 0.02%, 18.0% ≦ Cr ≦ 19.0%, 8.0% ≦ Ni ≦ 9.0%, 0.03% <Nb ≦ 0.12%, 0.02% ≦ N ≦ 0.1%, the balance is iron and impurities, and austenitic stainless steel sheet having an Md30 value defined by equation (1) of 25 to 55 is cold rolled at a cold rolling rate exceeding 65%. A method for producing a stainless steel sheet, which is annealed at 810 to 940 ° C. after being applied.
  5.  前記焼鈍が600秒未満である、請求項4に記載のステンレス鋼板の製造方法。 The method for producing a stainless steel plate according to claim 4, wherein the annealing is less than 600 seconds.
PCT/JP2013/073537 2012-09-04 2013-09-02 Stainless steel sheet and method for producing same WO2014038510A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380043929.6A CN104583440B (en) 2012-09-04 2013-09-02 Corrosion resistant plate and manufacture method thereof
JP2014517304A JP5960809B2 (en) 2012-09-04 2013-09-02 Stainless steel sheet for precision machining and manufacturing method thereof
KR1020157003002A KR101707345B1 (en) 2012-09-04 2013-09-02 Stainless steel sheet for precision machining and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012194214 2012-09-04
JP2012-194214 2012-09-04

Publications (1)

Publication Number Publication Date
WO2014038510A1 true WO2014038510A1 (en) 2014-03-13

Family

ID=50237119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073537 WO2014038510A1 (en) 2012-09-04 2013-09-02 Stainless steel sheet and method for producing same

Country Status (4)

Country Link
JP (1) JP5960809B2 (en)
KR (1) KR101707345B1 (en)
CN (1) CN104583440B (en)
WO (1) WO2014038510A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043125A1 (en) * 2014-09-17 2016-03-24 新日鐵住金株式会社 Austenitic stainless steel plate
WO2016047734A1 (en) * 2014-09-25 2016-03-31 新日鐵住金株式会社 Austenitic stainless steel sheet and method for producing same
JP2016160502A (en) * 2015-03-03 2016-09-05 新日鐵住金株式会社 Metastable austenitic stainless steel sheet and method for producing the same
CN106460149A (en) * 2014-05-13 2017-02-22 大日本印刷株式会社 Metal plate, method for manufacturing the metal plate, and method for manufacturing mask using the metal plate
JPWO2017013903A1 (en) * 2015-07-17 2018-02-15 凸版印刷株式会社 Metal mask base material and metal mask manufacturing method
US10233546B2 (en) 2013-09-13 2019-03-19 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US10273569B2 (en) 2015-07-17 2019-04-30 Toppan Printing Co., Ltd. Metal mask substrate, metal mask substrate control method, metal mask, and metal mask production method
US10570498B2 (en) 2015-02-10 2020-02-25 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
JP2020037123A (en) * 2018-09-05 2020-03-12 日本製鉄株式会社 Diffusion-joined product and method for manufacturing the same
WO2020071534A1 (en) * 2018-10-04 2020-04-09 日本製鉄株式会社 Austenitic stainless steel sheet and method for producing same
US10876215B2 (en) 2015-07-17 2020-12-29 Toppan Printing Co., Ltd. Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
CN113042527A (en) * 2021-03-23 2021-06-29 山西太钢不锈钢精密带钢有限公司 High-strength high-plasticity extremely-thin precise stainless steel foil and production method thereof
US11111585B2 (en) 2015-07-17 2021-09-07 Toppan Printing Co., Ltd. Method for producing base for metal masks, method for producing metal mask for vapor deposition, base for metal masks, and metal mask for vapor deposition
US11486031B2 (en) 2013-10-15 2022-11-01 Dai Nippon Printing Co., Ltd. Metal plate
JP7440756B2 (en) 2020-03-26 2024-02-29 日本製鉄株式会社 cladding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6499557B2 (en) * 2015-09-08 2019-04-10 日新製鋼株式会社 Welding method for austenitic stainless steel sheet
CN109023076A (en) * 2018-09-05 2018-12-18 合肥久新不锈钢厨具有限公司 A kind of stainless steel and preparation method thereof with anti-ultraviolet function

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003244A (en) * 2001-06-22 2003-01-08 Sumitomo Metal Ind Ltd Stainless steel sheet for photoetching and production method therefor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297798B2 (en) * 1996-09-06 2002-07-02 住友金属工業株式会社 Manufacturing method of austenitic stainless steel sheet for roll forming
JPH11269613A (en) 1998-03-19 1999-10-05 Nippon Steel Corp Stainless steel excellent in chemical etching property
JP3861612B2 (en) 2001-03-14 2006-12-20 住友金属工業株式会社 Stainless steel sheet manufacturing method
JP3877590B2 (en) 2001-12-25 2007-02-07 日新製鋼株式会社 Highly elastic metastable austenitic stainless steel sheet and its manufacturing method
JP2005314772A (en) 2004-04-30 2005-11-10 Nippon Yakin Kogyo Co Ltd Stainless steel sheet to be photo-etched and manufacturing method therefor
JP4324509B2 (en) 2004-05-10 2009-09-02 日本冶金工業株式会社 Stainless steel sheet for photo-etching and method for producing the same
JP4332670B2 (en) 2004-05-10 2009-09-16 日本冶金工業株式会社 Stainless steel sheet for photo-etching and method for producing the same
WO2008013305A1 (en) * 2006-07-28 2008-01-31 Sumitomo Metal Industries, Ltd. Stainless steel sheet for parts and process for manufacturing the same
JP5308726B2 (en) 2008-06-17 2013-10-09 新日鐵住金ステンレス株式会社 Austenitic stainless steel sheet for press forming having a fine grain structure and method for producing the same
JP5500960B2 (en) * 2009-12-01 2014-05-21 新日鐵住金ステンレス株式会社 Fine grain austenitic stainless steel sheet with excellent stress corrosion cracking resistance and workability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003244A (en) * 2001-06-22 2003-01-08 Sumitomo Metal Ind Ltd Stainless steel sheet for photoetching and production method therefor

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233546B2 (en) 2013-09-13 2019-03-19 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US10731261B2 (en) 2013-09-13 2020-08-04 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US11486031B2 (en) 2013-10-15 2022-11-01 Dai Nippon Printing Co., Ltd. Metal plate
US10600963B2 (en) 2014-05-13 2020-03-24 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
CN111004996A (en) * 2014-05-13 2020-04-14 大日本印刷株式会社 Method for manufacturing metal plate and method for manufacturing vapor deposition mask
CN106460149A (en) * 2014-05-13 2017-02-22 大日本印刷株式会社 Metal plate, method for manufacturing the metal plate, and method for manufacturing mask using the metal plate
CN114774853A (en) * 2014-05-13 2022-07-22 大日本印刷株式会社 Method for manufacturing vapor deposition mask and method for inspecting metal plate
EP3604608A1 (en) * 2014-05-13 2020-02-05 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
CN111004996B (en) * 2014-05-13 2022-05-17 大日本印刷株式会社 Method for manufacturing metal plate and method for manufacturing vapor deposition mask
US11217750B2 (en) 2014-05-13 2022-01-04 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
EP3144410A4 (en) * 2014-05-13 2018-06-06 Dai Nippon Printing Co., Ltd. Metal plate, method for manufacturing metal plate, and method for manufacturing mask using metal plate
KR101918671B1 (en) * 2014-05-13 2018-11-15 다이니폰 인사츠 가부시키가이샤 Metal plate, method for manufacturing metal plate, and method for manufacturing mask using metal plate
CN106460149B (en) * 2014-05-13 2020-01-17 大日本印刷株式会社 Metal plate, method for manufacturing metal plate, and method for manufacturing mask using metal plate
EP3144410A1 (en) 2014-05-13 2017-03-22 Dai Nippon Printing Co., Ltd. Metal plate, method for manufacturing metal plate, and method for manufacturing mask using metal plate
JP5939370B1 (en) * 2014-09-17 2016-06-22 新日鐵住金株式会社 Austenitic stainless steel sheet
WO2016043125A1 (en) * 2014-09-17 2016-03-24 新日鐵住金株式会社 Austenitic stainless steel plate
KR101939926B1 (en) 2014-09-17 2019-01-17 신닛테츠스미킨 카부시키카이샤 Austenitic stainless steel plate
KR20170056007A (en) * 2014-09-17 2017-05-22 신닛테츠스미킨 카부시키카이샤 Austenitic stainless steel plate
KR101952054B1 (en) * 2014-09-25 2019-02-25 신닛테츠스미킨 카부시키카이샤 Austenitic stainless steel sheet and method for producing same
KR20170057412A (en) * 2014-09-25 2017-05-24 신닛테츠스미킨 카부시키카이샤 Austenitic stainless steel sheet and method for producing same
WO2016047734A1 (en) * 2014-09-25 2016-03-31 新日鐵住金株式会社 Austenitic stainless steel sheet and method for producing same
JP5920555B1 (en) * 2014-09-25 2016-05-18 新日鐵住金株式会社 Austenitic stainless steel sheet and manufacturing method thereof
US10570498B2 (en) 2015-02-10 2020-02-25 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
US10612124B2 (en) 2015-02-10 2020-04-07 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
JP2016160502A (en) * 2015-03-03 2016-09-05 新日鐵住金株式会社 Metastable austenitic stainless steel sheet and method for producing the same
US11453940B2 (en) 2015-07-17 2022-09-27 Toppan Printing Co., Ltd. Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
US10903426B2 (en) 2015-07-17 2021-01-26 Toppan Printing Co., Ltd. Metal mask base, metal mask and method for producing metal mask
US11706968B2 (en) 2015-07-17 2023-07-18 Toppan Printing Co., Ltd. Metal mask base, metal mask and method for producing metal mask
US10273569B2 (en) 2015-07-17 2019-04-30 Toppan Printing Co., Ltd. Metal mask substrate, metal mask substrate control method, metal mask, and metal mask production method
US11111585B2 (en) 2015-07-17 2021-09-07 Toppan Printing Co., Ltd. Method for producing base for metal masks, method for producing metal mask for vapor deposition, base for metal masks, and metal mask for vapor deposition
JPWO2017013903A1 (en) * 2015-07-17 2018-02-15 凸版印刷株式会社 Metal mask base material and metal mask manufacturing method
US10876215B2 (en) 2015-07-17 2020-12-29 Toppan Printing Co., Ltd. Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
US11746423B2 (en) 2015-07-17 2023-09-05 Toppan Printing Co., Ltd. Method for producing base for metal masks, method for producing metal mask for vapor deposition, base for metal masks, and metal mask for vapor deposition
JP2020037123A (en) * 2018-09-05 2020-03-12 日本製鉄株式会社 Diffusion-joined product and method for manufacturing the same
JP7274837B2 (en) 2018-09-05 2023-05-17 日鉄ステンレス株式会社 Diffusion bonded product and its manufacturing method
JPWO2020071534A1 (en) * 2018-10-04 2021-09-02 日本製鉄株式会社 Austenitic stainless steel sheet and its manufacturing method
JP7165202B2 (en) 2018-10-04 2022-11-02 日本製鉄株式会社 Austenitic stainless steel sheet and manufacturing method thereof
WO2020071534A1 (en) * 2018-10-04 2020-04-09 日本製鉄株式会社 Austenitic stainless steel sheet and method for producing same
JP7440756B2 (en) 2020-03-26 2024-02-29 日本製鉄株式会社 cladding
CN113042527A (en) * 2021-03-23 2021-06-29 山西太钢不锈钢精密带钢有限公司 High-strength high-plasticity extremely-thin precise stainless steel foil and production method thereof

Also Published As

Publication number Publication date
JPWO2014038510A1 (en) 2016-08-08
CN104583440A (en) 2015-04-29
KR20150024945A (en) 2015-03-09
JP5960809B2 (en) 2016-08-02
KR101707345B1 (en) 2017-02-15
CN104583440B (en) 2016-11-09

Similar Documents

Publication Publication Date Title
JP5960809B2 (en) Stainless steel sheet for precision machining and manufacturing method thereof
KR100977600B1 (en) The ferritic stainless steel plate having low orange peel and exhibiting excellent formability, and method for producing the same
EP2163658B1 (en) Ferritic stainless steel sheet having excellent corrosion resistance against sulfuric acid, and method for production thereof
JP4475352B2 (en) Stainless steel sheet for parts and manufacturing method thereof
EP3530769B1 (en) Martensitic stainless steel sheet
WO2011067979A1 (en) Fine grained austenitic stainless steel sheet exhibiting excellent stress corrosion cracking resistance and processability
WO2015111403A1 (en) Material for cold-rolled stainless steel sheet and method for producing same
JP5843019B2 (en) Stainless steel sheet and its manufacturing method
KR20150105476A (en) High-strength cold-rolled steel sheet having excellent bendability
WO2016152622A1 (en) Ferrite-austenite stainless steel sheet with excellent sheared end face corrosion resistance
KR101850231B1 (en) Ferritic stainless steel and method for producing same
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
JP2008038191A (en) Austenitic stainless steel and its production method
JP2007211313A (en) Ferritic stainless steel having excellent ridging resistance and its production method
JP3723569B2 (en) Manufacturing method of austenitic stainless steel sheet with excellent precision punchability
JP4822398B2 (en) Medium to high carbon steel plate with excellent punchability
JP2022069229A (en) Austenite stainless steel and method for manufacturing the same
JP2021188081A (en) Austenitic stainless steel sheet and method for producing the same
JP5167314B2 (en) Method for producing ferritic stainless steel with excellent ridging resistance
JP3230587B2 (en) A high-strength stainless cold-rolled steel strip having excellent formability and fatigue properties and exhibiting high strength by aging treatment, and a method for producing the same.
JP2004052069A (en) Hot rolled steel sheet having excellent blanking property
KR20110075408A (en) Ferritic stainless steel and method for manufacturing the same
JP3727646B2 (en) Manufacturing method of austenitic stainless steel sheet with excellent precision punchability
JP3670232B2 (en) Austenitic stainless steel sheet with excellent precision punchability
WO2012111188A1 (en) Precipitation hardening martensitic stainless steel

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014517304

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157003002

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836002

Country of ref document: EP

Kind code of ref document: A1