JP2020037123A - Diffusion-joined product and method for manufacturing the same - Google Patents

Diffusion-joined product and method for manufacturing the same Download PDF

Info

Publication number
JP2020037123A
JP2020037123A JP2018165876A JP2018165876A JP2020037123A JP 2020037123 A JP2020037123 A JP 2020037123A JP 2018165876 A JP2018165876 A JP 2018165876A JP 2018165876 A JP2018165876 A JP 2018165876A JP 2020037123 A JP2020037123 A JP 2020037123A
Authority
JP
Japan
Prior art keywords
diffusion
diffusion bonding
less
amount
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018165876A
Other languages
Japanese (ja)
Other versions
JP7274837B2 (en
Inventor
浩史 神尾
Hiroshi Kamio
浩史 神尾
正美 澤田
Masami Sawada
正美 澤田
正樹 松原
Masaki Matsubara
正樹 松原
菊池 淳
Atsushi Kikuchi
淳 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018165876A priority Critical patent/JP7274837B2/en
Publication of JP2020037123A publication Critical patent/JP2020037123A/en
Application granted granted Critical
Publication of JP7274837B2 publication Critical patent/JP7274837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a diffusion-joined product obtained by using an austenitic stainless steel, in which a diffusion-joined boundary surface is hard to be peeled off, and a method for manufacture of the same.SOLUTION: The diffusion-joined product is provided in which a plurality of laminated steel plates having a prescribed chemical composition are joined to each other, and in which a diffusion-joined boundary surface is formed at a joint part of the steel plates, wherein when a plate thickness direction of the steel plate denotes a width direction of a cross section of the diffusion joined boundary surface in the steel plate thickness direction and when the diffusion-joined boundary surface denotes a width center, an Si enrichment degree (maximum Si amount/raw material Si amount) in an area having a full width of 10 μm, which is a ratio between a maximum Si amount and a raw material Si amount, is 5.0 or less, a joining rate of the diffusion- joined boundary surface is 60.0% or more. The method for manufacturing the diffusion-joined product is also provided.SELECTED DRAWING: Figure 2

Description

本発明は、主に精密加工を施したオーステナイト系ステンレス鋼板を用いた拡散接合品およびその製造方法に関する。具体的には、フォトエッチングやレーザーによる精密加工を施したオーステナイト系ステンレス鋼板を拡散接合することで作製される精密部品およびその製造方法に関する。   The present invention relates to a diffusion bonded product using an austenitic stainless steel plate that has been mainly subjected to precision processing, and a method for manufacturing the same. More specifically, the present invention relates to a precision component manufactured by diffusion bonding of an austenitic stainless steel plate that has been subjected to precision processing by photoetching or laser and a method of manufacturing the same.

フォトエッチング加工とは、素材である金属板の表面にフォトレジスト法によるパターンを形成した後、スプレーや浸漬によるエッチングによって金属板を溶解し、フォトレジストパターンとほぼ同じ形状に金属板を加工する方法である。また、レーザー加工とは、CADデータなどを基に、金属板の表面をレーザーで溶融させて孔や所定のパターンを形成する加工方法である。   Photo etching is a method of forming a pattern on the surface of a metal plate, which is a material, by a photoresist method, dissolving the metal plate by etching by spraying or dipping, and processing the metal plate into almost the same shape as the photoresist pattern. It is. The laser processing is a processing method of forming holes and a predetermined pattern by melting the surface of a metal plate with a laser based on CAD data or the like.

フォトエッチング加工やレーザー加工を施した後に、加工されたステンレス鋼板を積層し、無酸化雰囲気中で高温保持することで積層したステンレス鋼板を接合することで、多数のステンレス鋼板から一体の部品が作製される。   After photo-etching or laser processing, the processed stainless steel sheets are laminated, and the laminated stainless steel sheets are joined by holding them at a high temperature in a non-oxidizing atmosphere to produce an integrated part from many stainless steel sheets. Is done.

このような処理は拡散接合処理とよばれ、高い精度で複雑な形状に加工された部品を成型するために重要となる技術である。   Such a process is called a diffusion bonding process and is an important technique for molding a component processed into a complicated shape with high accuracy.

拡散接合性に関する従来技術として、例えば、特許文献1には、ステンレス鋼材同士を直接接触させて拡散接合により一体化させるに際し、接触させる双方のステンレス鋼材の少なくとも一方に昇温過程でのオーステナイト変態開始温度Ac点を650〜950℃に持ちオーステナイト+フェライト2相温度域を880℃以上の範囲に持つ2相系鋼を適用し、接触面圧1.0MPa以下、加熱温度880〜1080℃の条件範囲で前記2相系鋼のフェライト相がオーステナイト相へ変態するときの粒界移動を伴いながら拡散接合を進行させる、ステンレス鋼拡散接合製品の製造方法が開示されている。 As a conventional technique relating to diffusion bonding, for example, in Patent Document 1, when stainless steel materials are brought into direct contact with each other and integrated by diffusion bonding, at least one of the two stainless steel materials to be brought into contact with each other starts austenite transformation in a temperature rising process. Applying a two-phase steel having one point of temperature Ac at 650 to 950 ° C and an austenite + ferrite two-phase temperature range of 880 ° C or more, contact surface pressure of 1.0 MPa or less, and heating temperature of 880 to 1080 ° C A method of manufacturing a stainless steel diffusion bonded product, in which diffusion bonding is advanced while accompanied by grain boundary movement when the ferrite phase of the duplex stainless steel is transformed into an austenite phase within the range, is disclosed.

特許文献2には、拡散接合に供する双方のステンレス鋼材(以下「接合前鋼材」という)として、接合面となる表面の表面粗さRaが0.30μm以下に調整された鋼材を使用し、拡散接合条件として、双方の接合前鋼材とも平均結晶粒径rが50μm以下に調整された状態から拡散接合温度に到達し、拡散接合温度に保持した後に平均結晶粒径rが80μm以下となり、かつ(r−r)/rが2.0以上となるヒートパターンを適用するステンレス鋼拡散接合製品の製造方法が開示されている。 Patent Literature 2 discloses that a stainless steel material having a surface roughness Ra adjusted to be 0.30 μm or less is used as both stainless steel materials (hereinafter referred to as “steel materials before joining”) to be subjected to diffusion bonding. As the joining conditions, both the pre-joined steel materials reach the diffusion bonding temperature from a state where the average crystal grain size r 0 is adjusted to 50 μm or less, and after maintaining at the diffusion joining temperature, the average crystal grain size r 1 becomes 80 μm or less, A method for manufacturing a stainless steel diffusion bonded product applying a heat pattern in which (r 1 −r 0 ) / r 0 is 2.0 or more is disclosed.

特開2013−103271号公報JP 2013-103271 A 特開2013−173181号公報JP 2013-173181 A

従来技術では、拡散接合界面付近にSi等の特定元素が濃化してしまい、拡散接合させた鋼材同士が、拡散接合界面から剥離しやすいという課題がある。   In the related art, there is a problem that a specific element such as Si is concentrated near the diffusion bonding interface, and the steel materials subjected to diffusion bonding are easily separated from the diffusion bonding interface.

本発明は、オーステナイト系ステンレス鋼を用いた、拡散接合界面が剥離し難い拡散接合品およびその製造方法を提供することを目的とする。   An object of the present invention is to provide a diffusion-bonded product using an austenitic stainless steel, in which a diffusion-bonding interface is unlikely to peel off, and a method for producing the same.

本発明者らは、上記課題を解決するために拡散接合方法と拡散接合界面付近における元素分布および拡散接合界面の剥離性とについて鋭意検討を重ねた結果、特定の条件で拡散接合を行うことで、拡散接合界面付近に濃化するSi量を低減でき、剥離し難い拡散接合界面を提供でき、上記課題を解決できることを知見した。   The present inventors have conducted intensive studies on the diffusion bonding method and the element distribution near the diffusion bonding interface and the releasability of the diffusion bonding interface in order to solve the above problems, and as a result, by performing diffusion bonding under specific conditions. It has been found that the amount of Si concentrated near the diffusion bonding interface can be reduced, a diffusion bonding interface that is difficult to peel off can be provided, and the above problem can be solved.

さらに、本発明者らは、拡散接合前の鋼板に所定の条件で陽極電解処理を施すことで、鋼板の表面Si量をより低減できることを見出し、上記課題を解決できることを知見した。   Furthermore, the present inventors have found that by subjecting the steel sheet before diffusion bonding to anodic electrolysis under predetermined conditions, the amount of Si on the surface of the steel sheet can be further reduced, and have found that the above problem can be solved.

本発明の要旨は、以下の通りである。   The gist of the present invention is as follows.

[1] 本発明の一態様に係る拡散接合品は、積層された複数の鋼板同士が相互に接合されてなり、前記鋼板は、質量%で、
C:0.030%以下、
Si:0.20〜1.00%、
Mn:0.6〜1.5%、
Cr:15.0〜20.0%、
Ni:6.0〜9.0%、
Mo:0.1〜0.5%、
Cu:0.1〜0.5%および
N:0.030〜0.150%
を含有し、さらに
Nb:0.500%以下、
V:0.500%以下および
Ti:0.500%以下のうち1種または2種以上を含有し、
残部Feおよび不純物からなる化学組成を有する鋼板であり、
前記鋼板同士の接合部に拡散接合界面が形成され、
前記拡散接合界面の鋼板板厚方向の断面において、前記鋼板の板厚方向を幅方向とし、前記拡散接合界面を幅中央とした場合の全幅10μmの領域内における最大Si量と素材Si量との比であるSi濃化度(最大Si量/素材Si量)が5.0以下であり、
前記拡散接合界面の接合率が60.0%以上である。
[1] A diffusion-bonded product according to one embodiment of the present invention is configured such that a plurality of laminated steel plates are bonded to each other, and the steel plates are expressed in terms of mass%.
C: 0.030% or less,
Si: 0.20 to 1.00%,
Mn: 0.6-1.5%,
Cr: 15.0 to 20.0%,
Ni: 6.0 to 9.0%,
Mo: 0.1-0.5%,
Cu: 0.1-0.5% and N: 0.030-0.150%
And Nb: 0.500% or less;
V: 0.500% or less and Ti: 0.500% or less.
A steel sheet having a chemical composition consisting of a balance of Fe and impurities,
A diffusion bonding interface is formed at the joint between the steel plates,
In the cross section of the diffusion bonding interface in the thickness direction of the steel sheet, the thickness direction of the steel sheet is defined as the width direction, and the maximum Si amount and the material Si amount in the entire width of 10 μm when the diffusion bonding interface is defined as the width center. The Si concentration (maximum Si content / material Si content), which is a ratio, is 5.0 or less;
The bonding rate at the diffusion bonding interface is 60.0% or more.

[2] 上記[1]に記載の拡散接合品の製造方法では、上記[1]に記載の化学組成を有し、且つオーステナイトの平均結晶粒径が5.0μm以下である金属組織を有する鋼板に、pHが5.0以上12.0未満の電解液中で、n組の電極を用いてn回の陽極電解処理を連続して行う際に、k回目の陽極電解処理における単位面積あたりの電気量をσ(ただしk=1〜n)とし、各回の陽極電解処理における単位面積あたりの電気量の総和をΣσとしたとき、電気量の総和Σσが、下記(1)式を満たす条件で陽極電解処理する第1の工程と、
陽極電解処理された前記鋼板の複数枚を直接積層させて、拡散接合温度:850〜1050℃、面圧:0.03〜30.00MPaで拡散接合を施す第2の工程と、
を順次行う。
Σσ≦25.0(C/dm)・・・(1)
[2] In the method for producing a diffusion bonded article according to the above [1], the steel sheet having the chemical composition according to the above [1] and having a metal structure having an austenite average crystal grain size of 5.0 µm or less. When n times of anodic electrolysis is continuously performed using n sets of electrodes in an electrolytic solution having a pH of 5.0 or more and less than 12.0, the per unit area in the k-th anodic electrolysis is When the amount of electricity is σ k (where k = 1 to n) and the sum of the amount of electricity per unit area in each anodic electrolysis treatment is Σσ k , the sum of the amount of electricity が σ k is given by the following equation (1). A first step of performing anodic electrolysis under conditions that satisfy the conditions,
A second step of directly laminating a plurality of the anodic-electrolyzed steel sheets and performing diffusion bonding at a diffusion bonding temperature of 850 to 1050 ° C. and a surface pressure of 0.03 to 30.00 MPa;
Are sequentially performed.
Σσ k ≦ 25.0 (C / dm 2 ) (1)

本発明によれば、オーステナイト系ステンレス鋼を用いた、剥離し難い拡散接合界面を有する拡散接合品およびその製造方法を提供できる。   Advantageous Effects of Invention According to the present invention, it is possible to provide a diffusion-bonded product using austenitic stainless steel and having a diffusion-bonding interface that is difficult to peel off, and a method for manufacturing the same.

拡散接合界面付近におけるSi濃化度の測定方法を説明する図である。FIG. 4 is a diagram for explaining a method of measuring a Si concentration near a diffusion bonding interface. 本実施形態におけるSi濃化度と接合率との関係を示す図である。FIG. 4 is a diagram illustrating a relationship between a Si concentration and a bonding rate according to the embodiment.

本発明の実施形態を以下に説明する。本実施形態に係る拡散接合品は、積層された複数の鋼板同士が相互に接合されてなり、前記鋼板は、所定の化学組成を有する鋼板であり、前記鋼板同士の接合部に拡散接合界面が形成され、前記拡散接合界面の鋼板板厚方向の断面において、前記鋼板の板厚方向を幅方向とし、前記拡散接合界面を幅中央とした場合の全幅10μmの領域内における最大Si量と素材Si量との比であるSi濃化度(最大Si量/素材Si量)が5.0以下であり、前記拡散接合界面の接合率が60.0%以上である。本実施形態では、拡散接合に用いる鋼板としてオーステナイト系ステンレス鋼板を対象とする。しかし、精密加工面の平滑性などの観点から平均結晶粒径が小さい鋼板であること、およびエッチング加工時にスマットが出ない鋼板であることが望ましいが、本発明で規定する要件を満たすことができれば、鋼板の化学組成等は限定されるものではない。鋼板の板厚は、特に限定されないが、50〜1000μmとすればよい。   An embodiment of the present invention will be described below. The diffusion-bonded product according to the present embodiment is configured such that a plurality of laminated steel plates are bonded to each other, the steel plate is a steel plate having a predetermined chemical composition, and a diffusion bonding interface is formed at a bonding portion between the steel plates. In the cross section of the diffusion bonding interface in the thickness direction of the steel sheet, the maximum Si amount and the material Si in a region having a total width of 10 μm when the thickness direction of the steel sheet is the width direction and the diffusion bonding interface is the center of the width. The Si concentration (maximum Si amount / material Si amount), which is a ratio with respect to the amount, is 5.0 or less, and the bonding rate at the diffusion bonding interface is 60.0% or more. In the present embodiment, an austenitic stainless steel sheet is used as a steel sheet used for diffusion bonding. However, it is preferable that the steel sheet has a small average crystal grain size from the viewpoint of the smoothness of the precision-machined surface, and that the steel sheet does not have a smut at the time of etching, but if the requirements specified in the present invention can be satisfied. The chemical composition of the steel sheet is not limited. The thickness of the steel sheet is not particularly limited, but may be 50 to 1000 μm.

本発明者らは、質量%で、C:0.030%以下、Si:0.20〜1.00%、Mn:0.6〜1.5%、Cr:15.0〜20.0%、Ni:6.0〜9.0%、Mo:0.1〜0.5%、Cu:0.1〜0.5%およびN:0.030〜0.150%を含有し、さらにNb:0.500%以下、V:0.500%以下およびTi:0.500%以下のうち1種または2種以上を含有し、残部Feおよび不純物からなる化学組成を有するオーステナイト系ステンレス鋼板を、本実施形態に係る拡散接合品の鋼板として用いることができることを確認している。なお、本実施形態では、化学組成がそれぞれ異なる鋼板を拡散接合して拡散接合品としてもよく、化学組成が同一の鋼板を拡散接合して拡散接合品としてもよい。本実施形態に係る拡散接合品は、積層され、拡散接合された複数の鋼板の化学組成の平均が上記化学組成に含まれていることが必要である。化学組成が同一の鋼板を拡散接合して拡散接合品とした場合には、鋼板の化学組成と、拡散接合品(積層され、拡散接合された複数の鋼板の化学組成の平均)の化学組成とは等しいものとなる。   The present inventors have found that, by mass%, C: 0.030% or less, Si: 0.20 to 1.00%, Mn: 0.6 to 1.5%, Cr: 15.0 to 20.0% , Ni: 6.0-9.0%, Mo: 0.1-0.5%, Cu: 0.1-0.5%, and N: 0.030-0.150%, and further Nb. : An austenitic stainless steel sheet containing one or more of 0.500% or less, V: 0.500% or less and Ti: 0.500% or less, and having a chemical composition consisting of a balance of Fe and impurities; It has been confirmed that it can be used as the steel sheet of the diffusion bonded product according to the present embodiment. In the present embodiment, steel sheets having different chemical compositions may be diffusion-bonded to form a diffusion bonded article, or steel sheets having the same chemical composition may be diffusion-bonded to form a diffusion bonded article. The diffusion-bonded article according to the present embodiment requires that the average of the chemical compositions of a plurality of steel sheets stacked and diffusion-bonded be included in the chemical composition. In the case where a steel sheet having the same chemical composition is diffusion-bonded into a diffusion-bonded product, the chemical composition of the steel sheet and the chemical composition of the diffusion-bonded product (the average of the chemical compositions of a plurality of laminated and diffusion-bonded steel sheets) Are equal.

(1)金属組織
[拡散接合前のオーステナイト粒径の平均値:5.0μm以下]
拡散接合前の鋼板におけるオーステナイト粒径の平均値(以下、オーステナイトの平均結晶粒径と記載する場合がある)を5.0μm以下と小さくすることにより、拡散接合前に行われるエッチング加工面が平滑になる。さらに、結晶粒微細化によって面積の増えた結晶粒界を介して拡散が活発に起こり、鋼板の拡散接合性が向上する。従って、本実施形態では、拡散接合前の鋼板におけるオーステナイト粒径の平均値の上限を5.0μmとする。
(1) Metal structure [Average austenite grain size before diffusion bonding: 5.0 μm or less]
By making the average value of the austenite grain size (hereinafter sometimes referred to as the average grain size of austenite) of the steel sheet before diffusion joining as small as 5.0 μm or less, the etched surface before diffusion joining becomes smooth. become. Further, the diffusion is actively generated through the crystal grain boundary having an increased area due to the refinement of the crystal grain, and the diffusion bonding property of the steel sheet is improved. Therefore, in the present embodiment, the upper limit of the average austenite grain size in the steel sheet before diffusion bonding is set to 5.0 μm.

本実施形態では、拡散接合前の鋼板におけるオーステナイトの平均結晶粒径は、日本工業規格JIS G 0551:2013「鋼−結晶粒度の顕微鏡試験方法」に記載の切断法により測定する。   In the present embodiment, the average grain size of austenite in the steel sheet before diffusion bonding is measured by a cutting method described in Japanese Industrial Standards JIS G 0551: 2013 “Steel—Microscopic Test Method of Grain Size”.

[拡散接合後のオーステナイト粒径の平均値:15.0μm以下]
拡散接合後のオーステナイト粒径の平均値が15.0μm以下であれば、拡散接合後の硬度低下が抑制されるので好ましい。拡散接合前の鋼板のオーステナイトの平均結晶粒径を5.0μm以下とすることで、拡散接合後のオーステナイトの平均結晶粒径を15.0μm以下とすることができる。そのため、本実施形態では、拡散接合後のオーステナイトの平均結晶粒径の上限を15.0μmとしてもよく、6.0μmとしてもよい。ただし、拡散接合後のオーステナイトの平均結晶粒径を15.0μm以下とすることは必須ではなく、15.0μmを超えたとしても本実施形態に係る拡散接合品を得ることができる。
[Average value of austenite grain size after diffusion bonding: 15.0 μm or less]
It is preferable that the average value of the austenite grain size after diffusion bonding is 15.0 μm or less, because the decrease in hardness after diffusion bonding is suppressed. By setting the average crystal grain size of austenite of the steel sheet before diffusion bonding to 5.0 μm or less, the average crystal grain size of austenite after diffusion bonding can be set to 15.0 μm or less. Therefore, in the present embodiment, the upper limit of the average crystal grain size of austenite after diffusion bonding may be set to 15.0 μm or 6.0 μm. However, it is not essential that the average crystal grain size of austenite after diffusion bonding is 15.0 μm or less, and even if it exceeds 15.0 μm, a diffusion bonded product according to the present embodiment can be obtained.

本実施形態では、拡散接合後のオーステナイトの平均結晶粒径は、後述する拡散接合界面から板厚方向に±100〜200μm深さの領域において、日本工業規格JIS G 0551:2013「鋼−結晶粒度の顕微鏡試験方法」に記載の切断法により測定する。   In the present embodiment, the average crystal grain size of austenite after diffusion bonding is set in the range of ± 100 to 200 μm in the sheet thickness direction from the diffusion bonding interface described later in accordance with Japanese Industrial Standard JIS G 0551: 2013 “Steel-Grain Size. Microscopic Test Method ”.

(2)接合部
(2−1)拡散接合界面付近の元素分布
[拡散接合界面付近のSi濃化度:5.0以下]
鋼板同士の接合部には、拡散接合界面が形成される。拡散接合界面付近にSiが濃化してしまうと、Si濃化部が起点となり拡散接合界面の剥離が顕著になる。従って、拡散接合界面付近におけるSi量を少なくすることにより、剥離し難い拡散接合界面が形成される。拡散接合界面付近に分布するSi量は均一とは限らず、通常はSi量が最も多く存在する領域から剥離が起こる可能性が大きい。よって、拡散接合界面付近における複数の領域を分析して、最大Si量を確認することが重要である。
本実施形態では、拡散接合界面の鋼板板厚方向の断面において、前記鋼板の板厚方向を幅方向とし、前記拡散接合界面を幅中央とした場合の全幅10μmの領域内における最大Si量と素材Si量(鋼板のSi量)との比で表されるSi濃化度(最大Si量/素材Si量)を適正に制御することで、拡散接合界面の剥離を抑制する。本実施形態では、Si濃化度の上限を5.0とし、好ましくは4.5、より好ましくは3.0とする。Si濃化度はできるだけ小さいことが望ましいが、鋼板であるオーステナイト系ステンレス鋼板はSiを0.20mass%以上含有しており、拡散接合前に陽極電解処理でオーステナイト系ステンレス鋼板の表面に存在するSiを優先的に除去したとしても、拡散接合界面付近における最大Si量を0.14mass%より少なくすることは技術的に困難である。従って、拡散接合後の拡散接合界面付近におけるSi濃化度の下限は0.7としてもよい。
(2) Junction (2-1) Element distribution near diffusion junction interface [Si concentration near diffusion junction interface: 5.0 or less]
A diffusion bonding interface is formed at the joint between the steel plates. If Si is concentrated near the diffusion bonding interface, the separation at the diffusion bonding interface becomes remarkable starting from the Si-enriched portion. Therefore, by reducing the amount of Si near the diffusion bonding interface, a diffusion bonding interface that is difficult to peel off is formed. The amount of Si distributed near the diffusion bonding interface is not always uniform, and there is usually a high possibility that peeling will occur from a region where the amount of Si is the largest. Therefore, it is important to analyze a plurality of regions near the diffusion bonding interface to confirm the maximum Si amount.
In the present embodiment, in the cross section of the diffusion bonding interface in the thickness direction of the steel sheet, the maximum Si amount and the material in the entire width of 10 μm in the case where the thickness direction of the steel sheet is the width direction and the diffusion bonding interface is the center of the width. By appropriately controlling the Si concentration (maximum Si amount / material Si amount) expressed as a ratio to the Si amount (Si amount of the steel sheet), separation at the diffusion bonding interface is suppressed. In the present embodiment, the upper limit of the Si concentration is set to 5.0, preferably 4.5, and more preferably 3.0. Although it is desirable that the Si concentration is as small as possible, the austenitic stainless steel sheet as the steel sheet contains 0.20 mass% or more of Si, and the Si existing on the surface of the austenitic stainless steel sheet by anodic electrolytic treatment before diffusion bonding. Is preferentially removed, it is technically difficult to reduce the maximum Si amount near the diffusion bonding interface to less than 0.14 mass%. Therefore, the lower limit of the Si concentration near the diffusion bonding interface after the diffusion bonding may be 0.7.

本実施形態における拡散接合界面付近のSi濃化度の測定方法について、図1を参照して詳細に説明する。図1(a)および図1(b)は、拡散接合界面付近におけるSi濃化度の測定方法を説明する図である。図1(a)は、拡散接合品10の、鋼板3の板厚方向と平行な断面1を示す。図1(a)では、積層された鋼板3同士の接合面(拡散接合界面)に符号2を付している。また、図1(a)および図1(b)では、EPMAによる観察視野に符号4を付している。
図1(b)は、拡散接合品10の鋼板3の板厚方向と平行な断面1の拡大図である。
本実施形態では、断面1において、EPMAを用いて、各拡散接合界面2が鋼板3の板厚方向の幅中央となるように、100μm×100μmの範囲を1視野毎に分析して、測定ステップを0.25μmとし、合計9視野以上分析する。これら観察視野のうち、各分析領域5(拡散接合界面を幅中央とした場合の全幅10μmの領域)の中で最大のSi量を、最大Si量とする(図1(b)参照)。素材Si量は、拡散接合品から所定の大きさの試験片を切り出し、ICP−OES(誘導結合プラズマ発光分光)分析法により分析することで得る。得られた最大Si量を素材Si量で除することにより、上記領域内におけるSi濃化度を得る。
The method of measuring the Si concentration near the diffusion bonding interface in the present embodiment will be described in detail with reference to FIG. FIGS. 1A and 1B are diagrams illustrating a method of measuring the Si concentration near the diffusion bonding interface. FIG. 1A shows a cross section 1 of the diffusion-bonded product 10 which is parallel to the thickness direction of the steel plate 3. In FIG. 1A, reference numeral 2 is assigned to a bonding surface (diffusion bonding interface) between the laminated steel plates 3. In FIG. 1A and FIG. 1B, the observation field of view by EPMA is denoted by reference numeral 4.
FIG. 1B is an enlarged view of a cross section 1 parallel to the thickness direction of the steel plate 3 of the diffusion bonded product 10.
In the present embodiment, in the cross section 1, an area of 100 μm × 100 μm is analyzed for each visual field using EPMA so that each diffusion bonding interface 2 is located at the center of the width of the steel sheet 3 in the thickness direction. Is set to 0.25 μm, and a total of 9 or more visual fields are analyzed. In these observation fields, the maximum Si amount in each analysis region 5 (a region having a total width of 10 μm when the diffusion bonding interface is the center of the width) is defined as the maximum Si amount (see FIG. 1B). The amount of the raw material Si can be obtained by cutting out a test piece of a predetermined size from the diffusion bonded product and analyzing it by an ICP-OES (inductively coupled plasma emission spectroscopy) analysis method. By dividing the obtained maximum Si amount by the material Si amount, the Si concentration in the above region is obtained.

(2−2)接合率
[拡散接合界面の接合率:60.0%以上]
本実施形態に係る拡散接合品における拡散接合界面の接合率は、60.0%以上とする。鋼板同士が接している面積のうち、実際に接合されている面積が100%にならず、接合されていない箇所(今回は主として空隙)ができる場合がある。接合されていない箇所が多く、拡散接合界面の接合率が60.0%未満であると、Si濃化の有無にかかわらず拡散接合界面が剥離しやすくなる。
拡散接合界面の接合率は、超音波探傷により拡散接合界面の空隙を調査することで得る。具体的には、拡散接合界面に対して透過法による評価を行い、透過パルス高さが25%以上の位置を拡散接合界面、25%以下の位置を空隙として判断し、拡散接合界面の面積率を算出することで、拡散接合界面の接合率を得る。透過法は、送信用探触子から発信される超音波が測定対象物中を通過し受信用探触子に受信される過程において、測定対象物中の欠陥(今回は主として空隙)による散乱などの原因によって超音波が減衰する程度から測定対象物内部の欠陥の大きさや程度を把握する方法である。透過法では、発信した超音波のパルスに比べて測定対象物を経過して受信した透過パルス高さがどの程度であるかを測定する。受信した透過パルス高さが100%に近いほど測定対象物中の欠陥(今回は主として空隙)が少なく、良好な拡散接合界面が成されており、受信した透過パルス高さが小さいほど拡散接合が不良であると評価する。本実施形態では、測定対象(拡散接合品)の縦横それぞれに対して0.2mmピッチで透過パルスを測定し、測定対象の拡散接合界面面積に対して、透過パルス高さが25%以上となる位置の面積率を拡散接合界面の接合率として定義する。本実施形態では、拡散接合品において積層された鋼板の数によらず、上記の方法により求めた透過パルス高さが25%以上となる位置の面積率を、拡散接合界面の接合率と定義する。
(2-2) Bonding rate [Bonding rate of diffusion bonding interface: 60.0% or more]
The bonding rate of the diffusion bonding interface in the diffusion bonding product according to the present embodiment is 60.0% or more. Of the areas where the steel plates are in contact with each other, the area that is actually joined does not reach 100%, and unjoined portions (mainly voids) may be formed in some cases. If there are many unbonded portions and the bonding ratio of the diffusion bonding interface is less than 60.0%, the diffusion bonding interface is easily peeled regardless of the presence or absence of Si concentration.
The bonding rate at the diffusion bonding interface is obtained by examining the void at the diffusion bonding interface by ultrasonic testing. Specifically, the diffusion bonding interface is evaluated by the transmission method, a position where the transmission pulse height is 25% or more is determined as the diffusion bonding interface, and a position where the transmission pulse height is 25% or less is determined as the void, and the area ratio of the diffusion bonding interface is determined. Is calculated, the bonding rate of the diffusion bonding interface is obtained. In the transmission method, in the process in which ultrasonic waves transmitted from the transmitting probe pass through the measuring object and are received by the receiving probe, scattering due to defects (mainly air gaps) in the measuring object, etc. This is a method of grasping the size and degree of a defect inside the measurement object from the degree of attenuation of the ultrasonic wave due to the cause. In the transmission method, the height of the transmitted pulse received after passing through the measurement object is measured as compared with the transmitted ultrasonic pulse. The closer the received transmitted pulse height is to 100%, the smaller the defects (mainly voids) in the object to be measured, and a better diffusion bonding interface is formed. The smaller the received transmitted pulse height is, the more the diffusion bonding is performed. Evaluate as defective. In this embodiment, the transmission pulse is measured at a pitch of 0.2 mm in each of the vertical and horizontal directions of the measurement target (diffusion bonding product), and the transmission pulse height becomes 25% or more with respect to the diffusion bonding interface area of the measurement target. The area ratio of the position is defined as the bonding ratio of the diffusion bonding interface. In the present embodiment, the area ratio of the position where the transmitted pulse height obtained by the above method is 25% or more is defined as the bonding ratio of the diffusion bonding interface regardless of the number of steel sheets laminated in the diffusion bonding product. .

以下、本実施形態に係る拡散接合品の製造方法について説明する。本実施形態に係る拡散接合品の製造方法は、所定の化学組成を有し、且つオーステナイトの平均結晶粒径が5.0μm以下である金属組織を有する鋼板に、pHが5.0以上12.0未満の電解液中で、n組の電極を用いてn回の陽極電解処理を連続して行う際に、k回目の陽極電解処理における単位面積あたりの電気量をσ(ただしk=1〜n)とし、各回の陽極電解処理における単位面積あたりの電気量の総和をΣσとしたとき、電気量の総和Σσが、(1)式(Σσ≦25.0(C/dm))を満たす条件で陽極電解処理する第1の工程と、陽極電解処理された前記鋼板の複数枚を直接積層させて、拡散接合温度:850〜1050℃、面圧:0.03〜30.00MPaで拡散接合を施す第2の工程と、を備える。以下、各工程について詳細に説明する。 Hereinafter, a method for manufacturing a diffusion bonded product according to the present embodiment will be described. In the method for producing a diffusion bonded article according to the present embodiment, a steel sheet having a predetermined chemical composition and a metal structure in which the average crystal grain size of austenite is 5.0 μm or less has a pH of 5.0 or more and 12.1. When n times of anodic electrolysis are continuously performed using n sets of electrodes in an electrolyte solution of less than 0, the amount of electricity per unit area in the k-th anodic electrolysis is σ k (where k = 1 To n), and when the total amount of electricity per unit area in each anodic electrolysis treatment is Σσ k , the total amount of electricity Σσ k is calculated by the equation (1) (Σσ k ≦ 25.0 (C / dm 2) )), A first step of anodic electrolysis treatment under the conditions satisfying the above conditions, and a plurality of sheets of the anodic electrolysis-treated steel sheet are directly laminated, and a diffusion bonding temperature: 850 to 1050 ° C., a surface pressure: 0.03 to 30. A second step of performing diffusion bonding at 00 MPa. Hereinafter, each step will be described in detail.

(3)第1の工程(拡散接合前の陽極電解処理)
上記の拡散接合界面付近へのSi濃化は、以下に記す陽極電解処理を施すことにより抑制することが出来る。その結果、拡散接合界面が剥離することを抑制出来る。
(3) First step (anodic electrolytic treatment before diffusion bonding)
The concentration of Si near the diffusion bonding interface can be suppressed by performing the anodic electrolytic treatment described below. As a result, peeling of the diffusion bonding interface can be suppressed.

(3−1)拡散接合前の陽極電解処理に用いる電解液
[電解液:pHが5.0以上12.0未満]
拡散接合界面付近のSi量を低減するためには、拡散接合前の鋼板表面におけるSi量を可能な限り低減する必要がある。拡散接合前の鋼板に陽極電解処理を施すことでSi量を効率的に低減するためには、pHが5.0以上12.0未満の電解液を用いることが望ましい。除去対象であるSiは、弱酸性〜塩基性の領域で溶解度が増大するためである。また、上記pHの電解液に界面活性剤等を添加しても問題無い。電解液の温度は特に限定されず、室温以上であれば問題無い。
電解液は例えば、NaOH水溶液、NaSO水溶液、NaOHとNaSOとの混合水溶液、HSOとNaSOとの混合水溶液等を例示できる。
(3-1) Electrolyte used for anodic electrolysis before diffusion bonding [Electrolyte: pH of 5.0 or more and less than 12.0]
In order to reduce the amount of Si near the diffusion bonding interface, it is necessary to reduce the amount of Si on the steel sheet surface before diffusion bonding as much as possible. In order to efficiently reduce the amount of Si by subjecting the steel sheet before diffusion bonding to anodic electrolytic treatment, it is desirable to use an electrolytic solution having a pH of 5.0 or more and less than 12.0. This is because the solubility of Si to be removed increases in a weakly acidic to basic region. There is no problem even if a surfactant or the like is added to the electrolytic solution having the above pH. The temperature of the electrolytic solution is not particularly limited, and there is no problem as long as the temperature is equal to or higher than room temperature.
Examples of the electrolyte include an aqueous NaOH solution, an aqueous Na 2 SO 4 solution, a mixed aqueous solution of NaOH and Na 2 SO 4, and a mixed aqueous solution of H 2 SO 4 and Na 2 SO 4 .

(3−2)拡散接合前の陽極電解処理条件
本実施形態に係る拡散接合品の製造方法では、上記の電解液中にて、n組(ただし、nは2以上の自然数)の電極を用いてn回の陽極電解処理を連続して行う際に、k回目の陽極電解処理における単位面積あたりの電気量をσ(ただしk=1〜n)とし、各回の陽極電解処理における単位面積あたりの電気量の総和をΣσとしたとき、電気量の総和Σσが、下記(1)式を満たす条件で陽極電解処理を行う。なお、nは陽極電解処理の回数である。nの上限は特に制限されないが、例えば、20以下、15以下、10以下、5以下のいずれでもよい。
(3-2) Anodic Electrolysis Treatment Conditions Before Diffusion Bonding In the method of manufacturing a diffusion bonded product according to the present embodiment, n sets (where n is a natural number of 2 or more) of electrodes are used in the above-described electrolytic solution. When n times of anodic electrolysis are continuously performed, the amount of electricity per unit area in the k-th anodic electrolysis is σ k (where k = 1 to n), and the amount of electricity per unit area in each anodic electrolysis is when the total amount of electricity was Shigumashiguma k, the sum Shigumashiguma k electric quantity, anodic electrolysis treatment under conditions satisfying the following equation (1). Here, n is the number of times of the anodic electrolytic treatment. The upper limit of n is not particularly limited, but may be, for example, any of 20 or less, 15 or less, 10 or less, and 5 or less.

Σσ≦25.0(C/dm)…(1) Σσ k ≦ 25.0 (C / dm 2 ) (1)

電気量の総和Σσが25.0(C/dm)を超えると、Siの除去反応とは異なる反応に電気量が消費されるため、Siを十分に除去できなくなり、場合によってはFeなどの他元素の溶出によって鋼板表面のSi量が相対的に増加してしまう。従って、電気量の総和Σσは25.0(C/dm)以下とする。より好ましい電気量の総和Σσは、0.50(C/dm)以上、21.0(C/dm)以下である。 If the total amount of electricity Σσ k exceeds 25.0 (C / dm 2 ), the electricity is consumed in a reaction different from the reaction for removing Si, so that Si cannot be sufficiently removed, and in some cases, such as Fe Elution of other elements relatively increases the amount of Si on the steel sheet surface. Therefore, the sum Σσ k of electric quantities is set to 25.0 (C / dm 2 ) or less. The more preferable total amount of electricity Σσ k is 0.50 (C / dm 2 ) or more and 21.0 (C / dm 2 ) or less.

(4)第2の工程(拡散接合)
本実施形態に係る拡散接合品の製造方法は、特定の温度と面圧とを付与して拡散接合を施すことで、拡散接合界面付近のSi濃化度を5.0以下とすることができる。なお、本発明で規定する要件を満たすことができれば、積層する鋼板の枚数、拡散接合における雰囲気は限定されるものではないが、本発明者らは、以下に説明する条件を満たし、且つ、鋼板の積層枚数を10枚とし、非酸化雰囲気中にて拡散接合することにより、本実施形態に係る拡散接合品を製造できることを確認している。
(4) Second step (diffusion bonding)
In the method for manufacturing a diffusion bonded article according to the present embodiment, by applying a specific temperature and surface pressure to perform diffusion bonding, the Si concentration near the diffusion bonding interface can be reduced to 5.0 or less. . Note that the number of steel sheets to be laminated and the atmosphere in diffusion bonding are not limited as long as the requirements specified in the present invention can be satisfied. However, the present inventors satisfy the conditions described below, It has been confirmed that the diffusion bonding product according to the present embodiment can be manufactured by setting the number of laminations to 10 and performing diffusion bonding in a non-oxidizing atmosphere.

(4−1)拡散接合温度
[拡散接合温度:850〜1050℃]
拡散接合温度が低すぎると、原子の拡散が充分ではなく鋼板同士が拡散接合されない。そのため、本実施形態では、拡散接合温度を850℃以上とする。一方、拡散接合温度が高すぎると高温強度が低下するため、拡散接合時に変形してしまい、拡散接合品の良好な寸法精度が得られない。そのため、本実施形態では、拡散接合温度を1050℃以下とする。なお、本実施形態において拡散接合温度とは、積層された鋼板を等温保持して面圧を付与する際(拡散接合時)の、最表面側の鋼板の表面温度のことを示す。
(4-1) Diffusion bonding temperature [Diffusion bonding temperature: 850 to 1050 ° C]
If the diffusion bonding temperature is too low, diffusion of atoms is not sufficient, and the steel sheets are not diffusion bonded. Therefore, in this embodiment, the diffusion bonding temperature is set to 850 ° C. or higher. On the other hand, if the diffusion bonding temperature is too high, the high-temperature strength is reduced, so that it is deformed during diffusion bonding, and good dimensional accuracy of the diffusion bonded product cannot be obtained. Therefore, in this embodiment, the diffusion bonding temperature is set to 1050 ° C. or less. In the present embodiment, the diffusion bonding temperature refers to the surface temperature of the outermost steel sheet when the laminated steel sheets are kept at a constant temperature and a surface pressure is applied (diffusion bonding).

(4−2)拡散接合時の面圧
[面圧:0.03〜30.00MPa]
拡散接合時の面圧が低すぎると、固相界面の面積が小さくなり、固相中の原子が十分に拡散しない。その結果、Siが十分に拡散せず、拡散接合界面付近の最大Si量が大きくなり、剥離しやすい拡散接合界面となる。そのため、本実施形態では、拡散接合時の面圧を0.03MPa以上とする。一方、拡散接合時の面圧が大きすぎると、拡散接合時に変形してしまい、拡散接合品の良好な寸法精度が得られない。そのため、本実施形態では、拡散接合時の面圧を30.00MPa以下とする。拡散接合時の面圧は、10.00MPa以下であることが好ましく、5.00MPa以下であることがより好ましい。
(4-2) Surface pressure during diffusion bonding [surface pressure: 0.03 to 30.00 MPa]
If the surface pressure during the diffusion bonding is too low, the area of the solid phase interface becomes small, and atoms in the solid phase do not diffuse sufficiently. As a result, Si is not sufficiently diffused, the maximum Si amount near the diffusion bonding interface becomes large, and the diffusion bonding interface is easily peeled. Therefore, in the present embodiment, the surface pressure during diffusion bonding is set to 0.03 MPa or more. On the other hand, if the surface pressure at the time of diffusion bonding is too large, it will be deformed at the time of diffusion bonding, and good dimensional accuracy of the diffusion bonded product cannot be obtained. Therefore, in the present embodiment, the surface pressure during diffusion bonding is set to 30.00 MPa or less. The surface pressure during diffusion bonding is preferably 10.00 MPa or less, and more preferably 5.00 MPa or less.

以上の製造方法により、上述の本実施形態に係る拡散接合品、すなわち拡散接合界面が剥離し難い拡散接合品を製造することができる。   According to the above-described manufacturing method, it is possible to manufacture the diffusion-bonded product according to the above-described embodiment, that is, the diffusion-bonded product in which the diffusion bonding interface is unlikely to be separated.

表1に示す化学組成を有するスラブを溶製し、熱間圧延、焼鈍および脱スケールを順次行った後に、冷間圧延と焼鈍とを施すことにより、板厚0.1mmのオーステナイト系ステンレス鋼板を得た。焼鈍後、且つ後述する拡散接合前の各オーステナイト系ステンレス鋼板のオーステナイトの平均結晶粒径を、日本工業規格JIS G 0551:2013「鋼−結晶粒度の顕微鏡試験方法」に記載の切断法により測定した。得られたオーステナイトの平均結晶粒径を表1に示す。   A slab having the chemical composition shown in Table 1 was melted, and after hot rolling, annealing, and descaling were sequentially performed, cold rolling and annealing were performed to obtain an austenitic stainless steel sheet having a thickness of 0.1 mm. Obtained. The average crystal grain size of austenite of each austenitic stainless steel sheet after annealing and before diffusion bonding described later was measured by a cutting method described in Japanese Industrial Standards JIS G 0551: 2013 “Steel—Microscopic test method of crystal grain size”. . Table 1 shows the average crystal grain size of the obtained austenite.

Figure 2020037123
Figure 2020037123

これらの鋼板(オーステナイト系ステンレス鋼板)を用いて陽極電解処理及び拡散接合を施し、拡散接合品を得た。なお、本実施例では、化学組成が同一の鋼板を拡散接合して拡散接合品とした。
得られた拡散接合品について、拡散接合後の接合率、Si濃化度、及び拡散接合後のオーステナイトの平均結晶粒径を測定した。また、拡散接合界面の剥離の有無を確認するため曲げ試験を行った。陽極電解処理は、pHが5.0以上12.0未満の処理液(水酸化ナトリウム水溶液)で、表2及び表3に示す条件で行った。なお、拡散接合後の各オーステナイト系ステンレス鋼板のオーステナイトの平均結晶粒径は、拡散接合界面から板厚方向に±100〜200μm深さの領域において、日本工業規格JIS G 0551:2013「鋼−結晶粒度の顕微鏡試験方法」に記載の切断法により測定した。
Using these steel sheets (austenitic stainless steel sheets), anodic electrolytic treatment and diffusion bonding were performed to obtain diffusion bonded articles. In this example, a steel sheet having the same chemical composition was diffusion bonded to obtain a diffusion bonded product.
With respect to the obtained diffusion bonded product, the bonding ratio after diffusion bonding, the Si concentration, and the average crystal grain size of austenite after diffusion bonding were measured. In addition, a bending test was performed to confirm the presence or absence of peeling at the diffusion bonding interface. The anodic electrolysis treatment was performed using a treatment solution (aqueous sodium hydroxide solution) having a pH of 5.0 or more and less than 12.0 under the conditions shown in Tables 2 and 3. The average crystal grain size of austenite of each austenitic stainless steel sheet after diffusion bonding is within a range of ± 100 to 200 μm in the thickness direction from the diffusion bonding interface in accordance with Japanese Industrial Standard JIS G 0551: 2013 “Steel-Crystal”. Microscopic Test Method for Particle Size ".

拡散接合では、エッチング加工を施したオーステナイト系ステンレス鋼板10枚を積層し、非酸化雰囲気中にて0.01〜30.00MPaの面圧を付与し、800〜1050℃の温度範囲で等温保持を施した。   In diffusion bonding, ten austenitic stainless steel sheets subjected to etching processing are laminated, a surface pressure of 0.01 to 30.00 MPa is applied in a non-oxidizing atmosphere, and isothermal holding is performed in a temperature range of 800 to 1050 ° C. gave.

拡散接合界面の接合率は、超音波探傷により拡散接合界面の空隙を調査することで得た。具体的には、拡散接合界面において透過法による評価を行い、測定対象の縦横それぞれに対して0.2mmピッチで透過パルスを測定し、透過パルス高さが25%以上の位置を拡散接合界面、25%以下の位置を空隙として判断し、拡散接合界面の面積率を算出して接合率を得た。   The bonding rate at the diffusion bonding interface was obtained by examining the void at the diffusion bonding interface by ultrasonic testing. Specifically, an evaluation is performed at the diffusion bonding interface by the transmission method, and transmission pulses are measured at a pitch of 0.2 mm for each of the vertical and horizontal directions of the measurement object. The position of 25% or less was determined as a void, and the area ratio of the diffusion bonding interface was calculated to obtain the bonding ratio.

Si濃化度は、以下の方法により得た。まず、拡散接合品の、鋼板の板厚方向に平行な断面において、EPMAを用いて100μm×100μmの範囲を、測定ステップを0.25μmとして各拡散接合界面が鋼板の板厚方向の幅中央となるように1視野毎に分析し、合計9視野分析した。これら観察視野のうち、各分析領域(拡散接合界面を幅中央とした場合の全幅10μmの領域)の中で最大のSi量を、最大Si量とした。素材Si量は、拡散接合品から所定の大きさの試験片を切り出し、ICP−OES(誘導結合プラズマ発光分光)分析法により分析することで得た。得られた最大Si量を素材Si量で除することにより、Si濃化度を得た。   The Si concentration was obtained by the following method. First, in a cross section of the diffusion-bonded product parallel to the thickness direction of the steel sheet, a range of 100 μm × 100 μm is measured using EPMA, and the measurement step is set to 0.25 μm. The analysis was performed for each visual field so that a total of 9 visual fields were analyzed. Of these observation visual fields, the maximum Si amount in each analysis region (a region having a total width of 10 μm when the diffusion bonding interface is the center of the width) was defined as the maximum Si amount. The amount of the material Si was obtained by cutting out a test piece having a predetermined size from the diffusion-bonded product and analyzing it by an ICP-OES (inductively coupled plasma emission spectroscopy) analysis method. By dividing the obtained maximum Si amount by the material Si amount, the Si concentration was obtained.

拡散接合界面からの剥離を確認するための曲げ試験は、JIS Z 2248:2014に準拠して曲げ角度90°で実施し、曲げ試験後に拡散接合界面を光学顕微鏡で観察することで剥離の有無を確認した。表2および表3に、剥離が認められたものを×、剥離が認められなかったものを○と表記した。   A bending test for confirming peeling from the diffusion bonding interface is performed at a bending angle of 90 ° in accordance with JIS Z 2248: 2014, and after the bending test, the presence or absence of peeling is observed by observing the diffusion bonding interface with an optical microscope. confirmed. In Tables 2 and 3, x indicates that peeling was observed, and x indicates that no peeling was observed.

上記試験結果を表2および表3にまとめて示す。   The test results are summarized in Tables 2 and 3.

Figure 2020037123
Figure 2020037123

Figure 2020037123
Figure 2020037123

表2の実施例1〜11は、拡散接合温度と面圧とが本発明で規定する範囲を満足し、(1)式を満足する適切な条件(Σσ≦25.0(C/dm))で陽極電解処理を施している。そのため、Si濃化度が5.0以下となり、剥離試験において剥離せず、剥離し難い拡散接合界面が得られた。 In Examples 1 to 11 in Table 2, the diffusion bonding temperature and the surface pressure satisfy the ranges specified in the present invention, and the appropriate conditions (Σσ k ≦ 25.0 (C / dm 2 ) satisfying the expression (1). )), The anodic electrolytic treatment is performed. Therefore, the concentration of Si became 5.0 or less, and a diffusion bonding interface which did not peel in the peel test and was hard to peel was obtained.

表2の比較例1および2は、拡散接合温度は本発明で規定する範囲を満足しているものの、面圧は本発明で規定する範囲よりも小さい。そのため、Si濃化度が5.0よりも大きくなり、また接合率が60.0%よりも小さくなり、剥離試験において充分な結果を示さないものとなった。   In Comparative Examples 1 and 2 in Table 2, the diffusion bonding temperature satisfies the range specified by the present invention, but the surface pressure is lower than the range specified by the present invention. Therefore, the Si concentration was larger than 5.0, and the bonding ratio was smaller than 60.0%, which did not show a sufficient result in the peeling test.

表2の比較例3および4は、面圧は本発明で規定する範囲を満足しているものの、拡散接合温度は本発明で規定する範囲よりも低い。そのため、比較例3は、Si濃化度が5.0よりも大きくなり、また接合率が60.0%よりも小さくなり、剥離試験において充分な結果を示さないものとなった。また、比較例4は、拡散接合界面が形成されず、接合率が0%となり、剥離試験において充分な結果を示さないものとなった。   In Comparative Examples 3 and 4 in Table 2, the surface pressure satisfies the range specified by the present invention, but the diffusion bonding temperature is lower than the range specified by the present invention. Therefore, in Comparative Example 3, the Si concentration was larger than 5.0, and the bonding ratio was smaller than 60.0%, so that a sufficient result was not shown in the peeling test. In Comparative Example 4, the diffusion bonding interface was not formed, and the bonding rate was 0%, which did not show a sufficient result in the peeling test.

図2は、表2の実施例1〜11、及び比較例1〜3のSi濃化度と接合率との関係を示す図である。図2から明らかなように、Si濃化度が5.0以下である例は、接合率が60.0%以上であることが分かる。一方、Si濃化度が本発明の範囲外(5超)である例は、接合率が60.0%未満であることが分かる。   FIG. 2 is a diagram illustrating the relationship between the Si concentration and the bonding rate in Examples 1 to 11 and Comparative Examples 1 to 3 in Table 2. As is clear from FIG. 2, it can be seen that in the example where the Si concentration is 5.0 or less, the joining rate is 60.0% or more. On the other hand, it can be seen that in the case where the Si concentration is outside the range of the present invention (more than 5), the joining ratio is less than 60.0%.

表3の実施例11−1〜11−5は、拡散接合温度と面圧とが本発明で規定する範囲を満足し、且つ、(1)式を満足する適切な条件(Σσ≦25.0(C/dm))で陽極電解処理を施している。一方で、比較例11−6では、電解条件が(1)式の範囲を逸脱している。そのため、Si濃化度が5.0よりも大きくなり、また接合率が60.0%よりも小さくなり、剥離試験において充分な結果を示さないものとなった。 Examples 11-1 to 11-5 in Table 3 show that the diffusion bonding temperature and the surface pressure satisfy the ranges defined by the present invention, and that the conditions (Σσ k ≦ 25. 0 (C / dm 2 )). On the other hand, in Comparative Example 11-6, the electrolysis conditions deviate from the range of Expression (1). Therefore, the Si concentration was larger than 5.0, and the bonding ratio was smaller than 60.0%, which did not show a sufficient result in the peeling test.

1 板厚方向と平行な断面
2 拡散接合界面
3 鋼板
4 観察視野
5 分析領域
10 拡散接合品
1 Cross section parallel to the thickness direction 2 Diffusion bonding interface 3 Steel plate 4 Observation field of view 5 Analysis area 10 Diffusion bonded product

Claims (2)

積層された複数の鋼板同士が相互に接合されてなり、
前記鋼板は、質量%で、
C:0.030%以下、
Si:0.20〜1.00%、
Mn:0.6〜1.5%、
Cr:15.0〜20.0%、
Ni:6.0〜9.0%、
Mo:0.1〜0.5%、
Cu:0.1〜0.5%および
N:0.030〜0.150%
を含有し、さらに
Nb:0.500%以下、
V:0.500%以下および
Ti:0.500%以下のうち1種または2種以上を含有し、
残部Feおよび不純物からなる化学組成を有する鋼板であり、
前記鋼板同士の接合部に拡散接合界面が形成され、
前記拡散接合界面の鋼板板厚方向の断面において、前記鋼板の板厚方向を幅方向とし、前記拡散接合界面を幅中央とした場合の全幅10μmの領域内における最大Si量と素材Si量との比であるSi濃化度(最大Si量/素材Si量)が5.0以下であり、
前記拡散接合界面の接合率が60.0%以上である拡散接合品。
A plurality of laminated steel plates are joined to each other,
The steel sheet is expressed in mass%
C: 0.030% or less,
Si: 0.20 to 1.00%,
Mn: 0.6-1.5%,
Cr: 15.0 to 20.0%,
Ni: 6.0 to 9.0%,
Mo: 0.1-0.5%,
Cu: 0.1-0.5% and N: 0.030-0.150%
And Nb: 0.500% or less;
V: 0.500% or less and Ti: 0.500% or less.
A steel sheet having a chemical composition consisting of a balance of Fe and impurities,
A diffusion bonding interface is formed at the joint between the steel plates,
In the cross section of the diffusion bonding interface in the thickness direction of the steel sheet, the thickness direction of the steel sheet is defined as the width direction, and the maximum Si amount and the material Si amount in the entire width of 10 μm when the diffusion bonding interface is defined as the width center. The Si concentration (maximum Si content / material Si content), which is a ratio, is 5.0 or less;
A diffusion-bonded article having a bonding rate of 60.0% or more at the diffusion bonding interface.
請求項1に記載の前記化学組成を有し、且つオーステナイトの平均結晶粒径が5.0μm以下である金属組織を有する鋼板に、pHが5.0以上12.0未満の電解液中で、n組の電極を用いてn回の陽極電解処理を連続して行う際に、k回目の陽極電解処理における単位面積あたりの電気量をσ(ただしk=1〜n)とし、各回の陽極電解処理における単位面積あたりの電気量の総和をΣσとしたとき、電気量の総和Σσが、下記(1)式を満たす条件で陽極電解処理する第1の工程と、
陽極電解処理された前記鋼板の複数枚を直接積層させて、拡散接合温度:850〜1050℃、面圧:0.03〜30.00MPaで拡散接合を施す第2の工程と、
を順次行うことを特徴とする、請求項1に記載の拡散接合品の製造方法。
Σσ≦25.0(C/dm)・・・(1)
The steel sheet having the chemical composition according to claim 1 and having a metal structure in which the average grain size of austenite is 5.0 μm or less, in an electrolytic solution having a pH of 5.0 or more and less than 12.0, When n times of anodic electrolysis are continuously performed using n sets of electrodes, the amount of electricity per unit area in the k-th anodic electrolysis is σ k (where k = 1 to n), when the total amount of electricity per unit area in the electrolytic process and Shigumashiguma k, the sum Shigumashiguma k of the quantity of electricity includes a first step of anodic electrolysis treatment under conditions satisfying the following formula (1),
A second step of directly laminating a plurality of the anodic-electrolyzed steel sheets and performing diffusion bonding at a diffusion bonding temperature of 850 to 1050 ° C. and a surface pressure of 0.03 to 30.00 MPa;
The method according to claim 1, wherein the steps are sequentially performed.
Σσ k ≦ 25.0 (C / dm 2 ) (1)
JP2018165876A 2018-09-05 2018-09-05 Diffusion bonded product and its manufacturing method Active JP7274837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018165876A JP7274837B2 (en) 2018-09-05 2018-09-05 Diffusion bonded product and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018165876A JP7274837B2 (en) 2018-09-05 2018-09-05 Diffusion bonded product and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020037123A true JP2020037123A (en) 2020-03-12
JP7274837B2 JP7274837B2 (en) 2023-05-17

Family

ID=69738458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018165876A Active JP7274837B2 (en) 2018-09-05 2018-09-05 Diffusion bonded product and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7274837B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005885A (en) * 1998-06-19 2000-01-11 Seiko Epson Corp Method and device for solid jointing
JP2000303150A (en) * 1999-04-19 2000-10-31 Nippon Steel Corp Stainless steel for direct diffusion joining
US6413651B1 (en) * 1999-07-20 2002-07-02 Mengjie Yan Composite metal coil or plate and its manufacturing method
JP2013103271A (en) * 2011-11-16 2013-05-30 Nisshin Steel Co Ltd Method for producing diffusion-bonded product of stainless steel
JP2013204150A (en) * 2012-03-29 2013-10-07 Nisshin Steel Co Ltd Austenitic stainless steel material for diffusion bonding and method for manufacturing diffusion-bonded article
WO2014038510A1 (en) * 2012-09-04 2014-03-13 新日鐵住金株式会社 Stainless steel sheet and method for producing same
WO2016039429A1 (en) * 2014-09-10 2016-03-17 新日鐵住金株式会社 Austenitic stainless steel sheet which is not susceptible to diffusion bonding
WO2016043125A1 (en) * 2014-09-17 2016-03-24 新日鐵住金株式会社 Austenitic stainless steel plate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005885A (en) * 1998-06-19 2000-01-11 Seiko Epson Corp Method and device for solid jointing
JP2000303150A (en) * 1999-04-19 2000-10-31 Nippon Steel Corp Stainless steel for direct diffusion joining
US6413651B1 (en) * 1999-07-20 2002-07-02 Mengjie Yan Composite metal coil or plate and its manufacturing method
JP2013103271A (en) * 2011-11-16 2013-05-30 Nisshin Steel Co Ltd Method for producing diffusion-bonded product of stainless steel
JP2013204150A (en) * 2012-03-29 2013-10-07 Nisshin Steel Co Ltd Austenitic stainless steel material for diffusion bonding and method for manufacturing diffusion-bonded article
WO2014038510A1 (en) * 2012-09-04 2014-03-13 新日鐵住金株式会社 Stainless steel sheet and method for producing same
WO2016039429A1 (en) * 2014-09-10 2016-03-17 新日鐵住金株式会社 Austenitic stainless steel sheet which is not susceptible to diffusion bonding
WO2016043125A1 (en) * 2014-09-17 2016-03-24 新日鐵住金株式会社 Austenitic stainless steel plate

Also Published As

Publication number Publication date
JP7274837B2 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
CN107002189B (en) Diffusion bonding stainless steel material
EP2692452B1 (en) Stainless steel sheet and method for manufacturing same
CN105283573B (en) Hot-stamped product and process for producing hot-stamped product
CN1993199A (en) Clad alloy substrates and method for making same
JP5846555B2 (en) Nickel-free high-nitrogen stainless steel rolling / drawing method, nickel-free high-nitrogen stainless steel seamless tubule and method for producing the same
CN108136729A (en) Metallic laminate and its manufacturing method
JP5868242B2 (en) Austenitic stainless steel for diffusion bonding and method for manufacturing diffusion bonding products
KR20150119301A (en) Titanium sheet
JPWO2008013305A1 (en) Stainless steel sheet for parts and manufacturing method thereof
CN105220089A (en) The preparation technology of a kind of raising 6061 aluminium alloy capabilities
EP3156170A1 (en) Buildup welded body
EP3228399A1 (en) Methods for evaluating and manufacturing hot-press formed article
JP5897083B1 (en) Conductive material for connecting parts with excellent resistance to fine sliding wear
JP2020037123A (en) Diffusion-joined product and method for manufacturing the same
KR20180004253A (en) Steel strip for cutlery
CN114953631B (en) High-temperature curvature titanium/titanium niobium alloy double-layer composite metal sheet and preparation method thereof
JP7013302B2 (en) Al-containing ferritic stainless steel and processed products with excellent secondary workability and high-temperature oxidation resistance
JP2014074649A (en) Method for observing surface layer part of steel material and method for manufacturing steel material
JP5444182B2 (en) Titanium plate with excellent formability
US20160010170A1 (en) Ultrathin Alloys
JP2020007599A (en) Ferritic stainless steel sheet, clad material, and manufacturing method of ferritic stainless steel sheet
JP2010007159A (en) Copper alloy material and electrode member of welding equipment
JP2012213799A (en) Rolled copper foil
JP5427154B2 (en) Titanium plate with high strength and excellent formability
JP2016169428A (en) Titanium plate and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221221

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230131

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230502

R150 Certificate of patent or registration of utility model

Ref document number: 7274837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150