JP5897083B1 - Conductive material for connecting parts with excellent resistance to fine sliding wear - Google Patents

Conductive material for connecting parts with excellent resistance to fine sliding wear Download PDF

Info

Publication number
JP5897083B1
JP5897083B1 JP2014170956A JP2014170956A JP5897083B1 JP 5897083 B1 JP5897083 B1 JP 5897083B1 JP 2014170956 A JP2014170956 A JP 2014170956A JP 2014170956 A JP2014170956 A JP 2014170956A JP 5897083 B1 JP5897083 B1 JP 5897083B1
Authority
JP
Japan
Prior art keywords
coating layer
alloy
conductive material
connecting parts
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014170956A
Other languages
Japanese (ja)
Other versions
JP2016044346A (en
Inventor
将嘉 鶴
将嘉 鶴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014170956A priority Critical patent/JP5897083B1/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to EP15836786.2A priority patent/EP3187627B1/en
Priority to KR1020197011826A priority patent/KR102113989B1/en
Priority to CN201580045653.4A priority patent/CN106795643B/en
Priority to PCT/JP2015/073294 priority patent/WO2016031654A1/en
Priority to KR1020197011834A priority patent/KR102113988B1/en
Priority to US15/506,149 priority patent/US20170283910A1/en
Priority to KR1020177004996A priority patent/KR102052879B1/en
Application granted granted Critical
Publication of JP5897083B1 publication Critical patent/JP5897083B1/en
Publication of JP2016044346A publication Critical patent/JP2016044346A/en
Priority to US16/393,233 priority patent/US20190249274A1/en
Priority to US16/397,472 priority patent/US20190249275A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】Cu−Fe−P合金板を母材とし、その表面にNiめっき(必要に応じて)、Cuめっき及びSnめっきを形成し、Snめっき層をリフロー処理して製造した接続部品用導電材料の耐微摺動摩耗特性の改善方法の提供。【解決手段】Cu−Fe−P合金がFe:0.01〜2.6質量%、P:0.01〜0.3質量%を含有し、残部がCu及び不可避的不純物からなり、リフロー処理後の母材表面に、Cu含有量が20〜70at%で、平均厚さが0.2〜3.0μmのCu−Sn合金被覆層と、平均厚さが0.05〜5.0μmのSn被覆層を形成し、材料表面の一方向における算術平均粗さRaが0.15μm以上で、全ての方向における算術平均粗さRaが3.0μm以下であり、Sn被覆層の表面にCu−Sn合金被覆層の一部が露出面積率が3〜75%で露出し、Cu−Sn合金被覆層の表面の平均結晶粒径が2μm未満とされる接続部品用導電材料。【選択図】図1A conductive material for connection parts produced by using a Cu-Fe-P alloy plate as a base material, forming Ni plating (if necessary), Cu plating and Sn plating on the surface, and reflowing the Sn plating layer. Providing a method for improving the fine sliding wear resistance of materials. A Cu-Fe-P alloy contains Fe: 0.01 to 2.6 mass%, P: 0.01 to 0.3 mass%, and the balance is made of Cu and unavoidable impurities, and reflow treatment is performed. A Cu-Sn alloy coating layer having a Cu content of 20 to 70 at% and an average thickness of 0.2 to 3.0 [mu] m, and an Sn having an average thickness of 0.05 to 5.0 [mu] m are formed on the subsequent base material surface. The coating layer is formed, the arithmetic average roughness Ra in one direction of the material surface is 0.15 μm or more, the arithmetic average roughness Ra in all directions is 3.0 μm or less, and Cu—Sn is formed on the surface of the Sn coating layer. A conductive material for connecting parts, in which a part of the alloy coating layer is exposed at an exposed area ratio of 3 to 75%, and the average crystal grain size of the surface of the Cu-Sn alloy coating layer is less than 2 m. [Selection] Figure 1

Description

本発明は、主として自動車分野や一般民生分野で用いられる端子等の接続部品用導電材料に関し、特に微摺動摩耗を低減できるSnめっき付接続部品用導電材料に関する。   The present invention relates to a conductive material for connecting parts such as terminals mainly used in the automotive field and general consumer field, and more particularly to a conductive material for a Sn-plated connecting part that can reduce fine sliding wear.

自動車のエンジンを電子的に制御する機器(ECU: Electronic Control Unit)等に用いられる多極コネクタ用嵌合端子の素材として、Cu−Ni−Si系、Cu−Ni−Sn−P系、Cu−Fe−P系、Cu−Zn系等、種々の銅合金が用いられている。   Cu-Ni-Si-based, Cu-Ni-Sn-P-based, Cu--as materials for fitting terminals for multipolar connectors used in electronic control units (ECU: Electronic Control Unit) for automobiles, etc. Various copper alloys such as Fe-P and Cu-Zn are used.

Cu−Ni−Si系合金は、600MPa以上の引張り強さ、中程度の導電率(35〜45%IACS)、及び0.2%耐力の80%の曲げ応力負荷状態で150℃×1000時間保持後の応力緩和率が12〜20%程度の特性を有し、強度と耐応力緩和特性に優れている。
Cu−Zn系を代表するC2600(Cu−30質量%Zn)は、500〜600MPaの引張り強さと高いばね限界値を有する。また、Cuより価格の安いZnを多く含有し、かつ加工熱処理工程が比較的単純であるため、価格が安い。このため、嵌合端子の素材として多用されているが、導電率が28%IACSと低く、前記条件での応力緩和率が70%を超える等の弱点がある。
Cu-Ni-Si-based alloys are held at 150 ° C for 1000 hours at a bending stress load of 80% with a tensile strength of 600 MPa or more, moderate conductivity (35 to 45% IACS), and 0.2% proof stress. The later stress relaxation rate has a characteristic of about 12 to 20%, and is excellent in strength and stress relaxation resistance.
C2600 (Cu-30% by mass Zn), which is representative of the Cu—Zn system, has a tensile strength of 500 to 600 MPa and a high spring limit value. In addition, it contains a large amount of Zn, which is cheaper than Cu, and the thermomechanical process is relatively simple, so the price is low. For this reason, it is frequently used as a material for the fitting terminal, but there are weak points such as a low conductivity of 28% IACS and a stress relaxation rate exceeding 70% under the above conditions.

C19210、C194等のCu−Fe−P系合金は、引張り強さ400〜600MPa程度、導電率60〜90%IACS、前記条件における応力緩和率が60%以下の特性を有する。しかし、Cu−Fe−P系合金の場合、応力緩和特性を向上させるMg、Sn等の合金元素を添加し、加工熱処理条件の最適化を行っても、25%以下の応力緩和率を達成することは難しい。なお、耐応力緩和特性が求められる雌端子の場合、通常、前記条件での応力緩和率が25%以下の銅合金が選定される。   Cu-Fe-P based alloys such as C19210 and C194 have a tensile strength of about 400 to 600 MPa, a conductivity of 60 to 90% IACS, and a stress relaxation rate of 60% or less under the above conditions. However, in the case of a Cu-Fe-P alloy, a stress relaxation rate of 25% or less is achieved even when alloying elements such as Mg and Sn that improve stress relaxation characteristics are added and the heat treatment conditions are optimized. It ’s difficult. In the case of a female terminal that requires stress relaxation resistance, a copper alloy having a stress relaxation rate of 25% or less under the above conditions is usually selected.

一方、Cu−Fe−P系合金は、Cu−Ni−Si系合金や黄銅より導電率が高く、端子を小型化(オス−メス端子間の接触面積が小さくなる)しても、温度上昇の抑制に有利である。また、応力緩和率が黄銅より15%以上小さい。さらに、Snを先めっきした銅合金条を打抜き加工して製作した端子の打抜き加工面は母材が露出するが、合金元素の含有量が2.5質量%以下のCu−Fe−P系合金の場合、露出部分のはんだ濡れ性が優れ、Snを後めっきすることなくはんだ付けが可能である。Cu−Fe−P系合金にはこのような利点があることから、特に小型の嵌合端子用、更にはその中でも雄端子用として用いられるようになってきた。   On the other hand, Cu-Fe-P alloys have higher conductivity than Cu-Ni-Si alloys and brass, and even if the terminals are downsized (contact area between male and female terminals is reduced), the temperature rises. It is advantageous for suppression. Moreover, the stress relaxation rate is 15% or more smaller than brass. Further, the base material is exposed on the punched surface of the terminal manufactured by punching a copper alloy strip pre-plated with Sn, but the content of the alloy element is 2.5% by mass or less. In this case, the exposed portion has excellent solder wettability and can be soldered without post-plating of Sn. Since Cu—Fe—P alloys have such advantages, they have been used particularly for small fitting terminals and more particularly for male terminals.

嵌合端子には、耐食性確保及び接触部における接触抵抗低減等のため、表面に厚さ1μm程度のSn被覆層(リフローSnめっきなど)が設けられる。Sn被覆層を形成した嵌合端子では、オス端子をメス端子に挿入する際、軟質なSn被覆層(Hv:10〜30程度)が塑性変形し、オス−メス端子間に生じたSn−Snの凝着部が剪断される。このとき発生する変形抵抗及び剪断抵抗により、Sn被覆層を形成した嵌合端子では、端子の挿入力が大きくなる。
前記ECUは、多数の嵌合端子を収容するコネクタにより接続されることから、局数の増大に伴って接続の際の挿入力が大きくなる。従って、作業者の負担の軽減、接続の完全性確保等の観点から、嵌合端子の挿入力低減が求められている。
The fitting terminal is provided with a Sn coating layer (reflow Sn plating or the like) having a thickness of about 1 μm on the surface in order to ensure corrosion resistance and reduce contact resistance at the contact portion. In the fitting terminal in which the Sn coating layer is formed, when the male terminal is inserted into the female terminal, the soft Sn coating layer (Hv: about 10 to 30) is plastically deformed, and Sn—Sn generated between the male and female terminals. The adhesion part is sheared. Due to the deformation resistance and shear resistance generated at this time, the insertion force of the terminal is increased in the fitting terminal in which the Sn coating layer is formed.
Since the ECU is connected by a connector that accommodates a large number of fitting terminals, the insertion force at the time of connection increases as the number of stations increases. Therefore, a reduction in the insertion force of the fitting terminal is required from the viewpoint of reducing the burden on the operator and ensuring the integrity of the connection.

端子嵌合後においては、微摺動摩耗現象が問題となる。微摺動摩耗現象とは、自動車のエンジンの振動や走行時の振動、及び雰囲気温度の変動に伴う膨張、収縮等により、オス端子とメス端子の間に摺動が発生し、これにより端子表面のSnめっきが摩耗する現象である。微摺動摩耗現象で生じたSnの摩耗粉が酸化し、接点部近傍に多量に堆積し、摺動する接点部同士の間にかみ込むと、接点部同士の接触抵抗が増大する。この微摺動磨耗現象はオス端子とメス端子の間の接圧力が小さいほど発生しやすくなることから、挿入力が小さい(接圧力が小さい)嵌合端子において特に発生しやすい。前記のとおり、Cu−Fe−P系合金は応力緩和率が比較的大きいため、Cu−Fe−P系合金を素材とする嵌合端子は、高温長時間経過後、端子の接圧力が低下する。従って、Cu−Fe−P系合金を素材とする端子は、応力緩和率が小さいCu−Ni−Si系合金を素材とする端子に比べ、微摺動磨耗がより発生しやすくなっている。   After terminal fitting, the fine sliding wear phenomenon becomes a problem. The fine sliding wear phenomenon refers to sliding between the male terminal and the female terminal due to the vibration of the engine of the automobile, the vibration during traveling, and the expansion and contraction caused by the fluctuation of the ambient temperature. This is a phenomenon in which the Sn plating is worn. When the wear powder of Sn generated by the fine sliding wear phenomenon is oxidized and deposited in a large amount in the vicinity of the contact portion, and bites between the sliding contact portions, the contact resistance between the contact portions increases. This fine sliding wear phenomenon is more likely to occur as the contact pressure between the male terminal and the female terminal is smaller, and is particularly likely to occur in a fitting terminal having a small insertion force (small contact pressure). As described above, since the stress relaxation rate of the Cu—Fe—P alloy is relatively large, the fitting terminal made of the Cu—Fe—P alloy is reduced in contact pressure of the terminal after a high temperature and a long time. . Accordingly, a terminal made of a Cu—Fe—P alloy is more likely to cause fine sliding wear than a terminal made of a Cu—Ni—Si alloy having a low stress relaxation rate.

一方、特許文献1には、銅合金母材表面に、厚さが0.1〜1.0μmのNi層、厚さ0.1〜1.0μmのCu−Sn合金層、及び厚さが2μm以下のSn層からなる表面めっき層がこの順に形成された接続部品用導電材料が記載されている。特許文献1の記載によれば、Sn層の厚さが0.5μm以下のとき動摩擦係数が低下し、多極の嵌合端子として用いたときに挿入力を低く抑えることができる。   On the other hand, in Patent Document 1, a Ni layer having a thickness of 0.1 to 1.0 μm, a Cu—Sn alloy layer having a thickness of 0.1 to 1.0 μm, and a thickness of 2 μm are formed on the surface of the copper alloy base material. A conductive material for connecting parts in which a surface plating layer composed of the following Sn layer is formed in this order is described. According to the description in Patent Document 1, the dynamic friction coefficient decreases when the thickness of the Sn layer is 0.5 μm or less, and the insertion force can be kept low when used as a multipolar fitting terminal.

特許文献2には、表面粗さを大きくした銅合金母材の表面に、必要に応じてNiめっきを行い、続いてCuめっき及びSnめっきをこの順に施した後、リフロー処理することにより得られた接続部品用導電材料が記載されている。この接続部品用導電材料は、銅合金母材の表面に、厚さが3μm以下のNi被覆層(Niめっきが行われた場合)、厚さが0.2〜3μmのCu−Sn合金被覆層、及び厚さが0.2〜5μmのSn被覆層からなる表面被覆層を有する。この接続部品用導電材料は、Sn被覆層の間から硬質のCu−Sn合金被覆層が一部露出しているため動摩擦係数が小さく、嵌合端子として用いたとき、端子の接圧力を小さくすることなく、挿入力を低減することができる。特許文献2には、銅合金母材をCu−Fe−P系合金とした発明例が記載されている。   In Patent Document 2, the surface of the copper alloy base material with increased surface roughness is obtained by performing Ni plating as necessary, followed by Cu plating and Sn plating in this order, and then performing a reflow treatment. In addition, conductive materials for connecting parts are described. This conductive material for connecting parts has a surface of a copper alloy base material, a Ni coating layer having a thickness of 3 μm or less (when Ni plating is performed), and a Cu—Sn alloy coating layer having a thickness of 0.2 to 3 μm. And a surface coating layer made of a Sn coating layer having a thickness of 0.2 to 5 μm. This conductive material for connecting parts has a small coefficient of dynamic friction because a part of the hard Cu-Sn alloy coating layer is exposed between the Sn coating layers, and when used as a fitting terminal, reduces the contact pressure of the terminal. Therefore, the insertion force can be reduced. Patent Document 2 describes an invention example in which a copper alloy base material is a Cu-Fe-P alloy.

特開2004−68026号公報JP 2004-68026 A 特開2006−183068号公報JP 2006-183068 A

特許文献1に記載された接続部品用導電材料は、従来のリフローSnめっき材に比べて端子挿入時の動摩擦係数を大幅に低下させることができる。しかし、さらなる動摩擦係数の低下と耐微摺動磨耗特性の改善が求められていた。
特許文献2に記載された接続部品用導電材料は、特許文献1に記載された接続部品用導電材料に比べて端子挿入時の動摩擦係数を低下させることができるため、低挿入力化のために端子の接圧力を小さくする必要がない。従って、従来のSnめっき付き銅合金材に比べて微摺動摩耗が起きにくく、Snの摩耗粉の発生量が少なく、その結果、接触抵抗の増大が抑えられる。このため、この接続部品用導電材料は、自動車等の分野で実際に使用が増えている。しかし同時に、高い導電率を有し端子の小型化に適する一方で、応力緩和率が比較的大きいCu−Fe−P系合金を用いた場合において、耐微摺動摩耗特性のさらなる改善が求められている。
The conductive material for connecting parts described in Patent Document 1 can greatly reduce the coefficient of dynamic friction at the time of inserting a terminal as compared with a conventional reflow Sn plating material. However, there has been a demand for further reduction of the dynamic friction coefficient and improvement of the resistance to fine sliding wear.
The conductive material for connecting parts described in Patent Document 2 can reduce the coefficient of dynamic friction at the time of inserting a terminal as compared with the conductive material for connecting parts described in Patent Document 1, so that the insertion force can be reduced. There is no need to reduce the contact pressure of the terminal. Therefore, compared with the conventional copper alloy material with Sn plating, fine sliding wear is less likely to occur, and the amount of Sn wear powder generated is small. As a result, increase in contact resistance is suppressed. For this reason, this conductive material for connecting parts is actually used more frequently in the field of automobiles and the like. At the same time, however, the use of a Cu-Fe-P alloy having a high electrical conductivity and suitable for miniaturization of terminals, while having a relatively high stress relaxation rate, requires further improvement of the anti-sliding wear resistance. ing.

本発明は、銅合金母材として応力緩和率が比較的大きいCu−Fe−P系合金を用いた接続部品用導電材料において、その耐微摺動摩耗特性を、特許文献2等に記載された従来の接続部品用導電材料に比べて改善することを目的とする。   In the conductive material for connecting parts using a Cu—Fe—P based alloy having a relatively large stress relaxation rate as a copper alloy base material, the present invention describes its micro-sliding wear resistance characteristics in Patent Document 2, etc. It aims at improving compared with the conventional conductive material for connection components.

本発明に係る接続部品用導電材料は、Fe:0.01〜2.6質量%、P:0.01〜0.3質量%を含有し、残部Cu及び不可避的不純物からなる銅合金板条を母材とし、前記母材の表面に、Cu含有量が20〜70at%のCu−Sn合金被覆層と、Sn被覆層がこの順に形成され、材料表面はリフロー処理されていて、前記Sn被覆層はリフローSnめっきであり、その材料表面は少なくとも一方向における算術平均粗さRaが0.15μm以上で、全ての方向における算術平均粗さRaが3.0μm以下であり、前記Sn被覆層の表面に前記Cu−Sn合金被覆層の一部が露出して形成され、前記Cu−Sn合金被覆層の材料表面露出面積率が3〜75%である接続部品用導電材料において、前記Cu−Sn合金被覆層の平均の厚さが0.2〜3.0μmで同被覆層の表面の平均結晶粒径が2μm未満であり、前記Sn被覆層の平均の厚さが0.05〜5.0μmであることを特徴とする。 The conductive material for connecting parts according to the present invention contains Fe: 0.01 to 2.6% by mass, P: 0.01 to 0.3% by mass, and a copper alloy sheet comprising the balance Cu and inevitable impurities. A Cu—Sn alloy coating layer having a Cu content of 20 to 70 at% and an Sn coating layer are formed in this order on the surface of the base material , the material surface is subjected to reflow treatment, and the Sn coating The layer is reflow Sn plating, and the material surface has an arithmetic average roughness Ra in at least one direction of 0.15 μm or more and an arithmetic average roughness Ra in all directions of 3.0 μm or less. In the conductive material for connecting parts, wherein a part of the Cu-Sn alloy coating layer is exposed on the surface and the material surface exposed area ratio of the Cu-Sn alloy coating layer is 3 to 75%, the Cu-Sn The average thickness of the alloy coating layer is The average crystal grain size of the surface of the coating layer is 0.2 to 3.0 μm and less than 2 μm, and the average thickness of the Sn coating layer is 0.05 to 5.0 μm.

上記接続部品用導電材料において、前記銅合金は、必要に応じて、さらに、Sn:0.001〜0.5%、Zn:0.005〜3.0%の1種又は2種を含有することができる。
また、前記銅合金は、必要に応じて、さらに、A群元素(Mn、Mg、Ca)の1種又は2種以上を合計で0.0001〜0.5質量%、又は/及び、B群元素(Zr、Ag、Cr、Cd、Be、Ti、Si、Co、Ni、Al、Au、Pt)の1種又は2種以上を合計で0.001〜0.5質量%含有することができる。前記銅合金が前記A群元素とB群元素の両方を含有する場合、その合計含有量は0.5質量%以下とする。
In the conductive material for connecting parts, the copper alloy further contains one or two of Sn: 0.001 to 0.5% and Zn: 0.005 to 3.0% as necessary. be able to.
Moreover, the said copper alloy is further 0.0001-0.5 mass% in total with 1 type or 2 types or more of A group element (Mn, Mg, Ca) as needed, or / and B group. One or more elements (Zr, Ag, Cr, Cd, Be, Ti, Si, Co, Ni, Al, Au, Pt) can be contained in a total amount of 0.001 to 0.5 mass%. . When the said copper alloy contains both the said A group element and B group element, the total content shall be 0.5 mass% or less.

上記接続部品用導電材料は、特許文献2に記載された接続部品用導電材料と同じく、以下の好ましい実施の形態をとり得る。
前記材料表面は、少なくとも一方向における前記Cu−Sn合金被覆層の平均の材料表面露出間隔が0.01〜0.5mmである。
前記Sn被覆層表面に露出する前記Cu−Sn合金被覆層の厚さが0.2μm以上である。
前記母材の表面は、少なくとも一方向における算術平均粗さRaが0.3μm以上で、全ての方向における算術平均粗さRaが4.0μm以下である。
前記母材の表面は、少なくとも一方向における凹凸の平均間隔Smが0.01〜0.5mmである。
Similar to the conductive material for connecting parts described in Patent Document 2, the conductive material for connecting parts can take the following preferred embodiments.
As for the said material surface, the average material surface exposure space | interval of the said Cu-Sn alloy coating layer in at least one direction is 0.01-0.5 mm.
The thickness of the Cu—Sn alloy coating layer exposed on the surface of the Sn coating layer is 0.2 μm or more.
The surface of the base material has an arithmetic average roughness Ra in at least one direction of 0.3 μm or more and an arithmetic average roughness Ra in all directions of 4.0 μm or less.
The surface of the base material has an average interval Sm of irregularities in at least one direction of 0.01 to 0.5 mm.

また、上記接続部品用導電材料の表面被覆層は、以下の好ましい実施の形態をとり得る。
前記母材の表面と前記Cu−Sn合金被覆層の間にさらにCu被覆層を有する。
前記母材の表面と前記Cu−Sn合金被覆層の間にさらにNi被覆層、Co被覆層、Fe被覆層のうちいずれか1つからなる下地層が形成され、前記下地層の平均の厚さが0.1〜3.0μmである。
前記母材の表面と前記Cu−Sn合金被覆層の間にさらにNi被覆層、Co被覆層、Fe被覆層のうちいずれか2つの下地層が形成され、2層からなる前記下地層の合計の平均厚さが0.1〜3.0μmである。
前記下地層が形成された場合に、前記下地層とCu−Sn合金被覆層の間にさらにCu被覆層を有する。
前記リフロー処理された材料表面にさらに平均厚さ0.02〜0.2μmのSnめっき層が形成されている。
前記Sn被覆層、Cu被覆層、Ni被覆層、Co被覆層及びFe被覆層は、それぞれSn、Cu、Ni、Co、Fe金属のほか、Sn合金、Cu合金、Ni合金、Co合金、Fe合金を含む。また、前記Snめっき層は、Sn金属のほか、Sn合金を含む。
Moreover, the surface coating layer of the conductive material for connecting parts can take the following preferred embodiments.
A Cu coating layer is further provided between the surface of the base material and the Cu-Sn alloy coating layer.
A base layer made of any one of a Ni coating layer, a Co coating layer, and an Fe coating layer is further formed between the surface of the base material and the Cu-Sn alloy coating layer, and the average thickness of the base layer Is 0.1 to 3.0 μm.
Between the surface of the base material and the Cu—Sn alloy coating layer, any two of the Ni coating layer, the Co coating layer, and the Fe coating layer are formed, and the total of the two base layers is formed. The average thickness is 0.1 to 3.0 μm.
When the foundation layer is formed, a Cu coating layer is further provided between the foundation layer and the Cu—Sn alloy coating layer.
An Sn plating layer having an average thickness of 0.02 to 0.2 μm is further formed on the surface of the reflowed material.
The Sn coating layer, Cu coating layer, Ni coating layer, Co coating layer, and Fe coating layer are Sn, Cu, Ni, Co, Fe metal, Sn alloy, Cu alloy, Ni alloy, Co alloy, Fe alloy, respectively. including. Moreover, the said Sn plating layer contains Sn alloy other than Sn metal.

本発明によれば、銅合金母材として応力緩和率が比較的大きいCu−Fe−P系合金を用いた接続部品用導電材料において、その耐微摺動摩耗特性を、特許文献2等に記載された従来の接続部品用導電材料に比べて改善することができる。また、リフロー処理後の材料表面にSnめっき層を形成した場合、特許文献2に記載された従来の接続部品用導電材料に比べて、はんだ付け性を改善することができる。   According to the present invention, in a conductive material for connecting parts using a Cu-Fe-P alloy having a relatively high stress relaxation rate as a copper alloy base material, the fine sliding wear resistance is described in Patent Document 2 and the like. This can be improved as compared with the conventional conductive material for connecting parts. Further, when the Sn plating layer is formed on the surface of the material after the reflow treatment, the solderability can be improved as compared with the conventional conductive material for connecting parts described in Patent Document 2.

実施例No.4のCu−Sn合金被覆層表面のSEM(走査型電子顕微鏡)組織写真である。Example No. It is a SEM (scanning electron microscope) structure | tissue photograph of the surface of 4 Cu-Sn alloy coating layers. 微摺動摩耗測定治具の概念図である。It is a conceptual diagram of a fine sliding wear measuring jig. 摩擦係数測定治具の概念図である。It is a conceptual diagram of a friction coefficient measuring jig.

[銅合金母材]
(1)Cu−Fe−P合金の組成
本発明は、Fe:0.01〜2.6質量%、P:0.01〜0.3質量%を含有し、残部がCu及び不可避的不純物からなるCu−Fe−P合金を対象とする。
Feは、Fe単体又はFe基金属間化合物として析出し、銅合金の強度や耐熱性を向上させる主要元素である。Feの含有量が0.01質量%未満では、析出物の生成量が少なく、導電率の向上は満たされるものの、強度向上への寄与が不足し、強度が不足する。一方、Feの含有量が2.6質量%を超えると、導電率が低下しやすく、導電率を増加させるために析出量を増やそうとすると、逆に、析出物の成長・粗大化を招き、強度と曲げ加工性が低下する。従って、Feの含有量は0.01〜2.6質量%の範囲とする。
[Copper alloy base material]
(1) Composition of Cu-Fe-P alloy The present invention contains Fe: 0.01-2.6 mass%, P: 0.01-0.3 mass%, and the balance is from Cu and inevitable impurities. The target Cu-Fe-P alloy.
Fe is a main element that precipitates as a simple substance of Fe or an Fe-based intermetallic compound and improves the strength and heat resistance of the copper alloy. If the Fe content is less than 0.01% by mass, the amount of precipitates produced is small and the improvement in conductivity is satisfied, but the contribution to the improvement in strength is insufficient and the strength is insufficient. On the other hand, if the Fe content exceeds 2.6 mass%, the conductivity tends to decrease, and if the amount of precipitation is increased in order to increase the conductivity, conversely, the precipitate grows and becomes coarse. Strength and bending workability are reduced. Therefore, the Fe content is in the range of 0.01 to 2.6 mass%.

Pは、脱酸作用があるほか、Feと化合物を形成して、銅合金を高強度化させる主要元素である。Pの含有量が0.01質量%未満では、製造条件によっては、析出物の生成量が少なく、所望の強度が得られない。一方、P含有量が0.3質量%を超えると、導電性が低下するだけでなく、熱間加工性が低下する。従って、Pの含有量は0.01〜0.3質量%の範囲とする。   In addition to deoxidizing action, P is a main element that forms a compound with Fe to increase the strength of the copper alloy. If the P content is less than 0.01% by mass, the amount of precipitates produced is small depending on the production conditions, and the desired strength cannot be obtained. On the other hand, when the P content exceeds 0.3% by mass, not only the conductivity is lowered but also the hot workability is lowered. Therefore, the P content is in the range of 0.01 to 0.3% by mass.

上記Cu−Fe−P合金は、必要に応じて、さらに、Sn:0.001〜0.5質量%、Zn:0.005〜3.0質量%の1種又は2種を含有することができる。
Znは、Cu−Fe−P合金のはんだめっき及びSnめっきの耐熱剥離性を改善する。Znの含有量が0.005質量%未満の場合、所望の効果が得られない。一方、Znの含有量が3.0質量%を超えると、はんだ濡れ性が低下するだけでなく、導電率の低下が大きくなる。従って、Znの含有量は0.005〜3.0%とする。
Snは、Cu−Fe−P合金の強度向上に寄与する。Snの含有量が0.001質量%未満の場合は高強度化に寄与しない。一方、Snの含有量が0.5質量%を超えて多くなると、その効果が飽和し、逆に、導電率の低下を招くばかりか、曲げ加工性も劣化する。銅合金の強度及び導電率を所望の範囲内とするため、Snの含有量は0.001〜0.5質量%の範囲とする。
The Cu—Fe—P alloy may further contain one or two of Sn: 0.001 to 0.5 mass% and Zn: 0.005 to 3.0 mass% as necessary. it can.
Zn improves the heat-resistant peelability of Cu-Fe-P alloy solder plating and Sn plating. If the Zn content is less than 0.005% by mass, the desired effect cannot be obtained. On the other hand, when the Zn content exceeds 3.0% by mass, not only the solder wettability is lowered, but also the conductivity is greatly lowered. Therefore, the Zn content is set to 0.005 to 3.0%.
Sn contributes to improving the strength of the Cu—Fe—P alloy. When the Sn content is less than 0.001% by mass, it does not contribute to high strength. On the other hand, when the Sn content exceeds 0.5% by mass, the effect is saturated, and conversely, the electrical conductivity is lowered and the bending workability is also deteriorated. In order to keep the strength and conductivity of the copper alloy within the desired ranges, the Sn content is in the range of 0.001 to 0.5 mass%.

上記Cu−Fe−P合金は、必要に応じて、さらに、A群元素(Mn、Mg、Ca)の1種又は2種以上、又は/及び、B群元素(Zr、Ag、Cr、Cd、Be、Ti、Si、Co、Ni、Al、Au、Pt)の1種又は2種以上を含有することができる。
前記A群元素は、Cu−Fe−P合金の熱間加工性の向上に寄与する。前記A群元素の含有量が0.0001質量%未満の場合、所望の効果が得られない。一方、前記A群元素の含有量が0.5質量%を越えると、粗大な晶出物や酸化物が生成してCu−Fe−P合金の曲げ加工性が低下し、導電率の低下も激しくなる。従って、前記A群元素の含有量は0.0001〜0.5質量%の範囲とする。
The Cu—Fe—P alloy may further include one or more of group A elements (Mn, Mg, Ca) and / or group B elements (Zr, Ag, Cr, Cd, One, two or more of Be, Ti, Si, Co, Ni, Al, Au, and Pt) can be contained.
The group A element contributes to the improvement of hot workability of the Cu—Fe—P alloy. When the content of the group A element is less than 0.0001% by mass, a desired effect cannot be obtained. On the other hand, if the content of the group A element exceeds 0.5% by mass, coarse crystallized substances and oxides are generated, the bending workability of the Cu-Fe-P alloy is lowered, and the conductivity is also lowered. Become intense. Therefore, the content of the group A element is in the range of 0.0001 to 0.5 mass%.

前記B群元素(Zr、Ag、Cr、Cd、Be、Ti、Si、Co、Ni、Al、Au、Pt)は、Cu−Fe−P合金の強度を向上させる効果がある。前記B群元素の含有量が合計で0.001質量%未満の場合、所望の効果が得られない。一方、前記B群元素の含有量が合計で0.5質量%を越えると、粗大な晶出物や酸化物が生成してCu−Fe−P合金の曲げ加工性が低下し、導電率の低下も激しくなる。従って、前記B群元素の含有量は0.001〜0.5質量%の範囲とする。なお、上記Cu−Fe−P合金が前記A群元素とB群元素の両方を含有する場合、導電率の低下を抑えるため、その合計含有量は0.5質量%以下とする。
なお、以上説明したCu−Fe−P合金の組成自体は公知である。
The group B element (Zr, Ag, Cr, Cd, Be, Ti, Si, Co, Ni, Al, Au, Pt) has an effect of improving the strength of the Cu—Fe—P alloy. When the content of the group B element is less than 0.001% by mass in total, a desired effect cannot be obtained. On the other hand, when the total content of the B group element exceeds 0.5% by mass, coarse crystallized products and oxides are generated, and the bending workability of the Cu-Fe-P alloy is lowered, and the conductivity is decreased. The decline also becomes severe. Therefore, the content of the group B element is in the range of 0.001 to 0.5 mass%. In addition, when the said Cu-Fe-P alloy contains both the said A group element and B group element, in order to suppress the fall of electrical conductivity, the total content shall be 0.5 mass% or less.
The composition of the Cu—Fe—P alloy described above is known.

(2)Cu−Fe−P合金の特性
本発明に係るCu−Fe−P合金板材は、圧延方向に平行(L.D.)及び垂直(T.D.)方向に採取した試験片において0.2%耐力が共に400MPa以上、導電率が55%IACS以上であることが望ましい。また、圧延方向に平行(L.D.)方向において、0.2%耐力の80%の曲げ応力負荷状態で150℃×1000時間保持後の応力緩和率が、60%以下であることが望ましい。なお、応力緩和率の値はリフロー処理の前後で事実上変化しないと推測される。
(2) Characteristics of Cu-Fe-P alloy The Cu-Fe-P alloy sheet according to the present invention is 0 in the test specimens taken in the parallel (LD) and vertical (TD) directions in the rolling direction. It is desirable that both 2% proof stress is 400 MPa or more and conductivity is 55% IACS or more. In addition, in the direction parallel to the rolling direction (LD), the stress relaxation rate after holding at 150 ° C. for 1000 hours in an 80% bending stress load state with 0.2% proof stress is desirably 60% or less. . In addition, it is estimated that the value of a stress relaxation rate does not change substantially before and after a reflow process.

(3)Cu−Fe−P合金の製造方法
Cu−Fe−P系銅合金板条は、通常、鋳塊を面削後、熱間圧延し、熱間圧延後急冷し又は溶体化処理し、続いて冷間圧延及び析出焼鈍を行った後、仕上げ冷間圧延を行って製造されている。冷間圧延及び析出焼鈍は必要に応じて繰り返し、仕上げ冷間圧延後に必要に応じて低温焼鈍が行われる。本発明に係るCu−Fe−P合金板条(めっき母材)の場合も、この製造工程自体を大きく変更する必要はない。耐応力緩和特性及び導電率の向上のため、熱間圧延以後の加工熱処理工程で、Cu合金板条中にFe及びFe−P化合物の微細析出物を多量に析出させる条件を選定する。
(3) Manufacturing method of Cu-Fe-P alloy Cu-Fe-P-based copper alloy strip is usually hot-rolled after chamfering the ingot, rapidly cooled after hot rolling, or solution-treated. Subsequently, after cold rolling and precipitation annealing, finish cold rolling is performed. Cold rolling and precipitation annealing are repeated as necessary, and low temperature annealing is performed as necessary after finish cold rolling. Also in the case of the Cu—Fe—P alloy strip (plating base material) according to the present invention, it is not necessary to greatly change the manufacturing process itself. In order to improve the stress relaxation resistance and the electrical conductivity, conditions are selected for depositing a large amount of fine precipitates of Fe and Fe-P compounds in the Cu alloy strip in the heat treatment step after hot rolling.

熱間圧延は、700℃以上の温度で終了し、直ちに水冷する。熱間圧延後、溶体化処理を行う場合は、700℃以上の温度に再加熱した後、その温度から水冷する。
析出焼鈍は、微細なFe及びFe−P化合物を析出させるための熱処理であり、板条の温度が300〜600℃程度に達してから、0.5〜30時間程度保持する。
Cu−Fe−P系銅合金板条の耐応力緩和特性を改善するため、最終冷間圧延後に低温焼鈍を行うことが好ましい。バッチ焼鈍の場合、板条の温度が300〜400℃程度に達してから10分〜5時間程度保持する。連続焼鈍の場合、400〜650℃の雰囲気の炉に板条を連続通板すればよい(実体温度条件としては、板条の温度が300〜400℃程度に達してから5秒〜1分程度保持する)。
Hot rolling is completed at a temperature of 700 ° C. or higher and immediately cooled with water. When performing solution treatment after hot rolling, after reheating to a temperature of 700 ° C. or higher, water cooling is performed from that temperature.
Precipitation annealing is a heat treatment for precipitating fine Fe and Fe—P compounds, and is maintained for about 0.5 to 30 hours after the temperature of the strip reaches about 300 to 600 ° C.
In order to improve the stress relaxation resistance of the Cu—Fe—P based copper alloy sheet, it is preferable to perform low temperature annealing after the final cold rolling. In the case of batch annealing, it is maintained for about 10 minutes to 5 hours after the temperature of the strip reaches about 300 to 400 ° C. In the case of continuous annealing, the strip may be continuously passed through a furnace having an atmosphere of 400 to 650 ° C. (As the actual temperature condition, about 5 seconds to 1 minute after the temperature of the strip reaches about 300 to 400 ° C. Hold).

[表面被覆層]
(1)Cu−Sn合金被覆層中のCu含有量
Cu−Sn合金被覆層中のCu含有量は、特許文献2に記載された接続部品用導電材料と同じく、20〜70at%とする。Cu含有量が20〜70at%のCu−Sn合金被覆層は、CuSn相を主体とする金属間化合物からなる。本発明ではCuSn相がSn被覆層の表面に部分的に突出しているため、電気接点部の摺動の際に接圧力を硬いCuSn相で受けてSn被覆層同士の接触面積を一段と低減でき、これによりSn被覆層の摩耗や酸化も減少する。一方、CuSn相はCuSn相に比べてCu含有量が多いため、これをSn被覆層の表面に部分的に露出させた場合には、経時や腐食などによる材料表面のCuの酸化物量などが多くなり、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。また、CuSn相はCuSn相に比べて脆いために、成形加工性などが劣るという問題点がある。従って、Cu−Sn合金被覆層の構成成分を、Cu含有量が20〜70at%のCu−Sn合金に規定する。このCu−Sn合金被覆層には、CuSn相が一部含まれていてもよく、母材及びSnめっき中の成分元素などが含まれていてもよい。しかし、Cu−Sn合金被覆層のCu含有量が20at%未満では凝着量が増して微摺動摩耗性が低下する。一方、Cu含有量が70at%を超えると経時や腐食などによる電気的接続の信頼性を維持することが困難となり、成形加工性なども悪くなる。従って、Cu−Sn合金被覆層中のCu含有量は20〜70at%とする。Cu−Sn合金被覆層中のCu含有量の下限は好ましくは45at%であり、上限は好ましくは65at%である。
[Surface coating layer]
(1) Cu content in the Cu—Sn alloy coating layer The Cu content in the Cu—Sn alloy coating layer is set to 20 to 70 at% as in the conductive material for connecting parts described in Patent Document 2. The Cu—Sn alloy coating layer having a Cu content of 20 to 70 at% is made of an intermetallic compound mainly composed of a Cu 6 Sn 5 phase. In the present invention, the Cu 6 Sn 5 phase partially protrudes from the surface of the Sn coating layer. Therefore, when the electrical contact portion slides, the contact pressure is received by the hard Cu 6 Sn 5 phase and the Sn coating layers contact each other. The area can be further reduced, thereby reducing wear and oxidation of the Sn coating layer. On the other hand, since the Cu 3 Sn phase has a higher Cu content than the Cu 6 Sn 5 phase, when this is partially exposed on the surface of the Sn coating layer, the Cu 3 The amount of oxide and the like are increased, the contact resistance is easily increased, and it is difficult to maintain the reliability of electrical connection. Further, since the Cu 3 Sn phase is more fragile than the Cu 6 Sn 5 phase, there is a problem that molding processability is inferior. Therefore, the constituent component of the Cu—Sn alloy coating layer is defined as a Cu—Sn alloy having a Cu content of 20 to 70 at%. This Cu—Sn alloy coating layer may contain a part of the Cu 3 Sn phase, and may contain a base material, component elements during Sn plating, and the like. However, if the Cu content of the Cu—Sn alloy coating layer is less than 20 at%, the amount of adhesion increases and the fine sliding wear resistance decreases. On the other hand, if the Cu content exceeds 70 at%, it becomes difficult to maintain the reliability of electrical connection due to aging or corrosion, and the moldability and the like are also deteriorated. Therefore, the Cu content in the Cu—Sn alloy coating layer is 20 to 70 at%. The lower limit of the Cu content in the Cu—Sn alloy coating layer is preferably 45 at%, and the upper limit is preferably 65 at%.

(2)Cu−Sn合金被覆層の平均の厚さ
Cu−Sn合金被覆層の平均の厚さは、特許文献2に記載された接続部品用導電材料と同じく、0.2〜3.0μmとする。本発明では、Cu−Sn合金被覆層の平均の厚さを、Cu−Sn合金被覆層に含有されるSnの面密度(単位:g/mm)をSnの密度(単位:g/mm)で除した値と定義する。下記実施例に記載したCu−Sn合金被覆層の平均の厚さ測定方法は、この定義に準拠するものである。Cu−Sn合金被覆層の平均の厚さが0.2μm未満では、本発明のようにCu−Sn合金被覆層を材料表面に部分的に露出形成させる場合には、高温酸化などの熱拡散による材料表面のCuの酸化物量が多くなる。材料表面のCuの酸化物量が多くなると、接触抵抗が増加し易く、電気的接続の信頼性を維持することが困難となる。一方、3.0μmを超える場合には、経済的に不利であり、生産性も悪く、硬い層が厚く形成されるために成形加工性なども悪くなる。従って、Cu−Sn合金被覆層の平均の厚さを0.2〜3.0μmに規定する。Cu−Sn合金被覆層の平均の厚さの下限は好ましくは0.3μmであり、上限は好ましくは1.0μmである。
(2) Average thickness of Cu—Sn alloy coating layer The average thickness of the Cu—Sn alloy coating layer is 0.2 to 3.0 μm, similar to the conductive material for connecting parts described in Patent Document 2. To do. In the present invention, the average thickness of the Cu—Sn alloy coating layer, the surface density (unit: g / mm 2 ) of Sn contained in the Cu—Sn alloy coating layer, the density of Sn (unit: g / mm 3) ) Is defined as the value divided by. The method for measuring the average thickness of the Cu—Sn alloy coating layer described in the following examples is based on this definition. When the average thickness of the Cu—Sn alloy coating layer is less than 0.2 μm, when the Cu—Sn alloy coating layer is partially exposed on the surface of the material as in the present invention, it is caused by thermal diffusion such as high temperature oxidation. The amount of Cu oxide on the material surface increases. When the amount of Cu oxide on the material surface increases, the contact resistance tends to increase, and it becomes difficult to maintain the reliability of electrical connection. On the other hand, if it exceeds 3.0 μm, it is economically disadvantageous, the productivity is poor, and the hard layer is formed thick, so that the molding processability is also deteriorated. Therefore, the average thickness of the Cu—Sn alloy coating layer is specified to be 0.2 to 3.0 μm. The lower limit of the average thickness of the Cu—Sn alloy coating layer is preferably 0.3 μm, and the upper limit is preferably 1.0 μm.

(3)Sn被覆層の平均の厚さ
Sn被覆層の平均の厚さは0.05〜5.0μmとする。この範囲は、特許文献2に記載された接続部品用導電材料におけるSn被覆層の平均の厚さ(0.2〜5.0μm)と比べると、薄厚方向にやや広い。Sn被覆層の平均の厚さが0.2μm未満では、特許文献2に記載されているとおり、高温酸化などの熱拡散による材料表面のCuの酸化物量が多くなり、接触抵抗を増加させ易く、耐食性も悪くなる。その一方で、摩擦係数が低下し、大幅な低挿入力化を実現できる。しかし、Sn被覆層の平均の厚さがさらに薄く、0.05μm未満になると、軟らかいSnによる潤滑効果が発揮されなくなり、逆に摩擦係数が上昇する。Sn被覆層の平均の厚さが5.0μmを超える場合には、Snの凝着により、摩擦係数が上昇するだけでなく、経済的に不利であり、生産性も悪くなる。従って、Sn被覆層の平均の厚さを0.05〜5.0μmに規定する。このうち、低接触抵抗及び高耐食性が重視される用途の場合は0.2μm以上が好ましく、特に低摩擦係数が重視される用途の場合は0.2μm未満が好ましい。Sn被覆層の平均の厚さの下限は好ましくは0.07μm、さらに好ましくは0.10μmであり、上限は好ましくは3.0μm、さらに好ましくは1.5μmである。
Sn被覆層がSn合金からなる場合、Sn合金のSn以外の構成成分としては、Pb、Bi、Zn、Ag、Cuなどが挙げられる。Pbについては50質量%未満、他の元素については10質量%未満が好ましい。
(3) Average thickness of Sn coating layer The average thickness of Sn coating layer shall be 0.05-5.0 micrometers. This range is slightly wider in the thickness direction than the average thickness (0.2 to 5.0 μm) of the Sn coating layer in the conductive material for connecting parts described in Patent Document 2. When the average thickness of the Sn coating layer is less than 0.2 μm, as described in Patent Document 2, the amount of Cu oxide on the material surface due to thermal diffusion such as high-temperature oxidation is increased, and the contact resistance is easily increased. Corrosion resistance also deteriorates. On the other hand, the coefficient of friction decreases, and a significant reduction in insertion force can be realized. However, when the average thickness of the Sn coating layer is further reduced to less than 0.05 μm, the lubrication effect due to the soft Sn is not exhibited, and the friction coefficient increases. When the average thickness of the Sn coating layer exceeds 5.0 μm, the adhesion of Sn not only increases the friction coefficient, but is also economically disadvantageous and the productivity is also deteriorated. Therefore, the average thickness of the Sn coating layer is specified to be 0.05 to 5.0 μm. Among these, 0.2 μm or more is preferable for applications where low contact resistance and high corrosion resistance are important, and less than 0.2 μm is preferable for applications where low friction coefficient is particularly important. The lower limit of the average thickness of the Sn coating layer is preferably 0.07 μm, more preferably 0.10 μm, and the upper limit is preferably 3.0 μm, more preferably 1.5 μm.
When the Sn coating layer is made of an Sn alloy, examples of the constituent components other than Sn of the Sn alloy include Pb, Bi, Zn, Ag, and Cu. Pb is preferably less than 50% by mass, and other elements are preferably less than 10% by mass.

(4)材料表面の算術平均粗さRa
特許文献2に記載された接続部品用導電材料と同じく、材料表面の少なくとも一方向における算術平均粗さRaが0.15μm以上、全ての方向における算術平均粗さRaが3.0μm以下とする。全ての方向において算術平均粗さRaが0.15μm未満の場合、Cu−Sn合金被覆層の材料表面突出高さが全体に低く、電気接点部の摺動の際に接圧力を硬いCuSn相で受ける割合が小さくなり、特に微摺動によるSn被覆層の摩耗量を低減することが困難となる。一方、いずれかの方向において算術平均粗さRaが3.0μmを超える場合、高温酸化などの熱拡散による材料表面のCuの酸化物量が多くなり、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。従って、母材の表面粗さは、少なくとも一方向の算術平均粗さRaが0.15μm以上かつ全ての方向の算術平均粗さRaが3.0μm以下と規定する。好ましくは、少なくとも一方向の算術平均粗さRaが0.2μm以上で、全ての方向の算術平均粗さRaが2.0μm以下である。
(4) Arithmetic average roughness Ra of material surface
Similar to the conductive material for connecting parts described in Patent Document 2, the arithmetic average roughness Ra in at least one direction of the material surface is 0.15 μm or more, and the arithmetic average roughness Ra in all directions is 3.0 μm or less. When the arithmetic average roughness Ra is less than 0.15 μm in all directions, the Cu-Sn alloy coating layer has a low material surface protrusion height as a whole, and Cu 6 Sn has a hard contact pressure when the electrical contact portion slides. The proportion received by the five phases becomes small, and it becomes difficult to reduce the amount of wear of the Sn coating layer due to fine sliding in particular. On the other hand, when the arithmetic average roughness Ra exceeds 3.0 μm in any direction, the amount of Cu oxide on the surface of the material due to thermal diffusion such as high-temperature oxidation increases, making it easy to increase the contact resistance and the reliability of electrical connection. It becomes difficult to maintain the sex. Accordingly, the surface roughness of the base material is defined such that the arithmetic average roughness Ra in at least one direction is 0.15 μm or more and the arithmetic average roughness Ra in all directions is 3.0 μm or less. Preferably, the arithmetic average roughness Ra in at least one direction is 0.2 μm or more, and the arithmetic average roughness Ra in all directions is 2.0 μm or less.

(5)Cu−Sn合金被覆層の材料表面露出面積率
Cu−Sn合金被覆層の材料表面露出面積率は、特許文献2に記載された接続部品用導電材料と同じく、3〜75%とする。なお、Cu−Sn合金被覆層の材料表面露出面積率は、材料の単位表面積あたりに露出するCu−Sn合金被覆層の表面積に100をかけた値として算出される。Cu−Sn合金被覆層の材料表面露出面積率が3%未満では、Sn被覆層同士の凝着量が増し、耐微摺動摩耗性が低下してSn被覆層の摩耗量が増加する。一方、75%を超える場合には、経時や腐食などによる材料表面のCuの酸化物量などが多くなり、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。従って、Cu−Sn合金被覆層の材料表面露出面積率を3〜75%に規定する。好ましくは下限が10%、上限が50%である。
(5) Material surface exposed area ratio of Cu—Sn alloy coating layer The material surface exposed area ratio of the Cu—Sn alloy coating layer is set to 3 to 75% as in the conductive material for connecting parts described in Patent Document 2. . In addition, the material surface exposed area ratio of the Cu—Sn alloy coating layer is calculated as a value obtained by multiplying 100 by the surface area of the Cu—Sn alloy coating layer exposed per unit surface area of the material. When the material surface exposed area ratio of the Cu—Sn alloy coating layer is less than 3%, the amount of adhesion between the Sn coating layers increases, the fine sliding wear resistance decreases, and the wear amount of the Sn coating layer increases. On the other hand, if it exceeds 75%, the amount of Cu oxide on the surface of the material due to aging or corrosion increases, the contact resistance tends to increase, and it becomes difficult to maintain the reliability of electrical connection. Therefore, the material surface exposed area ratio of the Cu—Sn alloy coating layer is specified to be 3 to 75%. Preferably, the lower limit is 10% and the upper limit is 50%.

(6)Cu−Sn合金被覆層表面の平均結晶粒径
Cu−Sn合金被覆層表面の平均結晶粒径は2μm未満とする。Cu−Sn合金被覆層表面の平均結晶粒径が小さくなると、Cu−Sn合金被覆層表面の硬さ、及びCu−Sn合金被覆層の上に存在するSn被覆層の見かけの硬さが大きくなり、動摩擦係数がさらに小さくなる。また、Cu−Sn合金被覆層表面の硬さが大きくなることで、端子の摺動時にCu−Sn合金層が変形又は破壊しにくくなり、耐微摺動摩耗性が向上する。
さらに、Cu−Sn合金被覆層表面の平均結晶粒径が小さくなると、Cu−Sn合金被覆層の表面の微視的な凹凸が小さくなり、露出したCu−Sn合金層被覆層と相手側端子との接触面積が増大する。これにより、Cu−Sn合金被覆層と相手側端子のCu−Sn合金被覆層又はSn被覆層の間の凝着力が大きくなり、端子の静摩擦係数が増大し、端子間に振動、熱膨張・収縮が作用しても端子同士がずれにくくなり、耐微摺動磨耗性が向上する。
そのため、Cu−Sn合金被覆層表面の平均結晶粒径は2μm未満、好ましくは1.5μm以下、更に好ましくは1.0μm以下とする。なお、後述する実施例に示すとおり、特許文献2において好ましいとされるリフロー処理条件で得られた接続部品用導電材料では、Cu−Sn合金被覆層表面の平均結晶粒径は2μmを越えている。
(6) Average crystal grain size of Cu—Sn alloy coating layer surface The average crystal grain size of the Cu—Sn alloy coating layer surface is less than 2 μm. When the average crystal grain size on the surface of the Cu-Sn alloy coating layer is reduced, the hardness of the surface of the Cu-Sn alloy coating layer and the apparent hardness of the Sn coating layer existing on the Cu-Sn alloy coating layer are increased. The dynamic friction coefficient is further reduced. Further, since the hardness of the surface of the Cu—Sn alloy coating layer is increased, it becomes difficult for the Cu—Sn alloy layer to be deformed or broken when the terminal is slid, and the fine sliding wear resistance is improved.
Further, when the average crystal grain size on the surface of the Cu-Sn alloy coating layer is reduced, the microscopic irregularities on the surface of the Cu-Sn alloy coating layer are reduced, and the exposed Cu-Sn alloy coating layer and the counterpart terminal The contact area increases. As a result, the adhesion force between the Cu-Sn alloy coating layer and the Cu-Sn alloy coating layer or Sn coating layer of the mating terminal increases, the static friction coefficient of the terminal increases, and vibration, thermal expansion / contraction between terminals Even if this works, the terminals are not easily displaced from each other, and the resistance to fine sliding wear is improved.
Therefore, the average crystal grain size on the surface of the Cu—Sn alloy coating layer is less than 2 μm, preferably 1.5 μm or less, and more preferably 1.0 μm or less. In addition, as shown in the Example mentioned later, in the conductive material for connection components obtained on the reflow processing conditions considered preferable in Patent Document 2, the average crystal grain size on the surface of the Cu—Sn alloy coating layer exceeds 2 μm. .

(7)Cu−Sn合金被覆層の平均の材料表面露出間隔
Cu−Sn合金被覆層の少なくとも一方向における平均の材料表面露出間隔は、特許文献2に記載された接続部品用導電材料と同じく、0.01〜0.5mmとすることが好ましい。なお、Cu−Sn合金被覆層の平均の材料表面露出間隔は、材料表面に描いた直線を横切るCu−Sn合金被覆層の平均の幅(前記直線に沿った長さ)とSn被覆層の平均の幅を足した値と定義する。Cu−Sn合金被覆層の平均の材料表面露出間隔が0.01mm未満では、高温酸化などの熱拡散による材料表面のCuの酸化物量が多くなり、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。一方、0.5mmを超える場合には、特に小型端子に用いた際に低い摩擦係数を得ることが困難となる場合が生じてくる。一般的に端子が小型になれば、インデントやリブなどの電気接点部(挿抜部)の接触面積が小さくなるため、挿抜の際にSn被覆層同士のみの接触確率が増加する。これにより凝着量が増すため、低い摩擦係数を得ることが困難となる。従って、Cu−Sn合金被覆層の平均の材料表面露出間隔を少なくとも一方向において0.01〜0.5mmとすることが好ましい。より好ましくは、Cu−Sn合金被覆層の平均の材料表面露出間隔を全ての方向において0.01〜0.5mmにする。これにより、挿抜の際のSn被覆層同士のみの接触確率が低下する。好ましくは下限が0.05mm、上限が0.3mmである。
(7) Average material surface exposure interval of Cu—Sn alloy coating layer The average material surface exposure interval in at least one direction of the Cu—Sn alloy coating layer is the same as the conductive material for connecting parts described in Patent Document 2. It is preferable to set it as 0.01-0.5 mm. In addition, the average material surface exposure space | interval of a Cu-Sn alloy coating layer is the average width (length along the said straight line) of the Cu-Sn alloy coating layer which crosses the straight line drawn on the material surface, and the average of Sn coating layer. It is defined as a value obtained by adding the width of. When the average material surface exposure interval of the Cu—Sn alloy coating layer is less than 0.01 mm, the amount of Cu oxide on the material surface due to thermal diffusion such as high-temperature oxidation increases, and it is easy to increase the contact resistance, and the reliability of electrical connection It becomes difficult to maintain the sex. On the other hand, when it exceeds 0.5 mm, it may be difficult to obtain a low coefficient of friction particularly when used for a small terminal. In general, when the terminal is reduced in size, the contact area of an electrical contact portion (insertion / extraction portion) such as an indent or a rib is reduced, so that the contact probability of only the Sn coating layers increases during insertion / extraction. This increases the amount of adhesion and makes it difficult to obtain a low coefficient of friction. Therefore, it is preferable that the average material surface exposure interval of the Cu—Sn alloy coating layer be 0.01 to 0.5 mm in at least one direction. More preferably, the average material surface exposure interval of the Cu—Sn alloy coating layer is set to 0.01 to 0.5 mm in all directions. Thereby, the contact probability only of Sn coating layers in the case of insertion / extraction falls. Preferably, the lower limit is 0.05 mm and the upper limit is 0.3 mm.

(8)表面に露出するCu−Sn合金被覆層の厚さ
本発明に係る接続部品用導電材料において、表面に露出するCu−Sn合金被覆層の厚さは、特許文献2に記載された接続部品用導電材料と同じく、0.2μm以上とすることが好ましい。本発明のようにCu−Sn合金被覆層の一部をSn被覆層の表面に露出させる場合、製造条件によりSn被覆層の表面に露出するCu−Sn合金被覆層の厚さが前記Cu−Sn合金被覆層の平均の厚さと比較して極めて薄くなる場合が生じるからである。
なお、Sn被覆層の表面に露出するCu−Sn合金被覆層の厚さは、断面観察により測定した値と定義する(前記Cu−Sn合金被覆層の平均の厚さ測定方法とは異なる)。Sn被覆層の表面に露出するCu−Sn合金被覆層の厚さが0.2μm未満の場合、微摺動摩耗現象が早期に生じやすい。また、高温酸化などの熱拡散による材料表面のCuの酸化物量が多くなり、また耐食性も低下することから、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。従って、Sn被覆層の表面に露出するCu−Sn合金被覆層の厚さを0.2μm以上とすることが好ましい。より好ましくは0.3μm以上である。
(8) Thickness of Cu—Sn alloy coating layer exposed on the surface In the conductive material for connection parts according to the present invention, the thickness of the Cu—Sn alloy coating layer exposed on the surface is the connection described in Patent Document 2. Like the conductive material for parts, it is preferably 0.2 μm or more. When a part of the Cu—Sn alloy coating layer is exposed on the surface of the Sn coating layer as in the present invention, the thickness of the Cu—Sn alloy coating layer exposed on the surface of the Sn coating layer depends on the manufacturing conditions. This is because there may be a case where the alloy coating layer becomes extremely thin as compared with the average thickness of the alloy coating layer.
Note that the thickness of the Cu—Sn alloy coating layer exposed on the surface of the Sn coating layer is defined as a value measured by cross-sectional observation (different from the average thickness measurement method of the Cu—Sn alloy coating layer). When the thickness of the Cu—Sn alloy coating layer exposed on the surface of the Sn coating layer is less than 0.2 μm, the fine sliding wear phenomenon tends to occur early. In addition, the amount of Cu oxide on the material surface due to thermal diffusion such as high-temperature oxidation increases, and the corrosion resistance also decreases. Therefore, it is easy to increase the contact resistance and it is difficult to maintain the reliability of electrical connection. Therefore, the thickness of the Cu—Sn alloy coating layer exposed on the surface of the Sn coating layer is preferably 0.2 μm or more. More preferably, it is 0.3 μm or more.

(9)リフロー処理後に形成されるSnめっき層
リフロー処理後に接続部品用導電材料の表面に形成されるSnめっき層の平均の厚さは0.02〜0.2μmとする。このSnめっき層が形成された接続部品用導電材料は、はんだ濡れ性が向上するため、はんだ付け接合部を有する端子の製造に適する。Snめっきは、光沢Snめっき、無光沢Snめっき、あるいはその中間の光沢度が得られる半光沢Snめっきのいずれでもよい。Snめっき層の平均の厚さが0.02μm未満では、はんだ濡れ性の向上の効果が小さく、0.2μmを超えると摩擦係数が高くなり、かつ耐微摺動摩耗性が低下する。このSnめっき層の平均の厚さは0.03μm以上が好ましく、0.05μm以上がさらに好ましい。
このSnめっき層は、リフロー処理後の表面全体に均一な厚さで形成することが好ましいが、リフロー処理後の表面に露出したCu−Sn合金被覆層とSn被覆層とでは、Snめっきの付きやすさに差がある(後者が前者より付きやすい)。このため、露出したCu−Sn合金被覆層の部分には、Snめっきの未着部が一部存在する場合がある。
(9) Sn plating layer formed after reflow treatment The average thickness of the Sn plating layer formed on the surface of the conductive material for connection parts after the reflow treatment is 0.02 to 0.2 μm. Since the conductive material for connecting parts on which the Sn plating layer is formed has improved solder wettability, it is suitable for manufacturing a terminal having a soldered joint. The Sn plating may be any of bright Sn plating, matte Sn plating, or semi-gloss Sn plating that provides an intermediate gloss level. When the average thickness of the Sn plating layer is less than 0.02 μm, the effect of improving the solder wettability is small, and when it exceeds 0.2 μm, the coefficient of friction increases and the resistance to fine sliding wear decreases. The average thickness of the Sn plating layer is preferably 0.03 μm or more, more preferably 0.05 μm or more.
The Sn plating layer is preferably formed with a uniform thickness over the entire surface after the reflow treatment, but the Cu-Sn alloy coating layer and the Sn coating layer exposed on the surface after the reflow treatment are attached with Sn plating. There is a difference in ease (the latter is easier to attach than the former). For this reason, a portion of the exposed Cu—Sn alloy coating layer may include a portion where the Sn plating is not deposited.

(10)その他の表面被覆層構成
(a)特許文献2に記載された接続部品用導電材料と同じく、母材とCu−Sn合金被覆層の間にCu被覆層を有していてもよい。このCu被覆層はリフロー処理後にCuめっき層が残留したものである。Cu被覆層は、Znやその他の母材構成元素の材料表面への拡散を抑制するのに役立ち、はんだ付け性などが改善されることが広く知られている。Cu被覆層は厚くなりすぎると成型加工性などが劣化し、経済性も悪くなることから、Cu被覆層の厚さは3.0μm以下が好ましい。
Cu被覆層には、母材に含まれる成分元素等が少量混入していてもよい。また、Cu被覆層がCu合金からなる場合、Cu合金のCu以外の構成成分としてはSn、Zn等が挙げられる。Snの場合は50質量%未満、他の元素については5質量%未満が好ましい。
(10) Other surface coating layer configurations (a) As with the conductive material for connecting parts described in Patent Document 2, a Cu coating layer may be provided between the base material and the Cu—Sn alloy coating layer. This Cu coating layer is a layer in which the Cu plating layer remains after the reflow treatment. It is widely known that the Cu coating layer is useful for suppressing the diffusion of Zn and other base material constituent elements to the material surface, and improves the solderability. If the Cu coating layer becomes too thick, the moldability and the like deteriorate and the economic efficiency also deteriorates. Therefore, the thickness of the Cu coating layer is preferably 3.0 μm or less.
A small amount of component elements contained in the base material may be mixed in the Cu coating layer. Moreover, when a Cu coating layer consists of Cu alloys, Sn, Zn, etc. are mentioned as structural components other than Cu of Cu alloy. In the case of Sn, it is preferably less than 50% by mass, and for other elements, it is preferably less than 5% by mass.

(b)特許文献2に記載された接続部品用導電材料と同じく、母材とCu−Sn合金被覆層の間(Cu被覆層がない場合)、又は母材とCu被覆層の間に、下地層としてNi被覆層が形成されていてもよい。Ni被覆層はCuや母材構成元素の材料表面への拡散を抑制して、高温長時間使用後も接触抵抗の上昇を抑制するとともに、Cu−Sn合金被覆層の成長を抑制してSn被覆層の消耗を防止し、また亜硫酸ガス耐食性が向上することが知られている。また、Ni被覆層自身の材料表面への拡散はCu−Sn合金被覆層やCu被覆層により抑制される。このことから、Ni被覆層を形成した接続部品用材料は、耐熱性が求められる接続部品に特に適する。しかし、Ni被覆層の平均の厚さが0.1μm未満の場合、Ni被覆層中のピット欠陥が増加することなどにより、上記効果を充分に発揮できなくなる。このため、Ni被覆層の平均の厚さは0.1μm以上であることが好ましい。一方、Ni被覆層は厚くなりすぎると成型加工性などが劣化し、経済性も悪くなることから、Ni被覆層の平均の厚さは3.0μm以下が好ましい。Ni被覆層の平均厚さは、好ましくは下限が0.2μm、上限が2.0μmである。
Ni被覆層には、母材に含まれる成分元素等が少量混入していてもよい。また、Ni被覆層がNi合金からなる場合、Ni合金のNi以外の構成成分としては、Cu、P、Coなどが挙げられる。Cuについては40質量%以下、P、Coについては10質量%以下が好ましい。
(B) Similar to the conductive material for connecting parts described in Patent Document 2, between the base material and the Cu—Sn alloy coating layer (when there is no Cu coating layer), or between the base material and the Cu coating layer, A Ni coating layer may be formed as the base layer. The Ni coating layer suppresses the diffusion of Cu and matrix constituent elements to the surface of the material, suppresses the increase in contact resistance even after use at high temperature for a long time, and suppresses the growth of the Cu—Sn alloy coating layer to provide the Sn coating. It is known that layer consumption is prevented and sulfurous acid corrosion resistance is improved. Further, the diffusion of the Ni coating layer itself onto the material surface is suppressed by the Cu—Sn alloy coating layer or the Cu coating layer. For this reason, the connecting component material on which the Ni coating layer is formed is particularly suitable for connecting components that require heat resistance. However, when the average thickness of the Ni coating layer is less than 0.1 μm, the above effect cannot be sufficiently exhibited due to an increase in pit defects in the Ni coating layer. For this reason, it is preferable that the average thickness of Ni coating layer is 0.1 micrometer or more. On the other hand, if the Ni coating layer becomes too thick, the moldability and the like deteriorate and the economic efficiency also deteriorates. Therefore, the average thickness of the Ni coating layer is preferably 3.0 μm or less. The average thickness of the Ni coating layer is preferably 0.2 μm at the lower limit and 2.0 μm at the upper limit.
The Ni coating layer may contain a small amount of component elements contained in the base material. Moreover, when Ni coating layer consists of Ni alloy, Cu, P, Co etc. are mentioned as structural components other than Ni of Ni alloy. Cu is preferably 40% by mass or less, and P and Co are preferably 10% by mass or less.

(c)Ni被覆層に代え、下地層としてCo被覆層又はFe被覆層を用いることができる。Co被覆層はCo又はCo合金からなり、Fe被覆層はFe又はFe合金からなる。
Co被覆層又はFe被覆層は、Ni被覆層と同様に、母材構成元素の材料表面への拡散を抑制する。このため、Cu−Sn合金層の成長を抑制してSn層の消耗を防止し、高温長時間使用後において接触抵抗の上昇を抑制するとともに、良好なはんだ濡れ性を得るのに役立つ。しかし、Co被覆層又はFe被覆層の平均厚さが0.1μm未満の場合、Ni被覆層と同様に、Co被覆層又はFe被覆層中のピット欠陥が増加することなどにより、上記効果を充分に発揮できなくなる。また、Co被覆層又はFe被覆層の平均厚さが3.0μmを超えて厚くなると、Ni被覆層と同様に、上記効果が飽和し、また曲げ加工で割れが発生するなど端子への成形加工性が低下し、生産性や経済性も悪くなる。従って、Co被覆層又はFe被覆層を下地層としてNi被覆層の代わりに用いる場合、Co被覆層又はFe被覆層の平均厚さは0.1〜3.0μmとする。Co被覆層又はFe被覆層の平均厚さは、好ましくは下限が0.2μm、上限が2.0μmである。
(C) Instead of the Ni coating layer, a Co coating layer or an Fe coating layer can be used as the underlayer. The Co coating layer is made of Co or a Co alloy, and the Fe coating layer is made of Fe or an Fe alloy.
Similar to the Ni coating layer, the Co coating layer or the Fe coating layer suppresses the diffusion of the matrix constituent elements to the material surface. For this reason, the growth of the Cu—Sn alloy layer is suppressed to prevent the Sn layer from being consumed, and the increase in contact resistance after use at a high temperature for a long time is suppressed, and also good solder wettability is obtained. However, when the average thickness of the Co coating layer or the Fe coating layer is less than 0.1 μm, the above effect is sufficiently achieved by increasing the number of pit defects in the Co coating layer or the Fe coating layer, as in the case of the Ni coating layer. Cannot be used. In addition, when the average thickness of the Co coating layer or the Fe coating layer exceeds 3.0 μm, the above effects are saturated and cracking occurs during bending as in the Ni coating layer. The productivity is lowered and the productivity and economy are also deteriorated. Therefore, when the Co coating layer or the Fe coating layer is used as an underlayer instead of the Ni coating layer, the average thickness of the Co coating layer or the Fe coating layer is 0.1 to 3.0 μm. The average thickness of the Co coating layer or Fe coating layer is preferably 0.2 μm at the lower limit and 2.0 μm at the upper limit.

(d)Ni被覆層、Co被覆層、Fe被覆層のうちいずれか2つを、下地層として用いることができる。この場合、Co被覆層又はFe被覆層を、母材表面とNi被覆層の間、又は前記Ni被覆層とCu−Sn合金層の間に形成することが好ましい。2層の下地層(Ni被覆層、Co被覆層、Fe被覆層のうちいずれか2つ)の合計の平均厚さは、下地層をNi被覆層のみ、Co被覆層のみ又はFe被覆層のみとした場合と同じ理由で、0.1〜3.0μmとする。この合計の平均厚さは、好ましくは下限が0.2μm、上限が2.0μmである。 (D) Any two of the Ni coating layer, the Co coating layer, and the Fe coating layer can be used as the base layer. In this case, it is preferable to form the Co coating layer or the Fe coating layer between the base material surface and the Ni coating layer, or between the Ni coating layer and the Cu—Sn alloy layer. The total average thickness of the two underlayers (any two of the Ni coating layer, Co coating layer, and Fe coating layer) is as follows: the Ni coating layer only, the Co coating layer only, or the Fe coating layer only For the same reason as above, the thickness is set to 0.1 to 3.0 μm. The total average thickness is preferably such that the lower limit is 0.2 μm and the upper limit is 2.0 μm.

[接続部品用導電材料の製造方法]
本発明の接続部品用導電材料は、銅合金母材の表面を粗化処理したうえで、該母材表面に直接に、あるいはNiめっき層やCuめっき層を介してSnめっき層を形成し、続いてリフロー処理することにより製造する。この製造方法のステップは、特許文献2に記載された接続部品用導電材料の製造方法と同じである。
母材の表面を粗化処理する方法としては、イオンエッチング等の物理的方法、エッチングや電解研磨等の化学的方法、圧延(研磨やショットブラスト等により粗面化したワークロールを使用)、研磨、ショットブラスト等の機械的方法がある。この中で、生産性、経済性及び母材表面形態の再現性に優れる方法としては、圧延や研磨が好ましい。
Niめっき層、Cuめっき層及びSnめっき層が、それぞれNi合金、Cu合金及びSn合金からなる場合、先にNi被覆層、Cu被覆層及びSn被覆層に関して説明した各合金を用いることができる。
[Method of manufacturing conductive material for connecting parts]
The conductive material for connecting parts of the present invention, after roughening the surface of the copper alloy base material, forms a Sn plating layer directly on the surface of the base material or via a Ni plating layer or a Cu plating layer, Subsequently, it is manufactured by reflow processing. The steps of this manufacturing method are the same as the manufacturing method of the conductive material for connecting parts described in Patent Document 2.
As a method for roughening the surface of the base material, a physical method such as ion etching, a chemical method such as etching or electrolytic polishing, rolling (using a work roll roughened by polishing or shot blasting), polishing, etc. There are mechanical methods such as shot blasting. Among these, rolling and polishing are preferred as methods that are excellent in productivity, economy, and reproducibility of the base material surface form.
When the Ni plating layer, the Cu plating layer, and the Sn plating layer are made of a Ni alloy, a Cu alloy, and a Sn alloy, respectively, the alloys described above with respect to the Ni coating layer, the Cu coating layer, and the Sn coating layer can be used.

Niめっき層の平均の厚さは0.1〜3μm、Cuめっき層の平均の厚さは0.1〜1.5μm、Snめっき層の平均の厚さは0.4〜8.0μmの範囲が好ましい。Niめっき層を形成しない場合、Cuめっき層を全く形成しないこともあり得る。
リフロー処理により、Cuめっき層又は銅合金母材のCuとSnめっき層のSnが相互拡散し、Cu−Sn合金被覆層が形成されるが、その際にCuめっき層が全て消滅する場合と一部残留する場合の両方があり得る。
The average thickness of the Ni plating layer is 0.1 to 3 μm, the average thickness of the Cu plating layer is 0.1 to 1.5 μm, and the average thickness of the Sn plating layer is 0.4 to 8.0 μm. Is preferred. When the Ni plating layer is not formed, the Cu plating layer may not be formed at all.
By the reflow process, Cu of the Cu plating layer or the copper alloy base material and Sn of the Sn plating layer are mutually diffused to form a Cu-Sn alloy coating layer. There may be both cases of partial residue.

粗化処理後の母材表面粗さは、特許文献2に記載された接続部品用導電材料と同じく、少なくとも一方向の算術平均粗さRaが0.3μm以上、かつ全ての方向の算術平均粗さRaが4.0μm以下であることが望ましい。全ての方向において算術平均粗さRaが0.3μm未満の場合、本発明の接続部品用導電材料の製造が困難となる。具体的にいえば、リフロー処理後の材料表面の少なくとも一方向における算術平均粗さRaを0.15μm以上とし、かつCu−Sn合金被覆層の材料表面露出面積率を3〜75%とし、同時にSn被覆層の平均の厚さを0.05〜5.0μmとすることが困難となる。一方、いずれかの方向において算術平均粗さRaが4.0μmを超える場合、溶融Sn又はSn合金の流動作用によるSn被覆層表面の平滑化が困難となる。従って、母材の表面粗さは、少なくとも一方向の算術平均粗さRaが0.3μm以上、かつ全ての方向の算術平均粗さRaが4.0μm以下とする。この表面粗さとしたことにより、溶融Sn又はSn合金の流動作用(Sn被覆層の平滑化)に伴い、リフロー処理で成長したCu−Sn合金被覆層の一部が材料表面に露出する。母材の表面粗さは、好ましくは、少なくとも一方向の算術平均粗さRaが0.4μm以上、全ての方向の算術平均粗さRaが3.0μm以下である。   The surface roughness of the base material after the roughening treatment is the same as the conductive material for connecting parts described in Patent Document 2, with an arithmetic average roughness Ra of at least one direction being 0.3 μm or more, and an arithmetic average roughness in all directions. The thickness Ra is preferably 4.0 μm or less. When the arithmetic average roughness Ra is less than 0.3 μm in all directions, it is difficult to manufacture the conductive material for connecting parts of the present invention. Specifically, the arithmetic average roughness Ra in at least one direction of the material surface after the reflow treatment is set to 0.15 μm or more, and the exposed area ratio of the material surface of the Cu—Sn alloy coating layer is set to 3 to 75%. It becomes difficult to set the average thickness of the Sn coating layer to 0.05 to 5.0 μm. On the other hand, when the arithmetic average roughness Ra exceeds 4.0 μm in any direction, it becomes difficult to smooth the surface of the Sn coating layer due to the flow action of molten Sn or Sn alloy. Accordingly, the surface roughness of the base material is such that at least the arithmetic average roughness Ra in one direction is 0.3 μm or more and the arithmetic average roughness Ra in all directions is 4.0 μm or less. Due to the surface roughness, a part of the Cu—Sn alloy coating layer grown by the reflow process is exposed on the material surface with the flow action of the molten Sn or Sn alloy (smoothing of the Sn coating layer). As for the surface roughness of the base material, the arithmetic average roughness Ra in at least one direction is preferably 0.4 μm or more, and the arithmetic average roughness Ra in all directions is 3.0 μm or less.

また、特許文献2に記載された接続部品用導電材料と同じく、母材表面の前記一方向において算出された凹凸の平均間隔Smは、0.01〜0.5mmとすることが好ましい。リフロー処理によりCuめっき層又は銅合金母材と溶融したSnめっき層の間に形成されるCu−Sn拡散層は、通常、母材の表面形態を反映して成長する。このため、リフロー処理により形成されるCu−Sn合金被覆層の材料表面露出間隔は、母材表面の凹凸の平均間隔Smをおよそ反映したものとなる。従って、母材表面の前記一方向において算出された凹凸の平均間隔Smは、0.01〜0.5mmであることが好ましい。より好ましくは、下限が0.05mm、上限が0.3mmである。これにより、材料表面に露出するCu−Sn合金被覆層の露出形態を制御することが可能となる。   Moreover, like the conductive material for connection parts described in Patent Document 2, the average interval Sm between the irregularities calculated in the one direction on the surface of the base material is preferably 0.01 to 0.5 mm. The Cu—Sn diffusion layer formed between the Cu plating layer or the copper alloy base material and the molten Sn plating layer by the reflow treatment usually grows reflecting the surface form of the base material. For this reason, the material surface exposure space | interval of the Cu-Sn alloy coating layer formed by a reflow process roughly reflects the average space | interval Sm of the unevenness | corrugation on a base material surface. Therefore, it is preferable that the average interval Sm between the irregularities calculated in the one direction on the surface of the base material is 0.01 to 0.5 mm. More preferably, the lower limit is 0.05 mm and the upper limit is 0.3 mm. This makes it possible to control the exposed form of the Cu—Sn alloy coating layer exposed on the material surface.

特許文献2には、リフロー処理の条件として、600℃以下の温度で3〜30秒で行うことが好ましいと記載され、そのうち特に300℃以下のできるだけ少ない熱量で行うことが好ましいと記載され、実施例は主として280℃×10秒の条件で行われている。また特許文献2の段落0035には、このリフロー処理条件で得られたCu−Sn合金被覆層の結晶粒径が、数〜数十μmであると記載されている。   Patent Document 2 describes that it is preferable to perform the reflow treatment at a temperature of 600 ° C. or less for 3 to 30 seconds, and particularly that it is preferable to carry out with a heat quantity as low as 300 ° C. or less. The example is mainly performed under the condition of 280 ° C. × 10 seconds. Further, paragraph 0035 of Patent Document 2 describes that the crystal grain size of the Cu—Sn alloy coating layer obtained under this reflow treatment condition is several to several tens of μm.

一方、本発明者の知見によれば、Cu−Sn合金被覆層の結晶粒径をさらに小さく、2μm未満とするには、リフロー処理時の昇温速度を大きくする必要がある。この昇温速度を大きくするには、リフロー処理時に材料に与える熱量を大きくすればよく、つまりは昇温時においてリフロー処理炉の雰囲気温度を高く設定すればよい。昇温速度は15℃/秒以上が好ましく、さらに好ましくは20℃/秒以上である。なお、特許文献2には、Cu−Sn合金被覆層の結晶粒径が数μm〜数十μmと記載されているから、リフロー処理の昇温速度は8〜12℃/秒程度又はそれ以下ではないかと推測される。   On the other hand, according to the knowledge of the present inventor, in order to further reduce the crystal grain size of the Cu—Sn alloy coating layer to less than 2 μm, it is necessary to increase the temperature rising rate during the reflow treatment. In order to increase the rate of temperature increase, the amount of heat given to the material during the reflow process may be increased, that is, the atmosphere temperature of the reflow processing furnace may be set higher during the temperature increase. The heating rate is preferably 15 ° C./second or more, more preferably 20 ° C./second or more. In Patent Document 2, since the crystal grain size of the Cu—Sn alloy coating layer is described as several μm to several tens of μm, the temperature increase rate of the reflow process is about 8 to 12 ° C./second or less. I guess it is not.

実体温度としてのリフロー処理温度は400℃以上が好ましく、450℃以上が更に好ましい。一方、Cu−Sn合金被覆層のCu含有量が高くなり過ぎないように、リフロー処理温度は650℃以下が好ましく、600℃以下がさらに好ましい。また、上記リフロー処理温度に保つ時間(リフロー処理時間)は5〜30秒程度とし、リフロー処理温度が高いほど短時間とすることが望ましい。リフロー処理後は、定法に従い水中に浸漬し急冷する。
以上の条件でリフロー処理を行うことで、結晶粒径の小さいCu−Sn合金被覆層が形成される。また、Cu含有量が20〜70at%のCu−Sn合金被覆層が形成され、0.2μm以上の厚さを有するCu−Sn合金被覆層が表面に露出し、かつSnめっき層の過度の消耗が抑えられる。
The reflow treatment temperature as the solid temperature is preferably 400 ° C. or higher, more preferably 450 ° C. or higher. On the other hand, the reflow treatment temperature is preferably 650 ° C. or lower and more preferably 600 ° C. or lower so that the Cu content of the Cu—Sn alloy coating layer does not become too high. Moreover, it is desirable that the time for which the reflow treatment temperature is maintained (reflow treatment time) is about 5 to 30 seconds, and that the shorter the reflow treatment temperature, the shorter. After the reflow treatment, it is immersed in water according to a conventional method and rapidly cooled.
By performing the reflow process under the above conditions, a Cu—Sn alloy coating layer having a small crystal grain size is formed. Further, a Cu—Sn alloy coating layer having a Cu content of 20 to 70 at% is formed, the Cu—Sn alloy coating layer having a thickness of 0.2 μm or more is exposed on the surface, and the Sn plating layer is excessively consumed. Is suppressed.

リフロー処理後、必要に応じて、接続部品用導電材料の表面に、平均の厚さが0.02〜0.2μmのSnめっき層を形成する。このSnめっきは、光沢Snめっき、無光沢Snめっき、あるいはその中間の光沢度が得られる半光沢Snめっきのいずれでもよい。   After the reflow treatment, an Sn plating layer having an average thickness of 0.02 to 0.2 μm is formed on the surface of the conductive material for connecting parts as necessary. The Sn plating may be any of bright Sn plating, matte Sn plating, or semi-gloss Sn plating that provides an intermediate gloss level.

表1に示す組成と機械的性質及び導電率を有する板厚0.25mmのCu−Fe−P合金A〜Dに、機械的な方法(圧延又は研磨)で表面粗化処理を行い(No.1〜11)、又は表面粗化処理を行わず(No.12〜14)、種々の表面粗さを有する銅合金母材に仕上げた。このCu−Fe−P合金母材A〜Dに、Niめっきを行い(No.6,7,14は行わず)、さらに種々の厚さのCuめっき及びSnめっきを施した後、リフロー処理炉の雰囲気温度を調整し、表2に示す種々の条件(温度×時間)でリフロー処理を行うことにより試験材を得た。リフロー処理温度への昇温速度は、No.1〜10では15℃/秒以上、No.11〜14では10℃/秒程度であった。   A Cu-Fe-P alloy A to D having a composition, mechanical properties, and electrical conductivity shown in Table 1 and having a plate thickness of 0.25 mm is subjected to surface roughening by a mechanical method (rolling or polishing) (No. 1 to 11), or a surface roughening treatment was not performed (No. 12 to 14), and the copper alloy base material having various surface roughnesses was finished. The Cu—Fe—P alloy base materials A to D are subjected to Ni plating (No. 6, 7 and 14 are not performed), and further subjected to various thicknesses of Cu plating and Sn plating, and then a reflow processing furnace. The test material was obtained by adjusting the atmospheric temperature and performing reflow treatment under various conditions (temperature × time) shown in Table 2. The rate of temperature increase to the reflow processing temperature is No. 1-10, 15 ° C./second or more. In 11-14, it was about 10 ° C./second.

なお、Cu−Fe−P合金板の機械的性質及び導電率は、以下の要領で測定した。
0.2%耐力は、Cu−Fe−P合金板から採取したASTME08試験片(圧延方向に平行(L.D.)及び垂直(T.D.)方向)を用いて測定した。
応力緩和率は、片持ち梁方式によって測定した。長さ方向が板材の圧延方向に対して平行方向(L.D.)及び直角方向(T.D.)になる幅10mm、長さ90mmの短冊状試験片を採取し、その一端を剛体試験台に固定する。固定端から距離lの位置で試験片にたわみd(=10mm)を与え、固定端に、それぞれの方向(L.D.又はT.D.)における材料の0.2%耐力の80%に相当する表面応力を負荷する。前記距離lは、日本伸銅協会技術標準(JCBA−T309:2004)の「銅及び銅合金薄板条の曲げによる応力緩和試験方法」により算出した。たわみを与えた試験片を150℃に加熱したオーブン中に1000時間保持した後に取り出し、たわみ量d(=10mm)を取り去ったときの永久歪みδを測定し、応力緩和率RS=(δ/d)×100を計算する。
導電率は、Cu−Zn合金板から圧延平行方向に採取した試験片を用いて測定した。
In addition, the mechanical property and electrical conductivity of the Cu-Fe-P alloy plate were measured as follows.
The 0.2% yield strength was measured using ASTM E08 specimens (parallel to the rolling direction (LD) and vertical (TD) directions) taken from the Cu-Fe-P alloy sheet.
The stress relaxation rate was measured by the cantilever method. A strip-shaped test piece having a width of 10 mm and a length of 90 mm, whose length direction is parallel to the rolling direction of the plate (LD) and perpendicular direction (TD), was sampled, and one end thereof was rigidly tested. Secure to the base. A deflection d (= 10 mm) is given to the test piece at a distance 1 from the fixed end, and the fixed end is set to 80% of the 0.2% yield strength of the material in the respective direction (LD or TD). Apply the corresponding surface stress. The distance l was calculated according to “Stress Relaxation Test Method by Bending Copper and Copper Alloy Sheet Strips” of the Japan Copper and Brass Association Technical Standard (JCBA-T309: 2004). The test piece to which the deflection was applied was held in an oven heated to 150 ° C. for 1000 hours and then taken out, and the permanent strain δ when the deflection amount d (= 10 mm) was removed was measured, and the stress relaxation rate RS = (δ / d ) × 100.
The electrical conductivity was measured using a test piece taken from the Cu—Zn alloy plate in the rolling parallel direction.

得られた試験材について、各被覆層の平均の厚さ、Cu−Sn合金被覆層のCu含有量、Cu−Sn合金被覆層の材料表面露出面積率、材料表面に露出するCu−Sn合金被覆層の厚さ、Cu−Sn合金被覆層の平均の材料表面露出間隔、Cu−Sn合金被覆層表面の平均結晶粒径、及び材料表面粗さを、下記要領で測定した。その結果を表2に示す。なお、No.1〜14の試験材は、リフロー処理によってCuめっき層は消滅し、Cu被覆層が存在しない。
下記測定方法は、Cu−Sn合金被覆層表面の平均結晶粒径の測定方法を除き、特許文献2に記載された方法に倣った。
About the obtained test material, the average thickness of each coating layer, the Cu content of the Cu—Sn alloy coating layer, the material surface exposed area ratio of the Cu—Sn alloy coating layer, and the Cu—Sn alloy coating exposed on the material surface The layer thickness, the average material surface exposure interval of the Cu—Sn alloy coating layer, the average crystal grain size of the Cu—Sn alloy coating layer surface, and the material surface roughness were measured as follows. The results are shown in Table 2. In addition, No. In the test materials 1 to 14, the Cu plating layer disappears by the reflow treatment, and there is no Cu coating layer.
The following measurement method followed the method described in Patent Document 2 except for the measurement method of the average crystal grain size on the surface of the Cu—Sn alloy coating layer.

(Ni被覆層の平均の厚さ測定方法)
蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、リフロー処理後のNi被覆層の平均の厚さを測定した。測定条件は、検量線にSn/Ni/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。
(Cu−Sn合金被覆層のCu含有量測定方法)
まず、試験材をp−ニトロフェノール及び苛性ソーダを成分とする水溶液に10分間浸漬し、Sn被覆層を除去した。その後、EDX(エネルギー分散型X線分光分析器)を用いて、Cu−Sn合金被覆層のCu含有量を定量分析により求めた。
(Measuring method of average thickness of Ni coating layer)
The average thickness of the Ni coating layer after the reflow treatment was measured using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200). The measurement conditions were Sn / Ni / base metal two-layer calibration curve for the calibration curve and the collimator diameter was φ0.5 mm.
(Cu content measurement method of Cu-Sn alloy coating layer)
First, the test material was immersed in an aqueous solution containing p-nitrophenol and caustic soda as components for 10 minutes to remove the Sn coating layer. Thereafter, the Cu content of the Cu—Sn alloy coating layer was determined by quantitative analysis using EDX (energy dispersive X-ray spectrometer).

(Cu−Sn合金被覆層の平均の厚さ測定方法)
まず、試験材をp−ニトロフェノール及び苛性ソーダを成分とする水溶液に10分間浸漬し、Sn被覆層を除去した。その後、蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、Cu−Sn合金被覆層に含有されるSn成分の膜厚を測定した。測定条件は、検量線にSn/母材の単層検量線又はSn/Ni/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。得られた値をCu−Sn合金被覆層の平均の厚さと定義して算出した。
(Method for measuring average thickness of Cu—Sn alloy coating layer)
First, the test material was immersed in an aqueous solution containing p-nitrophenol and caustic soda as components for 10 minutes to remove the Sn coating layer. Thereafter, the film thickness of the Sn component contained in the Cu—Sn alloy coating layer was measured using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200). The measurement conditions were a single layer calibration curve of Sn / base material or a two-layer calibration curve of Sn / Ni / base material for the calibration curve, and the collimator diameter was φ0.5 mm. The obtained value was defined as the average thickness of the Cu—Sn alloy coating layer.

(Sn被覆層の平均の厚さ測定方法)
まず、蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、試験材のSn被覆層の膜厚とCu−Sn合金被覆層に含有されるSn成分の膜厚の和を測定した。その後、p−ニトロフェノール及び苛性ソーダを成分とする水溶液に10分間浸漬し、Sn被覆層を除去した。再度、蛍光X線膜厚計を用いて、Cu−Sn合金被覆層に含有されるSn成分の膜厚を測定した。測定条件は、検量線にSn/母材の単層検量線又はSn/Ni/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。得られたSn被覆層の膜厚とCu−Sn合金被覆層に含有されるSn成分の膜厚の和から、Cu−Sn合金被覆層に含有されるSn成分の膜厚を差し引くことにより、Sn被覆層の平均の厚さを算出した。
(Measuring method of average thickness of Sn coating layer)
First, the sum of the film thickness of the Sn coating layer of the test material and the film thickness of the Sn component contained in the Cu—Sn alloy coating layer was measured using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200). . Then, it immersed in the aqueous solution which uses p-nitrophenol and caustic soda as a component for 10 minutes, and removed Sn coating layer. Again, the film thickness of the Sn component contained in the Cu—Sn alloy coating layer was measured using a fluorescent X-ray film thickness meter. The measurement conditions were a single layer calibration curve of Sn / base material or a two-layer calibration curve of Sn / Ni / base material for the calibration curve, and the collimator diameter was φ0.5 mm. By subtracting the film thickness of the Sn component contained in the Cu-Sn alloy coating layer from the sum of the film thickness of the obtained Sn coating layer and the film thickness of the Sn component contained in the Cu-Sn alloy coating layer, Sn The average thickness of the coating layer was calculated.

(表面粗さ測定方法)
接触式表面粗さ計(株式会社東京精密;サーフコム1400)を用いて、JIS B0601−1994に基づいて測定した。表面粗さ測定条件は、カットオフ値を0.8mm、基準長さを0.8mm、評価長さを4.0mm、測定速度を0.3mm/s、及び触針先端半径を5μmRとした。表面粗さの測定方向は、表面粗化処理の際に行った圧延又は研磨方向に直角な方向(表面粗さが最も大きく出る方向)とした。
(Surface roughness measurement method)
It measured based on JISB0601-1994 using the contact-type surface roughness meter (Tokyo Seimitsu; Surfcom 1400). The surface roughness measurement conditions were a cutoff value of 0.8 mm, a reference length of 0.8 mm, an evaluation length of 4.0 mm, a measurement speed of 0.3 mm / s, and a stylus tip radius of 5 μmR. The measurement direction of the surface roughness was a direction perpendicular to the rolling or polishing direction performed during the surface roughening treatment (the direction in which the surface roughness is maximized).

(Cu−Sn合金被覆層の材料表面露出面積率測定方法)
試験材の表面を、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて200倍の倍率で観察した。得られた組成像の濃淡(汚れや傷等のコントラストは除く)から画像解析によりCu−Sn合金被覆層の材料表面露出面積率を測定した。
(Cu−Sn合金被覆層の平均の材料表面露出間隔測定方法)
試験材の表面を、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて200倍の倍率で観察した。得られた組成像から、材料表面に引いた直線を横切るCu−Sn合金被覆層の平均の幅(前記直線に沿った長さ)とSn被覆層の平均の幅を足した値の平均を求めることにより、Cu−Sn合金被覆層の平均の材料表面露出間隔を測定した。測定方向(引いた直線の方向)は、表面粗化処理の際に行った圧延又は研磨方向に直角な方向とした。
(Measuring method of exposed surface area ratio of Cu—Sn alloy coating layer)
The surface of the test material was observed at a magnification of 200 times using an SEM (scanning electron microscope) equipped with EDX (energy dispersive X-ray spectrometer). The material surface exposed area ratio of the Cu—Sn alloy coating layer was measured by image analysis from the density of the obtained composition image (excluding contrast such as dirt and scratches).
(Measuring method of average material surface exposure interval of Cu-Sn alloy coating layer)
The surface of the test material was observed at a magnification of 200 times using an SEM (scanning electron microscope) equipped with EDX (energy dispersive X-ray spectrometer). From the obtained composition image, an average of values obtained by adding the average width (length along the straight line) of the Cu—Sn alloy coating layer crossing the straight line drawn on the material surface and the average width of the Sn coating layer is obtained. Thus, the average material surface exposure interval of the Cu—Sn alloy coating layer was measured. The measurement direction (the direction of the drawn straight line) was a direction perpendicular to the rolling or polishing direction performed during the surface roughening treatment.

(材料表面に露出するCu−Sn合金被覆層の厚さ測定方法)
ミクロトーム法にて加工した試験材の断面を、SEM(走査型電子顕微鏡)を用いて10,000倍の倍率で観察し、画像解析処理により材料表面に露出するCu−Sn合金被覆層の厚さの最小値を測定した。
(Cu−Sn合金被覆層表面の平均結晶粒径測定方法)
試験材をp−ニトロフェノール及び苛性ソーダを成分とする水溶液に10分間浸漬し、Sn被覆層を除去した。その後、試験材表面をSEMにより3000倍で観察し、画像解析により、各粒子を円としたときの直径(円相当直径)の平均値を求め、これをCu−Sn合金被覆層表面の平均結晶粒径とした。なお、試験材No.4の表面組織写真を図1に示す。
(Method for measuring thickness of Cu—Sn alloy coating layer exposed on material surface)
The cross section of the test material processed by the microtome method is observed at a magnification of 10,000 using a scanning electron microscope (SEM), and the thickness of the Cu—Sn alloy coating layer exposed on the material surface by image analysis processing The minimum value of was measured.
(Measuring method of average grain size of Cu—Sn alloy coating layer surface)
The test material was immersed in an aqueous solution containing p-nitrophenol and caustic soda as components for 10 minutes to remove the Sn coating layer. Thereafter, the surface of the test material was observed with a SEM at a magnification of 3000 times, and the average value of the diameter (equivalent circle diameter) when each particle was made into a circle was obtained by image analysis, and this was the average crystal on the surface of the Cu—Sn alloy coating layer. The particle size was taken. The test material No. A surface texture photograph of No. 4 is shown in FIG.

また、得られた試験材について、下記要領で微摺動摩耗試験を行い、微摺動後の摩耗量を測定した。その結果を、同じく表2に示す。
(微摺動摩耗試験)
嵌合型接続部品における電気接点のインデント部の形状を模擬し、図2に示すような摺動試験機(株式会社山崎精機研究所;CRS−B1050CHO)を用いて評価した。まず、各試験材から切り出した板材のオス試験片1を水平な台2に固定し、その上に各試験材から切り出した半球加工材(外径をφ1.8mmとした)のメス試験片3をおいて被覆層同士を接触させた。なお、オス試験片1とメス試験片3は同一の試験材を使用した。メス試験片3に3.0Nの荷重(錘4)をかけてオス試験片1を押さえ、ステッピングモータ5を用いてオス試験片1を水平方向に摺動させた(摺動距離を50μm、摺動周波数を1Hzとした)。なお、矢印は摺動方向である。
摺動回数100回の微摺動を行ったオス試験片1をミクロトーム法にて加工し、摩耗痕の断面をSEM(走査型電子顕微鏡)により10,000倍の倍率で観察した。観察される摩耗痕の最大深さを微摺動後の摩耗量とした。
Further, the obtained test material was subjected to a fine sliding wear test as described below, and the amount of wear after the fine sliding was measured. The results are also shown in Table 2.
(Fine sliding wear test)
The shape of the indented portion of the electrical contact in the fitting-type connecting part was simulated and evaluated using a sliding tester (Yamazaki Seiki Laboratory Co., Ltd .; CRS-B1050CHO) as shown in FIG. First, a male test piece 1 of a plate material cut out from each test material is fixed to a horizontal base 2, and a female test piece 3 of a hemispherical work material (outer diameter is φ1.8 mm) cut out from each test material thereon. The coating layers were brought into contact with each other. The male test piece 1 and the female test piece 3 used the same test material. A 3.0 N load (weight 4) was applied to the female test piece 3 to hold the male test piece 1 and the stepping motor 5 was used to slide the male test piece 1 in the horizontal direction (sliding distance was 50 μm, sliding The dynamic frequency was 1 Hz). The arrow indicates the sliding direction.
The male test piece 1 that had been slid 100 times was processed by the microtome method, and the cross section of the wear scar was observed with a SEM (scanning electron microscope) at a magnification of 10,000 times. The maximum depth of the observed wear scar was defined as the amount of wear after fine sliding.

表2に示すように、No.1〜10は、各被覆層の平均の厚さ、Cu−Sn合金被覆層のCu含有量、材料表面粗さ、Cu−Sn合金被覆層の材料表面露出面積率、材料表面に露出するCu−Sn合金被覆層の厚さ、Cu−Sn合金被覆層の平均の材料表面露出間隔について、本発明の規定を満たす。このうち、リフロー処理温度が低く、昇温速度が小さかったNo.11は、Cu−Sn合金被覆層表面の平均結晶粒径が3.5μmであり、本発明の規定を満たさない。これに対し、リフロー処理温度が高く、昇温速度が大きかったNo.1〜10は、Cu−Sn合金被覆層表面の平均結晶粒径が本発明の規定を満たす。 No.1〜10はいずれも、微摺動摩耗量がNo.11より少なく、特に母材が同じ材質で被覆層構造が類似するNo.3とNo.11を比較すると、No.3の微摺動摩耗量はNo.11の摩耗量の38%に減少している。
なお、No.11も、Cu−Sn合金被覆層の材料表面露出面積率がゼロ(Cu−Sn合金被覆層が最表面に露出していない)のNo.12〜14に比べると、微摺動摩耗量が少ない。
As shown in Table 2, no. 1 to 10 are the average thickness of each coating layer, the Cu content of the Cu-Sn alloy coating layer, the material surface roughness, the material surface exposed area ratio of the Cu-Sn alloy coating layer, and the Cu- exposed on the material surface. The provisions of the present invention are satisfied with respect to the thickness of the Sn alloy coating layer and the average material surface exposure interval of the Cu—Sn alloy coating layer. Among these, the reflow treatment temperature was low and the heating rate was small. No. 11 has an average crystal grain size of 3.5 μm on the surface of the Cu—Sn alloy coating layer and does not satisfy the provisions of the present invention. On the other hand, the reflow treatment temperature was high and the heating rate was large. In Nos. 1 to 10, the average crystal grain size of the surface of the Cu—Sn alloy coating layer satisfies the definition of the present invention. No. In all of Nos. 1 to 10, the amount of fine sliding wear was No. 1. No. 11 having a similar covering layer structure with the same base material. 3 and no. 11 and No. 11 are compared. No. 3 has a fine sliding wear amount of No. 3. 11 is reduced to 38% of the amount of wear.
In addition, No. No. 11 in which the material surface exposed area ratio of the Cu—Sn alloy coating layer is zero (the Cu—Sn alloy coating layer is not exposed on the outermost surface). Compared with 12-14, the amount of fine sliding wear is small.

表1の合金記号BのCu−Fe−P合金板に、機械的な方法(圧延又は研磨)で表面粗化処理を行い(No.15〜22)、又は表面粗化処理を行わず(No.23〜25)、種々の表面粗さを有する銅合金母材に仕上げた。この銅合金母材に、下地めっき(Ni,Co,Feの1種又は2種)を行い(No.21,25は行わず)、さらに種々の厚さのCuめっき及びSnめっきを施した。次いで、リフロー処理炉の雰囲気温度を調整し、表3に示す種々の条件(温度×時間)でリフロー処理を行うことにより試験材を得た。リフロー処理温度への昇温速度は、No.15〜21では15℃/秒以上、No.22〜25では10℃/秒程度であった。   The Cu—Fe—P alloy plate of alloy symbol B in Table 1 is subjected to a surface roughening treatment by a mechanical method (rolling or polishing) (No. 15 to 22), or no surface roughening treatment is performed (No .23 to 25), copper alloy base materials having various surface roughnesses were finished. The copper alloy base material was subjected to base plating (one or two of Ni, Co, and Fe) (No. 21 and 25 were not performed), and further subjected to Cu plating and Sn plating of various thicknesses. Subsequently, the test material was obtained by adjusting the atmospheric temperature of a reflow processing furnace and performing a reflow process on various conditions (temperature x time) shown in Table 3. The rate of temperature increase to the reflow processing temperature is No. 15-21, 15 ° C./second or more, In 22-25, it was about 10 degreeC / second.

得られた試験材について、実施例1と同様の測定及び試験を行った。そのほか、得られた試験材について、下記要領でCo被覆層及びFe被覆層の平均の厚さの測定,並びに摩擦係数の測定を行った。その結果を表3に示す。なお、No.15〜25の試験材において、Cuめっき層は消滅していた。   About the obtained test material, the same measurement and test as Example 1 were performed. In addition, the average thickness of the Co coating layer and the Fe coating layer and the coefficient of friction were measured for the obtained test materials in the following manner. The results are shown in Table 3. In addition, No. In the test materials of 15 to 25, the Cu plating layer disappeared.

( Co層の平均厚さの測定)
蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、試験材のCo層の平均の厚さを算出した。測定条件は、検量線にSn/Co/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。
(Fe層の平均厚さの測定)
蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、試験材のFe層の平均厚さを算出した。測定条件は、検量線にSn/Fe/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。
(Measurement of average thickness of Co layer)
The average thickness of the Co layer of the test material was calculated using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200). The measurement conditions were Sn / Co / matrix two-layer calibration curve for the calibration curve, and the collimator diameter was 0.5 mm.
(Measurement of average thickness of Fe layer)
The average thickness of the Fe layer of the test material was calculated using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200). The measurement conditions were Sn / Fe / matrix two-layer calibration curve for the calibration curve, and the collimator diameter was 0.5 mm.

(摩擦係数の測定)
嵌合型接続部品における電気接点のインデント部の形状を模擬し、図3に示すような装置を用いて測定した。まず、No.15〜25の各試験材から切り出した板材のオス試験片6を水平な台7に固定し、その上にNo.23の試験材(表面にCu−Sn合金層が露出しない)から切り出した半球加工材(外径をφ1.8mmとした)のメス試験片8を置いて表面同士を接触させた。続いて、メス試験片8に3.0Nの荷重(錘9)をかけてオス試験片6を押さえ、横型荷重測定器(アイコーエンジニアリング株式会社;Model−2152)を用いて、オス試験片6を水平方向に引っ張り(摺動速度を80mm/minとした)、摺動距離5mmまでの最大摩擦力F(単位:N)を測定した。摩擦係数を下記式(1)により求めた。なお、10はロードセル、矢印は摺動方向であり、摺動方向は圧延方向に垂直な向きとした。
摩擦係数=F/3.0 ・・・(1)
(Measurement of friction coefficient)
The shape of the indented portion of the electrical contact in the fitting type connecting part was simulated and measured using an apparatus as shown in FIG. First, no. A plate-shaped male test piece 6 cut out from each of the test materials 15 to 25 was fixed to a horizontal base 7, and No. 1 was placed thereon. A female test piece 8 of a hemispherical processed material (outer diameter was φ1.8 mm) cut out from 23 test materials (the Cu—Sn alloy layer was not exposed on the surface) was placed in contact with the surfaces. Subsequently, a load of 3.0 N (weight 9) is applied to the female test piece 8, the male test piece 6 is pressed, and the male test piece 6 is attached using a horizontal load measuring device (Aiko Engineering Co., Ltd .; Model-2152). The sample was pulled in the horizontal direction (sliding speed was 80 mm / min), and the maximum frictional force F (unit: N) up to a sliding distance of 5 mm was measured. The coefficient of friction was determined by the following formula (1). In addition, 10 is a load cell, the arrow is a sliding direction, and the sliding direction was a direction perpendicular to the rolling direction.
Friction coefficient = F / 3.0 (1)

表3に示すように、No.15〜21は、各被覆層の平均の厚さ、Cu−Sn合金被覆層のCu含有量、材料表面粗さ、Cu−Sn合金被覆層の材料表面露出面積率、材料表面に露出するCu−Sn合金被覆層の厚さ、Cu−Sn合金被覆層の平均の材料表面露出間隔について、本発明の規定を満たす。このうち、リフロー処理温度が低く、昇温速度が小さかったNo.22は、Cu−Sn合金被覆層表面の平均結晶粒径が2.7μmであり、本発明の規定を満たさない。これに対し、リフロー処理温度が高く、昇温速度が大きかったNo.15〜21は、Cu−Sn合金被覆層表面の平均結晶粒径が本発明の規定を満たす。No.15〜21はいずれも、微摺動摩耗量がNo.22より少ない。なお、No.22も、Cu−Sn合金被覆層の材料表面露出面積率がゼロ(Cu−Sn合金被覆層が最表面に露出していない)のNo.23〜25に比べると、微摺動後の摩耗量が少ない。
また、Sn被覆層の平均の厚さが0.2μm未満のNo.16,21は、摩擦係数が極めて低い。
As shown in Table 3, no. 15 to 21 are the average thickness of each coating layer, the Cu content of the Cu—Sn alloy coating layer, the material surface roughness, the material surface exposed area ratio of the Cu—Sn alloy coating layer, and the Cu— exposed on the material surface. The provisions of the present invention are satisfied with respect to the thickness of the Sn alloy coating layer and the average material surface exposure interval of the Cu—Sn alloy coating layer. Among these, the reflow treatment temperature was low and the heating rate was small. No. 22 has an average crystal grain size of 2.7 μm on the surface of the Cu—Sn alloy coating layer, and does not satisfy the definition of the present invention. On the other hand, the reflow treatment temperature was high and the heating rate was large. As for 15-21, the average crystal grain diameter of the surface of a Cu-Sn alloy coating layer satisfies the rule of the present invention. No. In all of Nos. 15 to 21, the amount of fine sliding wear was No. Less than 22. In addition, No. No. 22 is also the case where the material surface exposed area ratio of the Cu—Sn alloy coating layer is zero (Cu—Sn alloy coating layer is not exposed on the outermost surface). Compared with 23 to 25, the amount of wear after fine sliding is small.
Moreover, the average thickness of the Sn coating layer was less than 0.2 μm. 16 and 21 have a very low coefficient of friction.

実施例2で作製した発明例No.15に対し、リフロー処理後に種々の厚さで電気光沢Snめっきを施し、No.26〜29の試験材を得た。Snめっき層の平均の厚さは、下記要領で測定し、その結果を表4に示す。得られた試験材に対し、実施例2と同様の微摺動摩耗試験と摩擦係数の測定試験のほか、はんだ濡れ性の評価試験を行った。その結果を表4に示す。   Invention Example No. 2 produced in Example 2. 15 was subjected to electro-gloss Sn plating at various thicknesses after the reflow treatment. 26-29 test materials were obtained. The average thickness of the Sn plating layer was measured as follows, and the results are shown in Table 4. In addition to the fine sliding wear test and the friction coefficient measurement test similar to those in Example 2, the test material thus obtained was subjected to a solder wettability evaluation test. The results are shown in Table 4.

(Snめっき層の平均の厚さ測定方法)
No.26〜29の試験材について、実施例1に記載した測定方法で、Sn被覆層全体(電気光沢SnめっきによるSnめっき層を含む)の平均の厚さを求めた。Sn被覆層全体の平均の厚さから、No.15のSn被覆層(電気光沢SnめっきによるSnめっき層を含まない)の平均の厚さを差し引くことにより、Snめっき層の平均の厚さを算出した。
(Measuring method of average thickness of Sn plating layer)
No. For the test materials of 26 to 29, the average thickness of the entire Sn coating layer (including the Sn plating layer by electro-gloss Sn plating) was determined by the measurement method described in Example 1. From the average thickness of the entire Sn coating layer, no. The average thickness of the Sn plating layer was calculated by subtracting the average thickness of 15 Sn coating layers (not including the Sn plating layer by electro-gloss Sn plating).

(はんだ濡れ試験)
各々の試験材No.15,26〜29から切り出した試験片に対して、非活性フラックスを1秒間浸漬塗布した後、メニスコグラフ法にてゼロクロスタイムと最大濡れ応力を測定した。はんだ組成はSn−3.0Ag−0.5Cuとし、試験片を255℃のはんだに浸漬し、浸漬条件は、浸漬速度を25mm/sec、浸漬深さを12mm、浸漬時間を5.0secとした。はんだ濡れ性は、ゼロクロスタイム≦2.0sec、最大濡れ応力≧5mNを基準とし、いずれの基準も満たすものを○、いずれか一方のみ満たすものを△、いずれの基準も満たさないものを×と評価した。
(Solder wetting test)
Each test material No. After the inactive flux was dip-applied for 1 second to the test pieces cut out from 15, 26 to 29, the zero cross time and the maximum wetting stress were measured by the meniscograph method. The solder composition was Sn-3.0Ag-0.5Cu, the test piece was immersed in a solder at 255 ° C., and the immersion conditions were an immersion speed of 25 mm / sec, an immersion depth of 12 mm, and an immersion time of 5.0 sec. . For solder wettability, zero cross time ≤ 2.0 sec, maximum wetting stress ≥ 5 mN as standards, ○ satisfying all the standards, △ satisfying only one of them, △, evaluating not satisfying any of the standards as × did.

表4に示すように、No.26〜29は、最表面にSnめっき層を有しているため、No.15に比べてはんだ濡れ性が良好である。中でも、No.26〜28は最表面のSnめっき層の平均の厚さが本発明の規定を満たしており、低摩擦係数とはんだ濡れ性を兼備し、微摺動摩耗量が少ない。なお、No.29ははんだ濡れ性は良好であるが、摩擦係数が大きくなった。   As shown in Table 4, no. Nos. 26 to 29 have an Sn plating layer on the outermost surface. Compared to 15, the solder wettability is good. Among these, No. In Nos. 26 to 28, the average thickness of the Sn plating layer on the outermost surface satisfies the provisions of the present invention, has both a low friction coefficient and solder wettability, and has a small amount of fine sliding wear. In addition, No. No. 29 has good solder wettability, but the coefficient of friction increased.

1,6 オス試験片
2,7 台
3,8 メス試験片
4,9 錘
5 ステッピングモータ
10 ロードセル
1,6 Male test piece 2,7 units 3,8 Female test piece 4,9 Weight 5 Stepping motor 10 Load cell

Claims (12)

Fe:0.01〜2.6質量%、P:0.01〜0.3質量%を含有し、残部Cu及び不可避的不純物からなる銅合金板条を母材とし、前記母材の表面に、Cu含有量が20〜70at%のCu−Sn合金被覆層と、Sn被覆層がこの順に形成され、前記Sn被覆層はリフローSnめっきであり、その材料表面は少なくとも一方向における算術平均粗さRaが0.15μm以上で、全ての方向における算術平均粗さRaが3.0μm以下であり、前記Sn被覆層の表面に前記Cu−Sn合金被覆層の一部が露出して形成され、前記Cu−Sn合金被覆層の材料表面露出面積率が3〜75%である接続部品用導電材料において、前記Cu−Sn合金被覆層の平均の厚さが0.2〜3.0μmで同被覆層の表面の平均結晶粒径が2μm未満であり、前記Sn被覆層の平均の厚さが0.05〜5.0μmであることを特徴とする耐微摺動摩耗性に優れる接続部品用導電材料。 Fe: 0.01-2.6% by mass, P: 0.01-0.3% by mass, and the copper alloy strip comprising the remainder Cu and inevitable impurities as a base material, on the surface of the base material A Cu-Sn alloy coating layer having a Cu content of 20 to 70 at% and a Sn coating layer are formed in this order, the Sn coating layer is reflow Sn plating, and the material surface has an arithmetic average roughness in at least one direction. Ra is 0.15 μm or more, the arithmetic average roughness Ra in all directions is 3.0 μm or less, a part of the Cu—Sn alloy coating layer is exposed on the surface of the Sn coating layer, In the conductive material for connecting parts in which the material surface exposed area ratio of the Cu—Sn alloy coating layer is 3 to 75%, the average thickness of the Cu—Sn alloy coating layer is 0.2 to 3.0 μm. The average crystal grain size of the surface of is less than 2 μm, Connecting parts for the conductive material excellent in 耐微 sliding wear, wherein the average thickness of the serial Sn coating layer is 0.05~5.0Myuemu. 前記銅合金板条が、さらに、Sn:0.001〜0.5%、Zn:0.005〜3.0%の1種又は2種を含有することを特徴とする請求項1に記載された耐微摺動摩耗性に優れる接続部品用導電材料。 2. The copper alloy sheet strip according to claim 1, further comprising one or two of Sn: 0.001 to 0.5% and Zn: 0.005 to 3.0%. Conductive material for connecting parts with excellent resistance to fine sliding wear. Mn、Mg、CaをA群元素としたとき、前記銅合金板条が、さらに、前記A群元素の1種又は2種以上を合計で0.0001〜0.5質量%含有することを特徴とする請求項1又は2に記載された耐微摺動摩耗性に優れる接続部品用導電材料。 When Mn, Mg, and Ca are group A elements, the copper alloy strip further contains 0.0001 to 0.5 mass% in total of one or more of the group A elements. The conductive material for connecting parts according to claim 1 or 2, which is excellent in fine sliding wear resistance. Zr、Ag、Cr、Cd、Be、Ti、Si、Co、Ni、Al、Au、PtをB群元素としたとき、前記銅合金板条が、さらに、前記B群元素の1種又は2種以上を合計で0.001〜0.5質量%含有することを特徴とする請求項1又は2に記載された耐微摺動摩耗性に優れる接続部品用導電材料。 When Zr, Ag, Cr, Cd, Be, Ti, Si, Co, Ni, Al, Au, and Pt are group B elements, the copper alloy strip is further one or two of the group B elements. The conductive material for connecting parts having excellent resistance to micro-sliding wear according to claim 1 or 2, wherein the total content is 0.001 to 0.5% by mass. Zr、Ag、Cr、Cd、Be、Ti、Si、Co、Ni、Al、Au、PtをB群元素としたとき、前記銅合金板条が、さらに、前記B群元素の1種又は2種以上を合計で0.001〜0.5質量%含有し、かつ前記A群元素とB群元素の合計が0.5質量%以下であることを特徴とする請求項3に記載された耐微摺動摩耗性に優れる接続部品用導電材料。 When Zr, Ag, Cr, Cd, Be, Ti, Si, Co, Ni, Al, Au, and Pt are group B elements, the copper alloy strip is further one or two of the group B elements. 4 to 0.5% by mass in total, and the total of the group A elements and group B elements is 0.5% by mass or less. Conductive material for connecting parts with excellent sliding wear. 前記材料表面は、少なくとも一方向における前記Cu−Sn合金被覆層の平均の材料表面露出間隔が0.01〜0.5mmであることを特徴とする請求項1〜5のいずれかに記載された耐微摺動摩耗性に優れる接続部品用導電材料。 6. The material surface according to claim 1, wherein an average material surface exposure interval of the Cu—Sn alloy coating layer in at least one direction is 0.01 to 0.5 mm. Conductive material for connecting parts with excellent resistance to fine sliding wear. 前記Sn被覆層表面に露出する前記Cu−Sn合金被覆層の厚さが0.2μm以上であることを特徴とする請求項1〜6のいずれかに記載された耐微摺動摩耗性に優れる接続部品用導電材料。 The thickness of the Cu-Sn alloy coating layer exposed on the surface of the Sn coating layer is 0.2 µm or more, and is excellent in micro-sliding wear resistance according to any one of claims 1 to 6. Conductive material for connecting parts. 前記母材の表面と前記Cu−Sn合金被覆層の間にさらにCu被覆層を有することを特徴とする請求項1〜7のいずれかに記載された接続部品用導電材料。 The conductive material for connecting parts according to any one of claims 1 to 7, further comprising a Cu coating layer between a surface of the base material and the Cu-Sn alloy coating layer. 前記母材の表面と前記Cu−Sn合金被覆層の間にさらにNi被覆層、Co被覆層、Fe被覆層のうちいずれか1つからなる下地層が形成され、前記下地層の平均の厚さが0.1〜3.0μmであることを特徴とする請求項1〜7のいずれかに記載された接続部品用導電材料。 A base layer made of any one of a Ni coating layer, a Co coating layer, and an Fe coating layer is further formed between the surface of the base material and the Cu-Sn alloy coating layer, and the average thickness of the base layer The conductive material for connecting parts according to any one of claims 1 to 7, wherein the conductive material is 0.1 to 3.0 µm. 前記母材の表面と前記Cu−Sn合金被覆層の間にさらにNi被覆層、Co被覆層、Fe被覆層のうちいずれか2つからなる下地層が形成され、前記下地層の合計の平均の厚さが0.1〜3.0μmであることを特徴とする請求項1〜7のいずれかに記載された耐微摺動摩耗性に優れる接続部品用導電材料。 Between the surface of the base material and the Cu-Sn alloy coating layer, a base layer made of any two of Ni coating layer, Co coating layer, and Fe coating layer is formed, and the average of the total of the base layer The conductive material for connecting parts having excellent resistance to fine sliding wear according to any one of claims 1 to 7, wherein the thickness is 0.1 to 3.0 µm. 前記下地層とCu−Sn合金被覆層の間にさらにCu被覆層を有することを特徴とする請求項9又は10に記載された接続部品用導電材料。 The conductive material for connecting parts according to claim 9 or 10, further comprising a Cu coating layer between the underlayer and the Cu-Sn alloy coating layer. 前記材料表面にさらに平均厚さ0.02〜0.2μmのSnめっき層が形成されていることを特徴とする請求項1〜11のいずれかに記載された耐微摺動摩耗性に優れる接続部品用導電材料。 The Sn-plated layer having an average thickness of 0.02 to 0.2 μm is further formed on the surface of the material, and the connection having excellent micro-sliding wear resistance according to any one of claims 1 to 11 Conductive material for parts.
JP2014170956A 2014-08-25 2014-08-25 Conductive material for connecting parts with excellent resistance to fine sliding wear Expired - Fee Related JP5897083B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2014170956A JP5897083B1 (en) 2014-08-25 2014-08-25 Conductive material for connecting parts with excellent resistance to fine sliding wear
KR1020177004996A KR102052879B1 (en) 2014-08-25 2015-08-20 Conductive material for connection parts which has excellent minute slide wear resistance
CN201580045653.4A CN106795643B (en) 2014-08-25 2015-08-20 The excellent connecting component conductive material of resistance to micro- skimming wear
PCT/JP2015/073294 WO2016031654A1 (en) 2014-08-25 2015-08-20 Conductive material for connection parts which has excellent minute slide wear resistance
KR1020197011834A KR102113988B1 (en) 2014-08-25 2015-08-20 Conductive material for connection parts which has excellent minute slide wear resistance
US15/506,149 US20170283910A1 (en) 2014-08-25 2015-08-20 Conductive material for connection parts which has excellent minute slide wear resistance
EP15836786.2A EP3187627B1 (en) 2014-08-25 2015-08-20 Conductive material for connection parts which has excellent fretting wear resistance
KR1020197011826A KR102113989B1 (en) 2014-08-25 2015-08-20 Conductive material for connection parts which has excellent minute slide wear resistance
US16/393,233 US20190249274A1 (en) 2014-08-25 2019-04-24 Conductive material for connection parts which has excellent minute slide wear resistance
US16/397,472 US20190249275A1 (en) 2014-08-25 2019-04-29 Conductive material for connection parts which has excellent minute slide wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014170956A JP5897083B1 (en) 2014-08-25 2014-08-25 Conductive material for connecting parts with excellent resistance to fine sliding wear

Publications (2)

Publication Number Publication Date
JP5897083B1 true JP5897083B1 (en) 2016-03-30
JP2016044346A JP2016044346A (en) 2016-04-04

Family

ID=55628629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014170956A Expired - Fee Related JP5897083B1 (en) 2014-08-25 2014-08-25 Conductive material for connecting parts with excellent resistance to fine sliding wear

Country Status (1)

Country Link
JP (1) JP5897083B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083887A1 (en) * 2016-11-07 2018-05-11 住友電気工業株式会社 Connector terminal wire
US10985485B2 (en) 2016-12-06 2021-04-20 Dowa Metaltech Co., Ltd. Tin-plated product and method for producing same
KR102385215B1 (en) * 2016-12-06 2022-04-08 도와 메탈테크 가부시키가이샤 Sn plating material and manufacturing method thereof
JP6734185B2 (en) * 2016-12-06 2020-08-05 Dowaメタルテック株式会社 Sn plated material and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2975246B2 (en) * 1993-12-08 1999-11-10 古河電気工業株式会社 Sn-plated wire for electrical contact and method of manufacturing the same
JP4024244B2 (en) * 2004-12-27 2007-12-19 株式会社神戸製鋼所 Conductive material for connecting parts and method for manufacturing the same
JP5498710B2 (en) * 2009-02-23 2014-05-21 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP4372835B1 (en) * 2009-04-14 2009-11-25 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP5950499B2 (en) * 2011-02-11 2016-07-13 株式会社神戸製鋼所 Copper alloy for electrical and electronic parts and copper alloy material with Sn plating
JP5818724B2 (en) * 2011-03-29 2015-11-18 株式会社神戸製鋼所 Copper alloy material for electric and electronic parts, copper alloy material for plated electric and electronic parts
JP6103811B2 (en) * 2012-03-30 2017-03-29 株式会社神戸製鋼所 Conductive material for connecting parts
JP5956240B2 (en) * 2012-05-01 2016-07-27 Dowaメタルテック株式会社 Plating material and method for producing the same

Also Published As

Publication number Publication date
JP2016044346A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
WO2016031654A1 (en) Conductive material for connection parts which has excellent minute slide wear resistance
JP6173943B2 (en) Copper alloy strip with surface coating layer with excellent heat resistance
JP6113605B2 (en) Copper alloy strip with surface coating layer with excellent heat resistance
EP2644750B1 (en) Electroconductive material for connection component
JP5789207B2 (en) Copper alloy plate with Sn coating layer for fitting type connection terminal and fitting type connection terminal
JP2014208904A (en) Electroconductive material superior in resistance to fretting corrosion for connection component
JP6113674B2 (en) Copper alloy strip with surface coating layer with excellent heat resistance
JP2009052076A (en) Conductive material for connecting component, and method for manufacturing the same
JP5690170B2 (en) Copper alloy
JP5144814B2 (en) Copper alloy material for electrical and electronic parts
JP5897083B1 (en) Conductive material for connecting parts with excellent resistance to fine sliding wear
JP5897084B1 (en) Conductive material for connecting parts with excellent resistance to fine sliding wear
JP2007092173A (en) Cu-Ni-Si-Zn BASED ALLOY TINNED STRIP
JP4247256B2 (en) Cu-Zn-Sn alloy tin-plated strip
JP5897082B1 (en) Conductive material for connecting parts with excellent resistance to fine sliding wear
JP4570948B2 (en) Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same
EP3276048A1 (en) Electrically conductive material for connection component

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160301

R150 Certificate of patent or registration of utility model

Ref document number: 5897083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees