JP5498710B2 - Conductive member and manufacturing method thereof - Google Patents

Conductive member and manufacturing method thereof Download PDF

Info

Publication number
JP5498710B2
JP5498710B2 JP2009039303A JP2009039303A JP5498710B2 JP 5498710 B2 JP5498710 B2 JP 5498710B2 JP 2009039303 A JP2009039303 A JP 2009039303A JP 2009039303 A JP2009039303 A JP 2009039303A JP 5498710 B2 JP5498710 B2 JP 5498710B2
Authority
JP
Japan
Prior art keywords
layer
plating
intermetallic compound
alloy
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009039303A
Other languages
Japanese (ja)
Other versions
JP2010196084A (en
Inventor
健 櫻井
誠一 石川
賢治 久保田
隆史 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009039303A priority Critical patent/JP5498710B2/en
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to US12/998,700 priority patent/US8698002B2/en
Priority to PCT/JP2009/003219 priority patent/WO2010084532A1/en
Priority to KR1020117011662A priority patent/KR101596342B1/en
Priority to EP09838726.9A priority patent/EP2351875B1/en
Priority to CN200980148719.7A priority patent/CN102239280B/en
Priority to TW098124085A priority patent/TWI438783B/en
Publication of JP2010196084A publication Critical patent/JP2010196084A/en
Priority to US14/162,008 priority patent/US8981233B2/en
Application granted granted Critical
Publication of JP5498710B2 publication Critical patent/JP5498710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気接続用コネクタ等に用いられ、Cu又はCu合金からなる基材の表面に複数のめっき層を形成した導電部材及びその製造方法に関する。   The present invention relates to a conductive member used for an electrical connection connector or the like, in which a plurality of plating layers are formed on the surface of a base material made of Cu or Cu alloy, and a method for manufacturing the same.

自動車の電気接続用コネクタやプリント基板の接続端子等に用いられる導電部材として、電気接続特性の向上等のために、Cu又はCu合金からなるCu系基材の表面にSn系金属のめっきを施したものが多く使用されている。
そのような導電部材として、例えば特許文献1から特許文献4記載のものがある。特許文献1から特許文献3記載の導電部材は、Cu又はCu合金からなる基材の表面にNi、Cu、Snを順にめっきして3層のめっき層を形成した後に、加熱してリフロー処理することにより、最表面層にSn層が形成され、Ni層とSn層との間にCu−Sn金属間化合物層(例えばCuSn)が形成された構成とされている。また、特許文献4記載のものは、下地めっき層を例えばNi−FeやFe等から構成し、その上にCu、Snを順にめっきして、リフロー処理する技術とされている。
As a conductive member used for automobile electrical connectors and printed circuit board connection terminals, Sn-based metal plating is applied to the surface of a Cu-based substrate made of Cu or a Cu alloy for the purpose of improving electrical connection characteristics. Many of them have been used.
Examples of such conductive members include those described in Patent Document 1 to Patent Document 4. The conductive members described in Patent Document 1 to Patent Document 3 are subjected to a reflow treatment by heating after forming Ni, Cu, Sn on the surface of a substrate made of Cu or Cu alloy in order to form a three-layered plating layer. Thus, an Sn layer is formed on the outermost surface layer, and a Cu—Sn intermetallic compound layer (for example, Cu 6 Sn 5 ) is formed between the Ni layer and the Sn layer. Further, the one described in Patent Document 4 is a technique in which a base plating layer is made of, for example, Ni—Fe, Fe, or the like, and Cu and Sn are sequentially plated thereon to perform a reflow process.

特許第3880877号公報Japanese Patent No. 3880877 特許第4090488号公報Japanese Patent No. 4090488 特開2004−68026号公報JP 2004-68026 A 特開2003−171790号公報JP 2003-171790 A

ところで、このようなコネクタや端子が自動車のエンジン廻りのような高温環境下で使用される場合、特許文献1から特許文献3記載の導電部材では、その高温に長時間さらされることにより、SnとCuとが互いに熱拡散して表面状態が経時変化し易く、接触抵抗が上昇する傾向がある。また、例えば170℃以上の高温になると、Ni原子の拡散速度が増大して、NiがCuSn中に拡散し、その結果Ni層に欠損が生じてCuの拡散をバリアできずに、接触抵抗が悪化してしまう問題がある。また、Cu系基材の表面にCuの拡散によってカーケンダルボイドが発生して、剥離が生じるおそれもあり、これらの解決が望まれている。
一方、特許文献4記載のものは、Fe−NiやFeの下地めっき層とCuとの密着性が悪く、剥離し易いという問題がある。
また、コネクタに用いる場合には、回路の高密度化に伴いコネクタも多極化し、自動車配線の組み立て時の挿入力が大きくなってきているため、挿抜力を小さくすることができる導電部材が求められている。
By the way, when such a connector or terminal is used in a high temperature environment such as around an automobile engine, the conductive members described in Patent Document 1 to Patent Document 3 are exposed to the high temperature for a long time. Cu and each other are thermally diffused and the surface state tends to change with time, and the contact resistance tends to increase. Further, for example, when the temperature is higher than 170 ° C., the diffusion rate of Ni atoms increases, Ni diffuses into Cu 6 Sn 5 , and as a result, defects occur in the Ni layer and Cu diffusion cannot be blocked. There is a problem that contact resistance deteriorates. Further, Kirkendall voids are generated on the surface of the Cu-based substrate due to the diffusion of Cu, and peeling may occur. These solutions are desired.
On the other hand, the thing of patent document 4 has the problem that the adhesiveness of the base plating layer of Fe-Ni or Fe, and Cu is bad, and it peels easily.
In addition, when used for connectors, as the circuit density increases, the connectors also become multipolar, and the insertion force at the time of assembling the automobile wiring is increasing. Therefore, a conductive member that can reduce the insertion / extraction force is required. ing.

本発明はこのような事情に鑑みてなされたもので、安定した接触抵抗を有するとともに、剥離し難く、また、コネクタとして用いる場合に挿抜力を小さくかつ安定させることができる導電部材及びその製造方法を提供する   The present invention has been made in view of such circumstances, and has a stable contact resistance, is difficult to peel off, and has a small and stable insertion / extraction force when used as a connector, and a manufacturing method thereof I will provide a

本発明の導電部材は、Cu系基材の表面に、Fe系下地層を介して、Ni系薄膜層、Cu−Sn金属間化合物層、Sn系表面層がこの順に形成されるとともに、前記Fe系下地層は、0.1〜1.0μmの厚さであり、Cu−Sn金属間化合物層は、さらに、前記Ni系薄膜層の上に配置されるCuSn層と、該CuSn層の上に配置されるCuSn層とからなり、これらCuSn層及びCuSn層を合わせた前記Cu−Sn金属間化合物層の凹部の厚さが0.05〜1.5μmとされ、前記Cu−Sn金属間化合物層の前記凹部に対する凸部の厚さの比率が1.2〜5であり、前記Cu Sn層の平均厚さは0.01〜0.5μmであり、かつ、前記Ni系薄膜層に対する前記Cu Sn層の面積被覆率が60〜100%であることを特徴とする。
Conductive member of the present invention, the surface of the Cu-based substrate, through a Fe-based base layer, Ni-based thin film layer, Cu-Sn intermetallic compound layer, with Sn-based surface layer are formed in this order, the Fe The system base layer has a thickness of 0.1 to 1.0 μm, and the Cu—Sn intermetallic compound layer further includes a Cu 3 Sn layer disposed on the Ni-based thin film layer, and the Cu 3 Sn. consists of a Cu 6 Sn 5 layer disposed on the layer, the thickness of the recess of the Cu-Sn intermetallic compound layer together, Cu 3 Sn layer and Cu 6 Sn 5 layer is 0.05. 5 μm, the ratio of the thickness of the convex portion to the concave portion of the Cu—Sn intermetallic compound layer is 1.2 to 5, and the average thickness of the Cu 3 Sn layer is 0.01 to 0.5 μm. There, and area coverage of the Cu 3 Sn layer with respect to the Ni-based thin film layer 60 It characterized in that it is 00%.

この導電部材において、FeはNiよりもCuSnへの拡散速度が遅いため、高温時にFe系下地層が耐熱性の高いバリア層として有効に機能し、表面の接触抵抗を安定して低く維持することができる。また、Feは硬いので、コネクタ端子等の使用において高い耐摩耗性を発揮する。そして、このFe系下地層とCu−Sn金属間化合物層との間にNi系薄膜層が介在していることにより、Fe系下地層とCu−Sn金属間化合物層との密着を良好に維持できる。つまり、FeとCuとは固溶せず金属間化合物も形成しないため、層の界面に原子の相互拡散が起きず、これらの密着性を得ることはできないが、両者の間にバインダーとしてFeとCuとの双方と固溶可能なNi元素を介在させることにより、これらの密着性を向上させることができる。
また、外部環境により腐食して酸化物を形成し易いFeの上にNi薄膜層を被覆することにより、Snめっき欠陥部からFeが表面に移動してFe酸化物が形成されることを防ぐ効果がある。Ni薄膜層としては、0.05〜0.3μmの厚さが好ましい。
In this conductive member, Fe has a slower diffusion rate into Cu 6 Sn 5 than Ni. Therefore, the Fe-based underlayer functions effectively as a highly heat-resistant barrier layer at high temperatures, and the surface contact resistance is stably reduced. Can be maintained. In addition, since Fe is hard, high wear resistance is exhibited in the use of connector terminals and the like. Further, the Ni-based thin film layer is interposed between the Fe-based underlayer and the Cu-Sn intermetallic compound layer, thereby maintaining good adhesion between the Fe-based underlayer and the Cu-Sn intermetallic compound layer. it can. That is, since Fe and Cu do not form a solid solution and do not form an intermetallic compound, mutual interdiffusion of atoms does not occur at the interface of the layers, and it is not possible to obtain adhesion between them. By interposing an Ni element that can be dissolved in both Cu and these, the adhesion can be improved.
Moreover, the effect of preventing Fe from moving from the Sn plating defect portion to the surface and forming Fe oxide by coating the Ni thin film layer on Fe that is easily corroded by the external environment to form oxide. There is. The thickness of the Ni thin film layer is preferably 0.05 to 0.3 μm.

また、この導電部材は、Ni系薄膜層とSn系表面層との間のCu−Sn金属間化合物層が、CuSn層とCuSn層との二層構造とされている。このCuSn合金層とCuSn層とを合わせたCu−Sn金属間化合物層は、その膜厚が必ずしも一様ではなく、凹凸を有しているが、その凹部の厚さが0.05〜1.5μmであることが重要である。0.05μm未満では、高温時に凹部からSnがNi系薄膜層へと拡散し、Ni系薄膜層に欠損が発生するおそれがあり、その欠損により、Fe系下地層とCu−Sn金属間化合物層との間の剥離が生じ易くなる。したがって、Cu−Sn金属間化合物層の凹部の厚さは、0.05〜1.5μmが望ましい。
そして、このように所定の厚さのCu−Sn金属間化合物層がSn系表面層の下層に配置されることにより、柔軟なSnの下地を硬くして、多極コネクタなどで使用したときの挿抜力の低減及びそのバラツキの抑制を図ることができる。
In this conductive member, the Cu—Sn intermetallic compound layer between the Ni-based thin film layer and the Sn-based surface layer has a two-layer structure of a Cu 3 Sn layer and a Cu 6 Sn 5 layer. The Cu—Sn intermetallic compound layer formed by combining the Cu 3 Sn alloy layer and the Cu 6 Sn 5 layer is not necessarily uniform in film thickness and has irregularities, but the thickness of the recesses is 0. It is important that the thickness is 0.05 to 1.5 μm. If the thickness is less than 0.05 μm, Sn may diffuse from the concave portion to the Ni-based thin film layer at a high temperature, and the Ni-based thin film layer may be damaged. Is easily peeled off. Therefore, the thickness of the concave portion of the Cu—Sn intermetallic compound layer is desirably 0.05 to 1.5 μm.
And when the Cu—Sn intermetallic compound layer having a predetermined thickness is arranged in the lower layer of the Sn-based surface layer in this way, the flexible Sn base is hardened and used in a multipolar connector or the like. Reduction of insertion / extraction force and suppression of variation thereof can be achieved.

本発明の導電部材において、前記Fe系下地層は、01〜1.0μmの厚さであることとしたのは、Fe系下地層が0.1μm未満と少ないと、Cu系基材1におけるCuの拡散防止機能が十分でなく、また、1.0μmを超えると、曲げ加工時にFe系下地層にクラックが生じ易くなって、好ましくないからである。
In the conductive member of the present invention, the Fe-based underlayer has a thickness of 0 . The reason why the thickness is 1 to 1.0 μm is that when the Fe base layer is less than 0.1 μm, the Cu diffusion preventing function in the Cu base 1 is not sufficient, and 1.0 μm This is because it is not preferable because cracks are likely to occur in the Fe-based underlayer during bending.

また、Cu−Sn金属間化合物層の凹部に対する凸部の厚さの比率が小さくなってCu−Sn金属間化合物層の凹凸が少なくなると、コネクタ使用時の挿抜力が低減して好ましいが、これが1.2未満であると、Cu−Sn金属間化合物層の凹凸がほとんどなくなってCu−Sn金属間化合物層が著しく脆くなり、曲げ加工時に皮膜の剥離が発生し易くなるため好ましくない。また、5を超え、Cu−Sn金属間化合物層の凹凸が大きくなると、コネクタとして用いたときの挿抜時にCu−Sn金属間化合物層の凹凸が抵抗となるため、挿抜力を低減する効果が乏しい。
Moreover, when the ratio of the thickness of the convex portion to the concave portion of the Cu—Sn intermetallic compound layer is reduced and the unevenness of the Cu—Sn intermetallic compound layer is reduced, the insertion / extraction force during use of the connector is reduced, which is preferable. When the ratio is less than 1.2, the unevenness of the Cu—Sn intermetallic compound layer is almost eliminated, the Cu—Sn intermetallic compound layer becomes extremely brittle, and peeling of the film easily occurs during bending, which is not preferable. Moreover, when the unevenness of the Cu—Sn intermetallic compound layer exceeds 5, and the unevenness of the Cu—Sn intermetallic compound layer becomes resistance during insertion / extraction when used as a connector, the effect of reducing the insertion / extraction force is poor. .

また、Ni系薄膜層を被覆しているCuSn層の平均厚みが0.01μm未満であると、Ni系薄膜層の拡散を抑える効果が乏しい。また、CuSn層の厚みが0.5μmを超えると、高温時にCuSn層がCuSn層に変化し、Sn系表面層を減少させ、接触抵抗が高くなるため好ましくない。
この平均厚さは、CuSn層の部分で、その厚さを複数個所測定したときの平均値である。
Further, if the average thickness of the Cu 3 Sn layer covering the Ni-based thin film layer is less than 0.01 μm, the effect of suppressing the diffusion of the Ni-based thin film layer is poor. On the other hand, if the thickness of the Cu 3 Sn layer exceeds 0.5 μm, the Cu 3 Sn layer changes to a Cu 6 Sn 5 layer at a high temperature, which decreases the Sn-based surface layer and increases the contact resistance.
This average thickness is an average value when the thickness of the Cu 3 Sn layer portion is measured at a plurality of locations.

そして、本発明の導電部材の製造方法は、Cu系基材の表面に、Fe又はFe合金、Ni又はNi合金、Cu又はCu合金、Sn又はSn合金をこの順にめっきしてそれぞれのめっき層を形成した後、加熱してリフロー処理することにより、前記Cu系基材の上に、Fe系下地層、Ni系薄膜層、Cu−Sn金属間化合物層、Sn系表面層を順に形成した導電部材を製造する方法であって、前記Fe又はFe合金によるめっき層は電流密度が5〜25A/dm の電解めっきにより形成し、前記Ni又はNi合金によるめっき層を電流密度が20〜50A/dm の電解めっきにより形成し、前記Cu又はCu合金によるめっき層を電流密度が20〜60A/dmの電解めっきにより形成し、前記Sn又はSn合金によるめっき層を電流密度が10〜30A/dmの電解めっきにより形成し、前記リフロー処理は、前記めっき層を形成してから1〜15分経過した後に行い、めっき層を20〜75℃/秒の昇温速度で240〜300℃のピーク温度まで加熱する加熱工程と、前記ピーク温度に達した後、30℃/秒以下の冷却速度で2〜10秒間冷却する一次冷却工程と、一次冷却後に100〜250℃/秒の冷却速度で冷却する二次冷却工程とを有することを特徴とする。
And the manufacturing method of the electrically-conductive member of this invention has plated each plating layer by plating Fe or Fe alloy, Ni or Ni alloy, Cu or Cu alloy, Sn or Sn alloy in this order on the surface of Cu-type base material. After forming, a conductive member in which an Fe-based underlayer, a Ni-based thin film layer, a Cu-Sn intermetallic compound layer, and a Sn-based surface layer are sequentially formed on the Cu-based substrate by heating and reflow treatment. The plating layer made of Fe or Fe alloy is formed by electrolytic plating with a current density of 5 to 25 A / dm 2 , and the plating layer made of Ni or Ni alloy has a current density of 20 to 50 A / dm 2. formed by two of the electrolytic plating, the Cu or current density plating layer of Cu alloy is formed by electroplating of 20~60A / dm 2, current plating layer by the Sn or Sn alloy Degrees is formed by electrolytic plating 10~30A / dm 2, the reflow treatment is carried out after a lapse of 15 minutes after forming the plating layer, heating rate of the plated layer 20 to 75 ° C. / sec A heating step of heating to a peak temperature of 240 to 300 ° C., a primary cooling step of cooling for 2 to 10 seconds at a cooling rate of 30 ° C./second or less after reaching the peak temperature, and a temperature of 100 to 250 ° C. after the primary cooling. And a secondary cooling step of cooling at a cooling rate of / sec .

高電流密度でのCuめっきは粒界密度を増加させ、均一な合金層形成を助ける。Cuめっきの電流密度を20〜60A/dmとしたのは、電流密度が20A/dm未満ではCuめっき結晶の反応活性が乏しいため、合金化する際に平滑な金属間化合物を形成する効果が乏しく、一方、電流密度が60A/dmを超えると、Cuめっき層の平滑性が低くなるため、平滑なCu−Sn金属間化合物層を形成することができないからである。
また、Snめっきの電流密度を10〜30A/dmとしたのは、電流密度が10A/dm未満ではSnの粒界密度が低くなって、合金化する際に平滑なCu−Sn金属間化合物層を形成する効果が乏しく、一方、電流密度が30A/dmを超えると、電流効率が著しく低下するため望ましくないからである。
Cu plating at a high current density increases the grain boundary density and helps to form a uniform alloy layer. The reason why the current density of Cu plating is set to 20 to 60 A / dm 2 is that when the current density is less than 20 A / dm 2 , the reaction activity of the Cu plating crystal is poor, and thus the effect of forming a smooth intermetallic compound when alloying is performed. On the other hand, when the current density exceeds 60 A / dm 2 , the smoothness of the Cu plating layer is lowered, and therefore, a smooth Cu—Sn intermetallic compound layer cannot be formed.
Also, to that the current density of the Sn-plated with 10~30A / dm 2, taken low grain boundary density of Sn is the current density is less than 10A / dm 2, between smooth Cu-Sn metal when alloyed This is because the effect of forming the compound layer is poor, and on the other hand, if the current density exceeds 30 A / dm 2 , the current efficiency is remarkably lowered, which is undesirable.

また、Feめっきの電流密度が5A/dm未満では、Feめっき粒子が肥大化し、Snの拡散を抑える効果が乏しく、一方、電流密度が25A/dmを超えると、水素発生によるピンホールが生じ易くなって、好ましくない。
Further, when the current density of Fe plating is less than 5 A / dm 2 , Fe plating particles are enlarged and the effect of suppressing the diffusion of Sn is poor. On the other hand, when the current density exceeds 25 A / dm 2 , pinholes due to hydrogen generation occur. It tends to occur and is not preferable.

また、Niめっきの電流密度を20A/dm以上とすることにより、結晶粒が微細化しリフローや製品化された後の加熱時にNi原子がSnや金属間化合物に拡散し難くなり、一方、電流密度が50A/dmを超えると、電解時のめっき表面での水素発生が激しくなり、気泡付着により皮膜にピンホールが発生し、これを起点として剥離し易くなる。このため、Niめっきの電流密度を20〜50A/dmとするのが望ましい。
In addition, by setting the current density of Ni plating to 20 A / dm 2 or more, Ni atoms are difficult to diffuse into Sn and intermetallic compounds during heating after the crystal grains are refined and reflowed or commercialized. When the density exceeds 50 A / dm 2 , hydrogen generation on the plating surface during electrolysis becomes intense, and pinholes are generated in the film due to adhesion of bubbles, which makes it easy to peel off from this. For this reason, it is desirable that the current density of Ni plating be 20 to 50 A / dm 2 .

また、高電流密度で電析したCuとSnは安定性が低く、室温においても合金化や結晶粒肥大化が発生し、リフロー処理で所望の金属間化合物構造をつくることが困難になる。このため、めっき処理後、速やかにリフロー処理を行うことが望ましい。具体的には15分以内、望ましくは5分以内にリフロー処理を行うと良い。
従来技術よりも高電流密度でFe又はFe合金、Ni又はNi合金、Cu又はCu合金、Sn又はSn合金のめっき処理を行い、なおかつ、めっき後、速やかにリフロー処理を行うことにより、リフロー時にCuとSnが活発に反応し、CuSn層によりNi系薄膜層を多く被覆し、均一なCuSn層が生成される。
Further, Cu and Sn electrodeposited at a high current density are low in stability, and alloying and grain enlargement occur even at room temperature, making it difficult to form a desired intermetallic compound structure by reflow treatment. For this reason, it is desirable to perform the reflow process immediately after the plating process. Specifically, the reflow process may be performed within 15 minutes, preferably within 5 minutes.
Cu or Fe alloy, Ni or Ni alloy, Cu or Cu alloy, Sn or Sn alloy is plated at a higher current density than the prior art, and the reflow treatment is performed immediately after plating, so that Cu can be used during reflow. Sn reacts actively, and a large amount of Ni-based thin film layer is covered with the Cu 3 Sn layer, and a uniform Cu 6 Sn 5 layer is generated.

加熱工程における昇温速度が20℃/秒未満であると、Snめっきが溶融するまでの間にCu原子がSnの粒界中を優先的に拡散し粒界近傍で金属間化合物が異常成長するため、被覆率の高いCuSn層が形成され難い。一方、昇温速度が75℃/秒を超えると、金属間化合物の成長が不十分かつCuめっきが過剰に残存し、その後の冷却において所望の金属間化合物層を得ることができない。
また、加熱工程でのピーク温度が240℃未満であると、Snが均一に溶融せず、ピーク温度が300℃を超えると、金属間化合物が急激に成長しCu−Sn金属間化合物層の凹凸が大きくなるので好ましくない。
さらに、冷却工程においては、冷却速度の小さい一次冷却工程を設けることにより、Cu原子がSn粒内に穏やかに拡散し、所望の金属間化合物構造で成長する。この一次冷却工程の冷却速度が30℃/秒を超えると、急激に冷却される影響で金属間化合物は滑らかな形状に成長することができず、凹凸が大きくなる。冷却時間が2秒未満であっても同様に金属間化合物は滑らかな形状に成長することができない。冷却時間が10秒を超えると、CuSn層の成長が過度に進み、CuSn層の被覆率が低下する。この一次冷却工程は空冷が適切である。
そして、この一次冷却工程の後、二次冷却工程によって急冷して金属間化合物層の成長を所望の構造で完了させる。この二次冷却工程の冷却速度が100℃/秒未満であると、金属間化合物がより進行し、所望の金属間化合物形状を得ることができない。
このようにめっきの電析条件とリフロー条件を緻密に制御することによって、二層構造で凹凸が少なく安定したCu−Sn金属間化合物層を得ることができる。
When the heating rate in the heating process is less than 20 ° C./second, Cu atoms preferentially diffuse in the Sn grain boundary until Sn plating melts, and the intermetallic compound grows abnormally in the vicinity of the grain boundary. Therefore, it is difficult to form a Cu 3 Sn layer having a high coverage. On the other hand, if the rate of temperature rise exceeds 75 ° C./second, the growth of the intermetallic compound is insufficient and the Cu plating remains excessively, and a desired intermetallic compound layer cannot be obtained in the subsequent cooling.
In addition, when the peak temperature in the heating process is less than 240 ° C., Sn does not melt uniformly, and when the peak temperature exceeds 300 ° C., the intermetallic compound grows rapidly and the unevenness of the Cu—Sn intermetallic compound layer Is unfavorable because of the increase.
Further, in the cooling step, by providing a primary cooling step with a low cooling rate, Cu atoms diffuse gently in the Sn grains and grow with a desired intermetallic compound structure. When the cooling rate in the primary cooling step exceeds 30 ° C./second, the intermetallic compound cannot grow into a smooth shape due to the effect of rapid cooling, and unevenness increases. Similarly, even when the cooling time is less than 2 seconds, the intermetallic compound cannot grow into a smooth shape. When the cooling time exceeds 10 seconds, the growth of the Cu 6 Sn 5 layer proceeds excessively and the coverage of the Cu 3 Sn layer decreases. Air cooling is appropriate for this primary cooling step.
Then, after the primary cooling step, the secondary cooling step is rapidly cooled to complete the growth of the intermetallic compound layer with a desired structure. When the cooling rate in the secondary cooling step is less than 100 ° C./second, the intermetallic compound further proceeds, and a desired intermetallic compound shape cannot be obtained.
Thus, by precisely controlling the electrodeposition conditions and the reflow conditions for plating, a stable Cu—Sn intermetallic compound layer having a two-layer structure with few irregularities can be obtained.

本発明によれば、Cu系基材の表面に形成したFe系下地層がバリア層として高い耐熱性を有し、高温時のCuの拡散を有効に防止することができ、また、そのFe系下地層の上のNi系薄膜層にCu−Sn金属間化合物層が形成が形成されるので、これらの密着性も良好であり、もって、表面状態を良好に維持して接触抵抗の増大を抑制することができるとともに、めっき皮膜の剥離等を防止し、さらに、コネクタ使用時の摩耗や挿抜力を低減しそのバラツキを抑制することができる。   According to the present invention, the Fe-based underlayer formed on the surface of the Cu-based substrate has high heat resistance as a barrier layer, and can effectively prevent Cu diffusion at high temperatures. Since the formation of the Cu-Sn intermetallic compound layer is formed on the Ni-based thin film layer on the underlayer, these adhesions are also good, so that the surface state is well maintained and the increase in contact resistance is suppressed. In addition, it is possible to prevent peeling of the plating film, and to reduce wear and insertion / extraction force when using the connector and to suppress variations.

本発明に係る導電部材の一実施形態の表層部分をモデル化して示した断面図である。It is sectional drawing which modeled and showed the surface layer part of one Embodiment of the electrically-conductive member which concerns on this invention. 本発明の製造方法に係るリフロー条件の温度と時間の関係をグラフにした温度プロファイルである。It is the temperature profile which made the relationship between the temperature of reflow conditions and time concerning the manufacturing method of this invention a graph. 導電部材の動摩擦係数を測定するための装置を概念的に示す正面図である。It is a front view which shows notionally the apparatus for measuring the dynamic friction coefficient of an electrically-conductive member. 本実施例及び比較例の各導電部材における接触抵抗の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the contact resistance in each electrically-conductive member of a present Example and a comparative example.

以下、本発明の実施形態を説明する。
この実施形態の導電部材10は、例えば自動車の車載用コネクタの端子に用いられるものであり、図1に示すように、Cu系基材1の表面に、Fe系下地層2を介して、Ni系薄膜層3、Cu−Sn金属間化合物層4、Sn系表面層5がこの順に形成されるとともに、Cu−Sn金属間化合物層4はさらに、CuSn層6とCuSn層7とから構成されている。
Cu系基材1は、Cu又はCu合金から構成された例えば板状のものである。Cu合金としては、その材質は必ずしも限定されないが、Cu−Zn系合金、Cu−Ni−Si系(コルソン系)合金、Cu−Cr−Zr系合金、Cu−Mg−P系合金、Cu−Fe−P系合金、Cu−Sn−P系合金が好適であり、例えば、三菱伸銅株式会社製MSP1,MZC1,MAX251C,MAX375,MAX126が好適に用いられる。
Fe系下地層2は、Fe又はFe合金を電解めっきして形成されたものであり、Cu系基材1の表面に0,1〜1.0μmの厚さに形成される。このFe系下地層2が0.1μm未満と少ないと、Cu系基材1のCuの拡散防止機能が十分でなく、また、1.0μmを超えると、曲げ加工時にFe系下地層2にクラックが生じ易くなる。Fe合金としては、例えばFe−Ni合金が用いられる。
Ni系薄膜層3は、Ni又はNi合金を電解めっきして形成されたものであり、Fe系下地層2の表面に、例えば0.05〜0.3μmの厚さに形成される。このNi系薄膜層3が0.05μm未満と少ないと、高温時にNiの拡散により欠損部が生じて剥離するおそれがあり、また、0.3μmを超えると、歪みが大きくなって剥離し易いとともに、曲げ加工時に割れが生じ易くなる。
Embodiments of the present invention will be described below.
The conductive member 10 of this embodiment is used for, for example, a terminal of an in-vehicle connector of an automobile, and as shown in FIG. 1, Ni is interposed on the surface of a Cu-based substrate 1 via an Fe-based underlayer 2. The Cu-Sn intermetallic compound layer 4, the Cu-Sn intermetallic compound layer 4, and the Sn-based surface layer 5 are formed in this order, and the Cu-Sn intermetallic compound layer 4 is further formed of a Cu 3 Sn layer 6 and a Cu 6 Sn 5 layer 7. It consists of and.
The Cu-based substrate 1 is, for example, a plate-like one made of Cu or a Cu alloy. The material of the Cu alloy is not necessarily limited, but Cu—Zn alloy, Cu—Ni—Si (Corson) alloy, Cu—Cr—Zr alloy, Cu—Mg—P alloy, Cu—Fe -P-based alloy and Cu-Sn-P-based alloy are suitable, and for example, MSP1, MZC1, MAX251C, MAX375, MAX126 manufactured by Mitsubishi Shindoh Co., Ltd. are preferably used.
The Fe-based underlayer 2 is formed by electrolytic plating of Fe or an Fe alloy, and is formed on the surface of the Cu-based substrate 1 with a thickness of 0.1 to 1.0 μm. If the Fe base layer 2 is less than 0.1 μm, the Cu base substrate 1 does not have sufficient Cu diffusion preventing function. If it exceeds 1.0 μm, the Fe base layer 2 cracks during bending. Is likely to occur. For example, an Fe—Ni alloy is used as the Fe alloy.
The Ni-based thin film layer 3 is formed by electrolytic plating of Ni or a Ni alloy, and is formed on the surface of the Fe-based underlayer 2 with a thickness of, for example, 0.05 to 0.3 μm. If this Ni-based thin film layer 3 is as small as less than 0.05 μm, there is a risk of peeling due to Ni diffusion at high temperatures, and if it exceeds 0.3 μm, the strain becomes large and it is easy to peel off. Cracks are likely to occur during bending.

Cu−Sn金属間化合物層4は、後述するようにNi系薄膜層3の上にめっきしたCuと表面のSnとがリフロー処理によって拡散して形成された合金層である。このCu−Sn金属間化合物層4は、さらに、Ni系薄膜層3の上に配置されるCuSn層6と、該CuSn層6の上に配置されるCuSn層7とから構成されている。この場合、Cu−Sn金属間化合物層4全体としては凹凸が形成されており、その凹部8におけるCuSn層6とCuSn層7とを合わせた厚さXは、0.05〜1.5μmとされる。
この凹部8の厚さXが0.05μm未満では、高温時に凹部8からSnがNi系薄膜層3へと拡散し、Ni系薄膜層3に欠損が発生するおそれがある。Ni系薄膜層3に欠損が生じると、Fe系下地層2とCu−Sn金属間化合物層4との界面の密着力が低下し、剥離の原因となる。したがって、凹部8の厚さXは最低0.05μm必要であり、より好ましくは0.1μmあるとよい。
一方、凹部8におけるCuSn層6とCuSn合金層7とを合わせた厚さXが1.5μmを超えると、Cu−Sn金属間化合物層4がもろくなり、曲げ加工時にめっき皮膜の剥離が発生しやすくなる。
The Cu-Sn intermetallic compound layer 4 is an alloy layer formed by diffusing Cu plated on the Ni-based thin film layer 3 and Sn on the surface by reflow treatment, as will be described later. The Cu—Sn intermetallic compound layer 4 further includes a Cu 3 Sn layer 6 disposed on the Ni-based thin film layer 3, and a Cu 6 Sn 5 layer 7 disposed on the Cu 3 Sn layer 6. It is composed of In this case, the Cu—Sn intermetallic compound layer 4 as a whole has irregularities, and the combined thickness X of the Cu 3 Sn layer 6 and the Cu 6 Sn 5 layer 7 in the recess 8 is 0.05 to 1.5 μm.
When the thickness X of the recess 8 is less than 0.05 μm, Sn diffuses from the recess 8 to the Ni-based thin film layer 3 at a high temperature, and the Ni-based thin film layer 3 may be damaged. When defects occur in the Ni-based thin film layer 3, the adhesion at the interface between the Fe-based underlayer 2 and the Cu—Sn intermetallic compound layer 4 is reduced, causing peeling. Therefore, the thickness X of the recess 8 needs to be at least 0.05 μm, and more preferably 0.1 μm.
On the other hand, when the combined thickness X of the Cu 3 Sn layer 6 and the Cu 6 Sn 5 alloy layer 7 in the recess 8 exceeds 1.5 μm, the Cu—Sn intermetallic compound layer 4 becomes brittle, and a plating film is formed during bending. Peeling easily occurs.

また、このCu−Sn金属間化合物層4の凹部8に対する凸部9の厚さの比率は1.2〜5とされている。この比率が小さくなってCu−Sn金属間化合物層4の凹凸が少なくなると、コネクタ使用時の挿抜力が低減して好ましいが、これが1.2未満であると、Cu−Sn金属間化合物層4の凹凸がほとんどなくなってCu−Sn金属間化合物層4が著しく脆くなり、曲げ加工時に皮膜の剥離が発生し易くなる。また、凹部8に対する凸部9の厚さの比率が5を超えるほどに凹凸が大きくなると、コネクタとして用いたときの挿抜時にCu−Sn金属間化合物層4の凹凸が抵抗となるため、挿抜力を低減する効果が乏しい。
この凹部8に対する凸部9の比率は、例えば、凹部8の厚さXが0.3μmで、凸部9の厚さYが0.5μmであると、その比率(Y/X)は、1.67である。この場合、CuSn層6とCuSn層7とを合わせたCu−Sn金属間化合物層4の厚さは、最大で2μmとするのが望ましい。
Moreover, the ratio of the thickness of the convex part 9 with respect to the concave part 8 of this Cu-Sn intermetallic compound layer 4 is set to 1.2-5. If this ratio is reduced and the unevenness of the Cu—Sn intermetallic compound layer 4 is reduced, the insertion / extraction force during use of the connector is preferably reduced, but if this is less than 1.2, the Cu—Sn intermetallic compound layer 4 is reduced. The Cu—Sn intermetallic compound layer 4 becomes extremely fragile, and the film is easily peeled off during bending. In addition, when the unevenness becomes so large that the ratio of the thickness of the protruding portion 9 to the recessed portion 8 exceeds 5, the unevenness of the Cu-Sn intermetallic compound layer 4 becomes a resistance during insertion / extraction when used as a connector, so that the insertion / extraction force The effect of reducing is poor.
For example, when the thickness X of the concave portion 8 is 0.3 μm and the thickness Y of the convex portion 9 is 0.5 μm, the ratio (Y / X) is 1 .67. In this case, the thickness of the Cu—Sn intermetallic compound layer 4 including the Cu 3 Sn layer 6 and the Cu 6 Sn 5 layer 7 is desirably 2 μm at the maximum.

また、このCu−Sn金属間化合物層4のうちの下層に配置されるCuSn層6は、Ni系薄膜層3を覆っており、その面積被覆率が60〜100%とされている。この面積被覆率が60%未満となって低いと、被覆されていない部分から高温時にNi系薄膜層3のNi原子のCuSn層7への拡散が促進して、Ni系薄膜層3に欠損が発生するおそれがある。より望ましくは80%以上が被覆されているとよい。
この面積被覆率は、皮膜を集束イオンビーム(FIB;Focused Ion Beam)により断面加工し、走査イオン顕微鏡(SIM;Scanning Ion Microscope)で観察した表面の走査イオン像(SIM像)から確認することができる。
このNi系薄膜層3に対する面積被覆率が60%以上ということは、面積被覆率が100%満たない場合に、Ni系薄膜層3の表面には局部的にCuSn層6が存在しない部分が生じることになるが、その場合でも、Cu−Sn金属間化合物層4の凹部8におけるCuSn層6とCuSn層7とを合わせた厚さが0.05〜1.5μmとされているので、CuSn層7が0.05〜1.5μmの厚さでNi系薄膜層3を覆っていることになる。
Further, Cu 3 Sn layer 6 is arranged under one of the Cu-Sn intermetallic compound layer 4 covers the Ni-based thin film layer 3, the area coverage is 60 to 100%. If the area coverage is less than 60%, diffusion of Ni atoms in the Ni-based thin film layer 3 from the uncoated portion to the Cu 6 Sn 5 layer 7 at a high temperature is promoted, and the Ni-based thin film layer 3 There is a risk of loss. More preferably, 80% or more is covered.
This area coverage can be confirmed from a surface scanning ion image (SIM image) obtained by observing a cross-section of the film with a focused ion beam (FIB) and observing with a scanning ion microscope (SIM). it can.
The area coverage on the Ni-based thin film layer 3 is 60% or more means that the Cu 3 Sn layer 6 is not locally present on the surface of the Ni-based thin film layer 3 when the area coverage is less than 100%. Even in this case, the combined thickness of the Cu 3 Sn layer 6 and the Cu 6 Sn 5 layer 7 in the recess 8 of the Cu—Sn intermetallic compound layer 4 is 0.05 to 1.5 μm. Therefore, the Cu 6 Sn 5 layer 7 covers the Ni-based thin film layer 3 with a thickness of 0.05 to 1.5 μm.

また、Cu−Sn金属間化合物層4の下層を構成しているCuSn層6においては、その平均厚さは0.01〜0.5μmとされる。このCuSn層6は、Ni系薄膜層3を覆っている層であるので、その平均厚さが0.01μm未満と少ない場合には、Ni系薄膜層3の拡散を抑える効果が乏しくなる。また、0.5μmを超えると、高温時にCuSn層6がSnリッチのCuSn層7に変化し、その分、Sn系表面層5を減少させ、接触抵抗が高くなるため好ましくない。この平均厚さは、CuSn層6が存在する部分で、その厚さを複数個所測定したときの平均値である。
なお、このCu−Sn金属間化合物層4は、Ni系薄膜層3の上にめっきしたCuと表面のSnとが拡散することにより合金化したものであるから、リフロー処理等の条件によっては下地となったCuめっき層の全部が拡散してCu−Sn金属間化合物層4となる場合もあるが、そのCuめっき層が残る場合もある。このCuめっき層が残る場合は、そのCuめっき層は例えば0.01〜0.1μmの厚さとされる。
また、Ni系薄膜層3のNiがCu−Sn金属間化合物層4にわずかながら拡散するため、CuSn層7内にはわずかにNiが混入している。
In the Cu 3 Sn layer 6 constituting the lower layer of Cu-Sn intermetallic compound layer 4, the average thickness is set to 0.01 to 0.5 [mu] m. Since this Cu 3 Sn layer 6 is a layer covering the Ni-based thin film layer 3, when the average thickness is as small as less than 0.01 μm, the effect of suppressing the diffusion of the Ni-based thin film layer 3 becomes poor. . On the other hand, if it exceeds 0.5 μm, the Cu 3 Sn layer 6 is changed to the Sn-rich Cu 6 Sn 5 layer 7 at a high temperature, and the Sn-based surface layer 5 is reduced correspondingly, and the contact resistance is increased. . This average thickness is a portion where the Cu 3 Sn layer 6 exists and is an average value when the thickness is measured at a plurality of locations.
The Cu—Sn intermetallic compound layer 4 is alloyed by diffusion of Cu plated on the Ni-based thin film layer 3 and Sn on the surface. In some cases, the entire Cu plating layer is diffused to form the Cu—Sn intermetallic compound layer 4, but the Cu plating layer may remain. When this Cu plating layer remains, the Cu plating layer has a thickness of 0.01 to 0.1 μm, for example.
Further, since Ni in the Ni-based thin film layer 3 slightly diffuses into the Cu—Sn intermetallic compound layer 4, Ni is slightly mixed in the Cu 6 Sn 5 layer 7.

最表面のSn系表面層5は、Sn又はSn合金を電解めっきした後にリフロー処理することによって形成されたものであり、例えば0.05〜2.5μmの厚さに形成される。このSn系表面層5の厚さが0.05μm未満であると、高温時にCuが拡散して表面にCuの酸化物が形成され易くなることから接触抵抗が増加し、また、はんだ付け性や耐食性も低下する。一方、2.5μmを超えると、柔軟なSn系表面層5の下層に存在するCu−Sn金属間化合物層4による表面の下地を硬くする効果が薄れ、コネクタとしての使用時の挿抜力が増大し、コネクタの多ピン化に伴う挿抜力の低減を図り難い。   The outermost Sn-based surface layer 5 is formed by performing reflow treatment after electrolytic plating of Sn or an Sn alloy, and is formed to a thickness of, for example, 0.05 to 2.5 μm. If the thickness of the Sn-based surface layer 5 is less than 0.05 μm, Cu diffuses at high temperatures and Cu oxide is easily formed on the surface, so that the contact resistance increases, and solderability and Corrosion resistance also decreases. On the other hand, when the thickness exceeds 2.5 μm, the effect of hardening the surface base by the Cu—Sn intermetallic compound layer 4 existing in the lower layer of the flexible Sn-based surface layer 5 is weakened, and the insertion / extraction force during use as a connector is increased. However, it is difficult to reduce the insertion / extraction force associated with the increase in the number of pins of the connector.

次に、このような導電部材を製造する方法について説明する。
まず、Cu系基材として、Cu又はCu合金の板材を用意し、これを脱脂、酸洗等によって表面を清浄にした後、Feめっき、Niめっき、Cuめっき、Snめっきをこの順序で順次行う。また、各めっき処理の間には、酸洗又は水洗処理を行う。
Feめっきの条件としては、めっき浴に、硫酸第一鉄(FeSO)、塩化アンモニウム(NH4Cl)を主成分とした硫酸浴が用いられる。Fe−Niめっきとする場合は、硫酸ニッケル(NiSO)、硫酸第一鉄(FeSO)、ホウ酸(HBO)を主成分としためっき浴が用いられる。めっき温度は45〜55℃、電流密度は、5〜25A/dmとされる。
Next, a method for manufacturing such a conductive member will be described.
First, as a Cu-based substrate, a Cu or Cu alloy plate material is prepared, and after cleaning the surface by degreasing, pickling, etc., Fe plating, Ni plating, Cu plating, and Sn plating are sequentially performed in this order. . In addition, pickling or rinsing is performed between the plating processes.
As conditions for Fe plating, a sulfuric acid bath mainly composed of ferrous sulfate (FeSO 4 ) and ammonium chloride (NH 4 Cl) is used as a plating bath. When the Fe—Ni plating is used, a plating bath mainly composed of nickel sulfate (NiSO 4 ), ferrous sulfate (FeSO 4 ), and boric acid (H 3 BO 3 ) is used. The plating temperature is 45 to 55 ° C., and the current density is 5 to 25 A / dm 2 .

Niめっきの条件としては、めっき浴に、硫酸ニッケル(NiSO)、ホウ酸(HBO)を主成分としたワット浴、スルファミン酸ニッケル(Ni(NHSO))とホウ酸(HBO)を主成分としたスルファミン酸浴等が用いられる。酸化反応を起こし易くする塩類として塩化ニッケル(NiCl)などが加えられる場合もある。また、めっき温度は45〜55℃、電流密度は20〜50A/dmとされる。
Cuめっきの条件としては、めっき浴に硫酸銅(CuSO)及び硫酸(HSO)を主成分とした硫酸銅浴が用いられ、レベリングのために塩素イオン(Cl)が添加される。めっき温度は35〜55℃、電流密度は20〜60A/dmとされる。
Snめっきの条件としては、めっき浴に硫酸(HSO)と硫酸第一錫(SnSO)を主成分とした硫酸浴が用いられ、めっき温度は15〜35℃、電流密度は10〜30A/dmとされる。
As the conditions for Ni plating, the plating bath is a watt bath mainly composed of nickel sulfate (NiSO 4 ), boric acid (H 3 BO 3 ), nickel sulfamate (Ni (NH 2 SO 3 ) 2 ) and boric acid. A sulfamic acid bath or the like mainly composed of (H 3 BO 3 ) is used. In some cases, nickel chloride (NiCl 2 ) or the like is added as a salt that easily causes an oxidation reaction. The plating temperature is 45 to 55 ° C., and the current density is 20 to 50 A / dm 2 .
As the conditions for Cu plating, a copper sulfate bath containing copper sulfate (CuSO 4 ) and sulfuric acid (H 2 SO 4 ) as main components is used in the plating bath, and chlorine ions (Cl ) are added for leveling. . The plating temperature is 35 to 55 ° C., and the current density is 20 to 60 A / dm 2 .
As the conditions for Sn plating, a sulfuric acid bath mainly composed of sulfuric acid (H 2 SO 4 ) and stannous sulfate (SnSO 4 ) is used as a plating bath, the plating temperature is 15 to 35 ° C., and the current density is 10 to 10. 30 A / dm 2 .

いずれのめっき処理も、一般的なめっき技術よりも高い電流密度で行われる。その場合に、めっき液の攪拌技術が重要となるが、めっき液を処理板に向けて高速で噴きつける方法やめっき液を処理板と平行に流す方法などとすることにより、処理板の表面に新鮮なめっき液を速やかに供給し、高電流密度によって均質なめっき層を短時間で形成することができる。そのめっき液の流速としては、処理板の表面において0.5m/秒以上とすることが望ましい。また、この従来技術よりも一桁高い電流密度でのめっき処理を可能とするために、陽極には、アノード限界電流密度の高い酸化イリジウム(IrO)を被覆したTi板等の不溶性陽極を用いることが望ましい。
これらの各めっき条件をまとめると、以下の表1〜表5に示す通りとなる。表1にはFeめっきの場合の条件を示し、表2にはFe−Niめっきの場合の条件を示している。
All the plating processes are performed at a higher current density than a general plating technique. In this case, the plating solution agitation technology is important. However, by using a method of spraying the plating solution at a high speed toward the processing plate or a method of flowing the plating solution in parallel with the processing plate, A fresh plating solution can be supplied quickly, and a uniform plating layer can be formed in a short time with a high current density. The flow rate of the plating solution is desirably 0.5 m / second or more on the surface of the treatment plate. In addition, in order to enable the plating process at a current density that is an order of magnitude higher than that of the prior art, an insoluble anode such as a Ti plate coated with iridium oxide (IrO 2 ) having a high anode limit current density is used as the anode. It is desirable.
These plating conditions are summarized as shown in Tables 1 to 5 below. Table 1 shows the conditions for Fe plating, and Table 2 shows the conditions for Fe-Ni plating.

Figure 0005498710
Figure 0005498710

Figure 0005498710
Figure 0005498710

Figure 0005498710
Figure 0005498710

Figure 0005498710
Figure 0005498710

Figure 0005498710
Figure 0005498710

そして、表1又は表2のいずれかの条件のめっき処理と、表3〜表5の条件のめっき処理との四種類のめっき処理を施した後、加熱してリフロー処理を行う。そのリフロー処理としては、図2に示す温度プロファイルとする条件が望ましい。
すなわち、リフロー処理はCO還元性雰囲気にした加熱炉内でめっき後の処理材を20〜75℃/秒の昇温速度で240〜300℃のピーク温度まで2.9〜11秒間加熱する加熱工程と、そのピーク温度に達した後、30℃/秒以下の冷却速度で2〜10秒間冷却する一次冷却工程と、一次冷却後に100〜250℃/秒の冷却速度で0.5〜5秒間冷却する二次冷却工程とを有する処理とする。一次冷却工程は空冷により、二次冷却工程は10〜90℃の水を用いた水冷により行われる。
このリフロー処理を還元性雰囲気で行うことによりSnめっき表面に溶融温度の高いすず酸化物皮膜が生成するのを防ぎ、より低い温度かつより短い時間でリフロー処理を行うことが可能となり、所望の金属間化合物構造を作製することが容易となる。また、冷却工程を二段階とし、冷却速度の小さい一次冷却工程を設けることにより、Cu原子がSn粒内に穏やかに拡散し、所望の金属間化合物構造で成長する。そして、その後に急冷を行うことにより金属間化合物層の成長を止め、所望の構造で固定化することができる。
ところで、高電流密度で電析したCuとSnは安定性が低く室温においても合金化や結晶粒肥大化が発生し、リフロー処理で所望の金属間化合物構造を作ることが困難になる。このため、めっき処理後速やかにリフロー処理を行うことが望ましい。具体的には15分以内、望ましくは5分以内にリフローを行う必要がある。めっき後の放置時間が短いことは問題とならないが、通常の処理ラインでは構成上1分後程度となる。
And after performing the four types of plating processing of the plating processing of the conditions of either Table 1 or Table 2, and the plating processing of the conditions of Table 3-Table 5, it heats and performs reflow processing. As the reflow process, the temperature profile shown in FIG. 2 is desirable.
In other words, the reflow treatment is a heating step in which the treated material after plating is heated to a peak temperature of 240 to 300 ° C. for 2.9 to 11 seconds at a temperature rising rate of 20 to 75 ° C. in a heating furnace having a CO reducing atmosphere. And a primary cooling step of cooling for 2 to 10 seconds at a cooling rate of 30 ° C./second or less after reaching the peak temperature, and cooling for 0.5 to 5 seconds at a cooling rate of 100 to 250 ° C./second after the primary cooling. And a secondary cooling step. The primary cooling step is performed by air cooling, and the secondary cooling step is performed by water cooling using 10 to 90 ° C. water.
By performing this reflow treatment in a reducing atmosphere, it is possible to prevent the formation of a tin oxide film having a high melting temperature on the surface of the Sn plating, and to perform the reflow treatment at a lower temperature and in a shorter time. It becomes easy to produce an intermetallic compound structure. Further, by providing a cooling process in two stages and providing a primary cooling process with a low cooling rate, Cu atoms diffuse gently in the Sn grains and grow with a desired intermetallic compound structure. Then, by performing rapid cooling after that, the growth of the intermetallic compound layer can be stopped and fixed in a desired structure.
By the way, Cu and Sn electrodeposited at a high current density are low in stability, and alloying and crystal grain enlargement occur at room temperature, making it difficult to produce a desired intermetallic compound structure by reflow treatment. For this reason, it is desirable to perform the reflow process immediately after the plating process. Specifically, it is necessary to perform reflow within 15 minutes, preferably within 5 minutes. A short standing time after plating does not cause a problem, but in a normal processing line, it is about one minute after construction.

以上のように、Cu系基材1の表面に表1又は表2と、表3〜表5との組み合わせのめっき条件により四層のめっきを施した後、図2に示す温度プロファイル条件でリフロー処理することにより、図1に示すように、Cu系基材1の表面がFe系下地層2によって覆われ、その上にNi系薄膜層3を介してCuSn層6、その上にさらにCuSn層7がそれぞれ形成され、最表面にSn系表面層5が形成される。 As described above, after four-layer plating is performed on the surface of the Cu-based substrate 1 according to the plating conditions in combination of Table 1 or Table 2 and Tables 3 to 5, reflow is performed under the temperature profile conditions shown in FIG. by processing as shown in FIG. 1, the surface of the Cu Keimotozai 1 is covered by the Fe-based base layer 2, Cu 3 Sn layer 6 through the Ni-based thin film layer 3 formed thereon, further thereon Cu 6 Sn 5 layer 7 is formed, and Sn-based surface layer 5 is formed on the outermost surface.

次に本発明の実施例を説明する。
Cu合金板(Cu系基材)として、厚さ0.25mmの三菱伸銅株式会社製MAX251C材を用い、これにFe、Ni、Cu、Snの各めっき処理を順次行った。この場合、表6に示すように、各めっき処理の電流密度を変えて複数の試料を作成した。各めっき層の目標厚さについては、Feめっき層の厚さは0.5μm、Niめっき層の厚さは0.3μm、Cuめっき層の厚さは0.3μm、Snめっき層の厚さは1.5μmとした。また、これら四種類の各めっき工程間には、処理材表面からめっき液を洗い流すための水洗工程を入れた。
本実施例におけるめっき処理では、Cu合金板にめっき液を高速で噴きつけ、なおかつ酸化イリジウムを被覆したTi板の不溶性陽極を用いた。
上記の四種類のめっき処理を行った後、その処理材に対してリフロー処理を行った。このリフロー処理は、最後のSnめっき処理をしてから1分後に行い、加熱工程、一次冷却工程、二次冷却工程について種々の条件で行った。
以上の試験条件を表6にまとめた。
Next, examples of the present invention will be described.
As a Cu alloy plate (Cu-based substrate), a MAX251C material manufactured by Mitsubishi Shindoh Co., Ltd. having a thickness of 0.25 mm was used, and each of the plating treatments of Fe, Ni, Cu, and Sn was sequentially performed. In this case, as shown in Table 6, a plurality of samples were prepared by changing the current density of each plating treatment. Regarding the target thickness of each plating layer, the thickness of the Fe plating layer is 0.5 μm, the thickness of the Ni plating layer is 0.3 μm, the thickness of the Cu plating layer is 0.3 μm, and the thickness of the Sn plating layer is The thickness was 1.5 μm. Further, a water washing step for washing the plating solution from the surface of the treatment material was inserted between these four types of plating steps.
In the plating treatment in this example, an insoluble anode of a Ti plate coated with iridium oxide was sprayed on the Cu alloy plate at a high speed.
After performing the above four types of plating treatments, a reflow treatment was performed on the treated material. This reflow process was performed 1 minute after the last Sn plating process, and the heating process, the primary cooling process, and the secondary cooling process were performed under various conditions.
The above test conditions are summarized in Table 6.

Figure 0005498710
Figure 0005498710

本実施例の処理材断面は、透過電子顕微鏡を用いたエネルギー分散型X線分光分析(TEM−EDS分析)の結果、Cu系基材、Fe系下地層、Ni系薄膜層、CuSn層、CuSn層、Sn系表面層の5層構造となっており、なおかつCuSn層の表面には凹凸があり、その凹部の厚さが0.05μm以上であった。またCuSn層とNi系薄膜層の界面には不連続なCuSn層があり、集束イオンビームによる断面の走査イオン顕微鏡(FIB−SIM像)から観察されるCuSn層のNi系薄膜層に対する表面被覆率は60%以上であった。 The cross section of the treatment material of this example is the result of energy dispersive X-ray spectroscopic analysis (TEM-EDS analysis) using a transmission electron microscope. As a result, a Cu-based substrate, an Fe-based underlayer, a Ni-based thin film layer, a Cu 3 Sn layer. Cu 6 Sn 5 layer and Sn-based surface layer have a five-layer structure, and the surface of the Cu 6 Sn 5 layer was uneven, and the thickness of the recess was 0.05 μm or more. The Cu 6 at the interface Sn 5 layer and the Ni-based thin film layer has a discontinuous Cu 3 Sn layer, Ni of Cu 3 Sn layer observed from a scanning ion microscope of a cross section by focused ion beam (FIB-SIM image) The surface coverage with respect to the system thin film layer was 60% or more.

表6のように作製した試料について、175℃×1000時間経過後の接触抵抗、剥離の有無、耐摩耗性、耐食性を測定した。また、動摩擦係数も測定した。
接触抵抗は、試料を175℃×1000時間放置した後、山崎精機株式会社製電気接点シミュレーターを用い荷重0.49N(50gf)摺動有りの条件で測定した。
剥離試験は、9.8kNの荷重にて90°曲げ(曲率半径R:0.7mm)を行った後、大気中で160℃×250時間保持し、曲げ戻して、曲げ部の剥離状況の確認を行った。
耐摩耗性は、JIS H 8503に規定される往復運動摩耗試験によって、試験荷重が9.8N、研磨紙No.400とし、素地(Cu系基材)が露出するまでの回数を測定し、50回試験を行ってもめっきが残存していた試料を○、50回以内に素地が露出した試料を×とした。
耐食性については、JIS H 8502に規定される中性塩水噴霧試験により、24時間試験を行い、赤錆の発生が認められなかったものを○、赤錆の発生が認められたものを×とした。
動摩擦係数については、嵌合型のコネクタのオス端子とメス端子の接点部を模擬するように、各試料によって板状のオス試験片と内径1.5mmの半球状としたメス試験片とを作成し、アイコーエンジニアリング株式会社製の横型荷重測定器(Model−2152NRE)を用い、両試験片間の摩擦力を測定して動摩擦係数を求めた。図3により説明すると、水平な台21上にオス試験片22を固定し、その上にメス試験片23の半球凸面を置いてめっき面どうしを接触させ、メス試験片23に錘24によって4.9N(500gf)の荷重Pをかけてオス試験片22を押さえた状態とする。この荷重Pをかけた状態で、オス試験片22を摺動速度80mm/分で矢印で示す水平方向に10mm引っ張ったときの摩擦力Fをロードセル25によって測定した。その摩擦力Fの平均値Favと荷重Pより動摩擦係数(=Fav/P)を求めた。
これらの結果を表7に示す。
For the samples prepared as shown in Table 6, the contact resistance after 175 ° C. × 1000 hours, the presence or absence of peeling, the wear resistance, and the corrosion resistance were measured. The dynamic friction coefficient was also measured.
The contact resistance was measured under the condition of sliding with a load of 0.49 N (50 gf) using an electrical contact simulator manufactured by Yamazaki Seiki Co., Ltd. after the sample was left at 175 ° C. for 1000 hours.
In the peel test, 90 ° bending (curvature radius R: 0.7 mm) was performed with a load of 9.8 kN, then held in the atmosphere at 160 ° C. for 250 hours, bent back, and the peeled state of the bent portion was confirmed. Went.
The abrasion resistance was determined by a reciprocating wear test specified in JIS H 8503, with a test load of 9.8 N and abrasive paper no. 400, the number of times until the substrate (Cu-based substrate) was exposed was measured, a sample in which plating remained even after 50 times of testing, and a sample in which the substrate was exposed within 50 times were evaluated as x. .
As for corrosion resistance, a neutral salt spray test specified in JIS H8502 was used for 24 hours. The case where no red rust was observed was evaluated as ◯, and the case where red rust was observed was evaluated as x.
As for the dynamic friction coefficient, a plate-shaped male test piece and a hemispherical female test piece having an inner diameter of 1.5 mm are prepared for each sample so as to simulate the contact portion of the male terminal and female terminal of the fitting type connector. Then, using a horizontal load measuring device (Model-2152NRE) manufactured by Aiko Engineering Co., Ltd., the frictional force between the two test pieces was measured to obtain the dynamic friction coefficient. 3, the male test piece 22 is fixed on the horizontal base 21, the hemispherical convex surface of the female test piece 23 is placed on the male test piece 22, and the plating surfaces are brought into contact with each other. The load P of 9N (500 gf) is applied and the male test piece 22 is pressed. With the load P applied, the frictional force F when the male test piece 22 was pulled 10 mm in the horizontal direction indicated by the arrow at a sliding speed of 80 mm / min was measured by the load cell 25. A dynamic friction coefficient (= Fav / P) was obtained from the average value Fav of the friction force F and the load P.
These results are shown in Table 7.

Figure 0005498710
Figure 0005498710

この表7から明らかなように、本実施例の導電部材においては、高温時の接触抵抗が小さく、剥離の発生がなく、耐摩耗性、はんだ付け性ともに優れるものであった。また、動摩擦係数も小さいことから、コネクタ使用時の挿抜力も小さく良好であると判断できる。   As is apparent from Table 7, the conductive member of this example had low contact resistance at high temperatures, no peeling, and excellent wear resistance and solderability. Further, since the dynamic friction coefficient is small, it can be determined that the insertion / extraction force when using the connector is small and good.

また、接触抵抗に関しては、試料6と試料31について、175℃×1000時間の加熱中の経時変化も測定した。その結果を図5に示す。
この図4に示すように、本発明の試料6では高温時に長時間さらされても接触抵抗の上昇はわずかであるのに対して、従来技術の試料31の場合は、1000時間経過で接触抵抗が10mΩ以上にまで上昇した。本発明の試料6では、Fe系下地層の耐熱性により、Sn系表面層が残存した5層構造となっているのに対して、従来技術の試料31では、Fe系下地層が薄くてバリア層としての機能が十分でないため、Cu酸化物が表面を覆ってしまったことにより、接触抵抗の上昇となったと考えられる。
Regarding the contact resistance, Sample 6 and Sample 31 were also measured for changes over time during heating at 175 ° C. × 1000 hours. The result is shown in FIG.
As shown in FIG. 4, in the sample 6 of the present invention, the increase in contact resistance is slight even when exposed to a long time at high temperature, whereas in the case of the sample 31 of the prior art, the contact resistance increases after 1000 hours. Increased to 10 mΩ or more. The sample 6 of the present invention has a five-layer structure in which the Sn-based surface layer remains due to the heat resistance of the Fe-based underlayer, whereas in the sample 31 of the prior art, the Fe-based underlayer is thin and has a barrier. Since the function as a layer is not sufficient, it is considered that the contact resistance increased due to the Cu oxide covering the surface.

次に、めっき処理後リフロー処理するまでの間の放置時間によるめっき剥離性について実験した。剥離試験は前述と同じように、9.8kNの荷重にて90°曲げ(曲率半径R:0.7mm)を行った後、大気中で160℃、250時間保持し、曲げ戻して、曲げ部の剥離状況の確認を行った。その結果を表8に示す。   Next, an experiment was conducted on the plating peelability depending on the standing time between the plating treatment and the reflow treatment. As described above, the peel test was performed by bending 90 ° with a load of 9.8 kN (curvature radius R: 0.7 mm), holding in the atmosphere at 160 ° C. for 250 hours, bending back, The peeling state of was confirmed. The results are shown in Table 8.

Figure 0005498710
Figure 0005498710

この表8からわかるように、めっき後の放置時間が長くなると剥離が発生する。これは、放置時間が長いことにより、高電流密度で析出したCu結晶粒が肥大化すると共に自然にCuとSnが反応することによりCuSnを生成し、リフロー時の平滑なCuSnとCuSnとの合金化を妨げるからと考えられる。 As can be seen from Table 8, peeling occurs when the standing time after plating becomes longer. This is because Cu crystal grains precipitated at a high current density are enlarged due to a long standing time, and Cu and Sn react spontaneously to form Cu 6 Sn 5, and smooth Cu 6 Sn during reflowing. This is thought to be because the alloying between 5 and Cu 3 Sn is hindered.

以上の研究の結果、Fe系下地層を設けたことにより、耐熱性が向上し、また、Feの延性により、曲げ加工時のめっき剥離やクラックの発生を防止することができる。さらに、硬度が高く靭性に富むFe系下地層を有するため、耐摩耗性が良く、コネクタ端子としての摺動摩耗を防ぐことができる。さらに、はんだ付け性も向上し、従来の三層めっきによる導電部材よりもはんだ付けが容易になる。また、CuSn層とCuSn層には、Ni系薄膜層とSn系表面層との反応を防ぐ効果があり、その中でもCuSn合金層の方がその効果がより高い。また、CuSn層の凹部からSn原子がNiに拡散しSnとNiが反応するため、CuSn層に凹凸が比較的少なく、なおかつCuSn層がよりNi系薄膜層の表面を多く被覆することにより、加熱時の接触抵抗劣化を防ぐとともに、剥離の発生を防止し、さらにコネクタ使用時の挿抜力を低減することが可能となることがわかった。
なお、前述のTEM−EDS分析により、CuSn層内に0.76〜5.32重量%のNiの混入が認められており、本発明においては、Cu−Sn金属間化合物層内にわずかな量のNiが混入しているものも含むものとする。
As a result of the above research, by providing the Fe-based underlayer, the heat resistance is improved, and due to the ductility of Fe, it is possible to prevent plating peeling and cracking during bending. Furthermore, since the Fe-based underlayer having high hardness and high toughness is provided, the wear resistance is good and sliding wear as a connector terminal can be prevented. Furthermore, the solderability is also improved, and soldering is easier than the conductive member by the conventional three-layer plating. Further, the Cu 6 Sn 5 layer and the Cu 3 Sn layer have an effect of preventing the reaction between the Ni-based thin film layer and the Sn-based surface layer, and among these, the Cu 3 Sn alloy layer is more effective. Further, since Sn atoms diffuse into Ni from the recesses of the Cu 6 Sn 5 layer and Sn and Ni react with each other, the Cu 6 Sn 5 layer has relatively few irregularities, and the Cu 3 Sn layer is more surface of the Ni-based thin film layer. It was found that the coating of a large amount prevents contact resistance deterioration during heating, prevents the occurrence of peeling, and further reduces the insertion / extraction force when using the connector.
In addition, according to the above-mentioned TEM-EDS analysis, 0.76 to 5.32% by weight of Ni was recognized in the Cu 6 Sn 5 layer. In the present invention, in the Cu—Sn intermetallic compound layer. It shall also include those in which a slight amount of Ni is mixed.

1 Cu系基材
2 Fe系下地層
3 Ni系薄膜層
4 Cu−Sn金属間化合物層
5 Sn系表面層
6 CuSn層
7 CuSn
8 凹部
9 凸部
10 導電部材
DESCRIPTION OF SYMBOLS 1 Cu-type base material 2 Fe-type base layer 3 Ni-type thin film layer 4 Cu-Sn intermetallic compound layer 5 Sn-type surface layer 6 Cu 3 Sn layer 7 Cu 6 Sn 5 layer 8 Concave part 9 Convex part 10 Conductive member

Claims (3)

Cu系基材の表面に、Fe系下地層を介して、Ni系薄膜層、Cu−Sn金属間化合物層、Sn系表面層がこの順に形成されるとともに、
前記Fe系下地層は、0.1〜1.0μmの厚さであり、
Cu−Sn金属間化合物層は、さらに、前記Ni系薄膜層の上に配置されるCuSn層と、該CuSn層の上に配置されるCuSn層とからなり、これらCuSn層及びCuSn層を合わせた前記Cu−Sn金属間化合物層の凹部の厚さが0.05〜1.5μmとされ
前記Cu−Sn金属間化合物層の前記凹部に対する凸部の厚さの比率が1.2〜5であり、
前記Cu Sn層の平均厚さは0.01〜0.5μmであり、かつ、前記Ni系薄膜層に対する前記Cu Sn層の面積被覆率が60〜100%であることを特徴とする導電部材。
On the surface of the Cu-based substrate, a Ni-based thin film layer, a Cu-Sn intermetallic compound layer, and a Sn-based surface layer are formed in this order via an Fe-based underlayer.
The Fe-based underlayer has a thickness of 0.1 to 1.0 μm,
The Cu—Sn intermetallic compound layer further comprises a Cu 3 Sn layer disposed on the Ni-based thin film layer and a Cu 6 Sn 5 layer disposed on the Cu 3 Sn layer. The thickness of the concave portion of the Cu-Sn intermetallic compound layer including the 3 Sn layer and the Cu 6 Sn 5 layer is 0.05 to 1.5 μm ,
The ratio of the thickness of the convex portion to the concave portion of the Cu-Sn intermetallic compound layer is 1.2 to 5,
An average thickness of the Cu 3 Sn layer is 0.01 to 0.5 μm, and an area coverage of the Cu 3 Sn layer with respect to the Ni-based thin film layer is 60 to 100%. Element.
Cu系基材の表面に、Fe又はFe合金、Ni又はNi合金、Cu又はCu合金、Sn又はSn合金をこの順にめっきしてそれぞれのめっき層を形成した後、加熱してリフロー処理することにより、前記Cu系基材の上に、Fe系下地層、Ni系薄膜層、Cu−Sn金属間化合物層、Sn系表面層を順に形成した導電部材を製造する方法であって、
前記Fe又はFe合金によるめっき層は電流密度が5〜25A/dm の電解めっきにより形成し、
前記Ni又はNi合金によるめっき層を電流密度が20〜50A/dm の電解めっきにより形成し、
前記Cu又はCu合金によるめっき層を電流密度が20〜60A/dmの電解めっきにより形成し、前記Sn又はSn合金によるめっき層を電流密度が10〜30A/dmの電解めっきにより形成し、
前記リフロー処理は、前記めっき層を形成してから1〜15分経過した後に行い、めっき層を20〜75℃/秒の昇温速度で240〜300℃のピーク温度まで加熱する加熱工程と、前記ピーク温度に達した後、30℃/秒以下の冷却速度で2〜10秒間冷却する一次冷却工程と、一次冷却後に100〜250℃/秒の冷却速度で冷却する二次冷却工程とを有することを特徴とする導電部材の製造方法。
By plating the surface of the Cu-based substrate with Fe or Fe alloy, Ni or Ni alloy, Cu or Cu alloy, Sn or Sn alloy in this order to form each plating layer, and then heating and reflowing A method for producing a conductive member in which an Fe-based underlayer, a Ni-based thin film layer, a Cu-Sn intermetallic compound layer, and a Sn-based surface layer are sequentially formed on the Cu-based substrate,
The plating layer made of Fe or Fe alloy is formed by electrolytic plating with a current density of 5 to 25 A / dm 2 ,
Forming a plating layer of the Ni or Ni alloy by electrolytic plating with a current density of 20 to 50 A / dm 2 ;
Forming a plated layer of Cu or Cu alloy by electrolytic plating with a current density of 20 to 60 A / dm 2 ; forming a plated layer of Sn or Sn alloy by electrolytic plating with a current density of 10 to 30 A / dm 2 ;
The reflow treatment is performed after 1 to 15 minutes have elapsed since the formation of the plating layer, and a heating step of heating the plating layer to a peak temperature of 240 to 300 ° C. at a temperature rising rate of 20 to 75 ° C./second; After reaching the peak temperature, it has a primary cooling step of cooling at a cooling rate of 30 ° C./second or less for 2 to 10 seconds, and a secondary cooling step of cooling at a cooling rate of 100 to 250 ° C./second after the primary cooling. The manufacturing method of the electrically-conductive member characterized by the above-mentioned.
請求項2に記載の製造方法により製造された導電部材。 The electrically-conductive member manufactured by the manufacturing method of Claim 2 .
JP2009039303A 2009-01-20 2009-02-23 Conductive member and manufacturing method thereof Active JP5498710B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009039303A JP5498710B2 (en) 2009-02-23 2009-02-23 Conductive member and manufacturing method thereof
PCT/JP2009/003219 WO2010084532A1 (en) 2009-01-20 2009-07-09 Conductive member and method for producing the same
KR1020117011662A KR101596342B1 (en) 2009-01-20 2009-07-09 Conductive member and method for producing the same
EP09838726.9A EP2351875B1 (en) 2009-01-20 2009-07-09 Conductive member and method for producing the same
US12/998,700 US8698002B2 (en) 2009-01-20 2009-07-09 Conductive member and method for producing the same
CN200980148719.7A CN102239280B (en) 2009-01-20 2009-07-09 Conductive member and method for producing the same
TW098124085A TWI438783B (en) 2009-01-20 2009-07-16 Conductive member and manufacturing method thereof
US14/162,008 US8981233B2 (en) 2009-01-20 2014-01-23 Conductive member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009039303A JP5498710B2 (en) 2009-02-23 2009-02-23 Conductive member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010196084A JP2010196084A (en) 2010-09-09
JP5498710B2 true JP5498710B2 (en) 2014-05-21

Family

ID=42821102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009039303A Active JP5498710B2 (en) 2009-01-20 2009-02-23 Conductive member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5498710B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5442385B2 (en) * 2009-10-07 2014-03-12 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP2012174696A (en) * 2011-02-17 2012-09-10 Fujikura Ltd Heat radiator with joint face, and surface treatment method thereof
JP2014006982A (en) * 2012-06-21 2014-01-16 Auto Network Gijutsu Kenkyusho:Kk Terminal pair and design method thereof
EP2703524A3 (en) 2012-08-29 2014-11-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Sn-coated copper alloy strip having excellent heat resistance
JP6221695B2 (en) * 2013-03-25 2017-11-01 三菱マテリアル株式会社 Tin-plated copper alloy terminal material with excellent insertability
US9748683B2 (en) * 2013-03-29 2017-08-29 Kobe Steel, Ltd. Electroconductive material superior in resistance to fretting corrosion for connection component
JP6113674B2 (en) 2014-02-13 2017-04-12 株式会社神戸製鋼所 Copper alloy strip with surface coating layer with excellent heat resistance
JP6173943B2 (en) 2014-02-20 2017-08-02 株式会社神戸製鋼所 Copper alloy strip with surface coating layer with excellent heat resistance
KR102052879B1 (en) * 2014-08-25 2019-12-06 가부시키가이샤 고베 세이코쇼 Conductive material for connection parts which has excellent minute slide wear resistance
JP5897082B1 (en) * 2014-08-25 2016-03-30 株式会社神戸製鋼所 Conductive material for connecting parts with excellent resistance to fine sliding wear
JP5897084B1 (en) * 2014-08-27 2016-03-30 株式会社神戸製鋼所 Conductive material for connecting parts with excellent resistance to fine sliding wear
JP5897083B1 (en) * 2014-08-25 2016-03-30 株式会社神戸製鋼所 Conductive material for connecting parts with excellent resistance to fine sliding wear
JP5748019B1 (en) * 2014-08-27 2015-07-15 株式会社オートネットワーク技術研究所 Pin terminals and terminal materials

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054189A (en) * 1998-08-10 2000-02-22 Furukawa Electric Co Ltd:The MATERIAL FOR ELECTRIC AND ELECTRONIC PARTS USED BY BONDING WITH Sn-Bi-BASED SOLDER, ELECTRIC AND ELECTRONIC PARTS USING IT, ELECTRIC AND ELECTRONIC PARTS-MOUNTED SUBSTRATE, AND SOLDER BONDING, OR MOUNTING METHOD USING IT
JP2000260230A (en) * 1999-03-12 2000-09-22 Kyowa Densen Kk Lead wire hardly polluting molten solder bath and its soldering method
JP2005344188A (en) * 2004-06-04 2005-12-15 Furukawa Electric Co Ltd:The Method for producing plating material and electrical/electronic component using the plating material
JP4934456B2 (en) * 2006-02-20 2012-05-16 古河電気工業株式会社 Plating material and electric / electronic component using the plating material
JP4771970B2 (en) * 2006-02-27 2011-09-14 株式会社神戸製鋼所 Conductive material for connecting parts
JP4653133B2 (en) * 2006-03-17 2011-03-16 古河電気工業株式会社 Plating material and electric / electronic component using the plating material

Also Published As

Publication number Publication date
JP2010196084A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5498710B2 (en) Conductive member and manufacturing method thereof
WO2010084532A1 (en) Conductive member and method for producing the same
JP5280957B2 (en) Conductive member and manufacturing method thereof
JP4372835B1 (en) Conductive member and manufacturing method thereof
JP4319247B1 (en) Conductive member and manufacturing method thereof
WO2010119489A1 (en) Conductive member and manufacturing method thereof
JP5355935B2 (en) Metal materials for electrical and electronic parts
JP2009108389A (en) Sn-PLATED MATERIAL FOR ELECTRONIC PARTS
JP5325734B2 (en) Conductive member and manufacturing method thereof
JP5313773B2 (en) Plated copper strip and method for producing the same
JP5442316B2 (en) Manufacturing method of conductive member
JP5635794B2 (en) Conductive member and manufacturing method thereof
WO2020138414A1 (en) Anti-corrosion terminal material, terminal, and electrical wire end section structure
JP6930327B2 (en) Anti-corrosion terminal material and its manufacturing method, anti-corrosion terminal and electric wire terminal structure
JP6946884B2 (en) Anti-corrosion terminal material and its manufacturing method, anti-corrosion terminal and electric wire terminal structure
JP5442385B2 (en) Conductive member and manufacturing method thereof
JP7302364B2 (en) Connector terminal materials and connector terminals
US11901659B2 (en) Terminal material for connectors
WO2021261348A1 (en) Corrosion-resistant terminal material for aluminum core wire, method for manufacturing same, corrosion-resistant terminal, and electric wire terminal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5498710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250