JP5442316B2 - Manufacturing method of conductive member - Google Patents

Manufacturing method of conductive member Download PDF

Info

Publication number
JP5442316B2
JP5442316B2 JP2009115289A JP2009115289A JP5442316B2 JP 5442316 B2 JP5442316 B2 JP 5442316B2 JP 2009115289 A JP2009115289 A JP 2009115289A JP 2009115289 A JP2009115289 A JP 2009115289A JP 5442316 B2 JP5442316 B2 JP 5442316B2
Authority
JP
Japan
Prior art keywords
plating
layer
alloy
conductive member
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009115289A
Other languages
Japanese (ja)
Other versions
JP2010265489A (en
Inventor
健 櫻井
誠一 石川
賢治 久保田
隆史 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2009115289A priority Critical patent/JP5442316B2/en
Priority to CN200980158742.4A priority patent/CN102395713B/en
Priority to PCT/JP2009/003280 priority patent/WO2010119489A1/en
Priority to TW098124428A priority patent/TWI438784B/en
Publication of JP2010265489A publication Critical patent/JP2010265489A/en
Application granted granted Critical
Publication of JP5442316B2 publication Critical patent/JP5442316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

本発明は、銅又は銅合金からなる銅条材にめっき処理を施した導電部材の製造方法に関する。   The present invention relates to a method for producing a conductive member obtained by plating a copper strip made of copper or a copper alloy.

従来、ICやLSIなどの半導体装置や各種電子・電気部品に用いられるリードフレーム、端子、コネクタとして、銅又は銅合金からなる銅条材(以下、銅条材という)の表面に、Ni、Sn、Cu等からなるめっき層が形成されためっき付き銅条材が広く使用されている。
銅条材の様な幅広の薄板表面に無機酸及び不溶性アノードを用いて、限られたライン長さにて連続的に効率良く多層にめっきする方策としては、各めっき浴内での銅条材とめっき液との相対流速を上げ電流密度を高くし、所望する性状のめっきを得るに要する時間を短くすることが重要である。
また、めっき後のリフロー処理も大きな要因であり、導電部材として使用時の性能に大きな影響を及ぼす。特に、コネクタとして使用する場合は、リフロー処理後に形成される表面層およびその下層となる中間合金層の特性がコネクタの挿抜性に大きく寄与することがわかっている。
Conventionally, as lead frames, terminals, and connectors used in semiconductor devices such as IC and LSI and various electronic / electrical components, the surface of a copper strip made of copper or a copper alloy (hereinafter referred to as copper strip) is made of Ni, Sn. A copper strip with plating on which a plating layer made of Cu or the like is formed is widely used.
Copper strips in each plating bath can be used as a means of continuously and efficiently plating multiple layers with a limited line length using inorganic acids and insoluble anodes on the surface of wide thin plates such as copper strips. It is important to increase the relative flow rate between the plating solution and the plating solution to increase the current density and to shorten the time required to obtain the desired properties of plating.
In addition, the reflow treatment after plating is a major factor, which greatly affects the performance during use as a conductive member. In particular, when used as a connector, it has been found that the characteristics of the surface layer formed after the reflow treatment and the intermediate alloy layer which is the lower layer greatly contribute to the connector insertion / removability.

特許文献1には、電気めっきブリキ及び薄錫めっき鋼板の製造に用いる高電流密度用錫めっき硫酸浴内にて、不溶性アノードを用いて、電流密度50A/dm上、温度30〜70℃での錫めっきの方法が開示されている。
特許文献2には、銅または銅合金の表面上に、NiまたはNi合金層が形成され、最表面上にSnまたはSn合金層が形成され、前記NiまたはNi合金層と前記SnまたはSn合金層の間にCuとSnを主成分とする中間層またはCuとNiとSnを主成分とする中間層が一層以上形成され、これら中間層のうち少なくとも1つの中間層が、Cu含有量が50重量%以下であり且つNi含有量が50重量%以下である層を含み、銅または銅合金の表面上に形成された各々の層に対して垂直方向に投影した、前記Cu含有量が50重量%以下であり且つNi含有量が50重量%以下である層の平均結晶粒径が0.5〜3.0μmであることを特徴とするめっきを施した銅または銅合金が開示されている。また、製造方法としては、銅または銅合金の表面上に、NiまたはNi合金、Cuめっき、最表面層にSnまたはSn合金めっきを施した後、少なくとも1回以上のリフロー処理を行い、加熱温度が400〜900℃で、SnまたはSn合金層が溶融してから凝固するまでの時間が0.05〜60秒であることが記載されている。
In Patent Document 1, an insoluble anode is used in a tin plating sulfuric acid bath for high current density used in the production of electroplated tin and thin tin-plated steel sheet, at a current density of 50 A / dm 2 and at a temperature of 30 to 70 ° C. A method of tin plating is disclosed.
In Patent Document 2, a Ni or Ni alloy layer is formed on the surface of copper or a copper alloy, a Sn or Sn alloy layer is formed on the outermost surface, and the Ni or Ni alloy layer and the Sn or Sn alloy layer are formed. At least one intermediate layer containing Cu and Sn as a main component or an intermediate layer containing Cu, Ni and Sn as a main component is formed between the at least one intermediate layer, and the Cu content is 50 wt. %, And the Ni content is 50% by weight or less, and the Cu content is 50% by weight, projected in the direction perpendicular to each layer formed on the surface of the copper or copper alloy. There is disclosed a plated copper or copper alloy characterized in that the average crystal grain size of a layer having a Ni content of 50% by weight or less is 0.5 to 3.0 μm. In addition, as a manufacturing method, Ni or Ni alloy, Cu plating on the surface of copper or copper alloy, Sn or Sn alloy plating on the outermost surface layer, at least one reflow treatment is performed, and the heating temperature Is 400 to 900 ° C., and the time from when the Sn or Sn alloy layer melts to solidification is 0.05 to 60 seconds.

特開平6−346272号公報JP-A-6-346272 特開2003−293187号公報JP 2003-293187 A

特許文献1に記載の発明はブリキ等の錫めっき鋼板の製造方法であり、不溶性アノードを使用した硫酸浴にて、温度30〜70℃、電流密度50A/dm以上、鋼ストリップと電解液との相対速度を160m/min以上にて鋼ストリップに錫めっきを行っている。
この様な錫めっきの条件を、導電部材として厳しいめっき性状、特に、コネクタとしての使用時の挿抜性、耐熱性等が要求される銅条材薄板の多層めっきに適用するには次の理由から無理がある。
(1)主にめっき浴内の相対速度の大きさに起因して、めっきの最中に陰極表面から大量の水素ガスが発生し、めっきの電着性が妨げられて、電流効率が大きく低下し、外観不良(めっき焼け)が発生する。
(2)多層めっきとして、錫のみでなく下地となるNi、Cu、Fe等の他金属めっきとの相関が考慮されていない。
The invention described in Patent Document 1 is a method for producing a tin-plated steel sheet such as tinplate, in a sulfuric acid bath using an insoluble anode, at a temperature of 30 to 70 ° C., a current density of 50 A / dm 2 or more, a steel strip and an electrolyte. The steel strip is tin-plated at a relative speed of 160 m / min or more.
In order to apply such tin plating conditions to multilayer plating of copper strip thin plates that require strict plating properties as a conductive member, especially insertion / extraction properties and heat resistance when used as connectors, for the following reasons It is impossible.
(1) A large amount of hydrogen gas is generated from the cathode surface during plating, mainly due to the relative velocity in the plating bath, and the electrodeposition of the plating is hindered, resulting in a significant decrease in current efficiency. In addition, poor appearance (plating burn) occurs.
(2) As the multilayer plating, not only the tin but also the correlation with other metal plating such as Ni, Cu, Fe as a base is not considered.

特許文献2記載の発明は、銅または銅合金の表面上に、NiまたはNi合金、Cuめっき、最表面層にSnまたはSn合金めっきを施した後、少なくとも1回以上のリフロー処理を、加熱温度が400〜900℃で、SnまたはSn合金層が溶融してから凝固するまでの時間が0.05〜60秒にて行うことにより、Cu含有量が50重量%以下であり且つNi含有量が50重量%以下であり、平均結晶粒径が0.5〜3.0μmである1つの中間層を形成している。
この平均結晶粒径は、導電部材をコネクタとして使用する場合の挿抜性に大きく関与するものであるが、平均粒径の制御だけでは適切な挿抜性を得ることはできない。。
In the invention described in Patent Document 2, Ni or Ni alloy, Cu plating is applied on the surface of copper or copper alloy, and Sn or Sn alloy plating is applied to the outermost surface layer. Is 400 to 900 ° C., and the time from when the Sn or Sn alloy layer melts to solidification is 0.05 to 60 seconds, the Cu content is 50% by weight or less and the Ni content is One intermediate layer having an average crystal grain size of 0.5 to 3.0 μm is formed by 50% by weight or less.
This average crystal grain size is greatly related to the pluggability when the conductive member is used as a connector, but appropriate pluggability cannot be obtained only by controlling the average grain size. .

本発明はこの様な事情に鑑みてなされたものであり、導電部材としての使用時に良好な特性を有する多層にめっきが施された銅条材を連続的に効率良く得る方法を提供することである。   This invention is made | formed in view of such a situation, By providing the method of obtaining the copper strip material by which the plating was carried out to the multilayer which has a favorable characteristic at the time of use as an electrically-conductive member efficiently. is there.

発明者らは、銅条材を連続的に走行させながら複数のめっき浴に挿通して、その表面に、Ni又はNi合金、Cu又はCu合金、Sn又はSn合金のめっき層をこの順に形成して、その後、加熱してリフロー処理することにより、前記銅条材の上に、Ni系下地層、Cu−Sn金属間化合物層、Sn系表面層を順に形成する導電部材の製造する方法において、各めっき浴内の電流密度、浴温度、レイノルズ数を適切に選択すること、特に、レイノルズ数を最適に選択することにより、効率良く所望の性状のめっき膜が得られることを見出した。めっき浴としては、特殊な排水処理設備が不要な無機酸を主成分とするめっき浴を使用することが最適である。   The inventors inserted a plurality of plating baths while continuously running the copper strip, and formed Ni or Ni alloy, Cu or Cu alloy, Sn or Sn alloy plating layers on the surface thereof in this order. Then, in the method of manufacturing a conductive member for sequentially forming a Ni-based underlayer, a Cu-Sn intermetallic compound layer, and a Sn-based surface layer on the copper strip by heating and reflowing, It has been found that a plating film having a desired property can be efficiently obtained by appropriately selecting the current density, bath temperature, and Reynolds number in each plating bath, particularly by selecting the Reynolds number optimally. As the plating bath, it is optimal to use a plating bath mainly composed of an inorganic acid that does not require special wastewater treatment equipment.

即ち、良好なめっき膜を得るためには、めっき時に発生する水素ガスを連続的かつ効率的に排除することが必要であり、めっき液の流れ場を最適な乱流値にすると強力な攪拌効果が得られ、水素ガスを連続的かつ効率的に排除出来ることを見出した。乱流値を表す指数としてはレイノルズ数が適切であり、実験結果より、最適値以上ではめっきの理論電流効率値は横ばいとなり、最適値以下では外観不良(めっき焼け)が発生することが判明した(図3参照)。
レイノルズ数は、めっき液粘度、めっき流路径、めっき液と被めっき物との間の相対流速の3要素で決定される無次元数であり、状況に応じ3要素を適宜変更することにより最適値を得ることが出来る。
また、レイノルズ数は相対速度と異なり、被めっき物とめっき液との界面(境界層)とも相関性があると考えられる。
In other words, in order to obtain a good plating film, it is necessary to eliminate hydrogen gas generated during plating continuously and efficiently. If the flow field of the plating solution is set to an optimum turbulent flow value, a strong stirring effect is obtained. It was found that hydrogen gas can be eliminated continuously and efficiently. The Reynolds number is appropriate as an index that represents the turbulent flow value. From the experimental results, it has been found that the theoretical current efficiency value of the plating remains flat above the optimum value, and the appearance defect (plating burn) occurs below the optimum value. (See FIG. 3).
The Reynolds number is a dimensionless number determined by the three factors of plating solution viscosity, plating channel diameter, and relative flow velocity between the plating solution and the object to be plated. The optimum value is obtained by appropriately changing the three factors according to the situation. Can be obtained.
In addition, the Reynolds number is considered to be correlated with the interface (boundary layer) between the object to be plated and the plating solution, unlike the relative speed.

また、錫めっき時に多量に発生する泡及びスラッジを除去する手段を併設することにより、めっき効率が更に高まることが判った。
更に、リフロー条件を検討することにより、中間層の表面粗さがコントロール出来ることを見出した。中間層は基本的に層状であり平均結晶粒径より、中間層自体の凸凹、即ち、表面粗さを最適な数値範囲とすることが重要である。
Further, it has been found that the plating efficiency is further increased by providing a means for removing bubbles and sludge generated in a large amount during tin plating.
Furthermore, it has been found that the surface roughness of the intermediate layer can be controlled by examining the reflow conditions. The intermediate layer is basically laminar, and it is important that the unevenness of the intermediate layer itself, that is, the surface roughness be in an optimum numerical range based on the average crystal grain size.

このような観点から、本発明の製造方法は、銅条材を連続的に走行させながら複数のめっき浴に挿通して、その表面に、Ni又はNi合金、Cu又はCu合金、Sn又はSn合金のめっき層をこの順に形成し、その後、加熱してリフロー処理することにより、前記銅条材の上に、Ni系下地層、Cu−Sn金属間化合物層、Sn系表面層を順に形成した導電部材を製造する方法であって、前記Ni又はNi合金によるめっき層を、無機酸を主成分とするめっき浴中にて不溶性アノードを使用し、浴温45〜55℃、レイノルズ数1×10〜5×10、電流密度20〜50A/dmなる電解めっきにて形成し、前記Cu又はCu合金によるめっき層を、無機酸を主成分とするめっき浴中にて不溶性アノードを使用し、浴温35〜55℃、レイノルズ数1×10〜5×10、電流密度20〜60A/dmなる電解めっきにて形成し、前記Sn又はSn合金によるめっき層を、無機酸を主成分とするめっき浴中にて不溶性アノードを使用し、浴温15〜35℃、レイノルズ数1×10〜5×10、電流密度10〜30A/dmなる電解めっきにて形成することを特徴とする。 From such a point of view, the manufacturing method of the present invention passes through a plurality of plating baths while continuously running a copper strip, and Ni, Ni alloy, Cu or Cu alloy, Sn or Sn alloy is formed on the surface thereof. In this order, the plating layer is formed in this order, and then heated and reflowed to form a Ni-based underlayer, a Cu-Sn intermetallic compound layer, and a Sn-based surface layer in this order on the copper strip. A method for producing a member, wherein the plating layer made of Ni or Ni alloy uses an insoluble anode in a plating bath mainly composed of an inorganic acid, has a bath temperature of 45 to 55 ° C., and a Reynolds number of 1 × 10 4. ~ 5 × 10 5 , formed by electrolytic plating with a current density of 20 to 50 A / dm 2 , and using the insoluble anode in the plating bath mainly composed of inorganic acid, the plating layer made of Cu or Cu alloy, Bath temperature 35-55 ° C Reynolds Number 1 × 10 4 ~5 × 10 5 , formed at a current density of 20~60A / dm 2 becomes electrolytic plating, a plating layer by the Sn or Sn alloy, an inorganic acid in the plating bath mainly An insoluble anode is used, and it is formed by electrolytic plating with a bath temperature of 15 to 35 ° C., a Reynolds number of 1 × 10 4 to 5 × 10 5 , and a current density of 10 to 30 A / dm 2 .

また、本発明の製造方法は、前記用Sn又はSn合金によるめっき層の形成時に泡及びスラッジを除去する手段を併設して、めっき液の泡及びスラッジを除去するとよく、めっき効率が更に高まることが判った。   Further, the production method of the present invention may be provided with a means for removing bubbles and sludge at the time of forming the plating layer by the Sn or Sn alloy, and the bubbles and sludge of the plating solution may be removed, thereby further increasing the plating efficiency. I understood.

また、本発明の製造方法は、リフロー処理は、前記めっき層を形成してから1〜30分経過した後に行うとよい。   In the production method of the present invention, the reflow treatment may be performed after 1 to 30 minutes have elapsed since the plating layer was formed.

更に、本発明の製造方法は、リフロー処理は、めっき層を10〜90℃/秒の昇温速度で240〜300℃のピーク温度まで加熱する加熱工程と、前記ピーク温度に達した後、30℃/秒以下の冷却速度で1〜30秒間冷却する一次冷却工程と、一次冷却後に50〜250℃/秒の冷却速度で冷却する二次冷却工程とを有するとよい。   Furthermore, in the manufacturing method of the present invention, the reflow treatment is performed by heating the plating layer to a peak temperature of 240 to 300 ° C. at a temperature rising rate of 10 to 90 ° C./second, and after reaching the peak temperature, 30 It is good to have a primary cooling process which cools for 1 to 30 seconds with a cooling rate below ° C / second, and a secondary cooling process which cools at a cooling rate of 50-250 ° C / second after primary cooling.

本発明によれば、導電部材としての使用時に良好な特性を有する多層にめっきされた銅条材を連続的に効率良く得ることが出来る。   ADVANTAGE OF THE INVENTION According to this invention, the copper strip plated by the multilayer which has a favorable characteristic at the time of use as an electrically-conductive member can be obtained efficiently continuously.

本発明の一実施形態の製造方法に使用される製造装置の例を示す概略構成図である。It is a schematic block diagram which shows the example of the manufacturing apparatus used for the manufacturing method of one Embodiment of this invention. 図1におけるめっき槽中の電極と銅条材との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the electrode and copper strip in the plating tank in FIG. めっき処理中のレイノルズ数と電流効率との関係を示すグラフである。It is a graph which shows the relationship between the Reynolds number during plating processing, and current efficiency. 本発明の一実施形態の製造方法に係るリフロー条件の温度と時間の関係をグラフにした温度プロファイルである。It is the temperature profile which made the relationship between the temperature of the reflow conditions and time concerning the manufacturing method of one Embodiment of this invention a graph. 本発明の一実施形態の製造方法により製造された導電部材の表層部分をモデル化して示した断面図である。It is sectional drawing which modeled and showed the surface layer part of the electrically-conductive member manufactured by the manufacturing method of one Embodiment of this invention. 導電部材の動摩擦係数を測定するための装置を概念的に示す正面図である。It is a front view which shows notionally the apparatus for measuring the dynamic friction coefficient of an electrically-conductive member.

以下、本発明の実施形態を説明する。
図1は、本発明の製造方法を実施するための製造装置の例を模式化して示している。この導電部材製造装置11は、脱脂・洗浄槽12、Niめっき槽13、Cuめっき槽14、Snめっき槽15、各めっき槽13〜15の後に配置される洗浄槽16〜18が連続して配置され、銅条材1を脱脂・洗浄槽12、Niめっき槽13、Cuめっき槽14、Snめっき槽15の順に連続的に搬送しながらめっきするようになっている。脱脂・洗浄槽12は、さらに脱脂槽12a、洗浄槽12b、酸洗槽12c、洗浄槽12dによって構成されている。
また、各めっき槽13〜15には、図2に示すように、連続的に走行する銅条材1の両面と対向するように一対の電極板19が配置されており、各電極板19と銅条材1との間に形成されるめっき液の流れ場におけるレイノルズ数が1×10〜5×10となるように、銅条材1とめっき液とを相対移動する。めっき液は循環タンク(図1にはSnめっき槽15の循環タンクのみ示している)20との間で循環させられるようになっている。
Embodiments of the present invention will be described below.
FIG. 1 schematically shows an example of a production apparatus for carrying out the production method of the present invention. In this conductive member manufacturing apparatus 11, a degreasing / cleaning tank 12, a Ni plating tank 13, a Cu plating tank 14, a Sn plating tank 15, and cleaning tanks 16 to 18 arranged after the plating tanks 13 to 15 are continuously arranged. The copper strip 1 is plated while being continuously conveyed in the order of the degreasing / cleaning tank 12, the Ni plating tank 13, the Cu plating tank 14, and the Sn plating tank 15. The degreasing / cleaning tank 12 further includes a degreasing tank 12a, a cleaning tank 12b, a pickling tank 12c, and a cleaning tank 12d.
Moreover, in each plating tank 13-15, as shown in FIG. 2, a pair of electrode plate 19 is arrange | positioned so as to oppose both surfaces of the copper strip 1 which runs continuously, The copper strip 1 and the plating solution are relatively moved so that the Reynolds number in the flow field of the plating solution formed between the copper strip 1 is 1 × 10 4 to 5 × 10 5 . The plating solution is circulated between a circulation tank (only the circulation tank of the Sn plating tank 15 is shown in FIG. 1) 20.

また、Snめっき液で使用される光沢剤は泡が発生し易く、このため、Snめっき槽15には泡除去手段21が併設されている。また、スラッジ除去手段22も併設されており、このスラッジ除去手段22は、循環タンク20にスラッジ沈降槽を接続し、循環タンク20から定量ずつスラッジ沈降槽にめっき液を抜き取り、沈降剤を添加しつつスラッジを沈降させ、その上済み液を再び循環タンク20に戻すようにしている。沈降したスラッジは、遠心分離機にかけられ、精錬会社に送られてSnとして再利用される。
また、Snめっき槽15の下流位置には、洗浄槽18を経由した銅条材1を乾燥する乾燥機23が設けられる。また、その乾燥機23の下流位置には、リフロー炉24が設けられ、このリフロー炉24に、後述する一次冷却のための空冷ゾーン25、二次冷却のための水冷ゾーン26が備えられる。符号27は、水冷ゾーン26を経由した銅条材1を乾燥する乾燥機である。
Further, the brightener used in the Sn plating solution is liable to generate bubbles. For this reason, the Sn plating tank 15 is provided with a bubble removing means 21. Sludge removal means 22 is also provided. This sludge removal means 22 connects a sludge settling tank to the circulation tank 20, extracts a plating solution from the circulation tank 20 into the sludge settling tank in a fixed amount, and adds a settling agent. The sludge is allowed to settle while returning the upper liquid to the circulation tank 20 again. The settled sludge is subjected to a centrifuge, sent to a refining company, and reused as Sn.
Further, a drier 23 for drying the copper strip material 1 that has passed through the cleaning tank 18 is provided at a downstream position of the Sn plating tank 15. A reflow furnace 24 is provided at a downstream position of the dryer 23. The reflow furnace 24 includes an air cooling zone 25 for primary cooling and a water cooling zone 26 for secondary cooling, which will be described later. Reference numeral 27 denotes a dryer for drying the copper strip 1 that has passed through the water cooling zone 26.

次に、このような製造装置11によって導電部材を製造する方法について説明する。
まず、銅条材1を脱脂、酸洗等によって表面を清浄にした後、Niめっき、Cuめっき、Snめっきをこの順序で順次行う。また、各めっき処理の間には、酸洗又は水洗処理を行う。
Niめっきの条件としては、めっき浴に、硫酸ニッケル(NiSO)、ホウ酸(HBO)を主成分としたワット浴、スルファミン酸ニッケル(Ni(NHSO))とホウ酸(HBO)を主成分としたスルファミン酸浴等が用いられる。酸化反応を起こし易くする塩類として塩化ニッケル(NiCl)などが加えられる場合もある。また、めっき温度は45〜55℃、電流密度は20〜50A/dm、レイノルズ数1×10〜5×10とされる。
Cuめっきの条件としては、めっき浴に硫酸銅(CuSO)及び硫酸(HSO)を主成分とした硫酸銅浴が用いられ、レベリングのために塩素イオン(Cl)が添加される。めっき温度は35〜55℃、電流密度は20〜60A/dm、レイノルズ数1×10〜5×10とされる。
Snめっきの条件としては、めっき浴に硫酸(HSO)と硫酸第一錫(SnSO)を主成分とした硫酸浴が用いられ、めっき温度は15〜35℃、電流密度は10〜30A/dm、レイノルズ数1×10〜5×10とされる。また、硫酸浴には、スラッジ除去装置及び泡除去装置が備えられる。
Next, a method for manufacturing a conductive member using such a manufacturing apparatus 11 will be described.
First, after the surface of the copper strip 1 is cleaned by degreasing, pickling, etc., Ni plating, Cu plating, and Sn plating are sequentially performed in this order. In addition, pickling or rinsing is performed between the plating processes.
As the conditions for Ni plating, the plating bath is a watt bath mainly composed of nickel sulfate (NiSO 4 ), boric acid (H 3 BO 3 ), nickel sulfamate (Ni (NH 2 SO 3 ) 2 ) and boric acid. A sulfamic acid bath or the like mainly composed of (H 3 BO 3 ) is used. In some cases, nickel chloride (NiCl 2 ) or the like is added as a salt that easily causes an oxidation reaction. The plating temperature is 45 to 55 ° C., the current density is 20 to 50 A / dm 2 , and the Reynolds number is 1 × 10 4 to 5 × 10 5 .
As the conditions for Cu plating, a copper sulfate bath containing copper sulfate (CuSO 4 ) and sulfuric acid (H 2 SO 4 ) as main components is used in the plating bath, and chlorine ions (Cl ) are added for leveling. . The plating temperature is 35 to 55 ° C., the current density is 20 to 60 A / dm 2 , and the Reynolds number is 1 × 10 4 to 5 × 10 5 .
As the conditions for Sn plating, a sulfuric acid bath mainly composed of sulfuric acid (H 2 SO 4 ) and stannous sulfate (SnSO 4 ) is used as a plating bath, the plating temperature is 15 to 35 ° C., and the current density is 10 to 10. 30 A / dm 2 and Reynolds number of 1 × 10 4 to 5 × 10 5 . The sulfuric acid bath is provided with a sludge removing device and a foam removing device.

このレイノルズ数Reは、めっき液と銅条材との相対速度U(m/s)とめっき槽内のめっき液の流れ場の相当直径De(m)と、めっき液の動粘性係数ν(m/s)との関係から、Re=UDe/νによって求められる。めっき液の流れ場の相当直径Deは、図2に示す電極板19の幅a、電極板19と銅条材1との間の間隔bとの関係から、De=2ab/(a+b)により求められる。
このレイノルズ数Reは、図3に示すように、大きい値に設定することにより電流効率は向上する。しかし、レイノルズ数が5×10を超えると、理論電流効率値に限りなく近くなるが、Snめっきの場合は、めっき液中のスラッジが増大するため、好ましくない。一方、1×10未満では攪拌効果が弱く、めっき焼けが発生し易くなる。
このため、いずれのめっき処理も、めっき液の流れ場をレイノルズ数1×10〜5×10にて乱流として、発生した水素ガスを連続的かつ効率的に排除し、処理板の表面に新鮮な金属イオンを速やかに供給し、高電流密度によって均質なめっき層を短時間で形成することができる。
これらの各めっき条件をまとめると、以下の表1〜表3に示す通りとなる
The Reynolds number Re includes the relative velocity U (m / s) between the plating solution and the copper strip, the equivalent diameter De (m) of the flow field of the plating solution in the plating tank, and the kinematic viscosity coefficient ν (m 2 / s), Re = UDe / ν. The equivalent diameter De of the flow field of the plating solution is obtained by De = 2ab / (a + b) from the relationship between the width a of the electrode plate 19 and the distance b between the electrode plate 19 and the copper strip 1 shown in FIG. It is done.
As shown in FIG. 3, the current efficiency is improved by setting the Reynolds number Re to a large value. However, when the Reynolds number exceeds 5 × 10 5 , the theoretical current efficiency value is as close as possible. However, in the case of Sn plating, since sludge in the plating solution increases, it is not preferable. On the other hand, if it is less than 1 × 10 4 , the stirring effect is weak and plating burn is likely to occur.
For this reason, in any plating process, the flow field of the plating solution is turbulent with a Reynolds number of 1 × 10 4 to 5 × 10 5 , and the generated hydrogen gas is continuously and efficiently removed, and the surface of the processing plate Thus, a fresh metal ion can be rapidly supplied, and a uniform plating layer can be formed in a short time with a high current density.
These plating conditions are summarized as shown in Tables 1 to 3 below.

Figure 0005442316
Figure 0005442316

Figure 0005442316
Figure 0005442316

Figure 0005442316
Figure 0005442316

そして、このめっき処理により、銅条材の上にNiめっき層、Cuめっき層、Snめっき層が順に形成される。この状態で、Cuめっき層の平均厚さは0.3〜0.5μmとされ、Niめっき層の平均厚さは0.1〜2.0μm、Snめっき層の平均厚さは1.5〜2.0μmとされる。
これらCuめっき層とSnめっき層とが、後述のリフロー処理によってCu−Sn金属間化合物層とSn系表面層となり、その場合、Sn系表面層は前述したようにコネクタ端子としての耐熱性、挿抜性の観点から0.5〜1.5μmの厚さに形成され、このSn系表面層の厚さを確保するためには、下地となるSnめっき層としては、1.5〜2.0μm必要になる。そして、このSnめっき層の下で、凹凸の小さいCu−Sn金属間化合物層を得るには、Cuめっき層としては、0.3〜0.5μmと通常のものより若干大きい厚さとするのが好ましい。
これは、Snめっき層は、厚さ方向に成長した柱状結晶からなっており、次のリフロー処理においてCuとSnとが反応して合金層を形成する際に、CuがSn柱状結晶の粒界に侵入するようにして、その粒界から合金を形成していくと考えられるが、Cuめっき層が厚くCuの量が多いと、Snめっき層の厚さ方向に沿う柱状結晶の粒界に沿って形成されたCu−Sn合金が粒界から面方向に広がりながら成長するため、その凸部がなだらかになり、凹凸の少ないCu−Sn金属間化合物層となるものと考えられる。
この場合、Snめっき層形成時の電流密度が高いと、柱状結晶の粒界が増えるため、これら粒界に分散して合金が成長して、Cu−Sn金属間化合物層の凹凸を小さくする効果がある。
And by this plating process, Ni plating layer, Cu plating layer, and Sn plating layer are formed in order on a copper strip. In this state, the average thickness of the Cu plating layer is 0.3 to 0.5 μm, the average thickness of the Ni plating layer is 0.1 to 2.0 μm, and the average thickness of the Sn plating layer is 1.5 to 2.0 μm.
These Cu plating layer and Sn plating layer are converted into a Cu-Sn intermetallic compound layer and a Sn-based surface layer by a reflow process described later. In this case, the Sn-based surface layer has heat resistance and insertion / removal as a connector terminal as described above. From the viewpoint of safety, it is formed to a thickness of 0.5 to 1.5 μm, and in order to ensure the thickness of this Sn-based surface layer, the Sn plating layer as the base requires 1.5 to 2.0 μm. become. And in order to obtain a Cu-Sn intermetallic compound layer with small irregularities under this Sn plating layer, the Cu plating layer should have a thickness of 0.3 to 0.5 μm, which is slightly larger than a normal one. preferable.
This is because the Sn plating layer is composed of columnar crystals grown in the thickness direction, and when Cu and Sn react in the next reflow process to form an alloy layer, Cu is a grain boundary of Sn columnar crystals. It is considered that an alloy is formed from the grain boundary so as to penetrate into the grain boundary. However, when the Cu plating layer is thick and the amount of Cu is large, along the grain boundary of the columnar crystal along the thickness direction of the Sn plating layer The Cu—Sn alloy formed in this manner grows while spreading in the plane direction from the grain boundary, so that it is considered that the convex portion becomes smooth and becomes a Cu—Sn intermetallic compound layer with few irregularities.
In this case, if the current density at the time of forming the Sn plating layer is high, the grain boundaries of the columnar crystals increase, so that the alloy grows by being dispersed at these grain boundaries, thereby reducing the unevenness of the Cu—Sn intermetallic compound layer. There is.

次に、加熱してリフロー処理を行う。そのリフロー処理としては、図4に示す温度プロファイルとする条件が望ましい。
すなわち、リフロー処理はCO還元性雰囲気にした加熱炉内でめっき後の処理材を10〜90℃/秒の昇温速度で240〜300℃のピーク温度まで加熱する加熱工程と、そのピーク温度に達した後、30℃/秒以下の冷却速度で1〜30秒間冷却する一次冷却工程と、一次冷却後に50〜250℃/秒の冷却速度で冷却する二次冷却工程とを有する処理とする。一次冷却工程は空冷により、二次冷却工程は10〜90℃の水を用いた水冷により行われる。
このリフロー処理を還元性雰囲気で行うことによりSnめっき表面に溶融温度の高い錫酸化物皮膜が生成するのを防ぎ、より低い温度かつより短い時間でリフロー処理を行うことが可能となり、所望の金属間化合物構造を作製することが容易となる。また、冷却工程を二段階とし、冷却速度の小さい一次冷却工程を設けることにより、Cu原子がSn粒内に穏やかに拡散し、所望の金属間化合物構造で成長する。つまり、前述したSn柱状結晶の粒界からのCuの拡散を緩やかにして、その凸部をなだらかにする。そして、その後に急冷を行うことにより金属間化合物層の成長を止め、所望の構造で固定化することができ、適切な状態の表面粗さ(Ra、Rv)のCu−Sn金属間化合物層を得ることができる。
ところで、高電流密度で電析したCuとSnは安定性が低く室温においても合金化や結晶粒肥大化が発生し、リフロー処理で所望の金属間化合物構造を作ることが困難になる。このため、めっき処理後速やかにリフロー処理を行うことが望ましい。具体的には30分以内、望ましくは15分以内、より好ましくは5分以内にリフロー処理を行うとよい。めっき後の放置時間が短いことは問題とならないが、通常の処理ラインでは構成上1分後程度となる。
Next, the reflow process is performed by heating. The reflow process is preferably performed under the temperature profile shown in FIG.
That is, the reflow treatment is a heating step in which the treated material after plating is heated to a peak temperature of 240 to 300 ° C. at a temperature rising rate of 10 to 90 ° C./second in a heating furnace having a CO reducing atmosphere, After reaching, a primary cooling step of cooling for 1 to 30 seconds at a cooling rate of 30 ° C./sec or less and a secondary cooling step of cooling at a cooling rate of 50 to 250 ° C./sec after the primary cooling are performed. The primary cooling step is performed by air cooling, and the secondary cooling step is performed by water cooling using 10 to 90 ° C. water.
By performing this reflow treatment in a reducing atmosphere, it is possible to prevent the formation of a tin oxide film having a high melting temperature on the surface of the Sn plating, and to perform the reflow treatment at a lower temperature and in a shorter time. It becomes easy to produce an intermetallic compound structure. Further, by providing a cooling process in two stages and providing a primary cooling process with a low cooling rate, Cu atoms diffuse gently in the Sn grains and grow with a desired intermetallic compound structure. In other words, the diffusion of Cu from the grain boundaries of the Sn columnar crystals described above is moderated, and the convex portions are smoothed. Then, by performing rapid cooling after that, the growth of the intermetallic compound layer can be stopped and fixed with a desired structure, and a Cu—Sn intermetallic compound layer with an appropriate surface roughness (Ra, Rv) can be obtained. Can be obtained.
By the way, Cu and Sn electrodeposited at a high current density are low in stability, and alloying and crystal grain enlargement occur at room temperature, making it difficult to produce a desired intermetallic compound structure by reflow treatment. For this reason, it is desirable to perform the reflow process immediately after the plating process. Specifically, the reflow process may be performed within 30 minutes, desirably within 15 minutes, more preferably within 5 minutes. A short standing time after plating does not cause a problem, but in a normal processing line, it is about one minute after construction.

以上のような方法により、従前の多段式連続めっき装置より効率的に短時間にて、銅条材の上に形成したNi系下地層と、表面を形成するSn系表面層との間に、Cu−Sn金属間化合物層を有する3層めっきの導電部材が完成される。
この導電部材10は、図5に示すように、銅条材1の表面に、Ni系下地層3、Cu−Sn金属間化合物層4、Sn系表面層5がこの順に形成されるとともに、Cu−Sn金属間化合物層4はさらに、CuSn層6とCuSn層7とから構成されている。
Ni系下地層3は、例えば0.05μm以上の厚さに形成されるものであり、高温時にCuの拡散を防止するバリア層として機能する。
By the method as described above, between the Ni-based underlayer formed on the copper strip material and the Sn-based surface layer forming the surface in a short time more efficiently than the conventional multistage continuous plating apparatus, A three-layer plating conductive member having a Cu-Sn intermetallic compound layer is completed.
As shown in FIG. 5, the conductive member 10 has a Ni-based underlayer 3, a Cu—Sn intermetallic compound layer 4, and a Sn-based surface layer 5 formed in this order on the surface of the copper strip 1. The -Sn intermetallic compound layer 4 further includes a Cu 3 Sn layer 6 and a Cu 6 Sn 5 layer 7.
The Ni-based underlayer 3 is formed to a thickness of 0.05 μm or more, for example, and functions as a barrier layer that prevents Cu diffusion at high temperatures.

Cu−Sn金属間化合物層4は、全体としては、0.05〜1.8μmの厚さ、好ましくは0.1μm以上の厚さに形成され、さらに、Ni系下地層3の上に配置されるCuSn層6と、該CuSn層6の上に配置されるCuSn層7とから構成されている。この場合、Cu−Sn金属間化合物層4全体としては凹凸が形成されており、Sn系表面層5に接する面の表面粗さが、算術平均粗さRaで0.05〜0.25μmであり、かつ、粗さ曲線の最大谷深さRvで0.05〜1.00μmとされている。 The Cu—Sn intermetallic compound layer 4 as a whole is formed to a thickness of 0.05 to 1.8 μm, preferably 0.1 μm or more, and is further disposed on the Ni-based underlayer 3. Cu 3 Sn layer 6 and a Cu 6 Sn 5 layer 7 disposed on the Cu 3 Sn layer 6. In this case, the Cu—Sn intermetallic compound layer 4 as a whole has irregularities, and the surface roughness of the surface in contact with the Sn-based surface layer 5 is an arithmetic average roughness Ra of 0.05 to 0.25 μm. The maximum valley depth Rv of the roughness curve is 0.05 to 1.00 μm.

コネクタ端子部3として用いる場合には、Raが小さい方が挿抜力が低減して好ましいが、Raが0.05μm未満であると、Cu−Sn金属間化合物層4の凹凸がほとんどなくなってCu−Sn金属間化合物層4が著しく脆くなり、曲げ加工時に皮膜の剥離が発生し易くなる。Raが0.25μmを超えるほどに凹凸が大きくなると、コネクタとして用いたときの挿抜時にCu−Sn金属間化合物層4の凹凸が抵抗となるため、挿抜力を低減する効果が乏しい。
一方、粗さ曲線の最大谷深さRvに関しては、Rvが1.00μmを超えると、高温時にその谷部からSnがNi系下地層へと拡散し、Ni系下地層に欠損が発生するおそれがあり、その欠損により、基材のCuが拡散してCuSn層が表面まで達し、表面にCu酸化物が形成されることにより、接触抵抗が増大することになる。また、このとき、Ni系下地層の欠損部からのCuの拡散により、カーケンダルボイドが発生し易い。このRvを0.05μm未満とするのは、Raの場合と同様、Cu−Sn金属間化合物層が脆くなるため好ましくない。
また、このようにCu−Sn金属間化合物層の凹凸が小さく、Ni系下地層の欠損によるCuの拡散が生じにくい状態であると、Cu−Sn金属間化合物層の電気的特性が変化することがなく、ヒューズとして用いた場合にも安定した溶断特性を発揮することができる。
When used as the connector terminal portion 3, it is preferable that Ra is small because the insertion / extraction force is reduced. However, when Ra is less than 0.05 μm, the Cu—Sn intermetallic compound layer 4 is almost free from unevenness and Cu— The Sn intermetallic compound layer 4 becomes extremely fragile, and peeling of the film is likely to occur during bending. If the unevenness becomes so large that Ra exceeds 0.25 μm, the unevenness of the Cu—Sn intermetallic compound layer 4 becomes resistance during insertion / extraction when used as a connector, and thus the effect of reducing the insertion / extraction force is poor.
On the other hand, regarding the maximum valley depth Rv of the roughness curve, when Rv exceeds 1.00 μm, Sn diffuses from the valley portion to the Ni-based underlayer at a high temperature, and the Ni-based underlayer may be damaged. Due to the defect, Cu of the base material diffuses, the Cu 6 Sn 5 layer reaches the surface, and Cu oxide is formed on the surface, thereby increasing the contact resistance. Further, at this time, Kirkendall voids are likely to be generated due to diffusion of Cu from the defect portion of the Ni-based underlayer. Setting Rv to less than 0.05 μm is not preferable because the Cu—Sn intermetallic compound layer becomes brittle as in the case of Ra.
Moreover, when the unevenness of the Cu—Sn intermetallic compound layer is small and Cu diffusion due to defects in the Ni-based underlayer is difficult to occur, the electrical characteristics of the Cu—Sn intermetallic compound layer change. Therefore, stable fusing characteristics can be exhibited even when used as a fuse.

また、このCu−Sn金属間化合物層4のうちの下層に配置されるCuSn層6は、Ni系下地層3を覆って、その拡散を抑える機能があり、Ni系下地層3に対する面積被覆率が60〜100%とされ、その平均厚さは0.01〜0.5μmとされる。
この面積被覆率は、皮膜を集束イオンビーム(FIB;Focused Ion Beam)により断面加工し、走査イオン顕微鏡(SIM;Scanning Ion Microscope)で観察した表面の走査イオン像(SIM像)から確認することができる。
このNi系下地層3に対する面積被覆率が60%以上ということは、面積被覆率が100%満たない場合に、Ni系下地層3の表面には局部的にCuSn層6が存在しない部分が生じることになるが、その場合でも、Cu−Sn金属間化合物層4のCuSn層7がNi系下地層3を覆っていることになる。また、平均厚さは、CuSn層6が存在する部分で、その厚さを複数個所測定したときの平均値である。
The Cu 3 Sn layer 6 disposed in the lower layer of the Cu—Sn intermetallic compound layer 4 has a function of covering the Ni-based underlayer 3 and suppressing its diffusion, and has an area relative to the Ni-based underlayer 3. The coverage is 60 to 100%, and the average thickness is 0.01 to 0.5 μm.
This area coverage can be confirmed from a surface scanning ion image (SIM image) obtained by observing a cross-section of the film with a focused ion beam (FIB) and observing with a scanning ion microscope (SIM). it can.
When the area coverage is 60% or more with respect to the Ni-based underlayer 3, when the area coverage is less than 100%, the portion where the Cu 3 Sn layer 6 does not locally exist on the surface of the Ni-based underlayer 3 Even in such a case, the Cu 6 Sn 5 layer 7 of the Cu—Sn intermetallic compound layer 4 covers the Ni-based underlayer 3. The average thickness is a portion where the Cu 3 Sn layer 6 is present and is an average value when the thickness is measured at a plurality of locations.

なお、このCu−Sn金属間化合物層4は、Ni系下地層3の上にめっきしたCuと表面のSnとが拡散することにより合金化したものであるから、リフロー処理等の条件によっては下地となったCuめっき層の全部が拡散してCu−Sn金属間化合物層4となる場合もあるが、そのCuめっき層が残る場合もある。
また、Ni系下地層3のNiがCu−Sn金属間化合物層4にわずかながら拡散するため、CuSn層7内にはわずかにNiが混入している。
In addition, since this Cu-Sn intermetallic compound layer 4 is alloyed by diffusion of Cu plated on the Ni-based underlayer 3 and surface Sn, depending on conditions such as reflow treatment, In some cases, the entire Cu plating layer is diffused to form the Cu—Sn intermetallic compound layer 4, but the Cu plating layer may remain.
Further, since Ni in the Ni-based underlayer 3 diffuses slightly into the Cu—Sn intermetallic compound layer 4, Ni is slightly mixed in the Cu 6 Sn 5 layer 7.

最表面のSn系表面層5は、表面の接触抵抗、はんだ付け性、耐食性、コネクタとしての使用時の挿抜力の適切化のため、例えば0.5〜1.5μmの厚さに形成される。   The outermost Sn-based surface layer 5 is formed to have a thickness of, for example, 0.5 to 1.5 μm in order to optimize surface contact resistance, solderability, corrosion resistance, and insertion / extraction force when used as a connector. .

次に本発明の実施例を説明する。
銅条材として、厚さ0.25mmの三菱伸銅株式会社製TC材を用い、これにNi、Cu、Snの各めっき処理を順次行った。この場合、表4に示すように、各めっき処理の電流密度、レイノルズ数、リフロー条件を変えて複数の試料を作成した。
Next, examples of the present invention will be described.
As the copper strip material, a TC material manufactured by Mitsubishi Shindoh Co., Ltd. having a thickness of 0.25 mm was used, and Ni, Cu, and Sn plating treatments were sequentially performed thereon. In this case, as shown in Table 4, a plurality of samples were prepared by changing the current density, Reynolds number, and reflow conditions of each plating treatment.

Figure 0005442316
Figure 0005442316

本実施例の処理材断面は、透過電子顕微鏡を用いたエネルギー分散型X線分光分析(TEM−EDS分析)の結果、銅条材の上に、Ni系下地層、CuSn層、CuSn層、Sn系表面層の4層構造となっていた。またCuSn層とNi系下地層の界面には不連続なCuSn層があり、集束イオンビームによる断面の走査イオン顕微鏡(FIB−SIM像)から観察されるCuSn層のNi系下地層に対する表面被覆率は60%以上であった。 As a result of energy dispersive X-ray spectroscopic analysis (TEM-EDS analysis) using a transmission electron microscope, the cross section of the treatment material of this example is a Ni-based underlayer, a Cu 3 Sn layer, and Cu 6 on a copper strip. It has a four-layer structure of Sn 5 layers and Sn-based surface layers. The Cu 6 at the interface Sn 5 layer and the Ni-based base layer has discontinuous Cu 3 Sn layer, Ni of Cu 3 Sn layer observed from a scanning ion microscope of a cross section by focused ion beam (FIB-SIM image) The surface coverage with respect to the system underlayer was 60% or more.

また、Sn系表面層を除去して、その下のCu−Sn金属間化合物層の表面粗さを測定した。
このSn系表面層を除去する場合、例えばレイボルド株式会社製のL80等の純SnをエッチングしCu−Sn合金を腐食しない成分からなるめっき被膜剥離用のエッチング液に5分間浸漬することによりSn系表面層が除去され、その下層のCu−Sn金属間化合物層が露出される。
表面粗さは、露出させたCu−Sn金属間化合物層の表面に、オリンパス株式会社製の走査型共焦点赤外レーザ顕微鏡LEXT OLS−3000−IRを用い、対物レンズ100倍の条件でレーザ光を照射して、その反射光から距離を測定し、そのレーザ光をCu−Sn金属間化合物層の表面に沿って直線的にスキャンしながら距離を連続的に測定することにより求めた。
以上の測定結果を表5にまとめた。
Further, the Sn-based surface layer was removed, and the surface roughness of the underlying Cu—Sn intermetallic compound layer was measured.
When removing this Sn-based surface layer, for example, pure Sn such as L80 manufactured by Reybold Co., Ltd. is etched, and the Sn-based surface layer is immersed for 5 minutes in an etching solution for removing the plating film made of a component that does not corrode the Cu-Sn alloy. The surface layer is removed, and the underlying Cu—Sn intermetallic compound layer is exposed.
The surface roughness of the exposed Cu-Sn intermetallic compound layer was measured by using a scanning confocal infrared laser microscope LEXT OLS-3000-IR manufactured by Olympus Co., Ltd. and laser light under conditions of 100 times the objective lens. The distance was measured from the reflected light, and the distance was continuously measured while linearly scanning the laser light along the surface of the Cu—Sn intermetallic compound layer.
The above measurement results are summarized in Table 5.

Figure 0005442316
Figure 0005442316

次に、表4及び表5に示される試料について、175℃×1000時間経過後の接触抵抗、剥離の有無、耐摩耗性を測定した。また、動摩擦係数及び175℃×1000時間経過後の抵抗値変化率についても測定した。
接触抵抗は、試料を175℃×1000時間放置した後、山崎精機株式会社製電気接点シミュレーターを用い荷重0.49N(50gf)摺動有りの条件で測定した。
剥離試験は、9.8kNの荷重にて90°曲げ(曲率半径R:0.7mm)を行った後、大気中で160℃×250時間保持し、曲げ戻して、曲げ部の剥離状況の確認を行った。
耐摩耗性は、JIS H 8503に規定される往復運動摩耗試験によって、試験荷重が9.8N、研磨紙No.400とし、素地(銅条材)が露出するまでの回数を測定し、50回試験を行ってもめっきが残存していた試料を○、50回以内に素地が露出した試料を×とした。
動摩擦係数については、嵌合型のコネクタのオス端子とメス端子の接点部を模擬するように、各試料によって板状のオス試験片と内径1.5mmの半球状としたメス試験片とを作成し、アイコーエンジニアリング株式会社製の横型荷重測定器(Model−2152NRE)を用い、両試験片間の摩擦力を測定して動摩擦係数を求めた。図6により説明すると、水平な台31上にオス試験片32を固定し、その上にメス試験片33の半球凸面を置いてめっき面どうしを接触させ、メス試験片33に錘34によって4.9N(500gf)の荷重Pをかけてオス試験片32を押さえた状態とする。この荷重Pをかけた状態で、オス試験片32を摺動速度80mm/分で矢印で示す水平方向に10mm引っ張ったときの摩擦力Fをロードセル35によって測定した。その摩擦力Fの平均値Favと荷重Pより動摩擦係数(=Fav/P)を求めた。
これらの結果を表6に示す。
Next, with respect to the samples shown in Tables 4 and 5, the contact resistance after 175 ° C. × 1000 hours, the presence or absence of peeling, and the wear resistance were measured. Further, the coefficient of dynamic friction and the rate of change in resistance value after 175 ° C. × 1000 hours were also measured.
The contact resistance was measured under the condition of sliding with a load of 0.49 N (50 gf) using an electrical contact simulator manufactured by Yamazaki Seiki Co., Ltd. after the sample was left at 175 ° C. for 1000 hours.
In the peel test, 90 ° bending (curvature radius R: 0.7 mm) was performed with a load of 9.8 kN, then held in the atmosphere at 160 ° C. for 250 hours, bent back, and the peeled state of the bent portion was confirmed. Went.
The abrasion resistance was determined by a reciprocating wear test specified in JIS H 8503, with a test load of 9.8 N and abrasive paper no. 400, the number of times until the substrate (copper strip) was exposed was measured, and a sample in which plating remained even after 50 tests was evaluated as ◯, and a sample in which the substrate was exposed within 50 times was evaluated as x.
As for the dynamic friction coefficient, a plate-shaped male test piece and a hemispherical female test piece having an inner diameter of 1.5 mm are prepared for each sample so as to simulate the contact portion of the male terminal and female terminal of the fitting type connector. Then, using a horizontal load measuring device (Model-2152NRE) manufactured by Aiko Engineering Co., Ltd., the frictional force between the two test pieces was measured to obtain the dynamic friction coefficient. Referring to FIG. 6, a male test piece 32 is fixed on a horizontal base 31, a hemispherical convex surface of a female test piece 33 is placed on the male test piece 33, and the plating surfaces are brought into contact with each other. The load P of 9N (500 gf) is applied and the male test piece 32 is pressed. With the load P applied, the frictional force F when the male test piece 32 was pulled 10 mm in the horizontal direction indicated by the arrow at a sliding speed of 80 mm / min was measured by the load cell 35. A dynamic friction coefficient (= Fav / P) was obtained from the average value Fav of the friction force F and the load P.
These results are shown in Table 6.

Figure 0005442316
Figure 0005442316

この表6から明らかなように、本実施例の導電部材においては、高温時の接触抵抗が小さく、剥離やカーケンダルボイドの発生がなく、動摩擦係数も小さいことから、コネクタ使用時の挿抜力も小さく良好であると判断できる。なお、比較例7は表面にめっき焼けが生じていた。また、比較例10ではSnめっきにおいてスラッジの発生が目立った。   As is apparent from Table 6, the conductive member of this example has a low contact resistance at high temperatures, no peeling or Kirkendall voids, and a small coefficient of dynamic friction. Therefore, the insertion / extraction force when using the connector is also small. It can be judged that it is good. In Comparative Example 7, plating burn occurred on the surface. In Comparative Example 10, the generation of sludge was noticeable in Sn plating.

1 銅条材
3 Ni系下地層
4 Cu−Sn金属間化合物層
5 Sn系表面層
6 CuSn層
7 CuSn
10 導電部材
11 導電部材製造装置
12 脱脂・洗浄槽
13 Niめっき槽
14 Cuめっき槽
15 Snめっき槽
16〜18 洗浄槽
19 電極板
20 循環タンク
21 泡除去手段
22 スラッジ除去手段
24 リフロー炉
25 空冷ゾーン
26 水冷ゾーン

DESCRIPTION OF SYMBOLS 1 Copper strip 3 Ni-type base layer 4 Cu-Sn intermetallic compound layer 5 Sn-type surface layer 6 Cu 3 Sn layer 7 Cu 6 Sn 5 layer 10 Conductive member 11 Conductive member manufacturing apparatus 12 Degreasing / cleaning tank 13 Ni plating tank 14 Cu plating tank 15 Sn plating tank 16-18 Cleaning tank 19 Electrode plate 20 Circulating tank 21 Foam removing means 22 Sludge removing means 24 Reflow furnace 25 Air cooling zone 26 Water cooling zone

Claims (5)

銅条材を連続的に走行させながら複数のめっき浴に挿通して、その表面に、Ni又はNi合金、Cu又はCu合金、Sn又はSn合金のめっき層をこの順に形成し、その後、加熱してリフロー処理することにより、前記銅条材の上に、Ni系下地層、Cu−Sn金属間化合物層、Sn系表面層を順に形成した導電部材を製造する方法であって、
前記Ni又はNi合金によるめっき層を、無機酸を主成分とするめっき浴中にて不溶性アノードを使用し、浴温45〜55℃、レイノルズ数1×10〜5×10、電流密度20〜50A/dmなる電解めっきにて形成し、
前記Cu又はCu合金によるめっき層を、無機酸を主成分とするめっき浴中にて不溶性アノードを使用し、浴温35〜55℃、レイノルズ数1×10〜5×10、電流密度20〜60A/dmなる電解めっきにて形成し、
前記Sn又はSn合金によるめっき層を、無機酸を主成分とするめっき浴中にて不溶性アノードを使用し、浴温15〜35℃、レイノルズ数1×10〜5×10、電流密度10〜30A/dmなる電解めっきにて形成することを特徴とする導電部材の製造方法。
The copper strip is continuously run while passing through a plurality of plating baths, and Ni or Ni alloy, Cu or Cu alloy, Sn or Sn alloy plating layers are formed in this order on the surface, and then heated. Reflow treatment to produce a conductive member in which a Ni-based underlayer, a Cu-Sn intermetallic compound layer, and a Sn-based surface layer are sequentially formed on the copper strip,
The plating layer made of Ni or Ni alloy is an insoluble anode in a plating bath mainly composed of an inorganic acid, the bath temperature is 45 to 55 ° C., the Reynolds number is 1 × 10 4 to 5 × 10 5 , and the current density is 20. Formed by electrolytic plating of ~ 50 A / dm 2 ,
The plating layer made of Cu or Cu alloy is an insoluble anode in a plating bath mainly composed of an inorganic acid, the bath temperature is 35 to 55 ° C., the Reynolds number is 1 × 10 4 to 5 × 10 5 , and the current density is 20. was formed by ~60A / dm 2 consisting of electrolytic plating,
The plating layer made of Sn or Sn alloy is an insoluble anode in a plating bath mainly composed of an inorganic acid, the bath temperature is 15 to 35 ° C., the Reynolds number is 1 × 10 4 to 5 × 10 5 , and the current density is 10 method for manufacturing a conductive member, and forming at ~30A / dm 2 becomes electroplating.
前記Sn又はSn合金によるめっき層の形成時に、スラッジ除去手段及び泡除去手段を使用することを特徴とする請求項1に記載の導電部材の製造方法   The method for producing a conductive member according to claim 1, wherein sludge removing means and bubble removing means are used when the plating layer is formed of the Sn or Sn alloy. 前記リフロー処理は、前記めっき層を形成してから1〜30分経過した後に行うことを特徴とする請求項1又は2に記載の導電部材の製造方法。   The method for producing a conductive member according to claim 1, wherein the reflow treatment is performed after 1 to 30 minutes have elapsed since the plating layer was formed. 前記リフロー処理は、めっき層を10〜90℃/秒の昇温速度で240〜300℃のピーク温度まで加熱する加熱工程と、前記ピーク温度に達した後、30℃/秒以下の冷却速度で1〜30秒間冷却する一次冷却工程と、一次冷却後に50〜250℃/秒の冷却速度で冷却する二次冷却工程とを有することを特徴とする請求項1から3のいずれか一項に記載の導電部材の製造方法。   The reflow treatment includes a heating step of heating the plating layer to a peak temperature of 240 to 300 ° C. at a temperature rising rate of 10 to 90 ° C./second, and a cooling rate of 30 ° C./second or less after reaching the peak temperature. The primary cooling step of cooling for 1 to 30 seconds and the secondary cooling step of cooling at a cooling rate of 50 to 250 ° C./second after the primary cooling are provided. The manufacturing method of the electrically-conductive member. 請求項1から4のいずれか一項に記載の製造方法により製造された導電部材。   The electrically-conductive member manufactured by the manufacturing method as described in any one of Claim 1 to 4.
JP2009115289A 2009-04-14 2009-05-12 Manufacturing method of conductive member Active JP5442316B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009115289A JP5442316B2 (en) 2009-05-12 2009-05-12 Manufacturing method of conductive member
CN200980158742.4A CN102395713B (en) 2009-04-14 2009-07-13 Conductive member and manufacturing method thereof
PCT/JP2009/003280 WO2010119489A1 (en) 2009-04-14 2009-07-13 Conductive member and manufacturing method thereof
TW098124428A TWI438784B (en) 2009-04-14 2009-07-20 Conductive member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115289A JP5442316B2 (en) 2009-05-12 2009-05-12 Manufacturing method of conductive member

Publications (2)

Publication Number Publication Date
JP2010265489A JP2010265489A (en) 2010-11-25
JP5442316B2 true JP5442316B2 (en) 2014-03-12

Family

ID=43362715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115289A Active JP5442316B2 (en) 2009-04-14 2009-05-12 Manufacturing method of conductive member

Country Status (1)

Country Link
JP (1) JP5442316B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5410154B2 (en) * 2008-12-24 2014-02-05 三菱伸銅株式会社 Method and apparatus for producing plated copper strip
JP5442385B2 (en) * 2009-10-07 2014-03-12 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP5637965B2 (en) * 2011-10-20 2014-12-10 株式会社神戸製鋼所 Aluminum strip for lead frame and lead frame strip
EP2620275B1 (en) * 2012-01-26 2019-10-02 Mitsubishi Materials Corporation Tin-plated copper-alloy material for terminal and method for producing the same
TW201413068A (en) * 2012-07-02 2014-04-01 Mitsubishi Materials Corp Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics and method of manufacturing the same
JP7040224B2 (en) 2018-03-30 2022-03-23 三菱マテリアル株式会社 Tin-plated copper terminal material and its manufacturing method

Also Published As

Publication number Publication date
JP2010265489A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
WO2010119489A1 (en) Conductive member and manufacturing method thereof
JP5280957B2 (en) Conductive member and manufacturing method thereof
JP4372835B1 (en) Conductive member and manufacturing method thereof
JP4319247B1 (en) Conductive member and manufacturing method thereof
US8940404B2 (en) Tin-plated copper-alloy material for terminal and method for producing the same
JP5498710B2 (en) Conductive member and manufacturing method thereof
WO2010084532A1 (en) Conductive member and method for producing the same
US9616639B2 (en) Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
JP5442316B2 (en) Manufacturing method of conductive member
WO2009123144A1 (en) Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance
JP2009108389A (en) Sn-PLATED MATERIAL FOR ELECTRONIC PARTS
US20140004373A1 (en) Tin-plated copper-alloy material for terminal and method for producing the same
JP6543141B2 (en) Sn plated material and method of manufacturing the same
JP5313773B2 (en) Plated copper strip and method for producing the same
US10982345B2 (en) Tin-plated product and method for producing same
JP5692799B2 (en) Sn plating material and method for producing the same
JP5325734B2 (en) Conductive member and manufacturing method thereof
CN104600459A (en) Tin-plated copper-alloy terminal material
JP5635794B2 (en) Conductive member and manufacturing method thereof
JP5027013B2 (en) Plated square wire material for connectors
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP2015124434A (en) Tin-plated copper-alloy terminal material
JP5442385B2 (en) Conductive member and manufacturing method thereof
JP7172583B2 (en) Terminal materials for connectors
JP5714465B2 (en) Sn plating material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131218

R150 Certificate of patent or registration of utility model

Ref document number: 5442316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250