WO2009123144A1 - Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance - Google Patents

Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance Download PDF

Info

Publication number
WO2009123144A1
WO2009123144A1 PCT/JP2009/056544 JP2009056544W WO2009123144A1 WO 2009123144 A1 WO2009123144 A1 WO 2009123144A1 JP 2009056544 W JP2009056544 W JP 2009056544W WO 2009123144 A1 WO2009123144 A1 WO 2009123144A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
layer
phase
alloy
thickness
Prior art date
Application number
PCT/JP2009/056544
Other languages
French (fr)
Japanese (ja)
Inventor
健志 小池
Original Assignee
日鉱金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008-093903 priority Critical
Priority to JP2008093903 priority
Application filed by 日鉱金属株式会社 filed Critical 日鉱金属株式会社
Publication of WO2009123144A1 publication Critical patent/WO2009123144A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Abstract

Disclosed is a tinned bar with excellent abrasion resistance, insertion properties and heat resistance that is suitable for use as conductive spring material. In an electroplating process, the surface of a copper alloy bar is base-plated and then Sn-plated. This is followed by a reflow process. The height difference between the outermost surface of the Sn plating and the outermost point of the Cu-Sn alloy phase of the copper alloy tinned bar is 0.1-0.5 mm, the maximum height of the roughness curve of the Cu-Sn alloy phase is 0.6-1.2 mm, the average length of the roughness curve of the Cu-Sn alloy phase is 2.0-5.0 mm, and preferably 2.0 ≤ Rsm/(y + Rz) ≤ 4.0. From its surface to the base material, the plating film consists of a Sn layer 0.5-1.5 mm thick, a Cu-Sn alloy layer 0.6-2.0 mm thick, and a Cu layer 0-0.8 mm thick, of a Sn layer 0.5-1.5 mm thick, a Cu-Sn layer 0.4-2.0 mm thick, and a Ni layer 0.1-0.8 mm thick.

Description

耐摩耗性、挿入性及び耐熱性に優れた銅合金すずめっき条Copper alloy tin-plated strip with excellent wear resistance, insertability and heat resistance

 本発明は、コネクタ、端子、リレ-、スイッチ等の導電性ばね材として好適な、耐摩耗性、挿入性、耐熱性に優れたすずめっき条に関する。 The present invention relates to a tin plating strip that is suitable as a conductive spring material for connectors, terminals, relays, switches, etc. and has excellent wear resistance, insertability, and heat resistance.

 自動車用及び民生用のコネクタ、端子、リレ-、スイッチ等の電子部品用導電性ばね材には、Snの優れた耐食性、はんだ濡れ性、電気接続性という特性を生かし、Snめっきが施された銅又は銅合金条が使用されている。銅合金のSnめっき条は、一般的に、連続めっきラインにおいて、脱脂および酸洗の後、電気めっき法によりCu下地めっき相を形成し、次に電気めっき法によりSnめっき相を形成し、最後にリフロー処理を施しSnめっき相を溶融させる工程で製造される。
 Snめっき材では、経時的に、母材や下地めっきの成分がSn層に拡散して合金相を形成することによりSn層が消失し、母材や下地めっきの成分が酸化物として表面全体に厚く形成されるため、接触抵抗、半田付け性といった諸特性が劣化する。銅合金のCu下地Snめっきの場合、この合金相は主としてCu3Sn、Cu6Sn5等の金属間化合物である。特性の経時劣化は、高温ほど促進され、自動車のエンジン回り等では特に顕著になる。
 一方、近年、電子・電気部品の回路数増大により、回路に電気信号を供給するコネクタの多極化が進んでいる。Snめっき材は、その軟らかさからコネクタの接点においてオスとメスを凝着させるガスタイト構造が採られるため、金めっき等で構成されるコネクタに比べ、コネクタの挿入力が高い。このためコネクタの多極化によるコネクタ挿入力の増大が問題となっている。
 例えば、自動車の組み立てラインでは、コネクタを嵌合させる作業は、現在ほとんど人力で行われている。コネクタの挿入力が大きくなると、組み立てラインで作業者に負担がかかり、作業効率の低下に直結する。さらに、作業者の健康を損なう可能性も指摘されている。このことから、Snめっき材の挿入力の低減が強く望まれている。
 また、ばね材の接点は、エンジンの振動、車載走行による振動、端子材料の熱膨張・収縮等により摺動する。摺動によりSnめっきが摩耗すると、Snの特徴である優れた半田濡れ性、耐食性、電気接続性という特性が劣化する。例えば、オス・メス端子が嵌合され、接触部に往復移動が繰り返された際に、摩耗によって発生したSnめっき材料の酸化物が堆積し、この酸化物が絶縁に近い特性であるため接触不良(接触抵抗の増大)が生じる。
 以上のように、Snめっき材においては、挿入力の低減、耐熱性および耐摩耗性の改善が近年の課題となっている。コネクタの挿入力を低減するための有効な方法は、特開平10-265992、特開平10-302864、特開2000-164279、特開2007-258156号公報等公知の文献に開示されている通り、Snめっき相を薄くすることである。
 しかし、Snめっき相を薄くすると、Sn相消失による特性劣化が早期に進行する。すなわち、単にSnめっきを薄くするだけでは、挿入力が低減する反面、耐熱性が劣化する。したがって、Sn相を薄くする場合には、Snめっきの耐熱性を改善する技術を適用することが必要となる。
 Snめっきの耐熱性を改善する技術として、下地めっきによりSn中へのCu等の拡散を防止する技術が検討されている。例えば、特開平6-196349、特開平11-135226、特開2002-226982、特開2003-293187、特開2004-68026、特開2007-258156号公報では、Cu/Niのニ相下地めっきを施す技術が開示されている。このSnめっきをリフローすると、Sn/Cu-Sn合金/Ni/銅合金母材の構造となる。この下地Ni相により母材CuのSn相中への拡散が抑制され、またCu-Sn相の存在によりNiのSn相中に拡散が抑制されるため、Sn相の消失が遅れる。特開2007-258156号公報(特許文献1)では、高温、長時間、腐食性雰囲気下又は振動環境下においても電気的信頼性(低接触抵抗)を維持し、かつ良好なはんだ付け性を維持するために、Sn被覆層表面の粗さ及び厚みを制御している。特開2007-63624号公報(特許文献2)では、Snめっき銅合金条のリフロー処理後のCu-Sn合金相の平均粗さを制御して挿抜性及び耐熱性のバランスをとっている。
特開2007-258156号公報 特開2007-63624号公報
Conductive spring materials for electronic parts such as connectors, terminals, relays and switches for automobiles and consumer use are plated with Sn, taking advantage of Sn's excellent corrosion resistance, solder wettability, and electrical connectivity. Copper or copper alloy strips are used. In general, the Sn plating strip of a copper alloy is formed in a continuous plating line after degreasing and pickling, forming a Cu undercoat phase by electroplating, and then forming an Sn plating phase by electroplating. It is manufactured in a process in which a reflow treatment is applied to melt the Sn plating phase.
In the Sn plating material, over time, the base material and the base plating components diffuse into the Sn layer to form an alloy phase, so that the Sn layer disappears, and the base material and the base plating components become oxides on the entire surface. Since it is formed thick, various characteristics such as contact resistance and solderability deteriorate. In the case of Cu-based Sn plating of a copper alloy, this alloy phase is mainly an intermetallic compound such as Cu 3 Sn or Cu 6 Sn 5 . The deterioration of characteristics with time is accelerated as the temperature increases, and becomes particularly noticeable around an automobile engine.
On the other hand, in recent years, with the increase in the number of electronic / electrical components, the number of connectors for supplying electrical signals to the circuits has been increasing. Since the Sn plating material adopts a gas tight structure in which male and female are adhered to each other at the contact point of the connector because of its softness, the insertion force of the connector is higher than that of a connector constituted by gold plating or the like. For this reason, an increase in connector insertion force due to the increase in the number of connectors is a problem.
For example, in an automobile assembly line, the work of fitting a connector is currently almost done manually. When the insertion force of the connector is increased, a burden is imposed on the worker on the assembly line, which directly leads to a decrease in work efficiency. Furthermore, it has been pointed out that it may impair the health of workers. For this reason, reduction of the insertion force of Sn plating material is strongly desired.
The contact point of the spring material slides due to engine vibration, vibration due to on-vehicle traveling, thermal expansion / contraction of the terminal material, and the like. When the Sn plating is worn by sliding, the characteristics such as excellent solder wettability, corrosion resistance, and electrical connectivity that are characteristic of Sn deteriorate. For example, when a male / female terminal is fitted and reciprocating movement is repeated at the contact portion, an oxide of Sn plating material generated due to wear accumulates, and this oxide has characteristics close to insulation, resulting in poor contact. (Increased contact resistance) occurs.
As described above, in Sn-plated materials, reduction of insertion force, improvement of heat resistance and wear resistance have become issues in recent years. Effective methods for reducing the insertion force of the connector are disclosed in known literatures such as Japanese Patent Laid-Open Nos. 10-265992, 10-302864, 2000-164279, and 2007-258156. It is to make the Sn plating phase thinner.
However, when the Sn plating phase is thinned, characteristic deterioration due to disappearance of the Sn phase proceeds at an early stage. That is, simply thinning the Sn plating reduces the insertion force, but deteriorates the heat resistance. Therefore, when the Sn phase is thinned, it is necessary to apply a technique for improving the heat resistance of Sn plating.
As a technique for improving the heat resistance of Sn plating, a technique for preventing the diffusion of Cu or the like into Sn by base plating has been studied. For example, in JP-A-6-196349, JP-A-11-135226, JP-A-2002-226882, JP-A-2003-293187, JP-A-2004-68026, and JP-A-2007-258156, a two-phase undercoat of Cu / Ni is used. Techniques to apply are disclosed. When this Sn plating is reflowed, a structure of Sn / Cu—Sn alloy / Ni / copper alloy base material is obtained. This base Ni phase suppresses the diffusion of the base material Cu into the Sn phase, and the presence of the Cu—Sn phase suppresses the diffusion into the Sn phase of Ni, so that the disappearance of the Sn phase is delayed. Japanese Patent Application Laid-Open No. 2007-258156 (Patent Document 1) maintains electrical reliability (low contact resistance) even in a corrosive atmosphere or vibration environment at high temperatures, for a long time, and maintains good solderability. Therefore, the roughness and thickness of the Sn coating layer surface are controlled. In Japanese Patent Application Laid-Open No. 2007-63624 (Patent Document 2), the average roughness of the Cu—Sn alloy phase after the reflow treatment of the Sn-plated copper alloy strip is controlled to balance the insertability and heat resistance.
JP 2007-258156 A JP 2007-63624 A

 上記特許文献1では、Sn被覆層表面の粗さを制御するために特定の表面粗さを有する母材を使用しており、母材表面をイオンエッチング、電解研磨、圧延、研磨、ショットブラスト等により粗化処理する必要があるため設備費用がかかり、製造費用が高価となる問題があった(特許文献2「0032」~「0033」)。
 又、上記特許文献2では、Cu-Sn合金相の平均粗さが大きいほど、挿抜性は良好である一方、平均粗さが小さいほど耐熱性は良好であるため、これら相反する効果を調整するためにはCu-Sn合金相の平均粗さの微妙な調整が必要であり、Cuめっき時に析出するCu電着粒の大きさを制御して行っているが、そのためには特別な注意及び操作が必要であった(特許文献1「0018」)。
 上記の通り、低挿入力で、高温及び/又は長時間後でも優れた耐食性及び低い接触抵抗を維持し、かつ耐摩耗性についても良好なSnめっき条を工業的に容易な作業により製造することは、当分野の課題であった。
In Patent Document 1, a base material having a specific surface roughness is used to control the surface roughness of the Sn coating layer, and the surface of the base material is subjected to ion etching, electrolytic polishing, rolling, polishing, shot blasting, etc. Therefore, there is a problem that the equipment costs are increased due to the necessity of roughening treatment, and the manufacturing cost is high (Patent Document 2, “0032” to “0033”).
Further, in Patent Document 2, the larger the average roughness of the Cu—Sn alloy phase, the better the insertion / extraction, while the smaller the average roughness, the better the heat resistance. Therefore, these conflicting effects are adjusted. For this purpose, fine adjustment of the average roughness of the Cu—Sn alloy phase is required, and the size of the Cu electrodeposited grains that precipitate during Cu plating is controlled. (Patent Document 1 “0018”).
As described above, a Sn-plated strip having a low insertion force, maintaining excellent corrosion resistance and low contact resistance even after high temperature and / or for a long time, and having good wear resistance is manufactured by an industrially easy operation. Was an issue in the field.

 本発明者は、鋭意研究した結果、銅合金すずめっき条のCu-Sn合金相の純Sn相との界面の凹凸が密でかつ大きい場合に優れた耐摩耗性、挿入性及び耐熱性が得られることを見出した。本発明は、この発見に基づき成されたものであり、下記構成を有する。
(1)銅合金条の表面に、下地めっき、Snめっきの順で電気めっきを施し、その後、リフロー処理を施しためっき条であり;めっき表面に対する垂直断面において、Snめっき最表面とCu-Sn合金相の最表点との高度差yが0.1~0.5μmであり;
Sn相を溶解除去し、Cu-Sn合金相を表面に現出させたときに、このCu-Sn合金相の粗さ曲線の最大高さRzが0.6~1.2μmであり、かつCu-Sn合金相の粗さ曲線の平均長さRsmが2.0~5.0μmであることを特徴とする銅合金すずめっき条。
(2)Rsm、y、Rzが下記の関係であることを特徴とする上記(1)の銅合金すずめっき条。
2.0≦Rsm/(y+Rz)≦4.0
(3)表面から母材にかけて、Sn層、Cu-Sn合金層、Cu層の各層でめっき皮膜が構成され、Sn層の厚みが0.5~1.5μm、Cu-Sn合金層の厚みが0.6~2.0μm、Cu層の厚みが0~0.8μmであることを特徴とする上記(1)又は(2)の銅合金すずめっき条。
(4)表面から母材にかけて、Sn層、Cu-Sn層、Ni層の各層でめっき皮膜が構成され、Sn層の厚みが0.5~1.5μm、Cu-Sn合金層の厚みが0.6~2.0μm、Ni層の厚みが0.1~0.8μmであることを特徴とする上記(1)又は(2)の銅合金すずめっき条。
As a result of diligent research, the present inventor has obtained excellent wear resistance, insertability and heat resistance when the unevenness of the interface between the Cu-Sn alloy phase of the copper alloy tin plating strip and the pure Sn phase is dense and large. I found out that The present invention has been made based on this discovery, and has the following configuration.
(1) A plating strip in which the surface of a copper alloy strip is subjected to electroplating in the order of base plating and Sn plating and then reflow treatment; in the vertical cross section with respect to the plating surface, the outermost surface of Sn plating and Cu—Sn The height difference y from the outermost surface of the alloy phase is 0.1 to 0.5 μm;
When the Sn phase is dissolved and removed and the Cu—Sn alloy phase appears on the surface, the maximum height Rz of the roughness curve of this Cu—Sn alloy phase is 0.6 to 1.2 μm, and Cu A copper alloy tin plating strip characterized in that the average length Rsm of the roughness curve of the Sn alloy phase is 2.0 to 5.0 μm;
(2) The copper alloy tin-plated strip according to (1) above, wherein Rsm, y and Rz have the following relationship.
2.0 ≦ Rsm / (y + Rz) ≦ 4.0
(3) A plating film is composed of the Sn layer, the Cu—Sn alloy layer, and the Cu layer from the surface to the base material, the thickness of the Sn layer is 0.5 to 1.5 μm, and the thickness of the Cu—Sn alloy layer is The copper alloy tin plating strip according to (1) or (2) above, wherein the copper layer has a thickness of 0.6 to 2.0 μm and a Cu layer thickness of 0 to 0.8 μm.
(4) From the surface to the base material, a plating film is composed of the Sn layer, the Cu—Sn layer, and the Ni layer, the thickness of the Sn layer is 0.5 to 1.5 μm, and the thickness of the Cu—Sn alloy layer is 0 The copper alloy tin plating strip according to (1) or (2) above, wherein the thickness of the Ni layer is 0.1 to 0.8 μm.

 本発明のすずめっき条は、コネクタ、端子、リレ-、スイッチ等の導電性ばね材として好適であり、耐摩耗性、挿入性、耐熱性に優れる。 The tin plating strip of the present invention is suitable as a conductive spring material for connectors, terminals, relays, switches, etc., and is excellent in wear resistance, insertability, and heat resistance.

本発明のリフロー処理後のCu下地Snめっき条の断面模式図である。It is a cross-sectional schematic diagram of the Cu base Sn plating strip after the reflow process of the present invention. Cu-Sn合金相を表面に現出させた凹凸SEM像である。3 is an uneven SEM image in which a Cu—Sn alloy phase appears on the surface. 図2の測定線に沿って測定したCu-Sn合金相の粗さ曲線である。3 is a roughness curve of a Cu—Sn alloy phase measured along the measurement line of FIG. 2. 従来例(a)と本発明例(b)のSnめっき材断面の比較模式図である。It is a comparison schematic diagram of Sn plating material section of a conventional example (a) and an example of the present invention (b). 動摩擦係数測定方法を示す概略図である。It is the schematic which shows the dynamic friction coefficient measuring method. 接触子先端の加工方法を示す概略図である。It is the schematic which shows the processing method of a contactor tip.

 本発明の構成要件及びその説明を下記に説明する。
 Sn相及びCu-Sn合金相間の構造
 本発明の銅合金すずめっき条は、銅合金条の表面に、下地めっき、Snめっきの順で電気めっきを施し、その後、リフロー処理を施して得られる。Rz、RsmはJIS B0601:2001で定義されている粗さ曲線のパラメータである。
 図1は本発明のリフロー処理後のCu下地Snめっき条の断面模式図であり、Snめっき最表面とCu-Sn合金相の最表点との高度差「y」、Cu-Sn合金相の粗さ曲線の最大高さ「Rz」、上記粗さ曲線の平均長さ「Rsm」を模式的に示す。
 上記Cu-Sn合金相の粗さ曲線、粗さ曲線の最大高さ「Rz」及び平均長さ「Rsm」の決定方法を下記に示す。
 図2に、すずめっき条表面のSn相を溶解除去してCu-Sn合金相を表面に現出させた後、市販の凹凸SEM(走査型電子顕微鏡)(ERA-8000)装置で得られたSEM画像(倍率3000倍)及び任意の測定線を示す。圧延平行方向及び直角方向に各100ライン(1ライン40μm)測定する。
 図3に図2の測定線に沿って測定したCu-Sn合金相の粗さ曲線を示す。粗さ曲線上に現れたピークそれぞれの最高高さを平均し、Cu-Sn合金相の粗さ曲線の最大高さ「Rz」とする。同様に、粗さ曲線上に現れたピークの間隔を平均し、Cu-Sn合金相の粗さ曲線の平均長さ「Rsm」とする。
 図4中、(a)は従来のCu下地Snめっき条の断面模式図であり、ピーク最大高さ「Rz」が小さく、ピーク平均長さ「Rsm」が大きい。(b)は従来例と同じ平均のSn相厚み(i)及び平均のCu-Sn合金相厚み(ii)を有する、本発明のCu下地Snめっき条の断面模式図であり、Rzが大きくRsmが小さい。なお、最大のCu-Sn合金相厚み(iii)は、ピーク最大高さ「Rz」よりも大きい。
 従来例のSnめっき最表面とCu-Sn合金相の最表点との高度差yは、本発明のものより大きい。しかし、純Sn相は1回のコネクタ挿入等で容易に変形除去されてしまうので、Cu-Sn合金相が表面に現出した状態が、耐摩耗性の検討では重要である。そして、従来例に比べ本発明では、硬質なCu-Sn合金相のピークの間隔が短く、谷部が深いため、谷部の純Sn相の摩耗消失しにくく耐摩耗性に優れる。
The constituent features of the present invention and the description thereof will be described below.
Structure between Sn phase and Cu—Sn alloy phase The copper alloy tin-plated strip of the present invention is obtained by subjecting the surface of the copper alloy strip to electroplating in the order of base plating and Sn plating, followed by reflow treatment. Rz and Rsm are parameters of a roughness curve defined in JIS B0601: 2001.
FIG. 1 is a schematic cross-sectional view of a Cu-base Sn-plated strip after reflow treatment according to the present invention. The height difference “y” between the outermost surface of the Sn plating and the outermost point of the Cu—Sn alloy phase, and the Cu—Sn alloy phase The maximum height “Rz” of the roughness curve and the average length “Rsm” of the roughness curve are schematically shown.
A method for determining the roughness curve of the Cu—Sn alloy phase, the maximum height “Rz” and the average length “Rsm” of the roughness curve is shown below.
In FIG. 2, the Sn phase on the surface of the tin plating strip was dissolved and removed to reveal the Cu—Sn alloy phase on the surface, and then obtained with a commercially available uneven SEM (scanning electron microscope) (ERA-8000) apparatus. An SEM image (magnification 3000 times) and an arbitrary measurement line are shown. Measure 100 lines in each of the rolling parallel direction and the perpendicular direction (1 line 40 μm).
FIG. 3 shows a roughness curve of the Cu—Sn alloy phase measured along the measurement line of FIG. The maximum heights of the peaks appearing on the roughness curve are averaged to obtain the maximum height “Rz” of the roughness curve of the Cu—Sn alloy phase. Similarly, the intervals between peaks appearing on the roughness curve are averaged to obtain the average length “Rsm” of the roughness curve of the Cu—Sn alloy phase.
In FIG. 4, (a) is a schematic cross-sectional view of a conventional Cu base Sn plating strip, in which the peak maximum height “Rz” is small and the peak average length “Rsm” is large. (B) is a schematic cross-sectional view of the Cu-base Sn-plated strip of the present invention having the same average Sn phase thickness (i) and average Cu—Sn alloy phase thickness (ii) as in the prior art, with a large Rz and Rsm Is small. The maximum Cu—Sn alloy phase thickness (iii) is larger than the peak maximum height “Rz”.
The altitude difference y between the outermost surface of the conventional Sn plating and the outermost point of the Cu—Sn alloy phase is larger than that of the present invention. However, since the pure Sn phase is easily deformed and removed by a single connector insertion or the like, the state in which the Cu—Sn alloy phase appears on the surface is important in the examination of wear resistance. Compared to the conventional example, in the present invention, since the peak interval of the hard Cu—Sn alloy phase is short and the valley is deep, wear of the pure Sn phase in the valley is less likely to disappear and the wear resistance is excellent.

 本発明のすずめっき条のCu-Sn合金相の、粗さ曲線の最大高さRzは0.6~1.2μmである。この範囲内であると、Cu-Sn合金相界面の谷部に存在する純Sn相が潤滑作用を示し、耐摩耗性が向上する。Rzが0.6μm未満の場合、Cu-Sn合金相界面の谷部に存在する純Sn相が摩滅消失するに伴いCu-Sn合金相も脆性破壊され、耐摩耗性が悪い。Rzが1.2μmを超えると、下記Rsmの範囲を達成することが困難である。 The maximum height Rz of the roughness curve of the Cu—Sn alloy phase of the tin plating strip of the present invention is 0.6 to 1.2 μm. Within this range, the pure Sn phase present in the valleys of the Cu—Sn alloy phase interface exhibits a lubricating action, and wear resistance is improved. When Rz is less than 0.6 μm, the Cu—Sn alloy phase is brittlely fractured and the wear resistance is poor as the pure Sn phase present at the valley of the Cu—Sn alloy phase interface wears away. When Rz exceeds 1.2 μm, it is difficult to achieve the following Rsm range.

 本発明のすずめっき条のCu-Sn合金相の、粗さ曲線の平均長さRsmは2.0~5.0μmである。この範囲内であると、Cu-Sn合金相界面に適切な深さの谷部が多く存在し、潤滑作用を示す純Sn相が確保される。Rsmが5.0μmを超える場合、挿抜の際に加重を支える硬質なCu-Sn合金相の山の間隔が大きくなり、谷部の純Sn相が摩耗消失しやすく耐摩耗性に劣る。Rsmが2.0未満となると上記Rzの範囲を達成することが困難である。 The average length Rsm of the roughness curve of the Cu—Sn alloy phase of the tin plating strip of the present invention is 2.0 to 5.0 μm. Within this range, there are many valleys with an appropriate depth at the Cu—Sn alloy phase interface, and a pure Sn phase exhibiting a lubricating action is secured. When Rsm exceeds 5.0 μm, the interval between the peaks of the hard Cu—Sn alloy phase that supports the load during insertion / extraction increases, and the pure Sn phase in the troughs easily loses wear and is inferior in wear resistance. When Rsm is less than 2.0, it is difficult to achieve the above Rz range.

 本発明のすずめっき条では、めっき表面に対する垂直断面において、Snめっき最表面とCu-Sn合金相の最表点との高度差yは0.1~0.5μmである。yが0.1μm未満であると、耐熱性に劣る。具体的には、175℃1000時間で耐熱試験を行うと、表面にCu-Sn合金相が露出して接触抵抗が増大する。yが0.5μmを超えると、端子挿入の際にSnめっきの掘り起こしによる変形抵抗や凝着をせん断するせん断抵抗を増加させ、結果として大きな挿入力が必要となる。
 yは、リフロー後の試料を圧延平行方向に切断し、倍率10000倍での断面観察により測定平均して求めることができる。
 本発明のすずめっき条は、Sn相/Cu-Sn合金相界面の凹凸を激しく、即ちRsmを小さくRzを大きくしているので、平均の純Sn厚みは従来と同等である場合、yの値が小さいため、摩擦抵抗が低くなり、かつ摩耗の際にCu-Sn合金相界面の山の頂点が支えとして働き、必要な挿抜力が低くなる。
In the tin plating strip of the present invention, the height difference y between the outermost surface of the Sn plating and the outermost surface of the Cu—Sn alloy phase is 0.1 to 0.5 μm in the cross section perpendicular to the plating surface. When y is less than 0.1 μm, the heat resistance is poor. Specifically, when a heat resistance test is performed at 175 ° C. for 1000 hours, the Cu—Sn alloy phase is exposed on the surface and the contact resistance increases. When y exceeds 0.5 μm, deformation resistance due to digging of Sn plating and shear resistance for shearing adhesion are increased at the time of terminal insertion, and as a result, a large insertion force is required.
y can be obtained by cutting the reflowed sample in the rolling parallel direction and measuring and averaging by observing the cross section at a magnification of 10,000 times.
The tin-plated strip of the present invention has severe irregularities at the interface of the Sn phase / Cu—Sn alloy phase, that is, Rsm is small and Rz is large. Therefore, the frictional resistance is low, and the peak of the Cu—Sn alloy phase interface acts as a support during wear, and the required insertion / extraction force is low.

 本発明のRsm、y、Rzは、下記の関係を有することが好ましい。
2.0≦Rsm/(y+Rz)≦4.0
 (y+Rz)は「Snめっき最表面とCu-Sn合金相の最表点との高度差y」及び「Cu-Sn合金相の粗さ曲線の最大高さ」の合計であり、Cu-Sn合金相とCu母材又は下地めっき相との界面とSnめっき最表面との間隔を表す。従って、Cu-Sn合金相の粗さ曲線の平均長さRsmは、好ましくはCu-Sn合金相最下部からSnめっき最表面までの間隔の2~5倍である。4.0を超えると挿抜の際に加重を支える硬質なCu-Sn合金相の山の間隔が大きくなり、かつ谷部の純Sn相が少ないため、谷部の純Sn相が摩耗消失しやすく耐摩耗性に劣る。また、耐熱性も劣る。2.0未満とすることは、通常技術的に困難であり、又耐摩耗性の上昇はあまり望めない。
Rsm, y and Rz of the present invention preferably have the following relationship.
2.0 ≦ Rsm / (y + Rz) ≦ 4.0
(Y + Rz) is the sum of “the height difference y between the outermost surface of the Sn plating and the outermost surface of the Cu—Sn alloy phase” and “the maximum height of the roughness curve of the Cu—Sn alloy phase”. This represents the distance between the interface between the phase and the Cu base material or the base plating phase and the outermost surface of the Sn plating. Therefore, the average length Rsm of the roughness curve of the Cu—Sn alloy phase is preferably 2 to 5 times the distance from the lowermost part of the Cu—Sn alloy phase to the outermost surface of the Sn plating. If it exceeds 4.0, the interval between the peaks of the hard Cu—Sn alloy phase that supports the load during insertion / extraction increases, and the pure Sn phase in the valleys is small, so that the pure Sn phase in the valleys tends to wear out. Inferior in wear resistance. Moreover, heat resistance is also inferior. It is usually difficult technically to make it less than 2.0, and an increase in wear resistance cannot be expected so much.

 めっきの種類
 本発明を適用できる下地めっき、Snめっきの仕様として、次のものが挙げられる。
(1)Cu下地リフローSnめっき
 表面から母材にかけて、Sn相、Cu-Sn合金相、Cu相の各相でめっき皮膜が構成されている。Cu下地めっき、Snめっきの順に電気めっきを行い、リフロー処理を施すことにより、このめっき皮膜構造が得られる。
 リフロー後のSn相の平均厚みは0.5~1.5μmが好ましい。Sn相が0.5μm未満になるとはんだ濡れ性が低下し、1.5μmを超えると、必要な挿入力が増大する。
 リフロー後のCu-Sn合金相の厚みは0.6~2.0μmが好ましい。Cu-Sn合金相は硬質であるため、Sn相との界面が本発明の構成である場合、0.6μm以上の厚さで存在すると、挿入力の低減に寄与すると共に耐摩耗性及び耐熱性に優れる。一方、Cu-Sn合金相の厚さが2.0μmを超えると、曲げ性などの機械的特性が劣化する。
Types of plating The following are listed as specifications of the base plating and Sn plating to which the present invention can be applied.
(1) Cu underlayer reflow Sn plating A plating film is composed of a Sn phase, a Cu—Sn alloy phase, and a Cu phase from the surface to the base material. This plating film structure can be obtained by performing electroplating in the order of Cu base plating and Sn plating and performing reflow treatment.
The average thickness of the Sn phase after reflow is preferably 0.5 to 1.5 μm. When the Sn phase is less than 0.5 μm, the solder wettability decreases, and when it exceeds 1.5 μm, the necessary insertion force increases.
The thickness of the Cu—Sn alloy phase after reflow is preferably 0.6 to 2.0 μm. Since the Cu—Sn alloy phase is hard, when the interface with the Sn phase is the structure of the present invention, if it has a thickness of 0.6 μm or more, it contributes to a reduction in insertion force and wear resistance and heat resistance. Excellent. On the other hand, when the thickness of the Cu—Sn alloy phase exceeds 2.0 μm, mechanical properties such as bendability deteriorate.

 本発明のCu-Sn合金相(拡散層)の平均厚みは、Sn相及びCu-Sn合金相の界面に凹凸があるため、従来よりも厚くすることが可能である。従って、純Sn層や母材よりも硬質なCu-Sn合金相が厚くできる本発明のめっき条は、優れた耐摩耗性を有する。更に本発明のめっき条は、Cu-Sn合金相が厚いために耐熱性も向上している。理論によって本発明を限定するものではないが、その理由はCu拡散の阻害にあると考えられる。即ち、母材から供給されたCuがCu-Sn合金相とSn相との界面に到達して、Sn相中のSnと結合してCu-Sn合金相が成長していくが、Cu-Sn合金相の平均厚みが厚ければ、Cu母材界面とCu-Sn合金相/Sn相界面との間の距離はより長くなり、CuがCu-Sn合金相/Sn相界面まで拡散するために必要な時間は長くなる。特に、Cu母材からCu-Sn合金相の最表点までの間のCu-Sn合金相の厚みは最も大きいので、Cuが母材から合金相の最表点まで到達して、その結果Cu-Sn合金相が成長してSn相が消滅することは、高温長時間の激しい条件下でも困難である。従って、本発明のめっき条は非常に優れた耐熱性を有する。 The average thickness of the Cu—Sn alloy phase (diffusion layer) of the present invention can be made thicker than before because the interface between the Sn phase and the Cu—Sn alloy phase has irregularities. Therefore, the plating strip of the present invention in which a Cu—Sn alloy phase harder than a pure Sn layer or a base material can be made thick has excellent wear resistance. Furthermore, the plating strip of the present invention has improved heat resistance due to the thick Cu—Sn alloy phase. Although the present invention is not limited by theory, it is thought that the reason is the inhibition of Cu diffusion. That is, Cu supplied from the base material reaches the interface between the Cu—Sn alloy phase and the Sn phase and combines with Sn in the Sn phase to grow the Cu—Sn alloy phase. If the average thickness of the alloy phase is thick, the distance between the Cu base material interface and the Cu—Sn alloy phase / Sn phase interface becomes longer, and Cu diffuses to the Cu—Sn alloy phase / Sn phase interface. The time required is longer. In particular, since the thickness of the Cu—Sn alloy phase between the Cu base material and the outermost point of the Cu—Sn alloy phase is the largest, Cu reaches the outermost point of the alloy phase from the base material, and as a result, Cu It is difficult for the Sn alloy phase to grow and the Sn phase to disappear even under severe conditions at a high temperature for a long time. Therefore, the plating strip of the present invention has very excellent heat resistance.

 電気めっきで形成したCu下地めっきは、リフロー時にCu-Sn合金(相)形成に消費され、その厚みがゼロになっても良い。一方、リフロー後のCu相の厚みが0.8μmを超えるめっき材では、リフロー後のCu-Sn合金相のRz及びRsmが本発明の範囲を外れる。これは、Cu下地めっきが厚くなるに従い、Cuの電着粒が局部的に粗大化してCu-Sn合金相の成長に悪影響を与えるためと考えられる。 The Cu base plating formed by electroplating may be consumed to form a Cu—Sn alloy (phase) during reflow, and the thickness thereof may be zero. On the other hand, in the plated material in which the thickness of the Cu phase after reflow exceeds 0.8 μm, the Rz and Rsm of the Cu—Sn alloy phase after reflow are out of the scope of the present invention. This is presumably because Cu electrodeposited grains are locally coarsened as the thickness of the Cu undercoat increases, which adversely affects the growth of the Cu—Sn alloy phase.

 電気めっき時の各めっきの厚みを、Snめっきは0.6~2.0μmの範囲、Cuめっきは0.1~1.5μmの範囲で適宜調整し、続いてリフロー処理を行うことにより、本発明のめっき構造が得られる。
 本発明のリフロー処理は、230~600℃、3~30秒間の範囲で行われるが、昇温速度20~100℃/sec、好ましくは30~70℃/secで急加熱し、冷却速度100~300℃/sec、加熱は、例えば、循環ファン、輻射板等適切な伝導・対流・輻射等伝熱手段を使用し、冷却は例えば水冷で、めっき条の両端及び中央部を問わず均一に加熱冷却する。
By appropriately adjusting the thickness of each plating during electroplating in the range of 0.6 to 2.0 μm for Sn plating and in the range of 0.1 to 1.5 μm for Cu plating, followed by reflow treatment, The inventive plating structure is obtained.
The reflow treatment of the present invention is carried out in the range of 230 to 600 ° C. for 3 to 30 seconds, but is rapidly heated at a temperature rising rate of 20 to 100 ° C./sec, preferably 30 to 70 ° C./sec, and a cooling rate of 100 to 100 ° C. 300 ° C / sec, heating is performed using appropriate heat transfer means such as a circulation fan or a radiation plate, such as conduction, convection, and radiation. Cooling is performed by water cooling, for example, regardless of both ends and the center of the plating strip. Cooling.

 理論によって本発明を限定するものではないが、上記リフロー処理により、Snめっき相とCu相との間で初期に比較的少量発生したSn-Cu相の核が、新たな別の核が発生するよりも早く急速にSn相内で成長し、所定の時点で急速に冷却することにより、本発明のSn-Cu相/Sn相界面構造を形成すると考えられる。
 従来のリフロー処理では、本発明の目的とするような急速加熱の必要がなく、かつ、単にラインスピードを上げて急速加熱をしたとしても、均一な加熱ができないため、リフロー後に材料幅方向、長手方向で均一なめっき厚を得ることが困難であった。
Although the present invention is not limited by theory, by the reflow process, a relatively small amount of Sn-Cu phase nuclei initially generated between the Sn plating phase and the Cu phase generate new new nuclei. It is considered that the Sn—Cu phase / Sn phase interface structure of the present invention is formed by growing in the Sn phase faster and faster and rapidly cooling at a predetermined time.
In the conventional reflow treatment, there is no need for rapid heating as intended in the present invention, and even if the rapid heating is performed simply by increasing the line speed, uniform heating cannot be performed. It was difficult to obtain a uniform plating thickness in the direction.

(2)Cu/Ni下地リフローSnめっき
 表面から母材にかけて、Sn相、Cu-Sn合金相、Ni相の各相でめっき皮膜が構成される。Ni下地めっき、Cu下地めっき、Snめっきの順に電気めっきを行い、リフロー処理を施すことにより、このめっき皮膜構造が得られる。
 リフロー後のSn相の平均厚みは0.5~1.5μmが好ましい。Sn相が0.5μm未満になるとはんだ濡れ性が低下し、1.5μmを超えると、挿入力が増大する。
 リフロー後のCu-Sn合金相の厚みは0.4~2.0μmが好ましい。Cu-Sn合金相は硬質なため、0.4μm以上の厚さで存在すると、挿入力の低減に寄与する。一方、Cu-Sn合金相の厚さが2.0μmを超えると、曲げ性などの機械的特性が劣化する。
(2) Cu / Ni underlayer reflow Sn plating From the surface to the base material, a plating film is composed of each of the Sn phase, Cu—Sn alloy phase, and Ni phase. This plating film structure is obtained by performing electroplating in the order of Ni base plating, Cu base plating, and Sn plating, and performing reflow treatment.
The average thickness of the Sn phase after reflow is preferably 0.5 to 1.5 μm. When the Sn phase is less than 0.5 μm, the solder wettability decreases, and when it exceeds 1.5 μm, the insertion force increases.
The thickness of the Cu—Sn alloy phase after reflow is preferably 0.4 to 2.0 μm. Since the Cu—Sn alloy phase is hard, if it exists in a thickness of 0.4 μm or more, it contributes to a reduction in insertion force. On the other hand, when the thickness of the Cu—Sn alloy phase exceeds 2.0 μm, mechanical properties such as bendability deteriorate.

 リフロー後のNi相の厚みは0.1~0.8μmが好ましい。Niの厚みが0.1μm未満ではめっきの耐食性や耐熱性が低下する。一方、リフロー後のNiの厚みが0.8μmを超えるめっき材では、加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。
 電気めっき時の各めっきの厚みを、Snめっきは0.6~2.0μmの範囲、Cuめっきは0.1~1.5μm、Niめっきは0.1~0.8μmの範囲で適宜調整し、その次に上記と同様にリフロー処理を行うことにより、本発明のめっき構造が得られる。Cuめっき相はリフロー後にCu-Sn合金相へ完全に転換されてもよく、0.4μm以下の厚みで残存しても良い。
The thickness of the Ni phase after reflow is preferably 0.1 to 0.8 μm. If the thickness of Ni is less than 0.1 μm, the corrosion resistance and heat resistance of the plating deteriorate. On the other hand, in the plated material having a Ni thickness after reflow exceeding 0.8 μm, the thermal stress generated inside the plated layer when heated is increased, and the plating peeling is promoted.
Adjust the thickness of each electroplating appropriately within the range of 0.6 to 2.0 μm for Sn plating, 0.1 to 1.5 μm for Cu plating, and 0.1 to 0.8 μm for Ni plating. Then, by performing a reflow process in the same manner as described above, the plating structure of the present invention can be obtained. The Cu plating phase may be completely converted into a Cu—Sn alloy phase after reflow, or may remain in a thickness of 0.4 μm or less.

 上記リフロー後のSn相、Cu-Sn合金相、Cu相、Ni相の各相の厚みの測定には、主として電解式膜厚計を用い,蛍光X線膜厚計,断面からのSEM観察,表面からのGDS(グロー放電発光分光分析装置)分析等も必要に応じて用いた。詳細は実施例に記載する。 The thickness of each of the Sn phase, Cu—Sn alloy phase, Cu phase, and Ni phase after the reflow is mainly measured using an electrolytic film thickness meter, a fluorescent X-ray film thickness meter, SEM observation from a cross section, GDS (glow discharge emission spectroscopy analyzer) analysis from the surface was also used as needed. Details are described in the Examples.

 銅合金母材の種類
 本発明を適用できる銅合金母材として下記が挙げられるが、これらに限定されるものではない。
(1)Cu-Ni-Si系合金(コルソン合金)
 時効処理を行うことによりCu中にNiとSiの化合物粒子が析出し、高い強度と導電率が得られる。実用合金として、C70250、C64725、C64760(CDA番号、以下同様)等がある。強度、耐熱性等の特性を改善するために、更に必要に応じてZn、Sn、Mg、Co、Ag、Cr及びMnの群から選ばれた1種以上を添加することができる。
(2)りん青銅
 実用合金としてC52400、C52100、C51910、C51020等がある。強度、耐熱性等の特性を改善するために、更に必要に応じてZn、Ni、Co、Fe、Ag、及びMnの群から選ばれた1種以上を添加することができる。
Types of Copper Alloy Base Material Examples of the copper alloy base material to which the present invention can be applied include, but are not limited to, the following.
(1) Cu-Ni-Si alloy (Corson alloy)
By performing the aging treatment, Ni and Si compound particles are precipitated in Cu, and high strength and electrical conductivity are obtained. Practical alloys include C70250, C64725, C64760 (CDA number, the same applies hereinafter) and the like. In order to improve properties such as strength and heat resistance, one or more selected from the group of Zn, Sn, Mg, Co, Ag, Cr and Mn can be added as necessary.
(2) Phosphor bronze Practical alloys include C52400, C52100, C51910, C51020 and the like. In order to improve properties such as strength and heat resistance, one or more selected from the group of Zn, Ni, Co, Fe, Ag, and Mn can be further added as necessary.

(3)黄銅
 実用合金としてC26000、C26800等がある。強度、耐熱性等の特性を改善するために、更に必要に応じてNi、Cr、Co、Sn、Fe、Ag、及びMnの群から選ばれた1種以上を添加することができる。
(4)丹銅
 実用合金としてC23000、C22000、C21000等がある。強度、耐熱性等の特性を改善するために、更に必要に応じてNi、Cr、Co、Sn、Fe、Ag、及びMnの群から選ばれた1種以上を添加することができる。
(5)チタン銅
 実用合金としてC19900等がある。時効処理を行うことによりTiとCuの化合物がCu中に析出し、非常に高い強度が得られる。強度、耐熱性等の特性を改善するために、更に必要に応じてZn、Ni、Co、P、Cr、Fe、Ag、及びMnの群から選ばれた1種以上を添加することができる。
(3) Brass Examples of practical alloys include C26000 and C26800. In order to improve properties such as strength and heat resistance, one or more selected from the group of Ni, Cr, Co, Sn, Fe, Ag, and Mn can be added as necessary.
(4) Red copper There are C23000, C22000, C21000, etc. as practical alloys. In order to improve properties such as strength and heat resistance, one or more selected from the group of Ni, Cr, Co, Sn, Fe, Ag, and Mn can be added as necessary.
(5) Titanium copper Examples of practical alloys include C19900. By performing the aging treatment, a compound of Ti and Cu is precipitated in Cu, and a very high strength is obtained. In order to improve properties such as strength and heat resistance, one or more selected from the group of Zn, Ni, Co, P, Cr, Fe, Ag, and Mn can be added as necessary.

 本発明のすずめっき条は、耐摩耗性、挿入性及び耐熱性に優れ、コネクタ、端子、リレ-、スイッチ等の導電性ばね材として好適なものである。ここで耐摩耗性に優れるとは、下記耐摩耗性試験で得られる摺動痕の最大深さが3μm以下の場合をいう。挿入性に優れるとはコネクターとして使用した場合に必要な挿入力が低いことをいい、動摩擦係数μが0.50以下のものをいう。耐熱性に優れるとは、Cu下地めっきは145℃、Cu/Ni下地めっきは175℃で1000h加熱した後の接触抵抗が8mΩ以下であることをいう。 The tin plating strip of the present invention is excellent in wear resistance, insertability and heat resistance, and is suitable as a conductive spring material for connectors, terminals, relays, switches and the like. Here, “excellent in wear resistance” means a case where the maximum depth of the sliding trace obtained by the following wear resistance test is 3 μm or less. Excellent insertability means that the insertion force required when used as a connector is low, and means that the dynamic friction coefficient μ is 0.50 or less. “Excellent heat resistance” means that the contact resistance after heating for 1000 h at 145 ° C. for Cu undercoat and 175 ° C. for Cu / Ni undercoat is 8 mΩ or less.

 下記に本発明に係る銅合金すずめっき条の製造例及びその特性試験の結果を示すが、これらは本発明及びその利点をより良く理解するために提供するのであり、本発明が限定されることを意図するものではない。
(a)母材
 組成Cu-35%Znの銅合金(厚み:0.32mm、引張強度540MPa、0.2%耐力510MPa、ヤング率103GPa、導電率26%IACS、ビッカース硬さ171Hv)に、下記の手順でNiめっき、銅下地めっき、Snめっきを施し、リフロー処理を施した。尚、上記ビッカース硬さは母材の圧延方向直角断面に対してJIS Z 2244に準拠して測定された値である。
Examples of the production of copper alloy tin plating strips according to the present invention and the results of their characteristic tests are shown below, but these are provided for better understanding of the present invention and its advantages, and the present invention is limited. Is not intended.
(A) Base material Cu-35% Zn copper alloy (thickness: 0.32 mm, tensile strength 540 MPa, 0.2% yield strength 510 MPa, Young's modulus 103 GPa, conductivity 26% IACS, Vickers hardness 171 Hv) In this procedure, Ni plating, copper base plating, and Sn plating were performed and reflow treatment was performed. The Vickers hardness is a value measured according to JIS Z 2244 with respect to a cross section perpendicular to the rolling direction of the base material.

(b)めっき処理
(電解脱脂手順)
 アルカリ水溶液中で試料をカソードとして電解脱脂を行う。
 10質量%硫酸水溶液を用いて酸洗する。
(Ni下地めっき条件)
・めっき浴組成:硫酸ニッケル250g/L、塩化ニッケル45g/L、ホウ酸30g/L
・めっき浴温度:50℃
・電流密度:5A/dm2
・Niめっき厚みは、電着時間により調整
(B) Plating treatment (electrolytic degreasing procedure)
Electrolytic degreasing is performed using a sample as a cathode in an alkaline aqueous solution.
Pickling is performed using a 10% by mass aqueous sulfuric acid solution.
(Ni base plating conditions)
-Plating bath composition: nickel sulfate 250 g / L, nickel chloride 45 g / L, boric acid 30 g / L
・ Plating bath temperature: 50 ℃
・ Current density: 5 A / dm 2
・ Ni plating thickness is adjusted by electrodeposition time

(Cu下地めっき条件)
・めっき浴組成:硫酸銅200g/L、硫酸60g/L
・めっき浴温度:25℃
・電流密度:5A/dm2
・攪拌速度:5m/分
・Cuめっき厚みは、電着時間により調整
(Cu base plating conditions)
-Plating bath composition: copper sulfate 200 g / L, sulfuric acid 60 g / L
・ Plating bath temperature: 25 ℃
・ Current density: 5 A / dm 2
・ Agitation speed: 5m / min ・ Cu plating thickness is adjusted by electrodeposition time

(Snめっき条件)
・めっき浴組成:酸化第1錫41g/L、フェノールスルホン酸268g/L、界面活性剤5g/L。
・めっき浴温度:50℃。
・電流密度:9A/dm2
・Snめっき厚みは、電着時間により調整。
(Sn plating conditions)
Plating bath composition: stannous oxide 41 g / L, phenol sulfonic acid 268 g / L, surfactant 5 g / L.
-Plating bath temperature: 50 ° C.
Current density: 9A / dm 2.
・ Sn plating thickness is adjusted by electrodeposition time.

(c)リフロー処理
 表に記載温度で、雰囲気ガスを窒素(酸素1vol%以下)に調整した加熱炉中に、試料を表記載時間挿入し、表に記載の昇温速度で加熱し、60℃の水中に投入して冷却速度200℃/secで冷却した。
 上記で作製した試料について、次の評価を行った。
(C) Reflow treatment The sample was inserted into a heating furnace adjusted to nitrogen (oxygen 1 vol% or less) at atmospheric temperature at the temperature shown in the table, and heated at the temperature rising rate shown in the table, and 60 ° C. Was poured into water and cooled at a cooling rate of 200 ° C./sec.
The following evaluation was performed about the sample produced above.

(d)電解式膜厚計によるめっき厚測定
 CT-1型電解式膜厚計(株式会社電測製)を用い、リフロー後の試料に対し、JIS H8501に従い、Snめっき層、Cu-Sn合金層、Cu/Ni下地めっき層の場合はNiめっき層の厚みを測定した。測定条件は下記の通りである。
電解液
(1)Snめっき層及びCu-Sn合金層:コクール社製電解液 R-50
(2)Niめっき層:コクール社製電解液 R-54
 Cu下地Snめっきの場合、電解液R-50で電解を行うと、始めSnめっき層を電解してCu-Sn合金層の手前で電解がとまり、ここでの装置の表示値がSnめっき層厚となる。ついで再度電解をスタートさせて次に装置が止まるまでの間にCu-Sn合金層が電解され、終了時点での表示値がCu-Sn合金層の厚みに相当する。
 Cu/Ni下地めっき層の場合のNiめっき層の厚みは、はじめに電解液R-50を使用して上記のようにSnめっき層及びCu-Sn合金層の厚みを測定した後、スポイトで電解液R-50を吸い取りだし、純水で入念に水洗いしてから電解液R-54に交換し、Niめっき層の厚みを測定する。
(D) Measurement of plating thickness with electrolytic film thickness meter Using a CT-1 type electrolytic film thickness meter (manufactured by Denso Co., Ltd.), the sample after reflowing was subjected to Sn plating layer, Cu—Sn alloy according to JIS H8501. In the case of a layer or a Cu / Ni base plating layer, the thickness of the Ni plating layer was measured. The measurement conditions are as follows.
Electrolyte (1) Sn plating layer and Cu-Sn alloy layer: Cocool electrolyte R-50
(2) Ni plating layer: Cocool electrolyte R-54
In the case of Cu-based Sn plating, when electrolysis is performed with the electrolytic solution R-50, the Sn plating layer is first electrolyzed and the electrolysis stops before the Cu-Sn alloy layer, and the displayed value of the device here is the Sn plating layer thickness. It becomes. Next, the electrolysis is started again and the Cu—Sn alloy layer is electrolyzed until the next time the apparatus is stopped, and the displayed value at the end time corresponds to the thickness of the Cu—Sn alloy layer.
The thickness of the Ni plating layer in the case of the Cu / Ni undercoat layer is determined by first measuring the thickness of the Sn plating layer and the Cu—Sn alloy layer as described above using the electrolytic solution R-50, and then using the dropper to prepare the electrolytic solution. The R-50 is sucked out, washed thoroughly with pure water and then replaced with the electrolytic solution R-54, and the thickness of the Ni plating layer is measured.

(e)めっき層断面観察によるCuめっき層厚の測定
 上記電解式膜厚計では銅合金上のCuめっき厚を測定できないことから、めっき層の断面をSEMで観察することによりCuめっき層の厚さを求めた。
 圧延方向に対して平行方向の断面が観察できるように試料を樹脂埋めし、観察面を機械研磨にて鏡面に仕上げた後、SEMにて倍率2000倍で反射電子像、母材成分とめっき成分の特性X線像を撮影する。反射電子像では各めっき層、例えばCu下地Snめっきの場合はめっき表層からSnめっき層、Cu-Sn合金層、Cuめっき層、母材の順に色調のコントラストがつく。また、特性X線像では、Snめっき層はSnのみ、Cu-Sn合金層はSnとCu、母材はその含有成分が検出されることから、Cuのみが検出されている層がCuめっき層であることがわかる。よって、特性X線像ではCuのみが検出されている層であり、かつ、他とは色調のコントラストが異なる層の厚みを反射電子像で測ることによりCuめっき層の厚みを求めることが出来る。厚みは反射電子像上で任意に5箇所の厚みを測定しその平均値をCuめっき層厚とする。
 ただし、この方法では電解式膜厚法に比べ極狭い範囲の厚みしか求めることが出来ない。そこで、この観察を10断面行い、その平均値をCuめっき厚とした。
(E) Measurement of Cu plating layer thickness by observation of plating layer cross section The above electrolytic film thickness meter cannot measure the Cu plating thickness on the copper alloy, so the thickness of the Cu plating layer can be determined by observing the cross section of the plating layer with an SEM. I asked for it.
The sample is filled with resin so that a cross section parallel to the rolling direction can be observed, and the observation surface is finished to a mirror surface by mechanical polishing, and then a reflected electron image, a base material component and a plating component at a magnification of 2000 times by SEM A characteristic X-ray image is taken. In the reflected electron image, in the case of Cu plating, for example, in the case of Cu underlayer Sn plating, color contrast is given in the order of the plating surface layer to the Sn plating layer, the Cu—Sn alloy layer, the Cu plating layer, and the base material. In the characteristic X-ray image, the Sn plating layer is only Sn, the Cu—Sn alloy layer is Sn and Cu, and the base material is detected of its contained components. Therefore, the layer in which only Cu is detected is the Cu plating layer. It can be seen that it is. Therefore, the thickness of the Cu plating layer can be obtained by measuring the thickness of a layer in which only Cu is detected in the characteristic X-ray image and having a color contrast different from that of the other by a reflected electron image. The thickness is arbitrarily measured at five locations on the reflected electron image, and the average value is defined as the Cu plating layer thickness.
However, this method can determine only a very narrow thickness compared to the electrolytic film thickness method. Therefore, this observation was performed for 10 cross sections, and the average value was defined as the Cu plating thickness.

(f)Cu-Sn合金相のRsm、Rz及びy
 リフロー後の試料を、Meltex社製エンストリップTL-105液中に25℃で1分浸漬し、Sn相を溶解除去し、Cu-Sn合金相を表面に現出させた。Cu-Sn合金相の平均粗さ曲線をELIONIX社製凹凸SEM(ERA-8000)により求めた。倍率3000倍で、圧延平行方向及び直角方向に各10ライン(1ライン40μm)測定し、その平均値からRsm及びRzを求めた。3000倍の倍率のSEM画像を図2に、図2画像中の直線に沿って測定したCu-Sn合金相の表面粗さプロファイルを図3に示す。このプロファイルよりRsm及びRzを計算した。
 yは、リフロー後の試料を圧延平行方向に切断し、断面をELIONIX社製凹凸SEM(ERA-8000)を使用し、倍率10000倍で5視野各4点測定して平均して求めた。
(F) Rsm, Rz and y of Cu—Sn alloy phase
The sample after reflowing was immersed in an Enstrip TL-105 solution manufactured by Meltex at 25 ° C. for 1 minute to dissolve and remove the Sn phase, and the Cu—Sn alloy phase appeared on the surface. The average roughness curve of the Cu—Sn alloy phase was determined by an uneven SEM (ERA-8000) manufactured by ELIONIX. Ten lines (one line 40 μm) were measured in the rolling parallel direction and the perpendicular direction at a magnification of 3000 times, and Rsm and Rz were determined from the average values. A SEM image at a magnification of 3000 times is shown in FIG. 2, and a surface roughness profile of the Cu—Sn alloy phase measured along a straight line in the image of FIG. 2 is shown in FIG. Rsm and Rz were calculated from this profile.
The y was obtained by cutting the reflowed sample in the rolling parallel direction and measuring the cross section using an uneven SEM (ERA-8000) manufactured by ELIONIX, measuring 4 points for each of 5 visual fields at a magnification of 10,000 times.

(g)耐熱性(加熱後の接触抵抗)
 耐熱性の評価として、1000h加熱した後の接触抵抗を測定した。なお、Cu下地めっきは145℃で加熱し、Cu/Ni下地めっきは175℃で加熱した。接触抵抗は、山崎精機研究所製電気接点シュミレータCRS-113-Au型を用い、四端子法により、電圧200mV、電流10mA、摺動荷重0.49N、摺動速度1mm/min、摺動距離1mmで測定した。加熱後の接触抵抗が8mΩ以下であると、通常のコネクタ端子として好適に使用できる。
(G) Heat resistance (contact resistance after heating)
As evaluation of heat resistance, contact resistance after heating for 1000 hours was measured. Note that the Cu undercoat was heated at 145 ° C., and the Cu / Ni undercoat was heated at 175 ° C. The contact resistance is an electric contact simulator CRS-113-Au type manufactured by Yamazaki Seiki Laboratories, and by a four-terminal method, voltage 200 mV, current 10 mA, sliding load 0.49 N, sliding speed 1 mm / min, sliding distance 1 mm. Measured with When the contact resistance after heating is 8 mΩ or less, it can be suitably used as a normal connector terminal.

(h)挿入力(動摩擦係数)
 図5に示すように、Snめっき材の板試料を試料台上に固定し、そのSnめっき面に接触子を荷重Wで押し付けた。次に、移動台を水平方向に移動させ、このとき接触子に作用する抵抗加重Fをロードセルにより測定した。そして、動摩擦係数μをμ=F/Wより算出した。
 Wは4.9Nとし、接触子の摺動速度(試料台の移動速度)は50mm/minとした。摺動は板試料の圧延方向に対し平行な方向に行った。摺動距離は100mmとし、この間のFの平均値を求めた。
 接触子は、上記板試料と同じSnめっき材を用い、図6のように作製した。すなわち、直径7mmのステンレス球を試料に押し付けて、板試料と接触する部分を半球状に成形した。
(H) Insertion force (dynamic friction coefficient)
As shown in FIG. 5, a plate sample of Sn plating material was fixed on a sample table, and a contact was pressed against the Sn plating surface with a load W. Next, the moving table was moved in the horizontal direction, and the resistance weight F acting on the contact at this time was measured with a load cell. The dynamic friction coefficient μ was calculated from μ = F / W.
W was 4.9 N, and the sliding speed of the contact (moving speed of the sample stage) was 50 mm / min. The sliding was performed in a direction parallel to the rolling direction of the plate sample. The sliding distance was 100 mm, and the average value of F during this period was obtained.
The contact was produced as shown in FIG. 6 using the same Sn plating material as the plate sample. That is, a stainless steel sphere having a diameter of 7 mm was pressed against the sample, and a portion in contact with the plate sample was formed into a hemisphere.

(i)耐摩耗性
 板厚0.2mmの黄銅-Snめっき材を準備した。Snめっきは電着時の厚みがそれぞれSn=1.2μm、Cu=0.6μmのリフローSnめっき材である。この黄銅-Snめっき材に対し、高さ0.2mm、半径0.6mmの張り出し(エンボス)加工を行い、半球状の突起を施した端子を作成する。この端子と本発明のSnめっき材を図5に示すように配置し、端子に荷重300gを負荷しながら、速度5mm/secの速さで本発明のSnめっき材を150回往復させる。摺動後の本発明Snめっき材の外観を観察するとともに、摺動部の最大深さ(μm)を表面粗さ計(株式会社小坂研究所製、サーフコーダーSE1600)を用いて測定した。摺動痕の最大深さが3μm以下の場合に良好な耐摩耗性が得られたと判断した。
(I) Abrasion resistance A brass-Sn plating material having a thickness of 0.2 mm was prepared. Sn plating is a reflow Sn plating material with Sn = 1.2 μm and Cu = 0.6 μm thickness during electrodeposition. The brass-Sn plated material is subjected to an embossing process with a height of 0.2 mm and a radius of 0.6 mm to produce a terminal with a hemispherical protrusion. The terminal and the Sn plating material of the present invention are arranged as shown in FIG. 5, and the Sn plating material of the present invention is reciprocated 150 times at a speed of 5 mm / sec while applying a load of 300 g to the terminal. While observing the appearance of the Sn plating material of the present invention after sliding, the maximum depth (μm) of the sliding portion was measured using a surface roughness meter (manufactured by Kosaka Laboratory Ltd., Surfcoder SE1600). It was judged that good wear resistance was obtained when the maximum depth of the sliding trace was 3 μm or less.

実施例:
 表1に示すCu下地めっき、表2に示すNi/Cu下地めっきの実施例を行った。
 表1の発明例1~6及び比較例9~13では、純Sn層が0.8μm前後になるように、電着めっき厚を調整した。リフロー加熱速度が遅いため拡散層(Cu-Sn相)の界面が平滑な比較例9~13は、発明例1~6に対して耐摩耗性、耐熱性及び挿入性に劣った。発明例7と比較例14はSn層厚みは同じであるが、比較例14は拡散層(Cu-Sn相)厚みが薄いため接触抵抗に関する耐熱性に劣った。発明例8と比較例15は高度差y以外は同様の条件であるが、比較例15はyが小さいため接触抵抗に関する耐熱性に劣った。
 表2の発明例16~21及び比較例24~27では、純Sn層が0.8μm前後になるように、電着めっき厚を調整した。リフロー加熱速度が遅いため拡散層(Cu-Sn相)の界面が平滑な比較例24~27は、発明例16~21に対して耐摩耗性、耐熱性及び挿入性に劣った。発明例22と比較例28はSn層厚みは同じであるが、比較例28は拡散層(Cu-Sn相)厚みが薄いため接触抵抗に関する耐熱性にやや劣るものであった。発明例23と比較例29は高度差y以外は同様の条件であるが、比較例29はyが小さいため接触抵抗に関する耐熱性に劣った。
Example:
Examples of the Cu base plating shown in Table 1 and the Ni / Cu base plating shown in Table 2 were performed.
In Invention Examples 1 to 6 and Comparative Examples 9 to 13 in Table 1, the electrodeposition plating thickness was adjusted so that the pure Sn layer was about 0.8 μm. Comparative Examples 9 to 13 where the interface of the diffusion layer (Cu—Sn phase) was smooth due to the slow reflow heating rate were inferior in wear resistance, heat resistance and insertability to Invention Examples 1 to 6. Invention Example 7 and Comparative Example 14 have the same Sn layer thickness, but Comparative Example 14 was inferior in heat resistance with respect to contact resistance because the diffusion layer (Cu—Sn phase) thickness was thin. Invention Example 8 and Comparative Example 15 have the same conditions except for the height difference y, but Comparative Example 15 was inferior in heat resistance regarding contact resistance because y was small.
In Invention Examples 16 to 21 and Comparative Examples 24 to 27 in Table 2, the electrodeposition plating thickness was adjusted so that the pure Sn layer was about 0.8 μm. Comparative Examples 24-27 in which the interface of the diffusion layer (Cu—Sn phase) was smooth due to the slow reflow heating rate were inferior in wear resistance, heat resistance, and insertability to Invention Examples 16-21. Inventive Example 22 and Comparative Example 28 have the same Sn layer thickness, but Comparative Example 28 was slightly inferior in heat resistance with respect to contact resistance because of the thin diffusion layer (Cu—Sn phase) thickness. Invention Example 23 and Comparative Example 29 have the same conditions except for the height difference y, but Comparative Example 29 was inferior in heat resistance regarding contact resistance because y was small.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (4)

  1.  銅合金条の表面に、下地めっき、Snめっきの順で電気めっきを施し、その後、リフロー処理を施しためっき条であり;めっき表面に対する垂直断面において、Snめっき最表面とCu-Sn合金相の最表点との高度差yが0.1~0.5μmであり;
    Sn相を溶解除去し、Cu-Sn合金相を表面に現出させたときに、このCu-Sn合金相の粗さ曲線の最大高さRzが0.6~1.2μmであり、かつCu-Sn合金相の粗さ曲線の平均長さRsmが2.0~5.0μmであることを特徴とする銅合金すずめっき条。
    The surface of the copper alloy strip is electroplated in the order of base plating and Sn plating, and then reflowed; in the cross section perpendicular to the plated surface, the Sn plating outermost surface and the Cu-Sn alloy phase The height difference y from the outermost point is 0.1 to 0.5 μm;
    When the Sn phase is dissolved and removed and the Cu—Sn alloy phase appears on the surface, the maximum height Rz of the roughness curve of this Cu—Sn alloy phase is 0.6 to 1.2 μm, and Cu A copper alloy tin plating strip characterized in that the average length Rsm of the roughness curve of the Sn alloy phase is 2.0 to 5.0 μm;
  2.  Rsm、y、Rzが下記の関係であることを特徴とする請求項1の銅合金すずめっき条。
    2.0≦Rsm/(y+Rz)≦4.0
    2. The copper alloy tin plating strip according to claim 1, wherein Rsm, y and Rz have the following relationship.
    2.0 ≦ Rsm / (y + Rz) ≦ 4.0
  3.  表面から母材にかけて、Sn層、Cu-Sn合金層、Cu層の各層でめっき皮膜が構成され、Sn層の厚みが0.5~1.5μm、Cu-Sn合金層の厚みが0.6~2.0μm、Cu層の厚みが0~0.8μmであることを特徴とする請求項1又は2記載の銅合金すずめっき条。 From the surface to the base material, a plating film is composed of each of the Sn layer, the Cu—Sn alloy layer, and the Cu layer, the thickness of the Sn layer is 0.5 to 1.5 μm, and the thickness of the Cu—Sn alloy layer is 0.6. The copper alloy tin-plated strip according to claim 1 or 2, wherein the copper layer has a thickness of -2.0 µm and the thickness of the Cu layer is 0-0.8 µm.
  4.  表面から母材にかけて、Sn層、Cu-Sn層、Ni層の各層でめっき皮膜が構成され、Sn層の厚みが0.5~1.5μm、Cu-Sn合金層の厚みが0.6~2.0μm、Ni層の厚みが0.1~0.8μmであることを特徴とする請求項1又は2記載の銅合金すずめっき条。 From the surface to the base material, a plating film is composed of each of the Sn layer, the Cu—Sn layer, and the Ni layer, the thickness of the Sn layer is 0.5 to 1.5 μm, and the thickness of the Cu—Sn alloy layer is 0.6 to 3. The copper alloy tin plating strip according to claim 1, wherein the thickness of the Ni layer is 2.0 to μm and the thickness of the Ni layer is 0.1 to 0.8 μm.
PCT/JP2009/056544 2008-03-31 2009-03-30 Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance WO2009123144A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008-093903 2008-03-31
JP2008093903 2008-03-31

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN 200980111536 CN101981234B (en) 2008-03-31 2009-03-30 Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance
KR1020107021439A KR101243454B1 (en) 2008-03-31 2009-03-30 Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance
JP2009541670A JPWO2009123144A1 (en) 2008-03-31 2009-03-30 Copper alloy tin-plated strip with excellent wear resistance, insertability and heat resistance

Publications (1)

Publication Number Publication Date
WO2009123144A1 true WO2009123144A1 (en) 2009-10-08

Family

ID=41135518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056544 WO2009123144A1 (en) 2008-03-31 2009-03-30 Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance

Country Status (5)

Country Link
JP (1) JPWO2009123144A1 (en)
KR (1) KR101243454B1 (en)
CN (1) CN101981234B (en)
TW (1) TWI366498B (en)
WO (1) WO2009123144A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249716A (en) * 2008-04-10 2009-10-29 Sumitomo Kinzoku Kozan Shindo Kk Tin-plated copper alloy material
EP2369688A1 (en) * 2010-03-26 2011-09-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same
EP2644750A1 (en) * 2012-03-30 2013-10-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Electroconductive material for connection component
WO2013150690A1 (en) * 2012-04-06 2013-10-10 株式会社オートネットワーク技術研究所 Plated member, plated terminal for connectors, method for producing plated member, and method for producing plated terminal for connectors
JP2014208878A (en) * 2013-03-25 2014-11-06 三菱マテリアル株式会社 Tin-plated copper alloy terminal material excellent in withdrawal property

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234827B (en) * 2010-04-20 2014-01-08 Jx日矿日石金属株式会社 Tinned copper alloy bar with excellent solder wetability and plugging performance
JP5140171B2 (en) * 2011-03-18 2013-02-06 Jx日鉱日石金属株式会社 Copper alloy strip used for battery tab material for charging
TWI561688B (en) * 2011-08-12 2016-12-11 Mitsubishi Materials Corp
CN104604036A (en) * 2012-08-31 2015-05-06 株式会社自动网络技术研究所 Plated terminal for connector, and terminal pair
JP6100203B2 (en) * 2014-05-19 2017-03-22 日新製鋼株式会社 Material for connecting parts
JP6423383B2 (en) * 2016-03-31 2018-11-14 日新製鋼株式会社 Material for connecting parts
JP6662685B2 (en) 2016-03-31 2020-03-11 Jx金属株式会社 Titanium copper foil with plating layer
CN109267119B (en) * 2018-11-05 2020-06-23 深圳和而泰智能控制股份有限公司 Phosphor bronze workpiece and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063624A (en) * 2005-08-31 2007-03-15 Nikko Kinzoku Kk Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3926355B2 (en) * 2004-09-10 2007-06-06 株式会社神戸製鋼所 Conductive material for connecting parts and method for manufacturing the same
JP4771970B2 (en) 2006-02-27 2011-09-14 株式会社神戸製鋼所 Conductive material for connecting parts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063624A (en) * 2005-08-31 2007-03-15 Nikko Kinzoku Kk Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249716A (en) * 2008-04-10 2009-10-29 Sumitomo Kinzoku Kozan Shindo Kk Tin-plated copper alloy material
EP2369688A1 (en) * 2010-03-26 2011-09-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same
US9373925B2 (en) 2010-03-26 2016-06-21 Kobe Steel, Ltd. Method for producing a mating-type connecting part
US8940405B2 (en) 2010-03-26 2015-01-27 Kobe Steel, Ltd. Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same
US8956735B2 (en) 2010-03-26 2015-02-17 Kabushiki Kaisha Kobe Seiko Sho Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same
US9449728B2 (en) 2012-03-30 2016-09-20 Kobe Steel, Ltd. Electroconductive material for connection component
EP2644750A1 (en) * 2012-03-30 2013-10-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Electroconductive material for connection component
JP2013231228A (en) * 2012-04-06 2013-11-14 Autonetworks Technologies Ltd Plated member, plated terminal for connector, method for producing plated member, and method for producing plated terminal for connector
WO2013150690A1 (en) * 2012-04-06 2013-10-10 株式会社オートネットワーク技術研究所 Plated member, plated terminal for connectors, method for producing plated member, and method for producing plated terminal for connectors
US9755343B2 (en) 2012-04-06 2017-09-05 Autonetworks Technologies, Ltd. Plated member and plated terminal for connector
JP2014208878A (en) * 2013-03-25 2014-11-06 三菱マテリアル株式会社 Tin-plated copper alloy terminal material excellent in withdrawal property

Also Published As

Publication number Publication date
KR20100118147A (en) 2010-11-04
JPWO2009123144A1 (en) 2011-07-28
KR101243454B1 (en) 2013-03-13
TW200948526A (en) 2009-12-01
TWI366498B (en) 2012-06-21
CN101981234A (en) 2011-02-23
CN101981234B (en) 2013-06-12

Similar Documents

Publication Publication Date Title
KR100547382B1 (en) Plated material and method of manufacturing the same, terminal member for connector, and connector
JP3926355B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP5086485B1 (en) Metal material for electronic parts and method for producing the same
KR101544264B1 (en) Sn-PLATED COPPER ALLOY STRIP HAVING EXCELLENT HEAT RESISTANCE
EP1281789B1 (en) A plated copper alloy material and process for production thereof
EP2644750B1 (en) Electroconductive material for connection component
CN101318390B (en) Remelting plating Sn material and electronic component using the same
JP4503620B2 (en) Conductive material for connecting parts and method for manufacturing the same
US10826203B2 (en) Metallic material for electronic components and method for producing same, and connector terminals, connectors and electronic components using same
JP4814552B2 (en) Surface treatment method
CN104379818B9 (en) Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
CN104619883B (en) Surface treatment plating material and its manufacture method and electronic component
TWI438783B (en) Conductive member and manufacturing method thereof
JP5498710B2 (en) Conductive member and manufacturing method thereof
JP5025387B2 (en) Conductive material for connecting parts and method for manufacturing the same
KR101162849B1 (en) Sn-plated copper or sn-plated copper alloy having excellent heat resistance and manufacturing method thereof
JP5789207B2 (en) Copper alloy plate with Sn coating layer for fitting type connection terminal and fitting type connection terminal
CN103227369B (en) Tinplated copper alloy terminal material and the manufacture method thereof of plug property excellence
JP6740635B2 (en) Tin-plated copper terminal material, its manufacturing method, and wire terminal structure
JP2005248268A (en) Metallic member and electric contact using the same
JP5280957B2 (en) Conductive member and manufacturing method thereof
JP2009057630A (en) Sn-PLATED CONDUCTIVE MATERIAL, METHOD FOR PRODUCING THE SAME, AND ELECTRICITY CARRYING COMPONENT
JP6055242B2 (en) Cu-Mg-P-based copper alloy Sn plated plate and method for producing the same
ES2643901T3 (en) Metallic material for electronic components and method of production thereof, and connector terminals, connectors and electronic components that use the same
US8101285B2 (en) Metallic material for a connecting part and a method of producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111536.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009541670

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase in:

Ref document number: 20107021439

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09727184

Country of ref document: EP

Kind code of ref document: A1