JP5144814B2 - Copper alloy material for electrical and electronic parts - Google Patents

Copper alloy material for electrical and electronic parts Download PDF

Info

Publication number
JP5144814B2
JP5144814B2 JP2011526771A JP2011526771A JP5144814B2 JP 5144814 B2 JP5144814 B2 JP 5144814B2 JP 2011526771 A JP2011526771 A JP 2011526771A JP 2011526771 A JP2011526771 A JP 2011526771A JP 5144814 B2 JP5144814 B2 JP 5144814B2
Authority
JP
Japan
Prior art keywords
copper
tin
layer
copper alloy
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011526771A
Other languages
Japanese (ja)
Other versions
JPWO2011019042A1 (en
Inventor
洋 金子
良聡 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011526771A priority Critical patent/JP5144814B2/en
Publication of JPWO2011019042A1 publication Critical patent/JPWO2011019042A1/en
Application granted granted Critical
Publication of JP5144814B2 publication Critical patent/JP5144814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Description

本発明は、リードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどの電気電子部品に適用される銅合金材料およびその製造方法に関する。   The present invention relates to a copper alloy material applied to electrical and electronic parts such as lead frames, connectors, terminal materials, relays, switches, and sockets, and a method for manufacturing the same.

銅または銅合金などの金属基体上にスズめっきを施したスズめっき材料は、安価でありながら、基体の優れた導電性と強度に加え、めっき層の低い接触抵抗と耐食性及びはんだ付け性を備えているため、高性能な接点用導体材料として、各種の端子やコネクタなどに広く使用されている。
また、スズめっき材料の用途の一部では、高温環境下で長時間使用され、その場合にはスズめっき層のスズが基体中への熱拡散により消失し、めっきの機能が低下することが問題となる。そのため、スズめっき層の下層にニッケルやコバルトなどの下地めっきを施し、スズの熱拡散を低減する。スズめっき層と基体材料との間のニッケルやコバルトの下地めっき層は、スズの拡散のバリア層としての機能を持つ。
この様に、使用環境に応じて、下地めっきの有無について2種類の構成のスズめっき材料が開発されている。
Tin-plated material with tin plating on a metal substrate such as copper or copper alloy is inexpensive, but has low contact resistance, corrosion resistance and solderability of the plating layer in addition to the excellent conductivity and strength of the substrate Therefore, it is widely used for various terminals and connectors as a high-performance contact conductor material.
Also, in some applications of tin plating materials, it is used for a long time in a high temperature environment, in which case the tin of the tin plating layer disappears due to thermal diffusion into the substrate, and the plating function deteriorates. It becomes. Therefore, underplating such as nickel or cobalt is applied to the lower layer of the tin plating layer to reduce thermal diffusion of tin. The nickel or cobalt base plating layer between the tin plating layer and the substrate material functions as a barrier layer for tin diffusion.
Thus, two types of tin plating materials have been developed for the presence or absence of base plating depending on the use environment.

近年のスズめっき材料が使用される状況には、以下の様な変化が挙げられる。
第1に、自動車や電機・電子機器の高機能化とともに、コネクタの多極化が進行しているため、端子や接点部品の一つ一つの小型化が進行している。例えば、タブ幅が約1.0mmの端子を0.64mmへダウンサイズする動きが進んでいる。
第2に、鉱物資源の低減や、部品を軽量化するため、基体材料の薄肉化が進行しており、なおかつバネ接圧を保つために、従来よりも高強度な基体材料が要求されている。
第3に使用環境の高温化が進行している。例えば自動車部品では、二酸化炭素発生量の低減のために、車体軽量化を進めるため、従来、ドアに設置していた様なエンジン制御用のECUなどの電子機器をエンジンルーム内やエンジン付近に設置し、電子機器とエンジンの間のワイヤーハーネスを短くする動きが進んでいる。
The following changes are mentioned in the situation where the tin plating material in recent years is used.
First, as the functionality of automobiles, electric machines, and electronic devices has been improved, the number of connectors has been increased, so that miniaturization of terminals and contact parts has progressed. For example, a movement to downsize a terminal having a tab width of about 1.0 mm to 0.64 mm is progressing.
Second, in order to reduce mineral resources and reduce the weight of parts, the substrate material is becoming thinner, and in order to maintain the spring contact pressure, a substrate material having higher strength than before is required. .
Thirdly, the use environment is becoming hot. For example, to reduce the amount of carbon dioxide generated in automobile parts, electronic devices such as ECUs for engine control, which were conventionally installed on doors, are installed in the engine room and in the vicinity of the engine to reduce the weight of the vehicle body. However, the movement to shorten the wire harness between the electronic device and the engine is progressing.

一方、上記の変化に伴い、めっき材料には下記の様な問題が生じている。
端子の小型化に伴い、接点部分やバネ部分に施される曲げ加工の曲げ半径は小さくなり、めっき材料には従来よりも厳しい曲げ加工が施される。そのため、めっき材料のめっき部分または、めっき部分と基体材料にクラックが発生する問題が生じている。
めっき材料の高強度化に伴い、めっき材料の曲げ加工性は、一般的に強度とトレードオフの関係にあるため、めっき材料のめっき部分または、めっき部分と基体にクラックが発生する問題が生じている。
使用環境の高温化に伴い、スズめっき層の熱拡散による消失を防止するためには、バリア層となるニッケルやコバルトなどの下地めっきを厚くする必要があるが、これらのめっきはスズめっきよりも硬く延性に乏しいため、曲げ加工を行った場合に、このバリアめっき層を基点とした、クラックが発生する問題が生じている。
接点部分やバネ部分に施される曲げ加工部にクラックが発生すると、接点部分の接圧が低下することにより、接点部分の接触抵抗が上昇し、電気的接続が絶縁され、コネクタとしての機能が失われることとなる。
On the other hand, with the above change, the following problems have arisen in the plating material.
Along with the miniaturization of the terminals, the bending radius of the bending process applied to the contact part and the spring part becomes smaller, and the plating material is subjected to a more severe bending process than before. Therefore, there is a problem that cracks occur in the plating portion of the plating material or in the plating portion and the base material.
As the strength of plating materials increases, the bending workability of plating materials generally has a trade-off relationship with strength, which causes the problem that cracks occur in the plating portion of the plating material or in the plating portion and the substrate. Yes.
In order to prevent the tin plating layer from disappearing due to thermal diffusion as the usage environment becomes higher, it is necessary to thicken the underlying plating such as nickel or cobalt as the barrier layer. Since it is hard and poor in ductility, there is a problem that cracks are generated based on this barrier plating layer when bending is performed.
If a crack occurs in the bent part applied to the contact part or spring part, the contact pressure of the contact part decreases, the contact resistance of the contact part increases, the electrical connection is insulated, and the function as a connector is achieved. It will be lost.

上記の様な課題を解決する従来の方法として、下記の様な技術が提案されている。
ニッケルやコバルトなどの下地層を含まないスズめっき材料に関しては、特許文献1において、Cu−Sn化合物層の厚さの制御により、成形加工性が悪化することを防止している。
ニッケルやコバルトなどの下地層を含むスズめっき材料に関しては、特許文献2、3において、ニッケル下地めっき層の厚さの制御により、また、特許文献4において、ニッケル下地めっき層とCu−Sn化合物層の厚さの制御により、曲げ加工性が悪化することを防止している。
但し、これらの方法では、最先端技術の小型端子の小さい曲げ半径でクラックの発生を防止することが困難になってきている。また、めっき層の厚さの制御は、肝心のめっきとしての機能を損なう場合があるため、抜本的な解決にならない場合があった。
The following techniques have been proposed as conventional methods for solving the above problems.
With respect to a tin plating material that does not include an underlayer such as nickel or cobalt, Patent Document 1 prevents the formability from being deteriorated by controlling the thickness of the Cu—Sn compound layer.
Regarding the tin plating material including an underlayer such as nickel or cobalt, in Patent Documents 2 and 3, the thickness of the nickel undercoat layer is controlled, and in Patent Document 4, the nickel undercoat layer and the Cu—Sn compound layer are used. By controlling the thickness, bending workability is prevented from deteriorating.
However, with these methods, it has become difficult to prevent the occurrence of cracks with a small bending radius of a state-of-the-art small terminal. In addition, since the control of the thickness of the plating layer may impair the function as an important plating, it may not be a radical solution.

特開2006−183068号公報JP 2006-183068 A 特開2003−147579号公報JP 2003-147579 A 特開2003−293187号公報JP 2003-293187 A 特開2004−068026号公報JP 2004-068026 A

曲げ半径の小さい、厳しい曲げ加工条件で曲げ加工した場合や、高強度の基体材料を使用して曲げ加工した場合でも、めっき材料のめっき部分または、めっき部分と金属基体材料にクラックが発生しない、スズめっき材料が求められている。特に、めっきの厚さを制御することで、めっき部分及び基体材料のクラックを抑制する方法では、耐熱性の低下などのめっきの機能低下に繋がるため、それ以外の方法が求められている。   Even when bent under severe bending conditions with a small bending radius, or when bent using a high-strength base material, cracks do not occur in the plated part of the plating material or in the plated part and the metal base material. There is a need for tin plating materials. In particular, the method of suppressing cracks in the plating portion and the base material by controlling the thickness of the plating leads to a decrease in the plating function such as a decrease in heat resistance. Therefore, other methods are required.

本発明者らは、電気・電子部品用途に適したスズめっき材料について研究を行い、銅または銅合金基体材料のcube方位の面積割合と、スズめっき材料の曲げ加工後のクラック発生頻度について相関があることを見出し、さらに鋭意検討を重ね本発明に至った。
また、それに加えて前記基体材料のcube方位面積を高めながら、なおかつ、スズめっき材料に要求される強度及び導電性を満足する基体材料の合金組成を見出し、発明に至った。
更に、基体材料の導電率や曲げ加工性を損なうことなく、耐応力緩和特性を向上させる働きのある添加元素について発明を行った。
The present inventors have studied tin-plated materials suitable for electric / electronic component applications, and there is a correlation between the area ratio of the cube orientation of the copper or copper alloy base material and the frequency of occurrence of cracks after bending of the tin-plated material. As a result, the present invention has been made through repeated studies.
In addition to that, the present inventors have found an alloy composition of a base material satisfying the strength and conductivity required for a tin plating material while increasing the cube orientation area of the base material, leading to the invention.
Furthermore, the inventors have invented an additive element that has the function of improving the stress relaxation resistance without impairing the conductivity and bending workability of the base material.

すなわち、本発明は、以下の解決手段を提供する。
(1)銅合金からなる基体上に、
少なくとも銅およびスズを含む合金層がめっき処理と加熱溶融処理により形成されている電気電子部品用銅合金材料であって、
前記基体のEBSD法結晶方位測定におけるcube方位{0 0 1}<1 0 0>から20°以内である領域の面積率が、5%以上であり、
前記基体は、ニッケルまたはコバルトの少なくとも一方を合計で0.4〜5.0mass%含有し、ケイ素を0.1〜1.5mass%含有し、残部が銅及び不可避不純物からなる組成を有し、該基体は表層の加工変質層を除去してなり、
前記基体上に隣接して、ニッケルまたはコバルトの少なくとも一方を含有する下地めっき層が設けられており
前記銅合金材料を、内側半径0.15mmとして90°W曲げ加工し、温度140℃で120時間の条件で大気中において加熱した後の曲げ部頂点の接触抵抗が、Agプローブを介した荷重490mNの条件下で10mΩ以下である
ことを特徴とする、電気電子部品用銅合金材料。
(2)銅合金からなる基体上に、
少なくとも銅およびスズを含む合金層がめっき処理と加熱溶融処理により形成されている電気電子部品用銅合金材料であって、
前記基体のEBSD法結晶方位測定におけるcube方位{0 0 1}<1 0 0>から20°以内である領域の面積率が、5%以上であり、
前記基体は、ニッケルまたはコバルトの少なくとも一方を合計で0.4〜5.0mass%含有し、ケイ素を0.1〜1.5mass%含有し、スズ、亜鉛、銀、マンガン、ホウ素、リン、マグネシウム、クロム、鉄、チタン、ジルコニウムおよびハフニウムからなる群から選ばれる少なくとも1種を合計で0.005〜2.0mass%含有し、残部が銅及び不可避不純物からなる組成を有し、該基体は表層の加工変質層を除去してなり、
前記基体上に隣接して、ニッケルまたはコバルトの少なくとも一方を含有する下地めっき層が設けられており
前記銅合金材料を、内側半径0.15mmとして90°W曲げ加工し、温度140℃で120時間の条件で大気中において加熱した後の曲げ部頂点の接触抵抗が、Agプローブを介した荷重490mNの条件下で10mΩ以下である
ことを特徴とする、電気電子部品用銅合金材料。
(3)前記合金層上に、スズまたはスズ合金からなる最表層が設けられていることを特徴とする、(1)または(2)記載の電気電子部品用銅合金材料。
(4)前記下地めっき層と前記合金層との間に、銅または銅合金からなる中間層が設けられていることを特徴とする、(1)または(2)記載の電気電子部品用銅合金材料。
(5)前記下地めっき層と前記合金層との間に、銅または銅合金からなる中間層が設けられ、かつ前記合金層上に、スズまたはスズ合金からなる最表層が設けられていることを特徴とする、(1)または(2)記載の電気電子部品用銅合金材料。
(6)(1)〜(5)のいずれか1項に記載の銅合金材料が加工されてなる電気電子部品。
(7)ニッケルまたはコバルトの少なくとも一方を合計で0.4〜5.0mass%含有し、ケイ素を0.1〜1.5mass%含有し、残部が銅及び不可避不純物からなる組成を有する銅合金からなり、均質化熱処理した鋳塊を850〜1020℃で熱間圧延し、800℃以下まで水冷または空冷して500〜800℃で合計の加工率が40%以上の高温圧延を行って得た基体上に、
ニッケルまたはコバルトの少なくとも一方を含有する下地めっき層と、銅または銅合金からなる銅めっき層と、スズまたはスズ合金からなるスズめっき層をこの順に形成し、その後250〜800℃で0.1〜120秒の加熱溶融処理によって前記スズめっき層を溶融させて、前記銅めっき層の構成元素と前記スズめっき層の構成元素からなる合金層を形成する、電気電子部品用銅合金材料の製造方法であって、
前記加熱溶融処理後の前記基体のEBSD法結晶方位測定におけるcube方位{0 0 1}<1 0 0>から20°以内である領域の面積率が5%以上であることを特徴とする、電気電子部品用銅合金材料の製造方法。
(8)ニッケルまたはコバルトの少なくとも一方を合計で0.4〜5.0mass%含有し、ケイ素を0.1〜1.5mass%含有し、スズ、亜鉛、銀、マンガン、ホウ素、リン、マグネシウム、クロム、鉄、チタン、ジルコニウムおよびハフニウムからなる群から選ばれる少なくとも1種を合計で0.005〜2.0mass%含有し、残部が銅及び不可避不純物からなる組成を有する銅合金からなり、均質化熱処理した鋳塊を850〜1020℃で熱間圧延し、800℃以下まで水冷または空冷して500〜800℃で合計の加工率が40%以上の高温圧延を行って得た基体上に、
ニッケルまたはコバルトの少なくとも一方を含有する下地めっき層と、銅または銅合金からなる銅めっき層と、スズまたはスズ合金からなるスズめっき層をこの順に形成し、その後250〜800℃で0.1〜120秒の加熱溶融処理によって前記スズめっき層を溶融させて、前記銅めっき層の構成元素と前記スズめっき層の構成元素からなる合金層を形成する、電気電子部品用銅合金材料の製造方法であって、
前記加熱溶融処理後の前記基体のEBSD法結晶方位測定におけるcube方位{0 0 1}<1 0 0>から20°以内である領域の面積率が5%以上であることを特徴とする、電気電子部品用銅合金材料の製造方法。
ここでcube方位とは、結晶の<0 0 1>方向が圧延方向、圧延面法線および幅方向と平行になる方位である。
That is, the present invention provides the following solutions.
(1) On a base made of a copper alloy,
At least an alloy layer containing copper and tin, a copper alloying material for electric and electronic parts which is formed by heating and melting treatment and plating treatment,
The area ratio of the region within 20 ° from the cube orientation {0 0 1} <1 0 0> in the EBSD method crystal orientation measurement of the substrate is 5% or more,
The substrate contains at least one of nickel or cobalt in a total amount of 0.4 to 5.0 mass%, contains silicon in an amount of 0.1 to 1.5 mass%, and the balance is composed of copper and inevitable impurities, The substrate is obtained by removing a work-affected layer on the surface layer,
Adjacent on the substrate, which undercoat plating layer is provided containing at least one of nickel or cobalt,
The copper alloy material was bent at 90 ° W with an inner radius of 0.15 mm, and the contact resistance at the apex of the bent portion after heating in the atmosphere at a temperature of 140 ° C. for 120 hours had a load of 490 mN via an Ag probe. A copper alloy material for electrical and electronic parts, characterized by being 10 mΩ or less under the conditions of
(2) On a base made of a copper alloy,
At least an alloy layer containing copper and tin, a copper alloy material for electric and electronic parts which is formed by heating and melting treatment and plating treatment,
The area ratio of the region within 20 ° from the cube orientation {0 0 1} <1 0 0> in the EBSD method crystal orientation measurement of the substrate is 5% or more,
The base body contains at least one of nickel and cobalt in a total amount of 0.4 to 5.0 mass%, silicon in a range of 0.1 to 1.5 mass%, tin, zinc, silver, manganese, boron, phosphorus, magnesium. , Chromium, iron, titanium, zirconium and hafnium at least one selected from the group consisting of 0.005 to 2.0 mass% in total, with the balance being composed of copper and unavoidable impurities, the substrate being a surface layer Removing the damaged layer of
Adjacent on the substrate, which undercoat plating layer is provided containing at least one of nickel or cobalt,
The copper alloy material was bent at 90 ° W with an inner radius of 0.15 mm, and the contact resistance at the apex of the bent portion after heating in the atmosphere at a temperature of 140 ° C. for 120 hours had a load of 490 mN via an Ag probe. A copper alloy material for electrical and electronic parts, characterized by being 10 mΩ or less under the conditions of
(3) The copper alloy material for electrical and electronic parts according to (1) or (2), wherein an outermost layer made of tin or a tin alloy is provided on the alloy layer.
(4) The copper alloy for electrical and electronic parts according to (1) or (2), wherein an intermediate layer made of copper or a copper alloy is provided between the base plating layer and the alloy layer. material.
(5) An intermediate layer made of copper or a copper alloy is provided between the base plating layer and the alloy layer, and an outermost layer made of tin or a tin alloy is provided on the alloy layer. The copper alloy material for electrical and electronic parts according to (1) or (2), characterized in that it is characterized.
(6) An electrical / electronic component formed by processing the copper alloy material according to any one of (1) to (5).
(7) From a copper alloy having a composition containing at least one of nickel or cobalt in a total amount of 0.4 to 5.0 mass%, containing silicon in a range of 0.1 to 1.5 mass%, and the balance consisting of copper and inevitable impurities. A base obtained by hot rolling an ingot that has been subjected to homogenization heat treatment at 850 to 1020 ° C., water-cooling or air-cooling to 800 ° C. or less, and performing high-temperature rolling at a total processing rate of 40% or more at 500 to 800 ° C. above,
A base plating layer containing at least one of nickel or cobalt, a copper plating layer made of copper or a copper alloy, and a tin plating layer made of tin or a tin alloy are formed in this order. A method for producing a copper alloy material for electrical and electronic parts, wherein the tin plating layer is melted by a heat melting treatment for 120 seconds to form an alloy layer composed of constituent elements of the copper plating layer and constituent elements of the tin plating layer. There,
The area ratio of the region within 20 ° from the cube orientation {0 0 1} <1 0 0> in the EBSD method crystal orientation measurement of the substrate after the heat-melting treatment is 5% or more, A method for producing a copper alloy material for electronic parts.
(8) Containing at least one of nickel or cobalt in a total amount of 0.4 to 5.0 mass%, containing silicon in a range of 0.1 to 1.5 mass%, tin, zinc, silver, manganese, boron, phosphorus, magnesium, Containing at least one selected from the group consisting of chromium, iron, titanium, zirconium and hafnium in a total amount of 0.005 to 2.0 mass%, the balance being a copper alloy having a composition consisting of copper and inevitable impurities, and homogenizing On the substrate obtained by hot-rolling the heat-treated ingot at 850 to 1020 ° C., water-cooling or air-cooling to 800 ° C. or less and performing high-temperature rolling at a total processing rate of 40% or more at 500 to 800 ° C.,
A base plating layer containing at least one of nickel or cobalt, a copper plating layer made of copper or a copper alloy, and a tin plating layer made of tin or a tin alloy are formed in this order. A method for producing a copper alloy material for electrical and electronic parts, wherein the tin plating layer is melted by a heat melting treatment for 120 seconds to form an alloy layer composed of constituent elements of the copper plating layer and constituent elements of the tin plating layer. There,
The area ratio of the region within 20 ° from the cube orientation {0 0 1} <1 0 0> in the EBSD method crystal orientation measurement of the substrate after the heat-melting treatment is 5% or more, A method for producing a copper alloy material for electronic parts.
Here, the cube orientation is an orientation in which the <0 0 1> direction of the crystal is parallel to the rolling direction, the rolling surface normal, and the width direction.

本発明の電気電子部品用銅合金材料は曲げ加工性が優れスズまたはスズめっき(最表層)と基体材料にクラックを生じることがない。したがってコネクタの接点材料として有用である。また本発明の電気電子部品用銅合金材料の製造方法によれば上記の優れた物性のコネクタなどに用いられる電気電子部品用銅合金材料が得られる。   The copper alloy material for electric and electronic parts of the present invention is excellent in bending workability and does not cause cracks in tin or tin plating (outermost layer) and the base material. Therefore, it is useful as a contact material of a connector. Further, according to the method for producing a copper alloy material for electric and electronic parts of the present invention, a copper alloy material for electric and electronic parts used for the connector having the above excellent physical properties can be obtained.

図1(A)はずれ角度の説明図である。図1(B)は図1(A)における座標系の説明図である。FIG. 1A is an explanatory diagram of the deviation angle. FIG. 1B is an explanatory diagram of the coordinate system in FIG. 耐応力緩和特性の試験方法の説明図である。It is explanatory drawing of the test method of a stress relaxation resistance characteristic.

本発明の銅合金材料の好ましい実施の態様について、詳細に説明する。ここで、「銅合金材料」とは、銅合金素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。なお、実施形態として板材、条材について説明する。   A preferred embodiment of the copper alloy material of the present invention will be described in detail. Here, the “copper alloy material” means a material obtained by processing a copper alloy material into a predetermined shape (for example, a plate, a strip, a foil, a bar, a wire, or the like). In addition, a board | plate material and a strip are demonstrated as embodiment.

スズめっき材料の曲げ加工時のクラックが発生する原因を明らかにするために、本発明者らは、曲げ変形した後のスズめっき材料の金属組織を詳細に調査した。その結果、基体材料は均一に変形しているのではなく、特定の結晶方位の領域のみに変形が集中する、不均一な変形が進行することが観察された。そして、その不均一変形により、曲げ加工した後の基体材料表面には、数ミクロンの深さのシワや、微細なクラックが発生し、結果的にスズめっきの割れに至ることが解った。
本発明の様に、複数の相を積み重ねためっき構造の場合、NiやCoなどの下地層及び、Cu−Sn化合物などの拡散層は、周囲のSn及び母材よりも強度が高く、これらの層ごとの変形挙動の差が問題となる。結果的に、下地層及び拡散層は延性に乏しく周囲よりも破壊が先に起こり、その破壊を起点としてめっき層全体が割れるため、多層めっきにおけるめっき割れは本質的な問題であった。この問題に対し、本発明は、めっきされる母材の表面について特定の結晶方位を有するように調整することにより、その変形状態を変化させる手法を取ったものである。
本発明で規定するように、基体材料のcube方位面積率を所定の大きさとすると、不均一な変形が抑制され、基体材料の表面に発生するシワが低減され、スズめっきの割れが抑制されることが解った。
更に、ニッケルや銅下地層もcube方位に配向し、めっき自体にも不均一な変形体が発達しにくくなる効果を見出した。
In order to clarify the cause of the occurrence of cracks during bending of the tin plating material, the present inventors investigated in detail the metal structure of the tin plating material after bending deformation. As a result, it was observed that the base material was not uniformly deformed, but non-uniform deformation progressed, in which the deformation was concentrated only in a region having a specific crystal orientation. It was found that due to the non-uniform deformation, wrinkles with a depth of several microns and fine cracks were generated on the surface of the base material after bending, resulting in cracks in the tin plating.
In the case of a plating structure in which a plurality of phases are stacked as in the present invention, the base layer such as Ni or Co and the diffusion layer such as Cu-Sn compound have higher strength than the surrounding Sn and the base material, and these The difference in deformation behavior between layers is a problem. As a result, the base layer and the diffusion layer are poor in ductility, and breakage occurs before the surroundings, and the entire plating layer is cracked starting from the breakage. Therefore, plating cracking in multilayer plating is an essential problem. In order to solve this problem, the present invention takes a technique of changing the deformation state by adjusting the surface of the base material to be plated so as to have a specific crystal orientation.
As specified in the present invention, when the cube orientation area ratio of the base material is set to a predetermined size, uneven deformation is suppressed, wrinkles generated on the surface of the base material are reduced, and cracking of the tin plating is suppressed. I understood that.
Further, the present inventors have found that the nickel and copper underlayers are also oriented in the cube orientation, and the uneven deformation body is less likely to develop in the plating itself.

cube方位面積率は、EBSD法(電子後方散乱回折像法)などで測定される、試料の被測定面積に対するcube方位の面積の比率である。cube面積率が5%以上の場合に、上記の効果が得られる。好ましくは、7%以上、更に好ましくは、10%以上である。また上限は特に制限するものではないが、好ましくは50%以下である。cube方位面積率が大きすぎる場合は、材料の加工硬化量が低下し、バネ接点の接触圧力が低下することがある。   The cube azimuth area ratio is the ratio of the area of the cube azimuth to the measured area of the sample measured by the EBSD method (electron backscatter diffraction image method) or the like. The above effect is obtained when the cube area ratio is 5% or more. Preferably, it is 7% or more, more preferably 10% or more. The upper limit is not particularly limited, but is preferably 50% or less. If the cube orientation area ratio is too large, the work hardening amount of the material may decrease, and the contact pressure of the spring contact may decrease.

本明細書における結晶方位の表示方法は、材料の圧延方向(RD)をX軸、板幅方向(TD)をY軸、圧延法線方向(ND)をZ軸の直角座標系を取り、材料中の各領域がZ軸に垂直な(圧延面に平行な)結晶面の指数(h k l)と、X軸に平行な結晶方向の指数[u v w]とを用いて、(h k l)[u v w]の形で示す。また、(1 3 2)[6 −4 3]と(2 3 1)[3 −4 6]などのように、銅合金の立方晶の対称性のもとで等価な方位については、ファミリーを表すカッコ記号を使用し、{h k l}<u v w>と示す。   The crystal orientation display method in the present specification takes a rectangular coordinate system in which the rolling direction (RD) of the material is the X axis, the sheet width direction (TD) is the Y axis, and the rolling normal direction (ND) is the Z axis. Using the index (h k l) of the crystal plane each region in which is perpendicular to the Z axis (parallel to the rolling surface) and the index [u v w] of the crystal direction parallel to the X axis, (h k l) Shown in the form [u v w]. In addition, as for (1 3 2) [6 -4 3] and (2 3 1) [3 -4 6], etc. It uses {h k l} <u v w> using the parenthesis symbol to represent.

本発明における上記結晶方位の解析には、EBSD法を用いた。EBSD法(電子後方散乱回折像法)とは、Electron Back Scatter Diffractionの略で、走査電子顕微鏡(Scanning Electron Microscope:SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折像(菊池パターン)を利用した結晶方位解析技術のことである。ここでは、結晶粒を200個以上含む、500μm四方の試料面積に対し、0.5μmのステップでスキャンし、方位を解析した。   The EBSD method was used for the analysis of the crystal orientation in the present invention. The EBSD method (electron backscatter diffraction image method) is an abbreviation of Electron Back Scatter Diffraction, and the reflected electron Kikuchi line diffraction image (SEM) generated when a sample is irradiated with an electron beam in a scanning electron microscope (SEM). This is crystal orientation analysis technology using the Kikuchi pattern. Here, a 500 μm square sample area containing 200 or more crystal grains was scanned in 0.5 μm steps, and the orientation was analyzed.

ずれ角度については、共通の回転軸を中心に回転角を計算して求める。図1(A)および図1(B)にずれ角度の説明図を示す。図1(A)の例1は、(1 0 0)方向を回転軸にして回転した例、例2は、(1 1 0)方向を回転軸にして回転した例、例3は、(1 1 1)方向を回転軸にして回転した例をそれぞれ示す。例えば、cube方位(0 0 1)[1 0 0]に対して、(−1 1 5)[5 0 1]は(1 1 0)方向を回転軸にして15°回転、(−1 1 10)[9 −1 1]は(1 1 1)方向を回転軸にして10°回転した関係になっている。この角度をずれ角度とした。共通の回転軸は最も小さいずれ角度で表現できるものを採用する。面積率の算出方法自体は通常の方法であり、全ての測定点に対してこのずれ角度を計算して小数第一位までを有効数字とし、cube方位からのずれ角度が20°以内の方位を持つ結晶粒の面積を全測定面積で除し、面積率とする。図1(B)は上記図1(A)での座標系を示す。なお、図1(A)における回転角度は、四捨五入して整数で表示している。   The deviation angle is obtained by calculating the rotation angle around a common rotation axis. FIG. 1A and FIG. 1B are explanatory diagrams of the shift angle. Example 1 in FIG. 1A is an example rotated with the (1 0 0) direction as a rotation axis, Example 2 is an example rotated with the (1 1 0) direction as a rotation axis, and Example 3 is (1 1 1) Each example rotated with the direction as the axis of rotation. For example, with respect to the cube orientation (0 0 1) [1 0 0], (−1 1 5) [5 0 1] is rotated by 15 ° with the (1 1 0) direction as the rotation axis, (−1 1 10 ) [9 -1 1] has a relationship of 10 ° rotation with the (1 1 1) direction as the axis of rotation. This angle was defined as a deviation angle. A common rotation axis that can be expressed at the smallest angle is adopted. The calculation method of the area ratio itself is a normal method. The deviation angle is calculated for all measurement points, the first decimal place is an effective number, and the deviation angle from the cube orientation is within 20 °. The area of the crystal grains is divided by the total measurement area to obtain the area ratio. FIG. 1B shows the coordinate system in FIG. In addition, the rotation angle in FIG. 1 (A) is rounded off and displayed as an integer.

EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、本明細書中では面積率として記載した。また、測定は板表面から行った。   The information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers at which the electron beam penetrates into the sample. It was described as an area ratio. The measurement was performed from the plate surface.

EBSD測定にあたっては、鮮明な菊池線回折像(菊池パターン)を得るために、機械研磨の後に、コロイダルシリカの砥粒を使用して、基体表面を鏡面研磨した後に、測定を行った。   In the EBSD measurement, in order to obtain a clear Kikuchi line diffraction image (Kikuchi pattern), the surface of the substrate was mirror-polished using a colloidal silica abrasive after mechanical polishing, and then the measurement was performed.

本発明のコネクタ用端子の基体材料金属としては、銅または銅合金が用いられる。これらの基体銅合金としては、従来の公知のものから適宜選ぶことができるが、各物性を向上させる好ましい実施態様について以下に説明する。
コネクタに要求される導電性、機械的強度および耐熱性を有する銅、リン青銅、黄銅、洋白、ベリリウム銅、コルソン系合金(Cu−Ni−Si系)などの銅合金が好ましい。特に、cube方位の面積率を高めたい場合は、純銅系の材料やベリリウム銅、コルソン系合金が好ましい。更に、最先端の小型端子材料に求められるような、高強度と高導電性を両立させるためには、Cu−Ni−Si系やCu−Ni−Co−Si系の銅合金が好ましい。
Copper or copper alloy is used as the base material metal of the connector terminal of the present invention. These base copper alloys can be appropriately selected from conventionally known copper alloys. Preferred embodiments for improving the physical properties will be described below.
Copper alloys such as copper, phosphor bronze, brass, western white, beryllium copper, and Corson alloy (Cu—Ni—Si) having electrical conductivity, mechanical strength and heat resistance required for the connector are preferable. In particular, when it is desired to increase the area ratio of the cube orientation, a pure copper material, beryllium copper, or a Corson alloy is preferable. Furthermore, in order to achieve both high strength and high conductivity as required for the most advanced small terminal materials, Cu—Ni—Si and Cu—Ni—Co—Si copper alloys are preferable.

銅(Cu)に添加する第1の添加元素群であるニッケル(Ni)とコバルト(Co)とケイ素(Si)について、それぞれの添加量を制御することにより、Ni−Si、Co−Si、Ni−Co−Siの化合物を析出させて銅合金の強度を向上させることができる。その添加量は、ニッケルとコバルトの中から1種または2種を合計で0.4〜5.0mass%、好ましくは0.6〜4.5mass%、さらに好ましくは0.8〜4.0mass%、Siの含有量は0.1〜1.5mass%、好ましくは0.2〜1.2mass%である。これらの元素の添加量が合計で0.5〜5.1mass%である。この量が多すぎると導電率を低下させ、また、少なすぎると強度が不足することがある。   By controlling the respective addition amounts of nickel (Ni), cobalt (Co), and silicon (Si), which are the first additive element group added to copper (Cu), Ni—Si, Co—Si, Ni The strength of the copper alloy can be improved by precipitating a Co—Si compound. The total amount of one or two of nickel and cobalt is 0.4 to 5.0 mass%, preferably 0.6 to 4.5 mass%, more preferably 0.8 to 4.0 mass%. The Si content is 0.1 to 1.5 mass%, preferably 0.2 to 1.2 mass%. The total amount of these elements added is 0.5 to 5.1 mass%. If this amount is too large, the electrical conductivity is lowered, and if it is too small, the strength may be insufficient.

次に、耐応力緩和特性などの特性(二次特性)を向上させる添加元素の効果について示す。好ましい添加元素としては、スズ(Sn)、亜鉛(Zn)、銀(Ag)、マンガン(Mn)、ホウ素(B)、リン(P)、マグネシウム(Mg)、クロム(Cr)、鉄(Fe)、チタン(Ti)、ジルコニウム(Zr)およびハフニウム(Hf)が挙げられる。添加効果を充分に活用し、かつ導電率を低下させないためには、総量で0.005〜2.0mass%であることが必要で、好ましくは0.01〜0.9mass%、さらに好ましくは、0.03〜0.8mass%である。これらの添加元素が総量で2mass%を超えると導電率を低下させる弊害を生じることがあり好ましくない。なお、これらの添加元素が総量で0.005mass%より少ない場合は、これらの元素を添加した効果がほとんど発揮されない。
以下に、各元素の添加効果を示す。Sn、Zn、Mgは、Cu−Ni−Si系、Cu−Ni−Co−Si系、Cu−Co−Si系銅合金に添加することで耐応力緩和特性が向上する。それぞれを添加した場合よりも併せて添加した場合に相乗効果によってさらに耐応力緩和特性が向上する。また、半田脆化を著しく改善する効果がある。また、Agを含めると、固溶効果により強度が向上する効果がある。
また、Mn、B、P、Cr、Fe、Ti、ZrおよびHfは、結晶粒の微細化による強度の向上などの効果を奏する。
Next, the effect of an additive element that improves characteristics (secondary characteristics) such as stress relaxation resistance will be described. Preferred additive elements include tin (Sn), zinc (Zn), silver (Ag), manganese (Mn), boron (B), phosphorus (P), magnesium (Mg), chromium (Cr), and iron (Fe). , Titanium (Ti), zirconium (Zr) and hafnium (Hf). In order to fully utilize the additive effect and not lower the electrical conductivity, the total amount needs to be 0.005 to 2.0 mass%, preferably 0.01 to 0.9 mass%, more preferably, It is 0.03-0.8 mass%. If the total amount of these additive elements exceeds 2 mass%, an adverse effect of lowering the electrical conductivity may occur, which is not preferable. In addition, when these additional elements are less than 0.005 mass% in total amount, the effect which added these elements is hardly exhibited.
The effect of adding each element is shown below. By adding Sn, Zn, and Mg to the Cu—Ni—Si, Cu—Ni—Co—Si, and Cu—Co—Si copper alloys, the stress relaxation resistance is improved. The stress relaxation resistance is further improved by a synergistic effect when added together than when they are added. In addition, there is an effect of remarkably improving solder embrittlement. Moreover, when Ag is contained, there exists an effect which intensity | strength improves by the solid solution effect.
Further, Mn, B, P, Cr, Fe, Ti, Zr, and Hf have effects such as improvement in strength due to refinement of crystal grains.

次に、基体材料の結晶方位の、cube方位の面積率を制御する方法について説明する。ここでは、析出型銅合金の板材(条材)を例に挙げて説明する。
一般に、析出型銅合金は、均質化熱処理した鋳塊を熱間と冷間の各ステップで薄板化し、700〜1020℃の温度範囲で中間溶体化熱処理を行って溶質原子を再固溶させた後に、時効析出熱処理と仕上げ冷間圧延によって必要な強度を満足させるように製造される。これらの製造条件は銅合金組成によって若干異なるが、鋳塊の均質化熱処理条件は、800〜1020℃で3分〜10時間行うのが好ましい。鋳塊の熱間圧延は好ましくは500〜1000℃で、冷間圧延は好ましくは室温〜200℃で行われる。冷間圧延の加工率は好ましくは80〜99.9%である。時効析出熱処理と仕上げ冷間圧延の条件は、所望の強度及び導電性などの特性に応じて、調整される。具体例をあげると時効析出熱処理は、好ましくは350〜650℃、より好ましくは400〜600℃で、好ましくは1分間〜10時間、より好ましくは10分間〜6時間で行われる。銅合金の集合組織については、この一連のステップの中の中間溶体化熱処理中に起きる再結晶によってそのおおよそが決定し、仕上げ圧延中に起きる方位の回転により、最終的に決定される。
Next, a method for controlling the area ratio of the cube orientation of the crystal orientation of the base material will be described. Here, a description will be given using a precipitation-type copper alloy plate material (strip material) as an example.
In general, a precipitation-type copper alloy is obtained by thinning a homogenized heat-treated ingot at each step of hot and cold, and performing an intermediate solution heat treatment in a temperature range of 700 to 1020 ° C. to re-solidify solute atoms. Later, it is manufactured to satisfy the required strength by aging precipitation heat treatment and finish cold rolling. These production conditions vary slightly depending on the copper alloy composition, but the ingot homogenization heat treatment condition is preferably 800 to 1020 ° C. for 3 minutes to 10 hours. The hot rolling of the ingot is preferably performed at 500 to 1000 ° C, and the cold rolling is preferably performed at room temperature to 200 ° C. The processing rate of cold rolling is preferably 80 to 99.9%. The conditions for the aging precipitation heat treatment and the finish cold rolling are adjusted according to characteristics such as desired strength and conductivity. As a specific example, the aging precipitation heat treatment is preferably performed at 350 to 650 ° C., more preferably 400 to 600 ° C., preferably 1 minute to 10 hours, more preferably 10 minutes to 6 hours. The texture of the copper alloy is roughly determined by recrystallization that occurs during the intermediate solution heat treatment in this series of steps, and finally determined by the orientation rotation that occurs during finish rolling.

中間溶体化熱処理においてcube方位面積率を上昇させるためには、溶質元素が充分に固溶するような高い温度に設定することが有効である。更に、cube方位面積率を上昇させるためには、熱間圧延にて1パスあたり好ましくは40%以下の加工率、より好ましくは3%〜20%の加工率で加工する。熱間圧延時の温度は、850℃〜1020℃、好ましくは900℃〜1000℃とする。熱間圧延工程で動的及び静的再結晶により鋳造組織を破壊した後、一旦、800℃以下まで水冷または空冷し、500℃〜800℃、更に好ましくは550℃〜750℃の温度で、合計の加工率が40%以上(好ましくは90%以下)の高温圧延を行うことにより、cube方位面積率を本発明で規定する範囲に制御することができる。
本発明においては、熱間圧延温度の下限値と高温圧延温度の上限値の間の温度範囲、好ましくは上記800℃〜850℃、さらに好ましくは750℃〜900℃の中間温度範囲では、圧延加工を行わず、水冷または空冷することが好ましい。以下にこの理由を示す。この温度帯は最も溶質元素の析出が速い温度帯である。なお、この中間温度帯より高温は、溶質元素がほぼ固溶する温度であり、この中間温度帯より低温は原子の運動が遅いため、析出が軽微である。そして、この好ましくは800℃〜850℃、さらに好ましくは750℃〜900℃の中間温度帯で圧延加工を受けた場合は、格子欠陥の増加により析出が更に速くなり、数ミクロン前後の大きさの粗大な析出物が生成してしまう。次に、500℃〜800℃の高温圧延及び、その後の冷間圧延において、この数ミクロン前後の大きさの粗大な析出粒子の周囲には歪みが集中する。その結果、中間溶体化熱処理において、粒子周囲の高歪み領域からランダムな方位の再結晶粒が発生し、所望のcube方位面積率を得られないことがある。すなわち、本発明で規定するcube方位面積率を達成するためには、粗大析出粒子の制御が肝要であり、そのためには上記中間温度での圧延加工を行わないことが好ましい。よって、上記の理由から、空冷よりも水冷により中間温度を推移することが、より好ましい。
In order to increase the cube orientation area ratio in the intermediate solution heat treatment, it is effective to set the temperature so as to sufficiently dissolve the solute element. Further, in order to increase the cube orientation area ratio, hot rolling is preferably performed at a processing rate of 40% or less, more preferably 3% to 20% per pass. Temperature during hot rolling, 8 50 ℃ ~1020 ℃, good Mashiku is a 900 ° C. to 1000 ° C.. After breaking the cast structure by the dynamic and static recrystallization in hot rolling process, once it cooled with water or air-cooled to 800 ° C. or less, 5 00 ° C. to 800 ° C., further preferably at a temperature of 550 ° C. to 750 ° C., By performing high temperature rolling with a total processing rate of 40% or more (preferably 90% or less), the cube orientation area ratio can be controlled within the range defined in the present invention.
In the present invention, in the temperature range between the lower limit value of the hot rolling temperature and the upper limit value of the high temperature rolling temperature, preferably in the intermediate temperature range of 800 ° C to 850 ° C, more preferably 750 ° C to 900 ° C, rolling is performed. It is preferable to perform water cooling or air cooling without performing the above. The reason is shown below. This temperature zone is the temperature zone where precipitation of solute elements is fastest. Note that the temperature higher than the intermediate temperature zone is a temperature at which the solute element is substantially dissolved, and the temperature lower than the intermediate temperature zone is slow in the movement of atoms, so that precipitation is slight. And when this is preferably rolled at an intermediate temperature range of 800 ° C. to 850 ° C., more preferably 750 ° C. to 900 ° C., precipitation is further accelerated due to an increase in lattice defects, and the size is around several microns. Coarse precipitates are generated. Next, in high-temperature rolling at 500 ° C. to 800 ° C. and subsequent cold rolling, strain concentrates around the coarse precipitate particles having a size of about several microns. As a result, in the intermediate solution heat treatment, recrystallized grains having random orientation may be generated from a high strain region around the particle, and a desired cube orientation area ratio may not be obtained. That is, in order to achieve the cube orientation area ratio defined in the present invention, it is important to control coarsely precipitated particles. For this purpose, it is preferable not to perform rolling at the intermediate temperature. Therefore, for the above reason, it is more preferable to change the intermediate temperature by water cooling rather than air cooling.

なお、本発明の基体材料にめっきを施す際は、定法の前処理手段、例えば水酸化ナトリウム60グラム/リットルの水溶液におけるカソード電解脱脂および希硫酸浸漬による酸洗処理を実施することで、密着性に優れためっき皮膜を形成することが可能である。より密着性や曲げ加工性を向上させるためには、めっきを施す前に、基体材料の表面に形成される加工変質層の除去を行うことで、更に、基体材料の結晶方位を制御する効果が充分に得られる場合がある。
本発明において、加工変質層はバフ掛け工程や調質圧延(機械加工)の際に発生する熱、作用力、周囲の雰囲気、金属新生面の性質などの影響を受けて形成される層で、金属基体内部の結晶組織よりも微細な組織を呈する。前記加工変質層はベイルビー層(上層)と塑性変形層(下層)とからなり、前記ベイルビー層は極微細な結晶集合組織或いは非晶質組織からなり、前記塑性変形層は歪みの多い不均一な結晶集合組織からなり、その結晶粒の大きさはベイルビー層の結晶粒と金属基体内部の結晶粒のほぼ中間の大きさである。本発明では、これらの加工変質層を除去することとなるが、加工変質層を完全に除去するか否かは、加工変質層除去後の金属基体の表面状態などを考慮して決定することが好ましい。
加工変質層は熱的に不安定な組織であり、加熱溶融処理中の熱による原子拡散によって熱的に安定な原子配列に変化し、加工変質層は減少する。よって、本発明の様な加熱溶融処理を行うめっきの場合は、めっきの前に加工変質層を除去する利点は少なく、めっきの前に加工変質層の除去行うことは一般的ではないと考えられる。因みに、Niめっき、Cuめっき、Agめっきなどの場合は、めっき後に加熱溶融処理は行わないのが一般的である。
In addition, when plating the base material of the present invention, it is possible to perform adhesion by performing a conventional pretreatment means, for example, cathodic electrolytic degreasing in an aqueous solution of sodium hydroxide 60 g / liter and dipping in dilute sulfuric acid. It is possible to form an excellent plating film. In order to improve adhesion and bending workability, the effect of controlling the crystal orientation of the base material can be further improved by removing the work-affected layer formed on the surface of the base material before plating. It may be obtained sufficiently.
In the present invention, a work-affected layer is a layer formed under the influence of heat, working force, ambient atmosphere, properties of a new metal surface, etc. generated during a buffing process or temper rolling (machining). It exhibits a finer structure than the crystal structure inside the substrate. The work-affected layer is composed of a Bailby layer (upper layer) and a plastically deformed layer (lower layer), the Bailby layer is composed of an extremely fine crystalline texture or an amorphous structure, and the plastically deformed layer is non-uniform with many strains. It consists of a crystallographic texture, and the size of the crystal grains is approximately halfway between the crystal grains of the Bailby layer and the crystal grains inside the metal substrate. In the present invention, these work-affected layers are removed. Whether or not the work-affected layer is completely removed can be determined in consideration of the surface state of the metal substrate after the work-affected layer is removed. preferable.
The work-affected layer is a thermally unstable structure, and changes into a thermally stable atomic arrangement by atomic diffusion due to heat during the heat-melting process, and the work-affected layer decreases. Therefore, in the case of plating that performs the heat-melting treatment as in the present invention, there is little advantage of removing the work-affected layer before plating, and it is considered uncommon to remove the work-affected layer before plating. . Incidentally, in the case of Ni plating, Cu plating, Ag plating, etc., it is common not to perform the heat melting treatment after plating.

前記金属基体の加工変質層の除去には、硫酸、硝酸、塩酸、過酸化水素水、フッ酸などの酸の単体水溶液もしくは混合水溶液による溶解法、電解液中での通電溶解法、スパッタリング法、エッチング法などの常法が適用できる。
前記加工変質層の厚さは、材質、鋳造圧延条件およびバフ掛け条件により決まるので、前記加工変質層の厚さを、予め、材質別、製法別に調べておけば、前記加工変質層は、金属基体の露出面を観察することなく除去することができる。例えば、鋳造圧延しバフ掛けした板の表層の酸化物層および吸着物層の厚さは0.01〜0.1μm程度、加工変質層の厚さは0.3〜0.4μm程度であり、従って金属基体の表層を、めっき前に0.4μm程度、望ましくは0.5μm程度除去することにより加工変質層は除去される。
For removal of the work-affected layer of the metal substrate, sulfuric acid, nitric acid, hydrochloric acid, hydrogen peroxide, hydrofluoric acid and other acid single-solution solutions or mixed aqueous solutions, electrolysis in an electrolytic solution, sputtering method, Conventional methods such as an etching method can be applied.
The thickness of the work-affected layer is determined by the material, casting and rolling conditions, and buffing conditions. Therefore, if the thickness of the work-affected layer is examined in advance for each material and manufacturing method, the work-affected layer is a metal It can be removed without observing the exposed surface of the substrate. For example, the thickness of the oxide layer and the adsorbate layer on the surface of the cast and buffed plate is about 0.01 to 0.1 μm, and the thickness of the work-affected layer is about 0.3 to 0.4 μm, Accordingly, the work-affected layer is removed by removing the surface layer of the metal substrate by about 0.4 μm, preferably about 0.5 μm, before plating.

因みに、酸によって金属基体の表面を処理する技術として酸洗処理が知られているが、酸洗処理は、密着性向上のための金属基体表面酸化膜の除去を目的とし、例えば濃度数%の希硫酸に数秒間浸漬して行っており、そのため溶解除去される表層厚さはせいぜい数十ナノメートルにすぎず、加工変質層は殆ど除去されない。   Incidentally, pickling treatment is known as a technique for treating the surface of a metal substrate with an acid. The pickling treatment is intended to remove the oxide film on the surface of the metal substrate in order to improve adhesion. It is immersed in dilute sulfuric acid for several seconds. Therefore, the surface layer thickness dissolved and removed is only tens of nanometers at most, and the work-affected layer is hardly removed.

電気スズめっきは、例えば硫酸スズ浴を用い、めっき温度30℃以下、電流密度5A/dmで行えばよい。ただし、条件はこの限りではなく適宜設定可能である。
本発明において形成されるスズめっきの成分組成、種類については特に制限はない。本発明に使用しうるスズめっきとしては、スズ、スズ−銀、スズ−ニッケル、スズ−銅、スズ−鉛、スズ−アンチモンなどがあげられる。スズめっき層の厚さは、好ましくは0.1μm以上、より好ましくは0.5〜5μmとする。
さらに本発明において、基体材料上に、めっきの前処理として、常法によりニッケル、コバルトなどの下地めっきを例えば被覆厚0.2〜5μm程度の厚さで設けることができるが、これは必須ではない。
さらに本発明においてはスズめっき層の下層の、中間層として、銅または銅合金からなる銅めっき層を形成するのが好ましい。
本発明においては、銅合金からなる基体上に少なくとも銅およびスズを含む合金層を形成する。この銅または銅合金からなる銅めっき層は、次にスズまたはスズ合金からなるスズめっき層をこの上に形成し、好ましくは厚さ0.2〜10μm、より好ましくは0.5〜5μmで形成され、その後加熱溶融処理によって前記スズめっき層を溶融させて、前記銅めっき層の構成元素と前記スズめっき層の構成元素からなる合金層を形成することにより得ることができる。この場合の前記の加熱溶融処理(リフロー処理)は、250〜800℃で、時間は0.1〜120秒行う
The electrotin plating may be performed, for example, using a tin sulfate bath at a plating temperature of 30 ° C. or less and a current density of 5 A / dm 2 . However, the conditions are not limited to this, and can be set as appropriate.
There is no restriction | limiting in particular about the component composition and kind of tin plating formed in this invention. Examples of tin plating that can be used in the present invention include tin, tin-silver, tin-nickel, tin-copper, tin-lead, and tin-antimony. The thickness of the tin plating layer is preferably 0.1 μm or more, more preferably 0.5 to 5 μm.
Furthermore, in the present invention, as a pretreatment for plating, a base plating such as nickel or cobalt can be provided on the base material by a conventional method, for example, with a coating thickness of about 0.2 to 5 μm. Absent.
Furthermore, in this invention, it is preferable to form the copper plating layer which consists of copper or a copper alloy as an intermediate | middle layer of the lower layer of a tin plating layer.
In the present invention, an alloy layer containing at least copper and tin is formed on a base made of a copper alloy. The copper plating layer made of copper or a copper alloy is formed by forming a tin plating layer made of tin or a tin alloy thereon, preferably with a thickness of 0.2 to 10 μm, more preferably 0.5 to 5 μm. Then, the tin plating layer can be melted by a heat melting process to form an alloy layer composed of the constituent elements of the copper plating layer and the constituent elements of the tin plating layer. The heat-melting process in this case (reflow treatment), at 2 50 to 800 ° C., the time is carried out 0.1 to 120 seconds.

以下、実施例に基づき本発明についてさらに詳細に説明するが、本発明はそれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to them.

(実施例1)
[基体材料の製造]
第1の添加元素を表1に示す割合で含有するように配合し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1020℃の温度で3分〜10時間の均質化熱処理後、850℃〜1020℃の温度で熱間圧延を行った。その後800℃以下まで水冷または空冷し、500℃〜800℃の温度で、合計の加工率が40%以上90%以下の高温圧延を行った後に水焼き入れを行い、酸化スケール除去のために面削を行った。その後に、加工率80%から99.8%の冷間圧延、700〜1020℃で5秒〜1時間の中間溶体化熱処理、400〜700℃で5分〜10時間の時効析出熱処理、加工率3〜25%の仕上げ冷間圧延、200〜600℃で5秒〜10時間の調質焼鈍を行って、基体材料とした。これらの供試材の組成および特性を、本発明例および比較例について併せて表1に示す。各熱処理や圧延の後に、材料表面の酸化や粗度の状態に応じて酸洗浄や表面研磨を、形状に応じてテンションレベラーによる矯正を行った。
なお、表1、表2中の比較例1−1、1−2、2−1、2−2は、上記工程内の、高温圧延を900℃より高い温度で行い、中間溶体化熱処理を700℃未満で行い、30%より大きい加工率の仕上げ冷間圧延を行うことによって製造した。また、表1、表2中の比較例1−3、1−4、2−3、2−4は、上記工程内の、高温圧延を900℃より高い温度で行うことによって製造した。
Example 1
[Manufacture of substrate materials]
It mix | blends so that it may contain the 1st addition element in the ratio shown in Table 1, the remainder consists of an alloy which consists of Cu and an unavoidable impurity with a high frequency melting furnace, this is 0.1-100 degree-C / sec cooling rate. An ingot was obtained by casting. This was subjected to hot rolling at a temperature of 850 ° C. to 1020 ° C. after a homogenization heat treatment at a temperature of 900 to 1020 ° C. for 3 minutes to 10 hours. After that, it is water-cooled or air-cooled to 800 ° C. or less, subjected to high-temperature rolling at a temperature of 500 ° C. to 800 ° C. with a total processing rate of 40% to 90%, and then subjected to water quenching to remove oxide scale. Sharpened. Thereafter, cold rolling at a processing rate of 80% to 99.8%, intermediate solution heat treatment at 700 to 1020 ° C. for 5 seconds to 1 hour, aging precipitation heat treatment at 400 to 700 ° C. for 5 minutes to 10 hours, processing rate Finishing cold rolling of 3 to 25% and temper annealing at 200 to 600 ° C. for 5 seconds to 10 hours were performed to obtain a base material. Table 1 shows the compositions and properties of these test materials together with the inventive examples and comparative examples. After each heat treatment and rolling, acid cleaning and surface polishing were performed according to the state of oxidation and roughness of the material surface, and correction with a tension leveler was performed according to the shape.
In Comparative Examples 1-1, 1-2, 2-1, and 2-2 in Tables 1 and 2, high temperature rolling in the above process is performed at a temperature higher than 900 ° C., and an intermediate solution heat treatment is performed at 700. It was produced by performing cold rolling at a processing rate of less than 30 ° C. and a processing rate of greater than 30%. In addition, Comparative Examples 1-3, 1-4, 2-3, and 2-4 in Tables 1 and 2 were manufactured by performing high-temperature rolling in the above steps at a temperature higher than 900 ° C.

[めっきの前処理]
次に、めっきの前処理として電解脱脂処理および酸洗処理をこの順に施した。電解脱脂処理の条件は、脱脂液はNaOH 60グラム/リットルとし、脱脂液温度60℃、電流密度2.5 A/dm、脱脂時間60秒でおこなった。
[Pretreatment of plating]
Next, as a pretreatment for plating, electrolytic degreasing and pickling were performed in this order. The conditions for electrolytic degreasing were as follows: the degreasing solution was NaOH 60 g / liter, the degreasing solution temperature was 60 ° C., the current density was 2.5 A / dm 2 , and the degreasing time was 60 seconds.

本実施例の前処理における酸洗処理の条件は、条件aとして、H 35ミリリットル/リットルと、HSO 61ミリリットル/リットルと、1−プロパノール10ミリリットル/リットルをそれぞれ含む水溶液を酸洗液として用いて、25℃の酸洗液に20秒間浸漬した。この条件は、表層に形成された加工変質層を除去できる酸洗条件である。この条件aを利用して、表1記載の試料の酸洗処理を実施した。The conditions of the pickling treatment in the pretreatment of the present example are as follows: an aqueous solution containing H 2 O 2 35 ml / liter, H 2 SO 4 61 ml / liter, and 1-propanol 10 ml / liter as condition a. It was used as a pickling solution and immersed in a pickling solution at 25 ° C. for 20 seconds. This condition is a pickling condition that can remove the work-affected layer formed on the surface layer. Using this condition a, pickling treatment of the samples shown in Table 1 was performed.

[めっき]
次いで、表1に示すように下地層1のめっきを施す。下地層1のめっき条件は、例えばニッケルめっきの場合は、めっき液はNi(NHSO・4HOを500グラム/リットル、HBOを30グラム/リットル、NiCl・6HOを30グラム/リットルをそれぞれ含む水溶液とし、めっき液温度55℃、電流密度を10A/dmとした。コバルトめっきの場合も同様に行った。めっき厚は、被覆厚0.5〜1μmで適宜調整した。なお、下地層がニッケルとコバルトから形成されている場合は、それぞれの被覆厚を適宜調整し、合計の厚さが0.5〜1μmになるよう調整した。
[Plating]
Next, as shown in Table 1, the base layer 1 is plated. Plating conditions of the underlying layer 1, for example in the case of nickel plating, plating solution Ni (NH 2 SO 3) 2 · 4H 2 O 500 g / liter, the H 3 BO 3 30 g / l, NiCl 2 · 6H An aqueous solution containing 2 O of 30 g / liter was used, the plating solution temperature was 55 ° C., and the current density was 10 A / dm 2 . The same was done for cobalt plating. The plating thickness was appropriately adjusted with a coating thickness of 0.5 to 1 μm. In addition, when the base layer was formed from nickel and cobalt, each coating thickness was adjusted suitably and it adjusted so that the total thickness might be set to 0.5-1 micrometer.

次に、中間層2としてCuめっきを施す。中間層2のめっき条件は、めっき液はCuSO・5HOを250グラム/リットル、HSOを50グラム/リットル、NaClを0.1グラム/リットルをそれぞれ含む水溶液とし、めっき液温度40℃、電流密度を6A/dmとした。Next, Cu plating is applied as the intermediate layer 2. The plating condition for the intermediate layer 2 is that the plating solution is an aqueous solution containing 250 g / liter of CuSO 4 .5H 2 O, 50 g / liter of H 2 SO 4 , and 0.1 g / liter of NaCl, respectively, and the plating solution temperature 40 ° C., and the current density 6A / dm 2.

さらに、最表層3としてスズめっきを施す。最表層3のめっき条件は、めっき液はSnSOを80グラム/リットル、HSOを80グラム/リットルをそれぞれ含む水溶液とし、めっき液温度25℃、電流密度を2A/dmとした。
なお、中間層2および最表層3の合計層厚は、0.2〜10μmとなるよう調整を行った。
Further, tin plating is applied as the outermost layer 3. The plating conditions for the outermost layer 3 were an aqueous solution containing 80 g / liter of SnSO 4 and 80 g / liter of H 2 SO 4 , a plating solution temperature of 25 ° C., and a current density of 2 A / dm 2 .
The total layer thickness of the intermediate layer 2 and the outermost layer 3 was adjusted to be 0.2 to 10 μm.

[リフロー処理]
最後に、リフロー処理を行って溶融処理した。リフロー処理の条件は300℃、60秒が目安だが、適宜調整することにより、所望のめっき構成を得た。このリフロー処理により、中間層2と最表層3との間に、合金層4が形成される。
[Reflow processing]
Finally, a reflow process was performed and a melting process was performed. The conditions for the reflow treatment are 300 ° C. and 60 seconds, but a desired plating configuration was obtained by adjusting as appropriate. By this reflow process, an alloy layer 4 is formed between the intermediate layer 2 and the outermost layer 3.

上記の、基体製造、めっき前処理、めっき、リフロー処理の製造工程により、供試材を得た。   A sample material was obtained by the above-described manufacturing steps of substrate production, plating pretreatment, plating, and reflow treatment.

この供試材について下記の特性調査を行った。ここで、供試材の厚さは0.15mmとした。
a.cube方位からのずれ角度が20°以内の領域の面積率[cube方位]:
めっき前の時点で、基体材料の表面より測定した。EBSD法により、測定面積が500μm、スキャンステップが0.5μmの条件で測定を行った。測定面積は結晶粒を200個以上含むことを基準として調整した。
b.めっき構成
断面を機械研磨し、EPMA測定により、下地層1、中間層2、合金層4、最表層3の構成元素を測定した。合金層4の形成により、中間層2及び最表層3の残存が認められない場合は、表中に「消滅」と記した。
c.曲げ加工して加熱した後の接触抵抗:
スズめっき材料を圧延方向に垂直に幅10mm、長さ35mmに切出し、これに曲げの軸が圧延方向に垂直になるようにW曲げしたものをGW(Good Way)、圧延方向に平行になるようにW曲げしたものをBW(Bad Way)とし、90°W曲げを行った。各曲げ部の曲げ角度は90°、角曲げ部の内側半径は0.15mmとした。
その後に、温度140℃で120時間の条件で大気加熱した。
その後に、曲げ部頂点の接触抵抗を測定した。測定は4端子法を用い、Agプローブ、荷重490mN、n=10の平均値を算出した。接触抵抗の値が10mΩ以下の場合を「良」と判定して表に「○」印を付し、10mΩを超えた場合は「否」と判定して表に「×」印を付して評価を示した。
d.0.2%耐力[YS]:
圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定し、その平均値を示した。
e.導電率[EC]:
20℃(±0.5℃)に保たれた恒温槽中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100nmとした。
f.応力緩和率[SR]:
日本伸銅協会技術標準「JCBA T309:2001(仮)」に準じて測定した。図2は下方たわみ式片持ちねじ式のたわみ変位負荷用試験ジグを用いた応力緩和試験方法の説明図である。この試験方法では、まず、試験片11を試験ジグ(試験装置)12に取り付け、所定の変位を室温で与え、30秒間保持後除荷し、試験ジグ12の底面を基準面13とし、この面13と試験片11たわみ負荷点との距離をHとして測定する。次に、所定時間(ここでは150℃の恒温槽に1000時間)保持し、その後恒温槽から試験ジグ12を常温に取り出し、たわみ負荷用ボルト14をゆるめ除荷する。試験片11を常温まで冷却後、基準面13と試験片11のたわみ負荷点との距離Hを測定する。測定後、再びたわみ変位を与える。なお、図2において、11は除荷時の試験片を表し、15はたわみ負荷時の試験片を表す。永久たわみ変位δを次の式によって求める。
δ=H−H
この関係から、応力緩和率(%)はδ/δ×100と算出する。
なお、δは所定の応力を得るのに必要な試験片の初期たわみ変位で、次の式で算出する。
δ=σl /1.5Eh
ここで、σ:試験片の表面最大応力(N/mm);h:板厚(mm)、E:たわみ係数(N/mm)、l:スパン長さ(mm)である。
The following property investigation was conducted on this specimen. Here, the thickness of the test material was 0.15 mm.
a. Area ratio [cube azimuth] of region where deviation angle from cube azimuth is within 20 °:
It was measured from the surface of the base material before plating. The measurement was performed by the EBSD method under the conditions of a measurement area of 500 μm 2 and a scan step of 0.5 μm. The measurement area was adjusted based on the inclusion of 200 or more crystal grains.
b. Plating Configuration The cross section was mechanically polished, and the constituent elements of the underlayer 1, the intermediate layer 2, the alloy layer 4 and the outermost layer 3 were measured by EPMA measurement. In the case where the intermediate layer 2 and the outermost layer 3 did not remain due to the formation of the alloy layer 4, “disappearance” was indicated in the table.
c. Contact resistance after bending and heating:
A tin-plated material cut to a width of 10 mm and a length of 35 mm perpendicular to the rolling direction, and W-bended so that the bending axis is perpendicular to the rolling direction is GW (Good Way), so that it is parallel to the rolling direction. BW (Bad Way) was used as a W-bend, and 90 ° W-bend was performed. The bending angle of each bending part was 90 °, and the inner radius of the corner bending part was 0.15 mm.
Thereafter, it was heated to the atmosphere at a temperature of 140 ° C. for 120 hours.
Thereafter, the contact resistance at the apex of the bent portion was measured. For the measurement, an average value of an Ag probe, a load of 490 mN, and n = 10 was calculated using a four-terminal method. If the contact resistance value is 10 mΩ or less, it is judged as “good” and “○” is marked on the table, and if it exceeds 10 mΩ, it is judged as “No” and marked with “x” on the table. Evaluation was shown.
d. 0.2% yield strength [YS]:
Three test pieces of JIS Z2201-13B cut out from the rolling parallel direction were measured according to JIS Z2241, and the average value was shown.
e. Conductivity [EC]:
The specific resistance was measured by a four-terminal method in a thermostat kept at 20 ° C. (± 0.5 ° C.) to calculate the conductivity. The distance between the terminals was 100 nm.
f. Stress relaxation rate [SR]:
Measured according to the Japan Copper and Brass Association Technical Standard “JCBA T309: 2001 (provisional)”. FIG. 2 is an explanatory view of a stress relaxation test method using a downward deflection type cantilever type deflection displacement load test jig. In this test method, first, a test piece 11 is attached to a test jig (test apparatus) 12, given displacement is given at room temperature, unloaded after being held for 30 seconds, and the bottom surface of the test jig 12 is used as a reference surface 13, and this surface 13 and the distance between the specimen 11 deflection load point is measured as H i. Next, the test jig 12 is held for a predetermined time (in this case, a constant temperature bath at 150 ° C. for 1000 hours), and then the test jig 12 is taken out from the thermostatic chamber to room temperature, and the flexible load bolt 14 is loosened and unloaded. After cooling the specimens 11 to room temperature, to measure the distance H t of the deflection load point of the reference plane 13 and the specimen 11. After the measurement, the deflection displacement is given again. In FIG. 2, 11 represents a test piece at the time of unloading, and 15 represents a test piece at the time of bending load. Obtaining a permanent deflection displacement [delta] t by the following equation.
δ t = H i -H t
From this relationship, the stress relaxation rate (%) is calculated as δ t / δ 0 × 100.
Δ 0 is the initial deflection displacement of the test piece necessary to obtain a predetermined stress, and is calculated by the following equation.
δ 0 = σl s 2 /1.5Eh
Here, σ: surface maximum stress (N / mm 2 ) of the test piece; h: plate thickness (mm), E: deflection coefficient (N / mm 2 ), l S : span length (mm).

基体材料の特性については、0.2%耐力(YS)が500MPa以上、導電率(EC)が30%IACS以上、応力緩和率(SR)が30%以下の特性を示すものを、良好な特性を示す銅合金材料であるとする。   Regarding the characteristics of the base material, those having characteristics of 0.2% proof stress (YS) of 500 MPa or more, conductivity (EC) of 30% IACS or more, and stress relaxation rate (SR) of 30% or less are good characteristics. It is assumed that this is a copper alloy material.

Figure 0005144814
Figure 0005144814

表1に示すように、本発明例1−1〜本発明例1−16は、耐力、導電率、耐応力緩和特性、曲げ加工し加熱後の接触抵抗のすべてに優れた。しかし、本発明の規定を満たさない場合は、特性が劣る結果となった。すなわち、比較例1−1〜比較例1−4は、基体のcube方位面積率が低いために、曲げ加工時にめっきにクラックが生じ、加熱後の接触抵抗が上昇した。   As shown in Table 1, Inventive Example 1-1 to Inventive Example 1-16 were excellent in all of proof stress, conductivity, stress relaxation resistance, bending resistance and contact resistance after heating. However, when the provisions of the present invention were not satisfied, the characteristics were inferior. That is, in Comparative Examples 1-1 to 1-4, since the cube azimuth area ratio of the substrate was low, cracks occurred in the plating during bending, and the contact resistance after heating increased.

(実施例2)
表2に示す元素と、残部がCuと不可避不純物からなる銅合金を用いて、実施例1に記載の製造方法と同様の製造方法で基体の製造及び、めっき前の処理を行った。なお、この際の前処理における酸洗処理条件は、条件bとして、硫酸 61ミリリットル/リットルを含む水溶液を酸洗液として、25℃の酸洗液に30秒間浸漬した。この条件は、表層に形成された酸化膜を除去するのみの作用であり、加工変質層を除去するまでには至らない条件である。この条件bを利用して、表2の試料の酸洗処理を実施した。
めっきは下地層1のめっきを行わずに、中間層2、最表層3のめっきを行い、リフロー処理を行った。このリフロー処理により、中間層2と最表層3との間に合金層4を形成した。各めっきの条件は、実施例1に記載の方法で行った。
本発明例2−1から本発明例2−16および比較例2−1〜比較例2−4を得、実施例1に記載の測定方法と同様の測定方法で特性調査を行った。以上の結果を表2に示す。

Figure 0005144814
(Example 2)
Using the elements shown in Table 2 and a copper alloy consisting of Cu and inevitable impurities in the remainder, the substrate was manufactured by the same manufacturing method as that described in Example 1, and the treatment before plating was performed. In addition, the condition of the pickling treatment in the pretreatment at this time was as a condition b, in which an aqueous solution containing 61 ml / liter of sulfuric acid was used as a pickling solution and immersed in a pickling solution at 25 ° C. for 30 seconds. This condition is only an action of removing the oxide film formed on the surface layer, and is a condition that does not lead to removal of the work-affected layer. Using this condition b, the pickling treatment of the samples in Table 2 was performed.
For the plating, the intermediate layer 2 and the outermost layer 3 were plated without performing the plating of the underlayer 1, and the reflow treatment was performed. By this reflow process, an alloy layer 4 was formed between the intermediate layer 2 and the outermost layer 3. Each plating condition was performed by the method described in Example 1.
Invention Example 2-16 and Comparative Example 2-1 to Comparative Example 2-4 were obtained from Invention Example 2-1, and a characteristic investigation was performed by the same measurement method as that described in Example 1. The results are shown in Table 2.
Figure 0005144814

表2に示すように、本発明例2−1〜本発明例2−16は、耐力、導電率、耐応力緩和特性、曲げ加工し加熱後の接触抵抗のすべてに優れた。しかし、本発明の規定を満たさない場合は、特性が劣る結果となった。すなわち、比較例2−1〜比較例2−4は、基体のcube方位面積率が低いために、曲げ加工時にめっきにクラックが生じ、加熱後の接触抵抗が上昇した。なお、これら実施例の結果より、加工変質層の除去有無よりもcube方位面積率を所定の範囲とすることの方が特性に影響を与えることが分かる。このため、本発明では加工変質層除去のみでは得られない優れた効果を得られることが分かるので、従来技術に無い優れた効果が得られていることが分かる。   As shown in Table 2, Inventive Example 2-1 to Inventive Example 2-16 were excellent in all of yield resistance, electrical conductivity, stress relaxation resistance, bending resistance and contact resistance after heating. However, when the provisions of the present invention were not satisfied, the characteristics were inferior. That is, in Comparative Examples 2-1 to 2-4, since the cube azimuth area ratio of the substrate was low, cracks occurred in the plating during bending, and the contact resistance after heating increased. From the results of these examples, it can be seen that setting the cube orientation area ratio within a predetermined range affects the characteristics rather than whether or not the work-affected layer is removed. For this reason, since it turns out that the outstanding effect which cannot be obtained only by removal of a work-affected layer is obtained in this invention, it turns out that the outstanding effect which is not in a prior art is acquired.

11 試験片(除荷時)
12 試験ジグ
13 基準面
14 たわみ負荷用ボルト
15 試験片(たわみ負荷時)
11 Test piece (unloading)
12 Test Jig 13 Reference Surface 14 Deflection Load Bolt 15 Test Piece (When Deflection Load)

Claims (8)

銅合金からなる基体上に、
少なくとも銅およびスズを含む合金層がめっき処理と加熱溶融処理により形成されている電気電子部品用銅合金材料であって、
前記基体のEBSD法結晶方位測定におけるcube方位{0 0 1}<1 0 0>から20°以内である領域の面積率が、5%以上であり、
前記基体は、ニッケルまたはコバルトの少なくとも一方を合計で0.4〜5.0mass%含有し、ケイ素を0.1〜1.5mass%含有し、残部が銅及び不可避不純物からなる組成を有し、該基体は表層の加工変質層を除去してなり、
前記基体上に隣接して、ニッケルまたはコバルトの少なくとも一方を含有する下地めっき層が設けられており
前記銅合金材料を、内側半径0.15mmとして90°W曲げ加工し、温度140℃で120時間の条件で大気中において加熱した後の曲げ部頂点の接触抵抗が、Agプローブを介した荷重490mNの条件下で10mΩ以下である
ことを特徴とする、電気電子部品用銅合金材料。
On a base made of a copper alloy,
At least an alloy layer containing copper and tin, a copper alloy material for electric and electronic parts which is formed by heating and melting treatment and plating treatment,
The area ratio of the region within 20 ° from the cube orientation {0 0 1} <1 0 0> in the EBSD method crystal orientation measurement of the substrate is 5% or more,
The substrate contains at least one of nickel or cobalt in a total amount of 0.4 to 5.0 mass%, contains silicon in an amount of 0.1 to 1.5 mass%, and the balance is composed of copper and inevitable impurities, The substrate is obtained by removing a work-affected layer on the surface layer,
Adjacent on the substrate, which undercoat plating layer is provided containing at least one of nickel or cobalt,
The copper alloy material was bent at 90 ° W with an inner radius of 0.15 mm, and the contact resistance at the apex of the bent portion after heating in the atmosphere at a temperature of 140 ° C. for 120 hours had a load of 490 mN via an Ag probe. A copper alloy material for electrical and electronic parts, characterized by being 10 mΩ or less under the conditions of
銅合金からなる基体上に、
少なくとも銅およびスズを含む合金層がめっき処理と加熱溶融処理により形成されている電気電子部品用銅合金材料であって、
前記基体のEBSD法結晶方位測定におけるcube方位{0 0 1}<1 0 0>から20°以内である領域の面積率が、5%以上であり、
前記基体は、ニッケルまたはコバルトの少なくとも一方を合計で0.4〜5.0mass%含有し、ケイ素を0.1〜1.5mass%含有し、スズ、亜鉛、銀、マンガン、ホウ素、リン、マグネシウム、クロム、鉄、チタン、ジルコニウムおよびハフニウムからなる群から選ばれる少なくとも1種を合計で0.005〜2.0mass%含有し、残部が銅及び不可避不純物からなる組成を有し、該基体は表層の加工変質層を除去してなり、
前記基体上に隣接して、ニッケルまたはコバルトの少なくとも一方を含有する下地めっき層が設けられており
前記銅合金材料を、内側半径0.15mmとして90°W曲げ加工し、温度140℃で120時間の条件で大気中において加熱した後の曲げ部頂点の接触抵抗が、Agプローブを介した荷重490mNの条件下で10mΩ以下である
ことを特徴とする、電気電子部品用銅合金材料。
On a base made of a copper alloy,
At least an alloy layer containing copper and tin, a copper alloy material for electric and electronic parts which is formed by heating and melting treatment and plating treatment,
The area ratio of the region within 20 ° from the cube orientation {0 0 1} <1 0 0> in the EBSD method crystal orientation measurement of the substrate is 5% or more,
The base body contains at least one of nickel and cobalt in a total amount of 0.4 to 5.0 mass%, silicon in a range of 0.1 to 1.5 mass%, tin, zinc, silver, manganese, boron, phosphorus, magnesium. , Chromium, iron, titanium, zirconium and hafnium at least one selected from the group consisting of 0.005 to 2.0 mass% in total, with the balance being composed of copper and unavoidable impurities, the substrate being a surface layer Removing the damaged layer of
Adjacent on the substrate, which undercoat plating layer is provided containing at least one of nickel or cobalt,
The copper alloy material was bent at 90 ° W with an inner radius of 0.15 mm, and the contact resistance at the apex of the bent portion after heating in the atmosphere at a temperature of 140 ° C. for 120 hours had a load of 490 mN via an Ag probe. A copper alloy material for electrical and electronic parts, characterized by being 10 mΩ or less under the conditions of
前記合金層上に、スズまたはスズ合金からなる最表層が設けられていることを特徴とする、請求項1または2記載の電気電子部品用銅合金材料。  The copper alloy material for electrical and electronic parts according to claim 1 or 2, wherein an outermost layer made of tin or a tin alloy is provided on the alloy layer. 前記下地めっき層と前記合金層との間に、銅または銅合金からなる中間層が設けられていることを特徴とする、請求項1または2記載の電気電子部品用銅合金材料。  The copper alloy material for electric and electronic parts according to claim 1, wherein an intermediate layer made of copper or a copper alloy is provided between the base plating layer and the alloy layer. 前記下地めっき層と前記合金層との間に、銅または銅合金からなる中間層が設けられ、かつ前記合金層上に、スズまたはスズ合金からなる最表層が設けられていることを特徴とする、請求項1または2記載の電気電子部品用銅合金材料。  An intermediate layer made of copper or a copper alloy is provided between the base plating layer and the alloy layer, and an outermost layer made of tin or a tin alloy is provided on the alloy layer. The copper alloy material for electrical and electronic parts according to claim 1 or 2. 請求項1〜請求項5のいずれか1項に記載の銅合金材料が加工されてなる電気電子部品。  An electrical / electronic component obtained by processing the copper alloy material according to any one of claims 1 to 5. ニッケルまたはコバルトの少なくとも一方を合計で0.4〜5.0mass%含有し、ケイ素を0.1〜1.5mass%含有し、残部が銅及び不可避不純物からなる組成を有する銅合金からなり、均質化熱処理した鋳塊を850〜1020℃で熱間圧延し、800℃以下まで水冷または空冷して500〜800℃で合計の加工率が40%以上の高温圧延を行って得た基体上に、
ニッケルまたはコバルトの少なくとも一方を含有する下地めっき層と、銅または銅合金からなる銅めっき層と、スズまたはスズ合金からなるスズめっき層をこの順に形成し、その後250〜800℃で0.1〜120秒の加熱溶融処理によって前記スズめっき層を溶融させて、前記銅めっき層の構成元素と前記スズめっき層の構成元素からなる合金層を形成する、電気電子部品用銅合金材料の製造方法であって、
前記加熱溶融処理後の前記基体のEBSD法結晶方位測定におけるcube方位{0 0 1}<1 0 0>から20°以内である領域の面積率が5%以上であることを特徴とする、電気電子部品用銅合金材料の製造方法。
Containing at least one of nickel or cobalt in a total amount of 0.4 to 5.0 mass%, containing silicon in a range of 0.1 to 1.5 mass%, the balance being a copper alloy having a composition consisting of copper and inevitable impurities, and homogeneous On the substrate obtained by hot rolling the heat-treated ingot at 850 to 1020 ° C., water-cooling or air-cooling to 800 ° C. or less, and performing high-temperature rolling at a total processing rate of 40% or more at 500 to 800 ° C.,
A base plating layer containing at least one of nickel or cobalt, a copper plating layer made of copper or a copper alloy, and a tin plating layer made of tin or a tin alloy are formed in this order. A method for producing a copper alloy material for electrical and electronic parts, wherein the tin plating layer is melted by a heat melting treatment for 120 seconds to form an alloy layer composed of constituent elements of the copper plating layer and constituent elements of the tin plating layer. There,
The area ratio of the region within 20 ° from the cube orientation {0 0 1} <1 0 0> in the EBSD method crystal orientation measurement of the substrate after the heat-melting treatment is 5% or more, A method for producing a copper alloy material for electronic parts.
ニッケルまたはコバルトの少なくとも一方を合計で0.4〜5.0mass%含有し、ケイ素を0.1〜1.5mass%含有し、スズ、亜鉛、銀、マンガン、ホウ素、リン、マグネシウム、クロム、鉄、チタン、ジルコニウムおよびハフニウムからなる群から選ばれる少なくとも1種を合計で0.005〜2.0mass%含有し、残部が銅及び不可避不純物からなる組成を有する銅合金からなり、均質化熱処理した鋳塊を850〜1020℃で熱間圧延し、800℃以下まで水冷または空冷して500〜800℃で合計の加工率が40%以上の高温圧延を行って得た基体上に、
ニッケルまたはコバルトの少なくとも一方を含有する下地めっき層と、銅または銅合金からなる銅めっき層と、スズまたはスズ合金からなるスズめっき層をこの順に形成し、その後250〜800℃で0.1〜120秒の加熱溶融処理によって前記スズめっき層を溶融させて、前記銅めっき層の構成元素と前記スズめっき層の構成元素からなる合金層を形成する、電気電子部品用銅合金材料の製造方法であって、
前記加熱溶融処理後の前記基体のEBSD法結晶方位測定におけるcube方位{0 0 1}<1 0 0>から20°以内である領域の面積率が5%以上であることを特徴とする、電気電子部品用銅合金材料の製造方法。
Contains at least one of nickel or cobalt in a total amount of 0.4 to 5.0 mass%, contains silicon in a range of 0.1 to 1.5 mass%, tin, zinc, silver, manganese, boron, phosphorus, magnesium, chromium, iron , A copper alloy containing at least one selected from the group consisting of titanium, zirconium and hafnium in a total amount of 0.005 to 2.0 mass%, with the balance being composed of copper and inevitable impurities, and subjected to homogenization heat treatment On the substrate obtained by hot rolling the lump at 850 to 1020 ° C., water-cooling or air-cooling to 800 ° C. or less, and performing high-temperature rolling at a total processing rate of 40% or more at 500 to 800 ° C.,
A base plating layer containing at least one of nickel or cobalt, a copper plating layer made of copper or a copper alloy, and a tin plating layer made of tin or a tin alloy are formed in this order. A method for producing a copper alloy material for electrical and electronic parts, wherein the tin plating layer is melted by a heat melting treatment for 120 seconds to form an alloy layer composed of constituent elements of the copper plating layer and constituent elements of the tin plating layer. There,
The area ratio of the region within 20 ° from the cube orientation {0 0 1} <1 0 0> in the EBSD method crystal orientation measurement of the substrate after the heat-melting treatment is 5% or more, A method for producing a copper alloy material for electronic parts.
JP2011526771A 2009-08-10 2010-08-10 Copper alloy material for electrical and electronic parts Active JP5144814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011526771A JP5144814B2 (en) 2009-08-10 2010-08-10 Copper alloy material for electrical and electronic parts

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009185921 2009-08-10
JP2009185921 2009-08-10
PCT/JP2010/063587 WO2011019042A1 (en) 2009-08-10 2010-08-10 Copper alloy material for electrical/electronic components
JP2011526771A JP5144814B2 (en) 2009-08-10 2010-08-10 Copper alloy material for electrical and electronic parts

Publications (2)

Publication Number Publication Date
JPWO2011019042A1 JPWO2011019042A1 (en) 2013-01-17
JP5144814B2 true JP5144814B2 (en) 2013-02-13

Family

ID=43586217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011526771A Active JP5144814B2 (en) 2009-08-10 2010-08-10 Copper alloy material for electrical and electronic parts

Country Status (2)

Country Link
JP (1) JP5144814B2 (en)
WO (1) WO2011019042A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493858B2 (en) 2011-08-13 2016-11-15 Wieland-Werke Ag Copper alloy

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534610B2 (en) * 2011-03-31 2014-07-02 Jx日鉱日石金属株式会社 Cu-Co-Si alloy strip
CN103732768B (en) * 2011-08-05 2016-08-17 古河电气工业株式会社 Secondary cell collector rolled copper foil and manufacture method thereof
JP6196757B2 (en) * 2012-07-12 2017-09-13 Jx金属株式会社 Corson alloy and manufacturing method thereof
JP2015086452A (en) * 2013-11-01 2015-05-07 株式会社オートネットワーク技術研究所 Copper alloy wire, copper alloy twisted wire, coated cable, wire harness and manufacturing method of copper alloy wire
KR101893280B1 (en) 2014-03-31 2018-08-29 후루카와 덴키 고교 가부시키가이샤 Rolled copper foil, method for producing rolled copper foil, flexible flat cable, and method for producing flexible flat cable
JP2017014624A (en) * 2016-09-05 2017-01-19 Jx金属株式会社 Corson alloy and manufacturing method therefor
JP6793005B2 (en) * 2016-10-27 2020-12-02 Dowaメタルテック株式会社 Copper alloy plate material and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185847A (en) * 1986-02-12 1987-08-14 Furukawa Electric Co Ltd:The High strength copper alloy for high thermal and electric conductivity use and its production
JPH11222641A (en) * 1998-01-30 1999-08-17 Furukawa Electric Co Ltd:The Copper alloy for elctrically conductive spring and its production
JP2006152392A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd High-strength copper alloy sheet superior in bendability and manufacturing method therefor
JP2006283059A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd High strength copper alloy sheet with excellent bendability, and its manufacturing method
JP2007063624A (en) * 2005-08-31 2007-03-15 Nikko Kinzoku Kk Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798260B2 (en) * 2001-05-17 2006-07-19 株式会社神戸製鋼所 Copper alloy for electric and electronic parts and electric and electronic parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185847A (en) * 1986-02-12 1987-08-14 Furukawa Electric Co Ltd:The High strength copper alloy for high thermal and electric conductivity use and its production
JPH11222641A (en) * 1998-01-30 1999-08-17 Furukawa Electric Co Ltd:The Copper alloy for elctrically conductive spring and its production
JP2006152392A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd High-strength copper alloy sheet superior in bendability and manufacturing method therefor
JP2006283059A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd High strength copper alloy sheet with excellent bendability, and its manufacturing method
JP2007063624A (en) * 2005-08-31 2007-03-15 Nikko Kinzoku Kk Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493858B2 (en) 2011-08-13 2016-11-15 Wieland-Werke Ag Copper alloy

Also Published As

Publication number Publication date
JPWO2011019042A1 (en) 2013-01-17
WO2011019042A1 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP4885332B2 (en) Copper alloy sheet and manufacturing method thereof
JP5170916B2 (en) Copper alloy sheet and manufacturing method thereof
JP5144814B2 (en) Copper alloy material for electrical and electronic parts
JP4875768B2 (en) Copper alloy sheet and manufacturing method thereof
JP5391169B2 (en) Copper alloy material for electrical and electronic parts and method for producing the same
JP4948678B2 (en) Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same
JP4615628B2 (en) Copper alloy material, electrical and electronic component, and method for producing copper alloy material
JP5916964B2 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
JP5972484B2 (en) Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet
JP5503791B2 (en) Copper alloy sheet and manufacturing method thereof
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP2011017072A (en) Copper alloy material
JPWO2010013790A1 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP5619389B2 (en) Copper alloy material
JP5916418B2 (en) Copper alloy sheet and manufacturing method thereof
WO2010134210A1 (en) Copper alloy material and manufacturing method therefor
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
JP4439003B2 (en) Titanium copper alloy excellent in strength and bending workability and manufacturing method thereof
JP5339995B2 (en) Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip
JP5117602B1 (en) Copper alloy sheet with low deflection coefficient and excellent bending workability
KR20210117252A (en) Copper alloy plate and its manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5144814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350