JPH11222641A - Copper alloy for elctrically conductive spring and its production - Google Patents

Copper alloy for elctrically conductive spring and its production

Info

Publication number
JPH11222641A
JPH11222641A JP3362898A JP3362898A JPH11222641A JP H11222641 A JPH11222641 A JP H11222641A JP 3362898 A JP3362898 A JP 3362898A JP 3362898 A JP3362898 A JP 3362898A JP H11222641 A JPH11222641 A JP H11222641A
Authority
JP
Japan
Prior art keywords
copper alloy
conductive spring
less
stress relaxation
cold working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3362898A
Other languages
Japanese (ja)
Other versions
JP3510469B2 (en
Inventor
Takao Hirai
崇夫 平井
Takayuki Usami
隆行 宇佐見
Koichi Yoshida
浩一 吉田
Yoshimasa Oyama
好正 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP03362898A priority Critical patent/JP3510469B2/en
Publication of JPH11222641A publication Critical patent/JPH11222641A/en
Application granted granted Critical
Publication of JP3510469B2 publication Critical patent/JP3510469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy combining excellent mechanical properties, conductivity, stress relaxation characteristics and bending workability. SOLUTION: This copper alloy is the one having a compsn. contg., as essential components, by weight, 1.0 to 3.5% Ni, 0.2 to 0.9% Si, 0.01 to 0.20% Mg and 0.05 to 1.5% Sn, in which each content of S and O is limited to <0.005%, and the balance Cu with inevitable impurities, and the grain size thereof is regulated to >1 to 25 μm. Thus, this is suitable for terminals, connector materials and switch materials. Furthermore, as for the method for producing it, after cold working, recrystallization treatment is executed at 700 to 920 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電性ばね用銅合
金及びその製造方法に関し、特に端子・コネクター材、
スイッチ材等に適する導電性ばね用銅合金とその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for a conductive spring and a method for producing the same, and particularly to a terminal / connector material,
The present invention relates to a conductive spring copper alloy suitable for a switch material and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より端子、コネクター用材料として
銅合金が用いられ、Cu−Zn系合金、耐熱性に優れた
Cu−Fe系合金、Cu−Sn系合金が多く用いられて
いる。特に、自動車等の用途では安価なCu−Zn系合
金が多く使用されているが、近年の自動車用端子、コネ
クターは小型化傾向が著しく、またエンジンルーム内な
どの過酷な環境にさらされる場合が多いため、Cu−Z
n系合金ではもちろんのこと、Cu−Fe系合金、Cu
−Sn系合金でも対応出来なくなってきているのが現状
である。
2. Description of the Related Art Conventionally, copper alloys have been used as materials for terminals and connectors, and Cu-Zn-based alloys, Cu-Fe-based alloys having excellent heat resistance, and Cu-Sn-based alloys have been widely used. In particular, inexpensive Cu-Zn-based alloys are often used in applications such as automobiles, but in recent years automobile terminals and connectors have been significantly reduced in size, and may be exposed to severe environments such as in an engine room. Cu-Z
Cu-Fe based alloy, Cu
At present, it is becoming impossible to cope with -Sn alloys.

【0003】このように、使用されている環境の変化に
伴い、端子、コネクター用材料に求められる特性もより
厳しくなってきている。このような用途に使用される銅
合金には、応力緩和特性、機械的強度、熱伝導性、曲げ
加工性、耐熱性、Snメッキの接続信頼性、マイグレー
ション特性など多岐に渡っているが、特に機械的強度や
応力緩和特性、熱・電気の伝導性、曲げ加工性が重要な
特性である。
As described above, the characteristics required for the terminal and connector materials have become more severe as the environment in which they are used changes. Copper alloys used for such applications have a wide variety of properties such as stress relaxation properties, mechanical strength, thermal conductivity, bending workability, heat resistance, connection reliability of Sn plating, and migration properties. Important properties are mechanical strength, stress relaxation properties, thermal and electrical conductivity, and bending workability.

【0004】これらの厳しい要求特性を満たす銅系材料
として、Cu−Ni−Si系合金が注目されており、例
えば、特開昭61−127842号公報が知られてい
る。しかしながら、このようなCu−Ni−Si系合金
でも使用に耐え得ない状態に陥っている。具体的には部
品の小型化、例えば一般的な箱型端子において、挿入さ
れるオス端子のタブ幅が約2mmである090端子から
約1mmである040端子へ小型化されると、バネ部の
幅が1mm程度であり、このように部品が小型化される
と、充分な接続強度を得ることが困難になっている。ま
た、小型化に関連してバネ部での接続強度を確保するた
めに、端子の構造にも多くの工夫がなされているが、そ
の結果、材料に要求される曲げ加工性もより厳しくなっ
ており、従来のCu−Ni−Siでは曲げ部にクラック
が生じる場合も多い。応力緩和特性も同様であり、材料
に負荷される応力の増大、使用環境の高温化により従来
のCu−Ni−Si系合金では長時間の使用は不可能な
状況である。
As a copper-based material satisfying these strictly required characteristics, a Cu-Ni-Si-based alloy has attracted attention, and for example, Japanese Patent Application Laid-Open No. 61-127842 is known. However, even such a Cu-Ni-Si alloy falls into a state where it cannot withstand use. Specifically, when the size of components is reduced, for example, in a general box-shaped terminal, the tab width of the inserted male terminal is reduced from the 090 terminal having a tab width of about 2 mm to the 040 terminal having a tab width of about 1 mm, The width is about 1 mm, and when the components are miniaturized in this way, it is difficult to obtain a sufficient connection strength. Also, in order to secure the connection strength at the spring part in connection with miniaturization, many efforts have been made on the structure of the terminal, but as a result, the bending workability required for the material has become more severe. Therefore, cracks often occur in the bent portion in the conventional Cu-Ni-Si. The same applies to the stress relaxation characteristics, and it is impossible to use the conventional Cu-Ni-Si-based alloy for a long time due to an increase in the stress applied to the material and an increase in the use environment.

【0005】このような状況下、例えば応力緩和特性を
改善するためにMgの添加が有効であり、例えば、特開
昭61−250134号公報、特開平5−59468号
公報などにもMgの有効性が示されている。しかしなが
らMg添加により応力緩和特性は向上するものの、曲げ
加工性が劣化し、180°密着曲げには耐え得ないもの
であり自動車コネクターなどに使用するには曲げ加工性
の改善が不可欠である。また曲げ加工性を改善するため
の検討もされているが、これは強度の低い材料であるた
めに所望の特性が得られないものであった。さらに、熱
・電気の伝導性が悪いと、応力緩和特性が良くとも、自
己の発熱で応力緩和を促進するため、伝導性と応力緩和
特性のバランスが重要である。
Under these circumstances, the addition of Mg is effective, for example, to improve the stress relaxation characteristics. For example, JP-A-61-250134, JP-A-5-59468, and the like also show that Mg is effective. Sex is shown. However, although the stress relaxation characteristics are improved by the addition of Mg, the bending workability is deteriorated, and the material cannot withstand 180 ° close contact bending. Therefore, the improvement of the bending workability is indispensable for use in automotive connectors and the like. In addition, studies have been made to improve bending workability, but since these materials are low in strength, desired characteristics cannot be obtained. Furthermore, if heat and electricity conductivity is poor, even if the stress relaxation property is good, stress relaxation is promoted by self-heating, so that the balance between the conductivity and the stress relaxation property is important.

【0006】[0006]

【発明が解決しようとする課題】上述したように、曲げ
加工性、応力緩和特性等について検討し、厳しい要求特
性を満たす銅系材料が提案されているが、本発明は、優
れた機械的特性、伝導性、応力緩和特性と曲げ加工性を
兼ね備えた銅合金であり、端子、コネクターに好適な銅
合金を提供するものである。
As described above, a copper-based material satisfying strict requirements has been proposed by examining bending workability, stress relaxation characteristics, and the like, but the present invention provides excellent mechanical properties. It is a copper alloy having both conductivity, stress relaxation characteristics and bending workability, and provides a copper alloy suitable for terminals and connectors.

【0007】[0007]

【問題を解決するための手段】本発明は、上記課題を解
決するもので、主成分としてNiを1.0〜3.5wt
%、Siを0.2〜0.9wt%、Mgを0.01〜
0.20wt%、Snを0.05〜1.5wt%含み、
S、O含有量をそれぞれ0.005wt%未満に制限
し、残部Cu及び不可避的不純物からなり、その結晶粒
度が1μmを越え25μm以下であることを特徴とする
導電性ばね用銅合金である。また、上記構成において、
本発明の特性に悪影響を与えない範囲で、他の添加元
素、例えば0.2%未満のZnを添加しても差し支えな
いものである。また、本発明は、主成分としてNiを
1.0〜3.5wt%、Siを0.2〜0.9wt%、
Mgを0.01〜0.20wt%、Snを0.05〜
1.5wt%、Znを0.2〜1.5wt%含み、S、
O含有量をそれぞれ0.005wt%未満に制限し、残
部Cu及び不可避的不純物からなり、その結晶粒度が1
μmを越え25μm以下であることを特徴とする導電性
ばね用銅合金である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and contains Ni as a main component in an amount of 1.0 to 3.5 wt.
%, 0.2-0.9 wt% of Si, 0.01-% of Mg
0.20 wt%, Sn containing 0.05-1.5 wt%,
A copper alloy for a conductive spring, wherein the S and O contents are each limited to less than 0.005 wt%, the balance being Cu and unavoidable impurities, and having a crystal grain size of more than 1 μm and 25 μm or less. In the above configuration,
As long as the characteristics of the present invention are not adversely affected, other additive elements, for example, Zn of less than 0.2% may be added. In addition, the present invention provides, as main components, 1.0 to 3.5 wt% of Ni, 0.2 to 0.9 wt% of Si,
0.01 to 0.20 wt% Mg, 0.05 to Sn
1.5 wt%, containing 0.2 to 1.5 wt% of Zn, S,
The O content is limited to less than 0.005 wt%, and the balance consists of Cu and unavoidable impurities.
It is a copper alloy for conductive springs, having a thickness of more than μm and not more than 25 μm.

【0008】また、本発明は、上記の銅合金に、さらに
Ag、Mn、Fe、Cr、Co、Pの中から選ばれ1種
または2種以上を総量で0.005wt%〜2.0wt
%含むことを特徴とする銅合金である。具体的には、主
成分としてNiを1.0〜3.5wt%、Siを0.2
〜0.9wt%、Mgを0.01〜0.20wt%、S
nを0.05〜1.5wt%含み、さらに0.005〜
0.3wt%Ag、0.01〜0.5wt%Mn、それ
ぞれ0.005〜0.2wt%のFe、Cr、0.05
〜2.0wt%Co、0.005〜0.1wt%Pの中
から選ばれ1種または2種以上を総量で0.005wt
%〜2.0wt%含み、S、O含有量をそれぞれ0.0
05wt%未満に制限し、残部Cu及び不可避的不純物
からなり、その結晶粒度が1μmを越え25μm以下で
あることを特徴とする導電性ばね用銅合金である。ま
た、主成分としてNiを1.0〜3.5wt%、Siを
0.2〜0.9wt%、Mgを0.01〜0.20wt
%、Snを0.05〜1.5wt%、Znを0.2〜
1.5wt%含み、さらに0.005〜0.3wt%A
g、0.01〜0.5wt%Mn、それぞれ0.005
〜0.2wt%のFe、Cr、0.05〜2.0wt%
Co、0.005〜0.1wt%Pの中から選ばれ1種
または2種以上を総量で0.005wt%〜2.0wt
%含み、S、O含有量をそれぞれ0.005wt%未満
に制限し、残部Cu及び不可避的不純物からなり、その
結晶粒度が1μmを越え25μm以下であることを特徴
とする導電性ばね用銅合金である。
[0008] The present invention also relates to the above-mentioned copper alloy, wherein one or more selected from Ag, Mn, Fe, Cr, Co, and P are added in a total amount of 0.005 wt% to 2.0 wt%.
% Is a copper alloy. Specifically, as main components, 1.0 to 3.5 wt% of Ni and 0.2
~ 0.9wt%, Mg 0.01 ~ 0.20wt%, S
n is 0.05 to 1.5 wt%, and 0.005 to
0.3 wt% Ag, 0.01-0.5 wt% Mn, 0.005-0.2 wt% Fe, Cr, 0.05 respectively
~ 2.0wt% Co, 0.005 ~ 0.1wtP
% To 2.0 wt%, and the S and O contents are each 0.0%.
A copper alloy for a conductive spring, which is limited to less than 05 wt%, the balance being Cu and unavoidable impurities, and having a crystal grain size of more than 1 μm and 25 μm or less. Further, as main components, 1.0 to 3.5 wt% of Ni, 0.2 to 0.9 wt% of Si, and 0.01 to 0.20 wt% of Mg.
%, Sn is 0.05-1.5 wt%, Zn is 0.2-
1.5wt%, 0.005 ~ 0.3wtA
g, 0.01-0.5 wt% Mn, each 0.005
-0.2 wt% Fe, Cr, 0.05-2.0 wt%
Co, one or more selected from 0.005 to 0.1 wt% P, in a total amount of 0.005 wt% to 2.0 wt%
Copper alloy for conductive springs, characterized in that the content of S and O is limited to less than 0.005 wt%, the balance being Cu and unavoidable impurities, and the crystal grain size of which exceeds 1 μm and is 25 μm or less. It is.

【0009】また、本発明は、上記の銅合金に、さらに
Pb、Biの1種または2種を総量で0.005〜0.
13wt%含むことを特徴とする銅合金である。具体的
には、主成分としてNiを1.0〜3.5wt%、Si
を0.2〜0.9wt%、Mgを0.01〜0.20w
t%、Snを0.05〜1.5wt%含み、さらに0.
005〜0.1wt%Pb、0.005〜0.03wt
Biの1種または2種を総量で0.005〜0.13w
t%含み、S、O含有量をそれぞれ0.005wt%未
満に制限し、残部Cu及び不可避的不純物からなり、そ
の結晶粒度が1μmを越え25μm以下であることを特
徴とする導電性ばね用銅合金である。また、主成分とし
てNiを1.0〜3.5wt%、Siを0.2〜0.9
wt%、Mgを0.01〜0.20wt%、Snを0.
05〜1.5wt%、Znを0.2〜1.5wt%含
み、さらに0.005〜0.1wt%Pb、0.005
〜0.03wtBiの1種または2種を総量で0.00
5〜0.13wt%含み、S、O含有量をそれぞれ0.
005wt%未満に制限し、残部Cu及び不可避的不純
物からなり、その結晶粒度が1μmを越え25μm以下
であることを特徴とする導電性ばね用銅合金である。
In the present invention, one or more of Pb and Bi may be further added to the above copper alloy in a total amount of 0.005 to 0.5%.
It is a copper alloy characterized by containing 13 wt%. Specifically, 1.0 to 3.5 wt% of Ni as a main component, Si
0.2 to 0.9 wt%, Mg 0.01 to 0.20 w
t, 0.05 to 1.5 wt% of Sn,
005 to 0.1 wt% Pb, 0.005 to 0.03 wt
One or two kinds of Bi in a total amount of 0.005 to 0.13 w
Copper for conductive springs, wherein the content of S and O is limited to less than 0.005 wt%, and the balance is made of Cu and unavoidable impurities, and the crystal grain size is more than 1 μm and 25 μm or less. Alloy. Further, as main components, Ni is 1.0 to 3.5 wt%, and Si is 0.2 to 0.9 wt%.
wt%, Mg: 0.01 to 0.20 wt%, Sn: 0.
0.5 to 1.5 wt%, contains 0.2 to 1.5 wt% Zn, and further contains 0.005 to 0.1 wt% Pb and 0.005 wt%.
0.003 wtBi of one or two kinds in a total amount of 0.00
5 to 0.13 wt%, and the S and O contents are each 0.1%.
A copper alloy for a conductive spring, which is limited to less than 005 wt%, the balance being Cu and unavoidable impurities, and having a crystal grain size of more than 1 μm and 25 μm or less.

【0010】また、上記の銅合金に、さらにAg、M
n、Fe、Cr、Co、Pの中から選ばれ1種または2
種以上、及びPb、Biの1種または2種を総量で0.
005wt%〜2.0wt%含むことを特徴とする銅合
金である。具体的には、主成分としてNiを1.0〜
3.5wt%、Siを0.2〜0.9wt%、Mgを
0.01〜0.20wt%、Snを0.05〜1.5w
t%含み、さらに0.005〜0.3wt%Ag、0.
01〜0.5wt%Mn、それぞれ0.005〜0.2
wt%のFe、Cr、0.05〜2.0wt%Co、
0.005〜0.1wt%Pの中から選ばれ1種または
2種以上、及び0.005〜0.1wt%Pb、0.0
05〜0.03wtBiの1種または2種を総量で0.
005wt%〜2.0wt%含み、S、O含有量をそれ
ぞれ0.005wt%未満に制限し、残部Cu及び不可
避的不純物からなり、その結晶粒度が1μmを越え25
μm以下であることを特徴とする導電性ばね用銅合金で
ある。また、主成分としてNiを1.0〜3.5wt
%、Siを0.2〜0.9wt%、Mgを0.01〜
0.20wt%、Snを0.05〜1.5wt%、Zn
を0.2〜1.5wt%含み、さらに0.005〜0.
3wt%Ag、0.01〜0.5wt%Mn、それぞれ
0.005〜0.2wt%のFe、Cr、0.05〜
2.0wt%Co、0.005〜0.1wt%Pの中か
ら選ばれ1種または2種以上、及び0.005〜0.1
wt%Pb、0.005〜0.03wtBiの1種また
は2種を総量で0.005wt%〜2.0wt%含み、
S、O含有量をそれぞれ0.005wt%未満に制限
し、残部Cu及び不可避的不純物からなり、その結晶粒
度が1μmを越え25μm以下であることを特徴とする
導電性ばね用銅合金である。
In addition, Ag, M
one or two selected from n, Fe, Cr, Co, P
Or more and one or two of Pb and Bi in a total amount of 0.1.
It is a copper alloy characterized by containing 005 wt% to 2.0 wt%. Specifically, Ni as a main component is 1.0 to
3.5 wt%, Si 0.2-0.9 wt%, Mg 0.01-0.20 wt%, Sn 0.05-1.5 w
t%, 0.005 to 0.3 wt% Ag,
01 to 0.5 wt% Mn, each 0.005 to 0.2
wt% Fe, Cr, 0.05-2.0 wt% Co,
One or more selected from 0.005 to 0.1 wt% P, and 0.005 to 0.1 wt% Pb, 0.0
0.5 to 0.03 wtBi in total.
005 wt% to 2.0 wt%, the S and O contents are each limited to less than 0.005 wt%, and the balance consists of Cu and unavoidable impurities, and the crystal grain size exceeds 1 μm and exceeds 25 μm.
It is a copper alloy for a conductive spring, which is not more than μm. Also, 1.0 to 3.5 wt% of Ni as a main component.
%, 0.2-0.9 wt% of Si, 0.01-% of Mg
0.20 wt%, 0.05 to 1.5 wt% Sn, Zn
Is contained in an amount of 0.2 to 1.5 wt%, and 0.005 to 0.
3 wt% Ag, 0.01-0.5 wt% Mn, 0.005-0.2 wt% Fe, Cr, 0.05-
2.0 wt% Co, one or more selected from 0.005 to 0.1 wt% P, and 0.005 to 0.1
wt% Pb, containing 0.005 wt% to 2.0 wt% in total of one or two of 0.005 to 0.03 wtBi,
A copper alloy for a conductive spring, wherein the S and O contents are each limited to less than 0.005 wt%, the balance being Cu and unavoidable impurities, and having a crystal grain size of more than 1 μm and 25 μm or less.

【0011】また、本発明の上記銅合金は、端子、コネ
クター材、スイッチ材のいずれかに用いられるものであ
ることを特徴とするものである。また、本発明は、冷間
加工後に再結晶処理を700〜920℃で行うことを特
徴とする導電性ばね用銅合金の製造方法である。また、
冷間加工後に再結晶処理を700〜920℃で行った後
に、420〜550℃で時効処理を行うことを特徴とす
る導電性ばね用銅合金の製造方法であるまた、冷間加工
後に再結晶処理を700〜920℃で行い、さらに25
%以下の冷間加工を行った後に、420〜550℃で時
効処理を行うことを特徴とする導電性ばね用銅合金の製
造方法である。さらに、冷間加工後に再結晶処理を70
0〜920℃で行い、次に25%以下の冷間加工、42
0〜550℃での時効処理を行った後に、さらに25%
以下の冷間加工、及び低温焼鈍を行うことを特徴とする
導電性ばね用銅合金の製造方法である。
Further, the copper alloy of the present invention is used for any of terminals, connector materials, and switch materials. Further, the present invention is a method for producing a copper alloy for a conductive spring, wherein a recrystallization treatment is performed at 700 to 920 ° C. after cold working. Also,
A method for producing a copper alloy for a conductive spring, comprising performing recrystallization treatment at 700 to 920 ° C. after cold working and then aging at 420 to 550 ° C. The treatment is performed at 700-920 ° C.,
% Or less, and then aging treatment at 420 to 550 ° C. after cold working is performed. Further, after the cold working, a recrystallization treatment
0-920 ° C, then cold working up to 25%, 42
After aging treatment at 0 to 550 ° C., 25%
A method for producing a copper alloy for a conductive spring, comprising performing the following cold working and low-temperature annealing.

【0012】[0012]

【作用】本発明の銅合金は、Cuマトリックス中にNi
とSiの化合物を析出させ、適当な機械的強度及び熱・
電気導電性を有する銅合金に、Sn、Mg、Znを特定
量添加し、S、O含有量を制限して、かつ結晶粒度を1
μmを越え25μm以下として応力緩和特性と曲げ加工
性を改善することを骨子としている。本発明者らは、こ
の銅合金成分の含有量を詳細に規定することで実用的に
優れた特性を有する導電性ばね用銅合金、特に端子、コ
ネクター用として優れた特性を有する材料を実現させる
ことができることを見いだし、その結果本発明の銅合金
を得たものである。
The copper alloy of the present invention contains Ni in a Cu matrix.
And a compound of Si, with appropriate mechanical strength and heat
Specific amounts of Sn, Mg, and Zn are added to a copper alloy having electrical conductivity to limit the S and O contents and to reduce the grain size to 1
The main point is to improve the stress relaxation characteristics and bending workability by setting the thickness to more than 25 μm and more than 25 μm. The present inventors provide a copper alloy for a conductive spring having practically excellent properties, particularly a terminal and a material having excellent properties for a connector by defining the content of the copper alloy component in detail. Have been found, and as a result, the copper alloy of the present invention has been obtained.

【0013】以下に本発明の銅合金の成分限定理由を説
明する。CuにNiとSiを含有させるとNi−Si化
合物を作り、これをCu中に析出させ強度及び導電率を
向上させるものである。Ni量が1.0wt%未満であ
ると析出量が少なく目標とする強度が得られない。逆に
Ni量が3.5wt%を越えると鋳造、熱間加工時に強
度上昇に寄与しない析出が生じ含有量に見合う強度を得
ることができないばかりか、熱間加工性、曲げ加工性に
も悪影響を与えることになる。Si量は析出するNiと
Siの化合物がNiSi相であると考えられるため、
Ni量を決定すると最適なSi含有量が決まる。Si量
が0.2wt%未満であるとNi量が少ないときと同様
充分な強度を得ることができない。逆にSi含有量が
0.9wt%を越えるときもNi量が多い場合と同様の
問題が生ずる。好ましくは、Niを1.7〜2.8wt
%、Siを0.4〜0.7wt%に調整することが望ま
しい。
The reasons for limiting the components of the copper alloy of the present invention will be described below. When Ni and Si are contained in Cu, a Ni—Si compound is produced, which is precipitated in Cu to improve strength and electrical conductivity. If the amount of Ni is less than 1.0 wt%, the amount of precipitation is small and the target strength cannot be obtained. Conversely, if the Ni content exceeds 3.5 wt%, precipitation not contributing to the increase in strength occurs during casting and hot working, so that not only the strength corresponding to the content cannot be obtained, but also the hot workability and bending workability are adversely affected. Will be given. Since the amount of Si is considered that the compound of precipitated Ni and Si is in a Ni 2 Si phase,
When the amount of Ni is determined, the optimum Si content is determined. If the amount of Si is less than 0.2 wt%, sufficient strength cannot be obtained as in the case where the amount of Ni is small. Conversely, when the Si content exceeds 0.9 wt%, the same problem occurs as when the Ni content is large. Preferably, Ni is 1.7 to 2.8 wt.
% And Si are preferably adjusted to 0.4 to 0.7 wt%.

【0014】Mg、Snは本発明の銅合金を構成する重
要な添加元素である。これらの元素は相互に関係しあっ
て良好な特性バランスを実現している。次に、これら元
素の限定理由を説明する。Mgは応力緩和特性を大幅に
改善するが、曲げ加工性には悪影響を及ぼす。応力緩和
特性の観点からは、0.01wt%以上で含有量は多い
ほどよい。逆に曲げ加工性の観点からは、含有量が0.
20wt%を越えると良好な曲げ加工性を得ることは困
難である。このような観点から、Mgの含有範囲は0.
01〜0.20wt%において良好なバランスを示す。
曲げ加工性の観点からより好ましいMgの含有範囲は、
0.01〜0.1wt%である。
Mg and Sn are important additional elements constituting the copper alloy of the present invention. These elements are mutually related to achieve a good property balance. Next, the reasons for limiting these elements will be described. Although Mg significantly improves stress relaxation properties, it has an adverse effect on bending workability. From the viewpoint of stress relaxation characteristics, the content is preferably as high as 0.01 wt% or more. On the other hand, from the viewpoint of bending workability, the content is preferably 0.1%.
If it exceeds 20 wt%, it is difficult to obtain good bending workability. From such a viewpoint, the content range of Mg is 0.1.
A good balance is shown at 01 to 0.20 wt%.
A more preferable Mg content range from the viewpoint of bending workability is:
It is 0.01 to 0.1 wt%.

【0015】さらに、Snを加えることにより、良好な
曲げ加工性を保ったまま、より応力緩和特性を改善でき
ることを見いだした。Snは、応力緩和特性の改善効果
を有するものの、その効果はMgほど大きくないが、M
gと相互に関係しあって良好な特性バランスを示すもの
である。Snを1.5wt%を越えて含有すると、熱及
び電気の伝導性が劣化し、実用上問題を来たす。Sn含
有量はMg量との兼ね合いもあるが、0.05〜1.5
wt%で良好な特性バランスを示す。具体的には、Mg
が0.01〜0.05wt%の場合には、Snは0.8
〜1.5wt%が好ましく、Mg量が0.05〜0.1
wt%の場合には、Snは0.05〜0.8wt%が好
ましい。
Furthermore, it has been found that by adding Sn, the stress relaxation characteristics can be further improved while maintaining good bending workability. Although Sn has the effect of improving the stress relaxation characteristics, the effect is not as great as that of Mg.
It shows a good characteristic balance in correlation with g. If Sn is contained in excess of 1.5 wt%, the thermal and electrical conductivity will be degraded, causing a practical problem. Although the Sn content has a balance with the Mg content, the Sn content is 0.05 to 1.5.
A good property balance is shown at wt%. Specifically, Mg
Is 0.01 to 0.05 wt%, Sn is 0.8
To 1.5 wt%, and the Mg content is 0.05 to 0.1%.
In the case of wt%, Sn is preferably 0.05 to 0.8 wt%.

【0016】Znは応力緩和特性に寄与しないが、曲げ
加工性を改善することができる。Znを0.2〜1.5
wt%、好ましくは0.3〜1.0wt%含有すること
により、Mgを最大0.20wt%まで含有させても実
用上問題ないレベルの曲げ加工性を達成できる。またZ
nはSnメッキやハンダメッキの耐熱剥離性、マイグレ
ーション特性を改善する効果を有し、打ち抜き加工性を
改善する作用も有し、実用上の観点からZnを0.2w
t%、好ましくは0.3wt%以上含有させることが望
ましい。打ち抜き加工性を改善する元素としては、P
b、Biがあるが、Pb、Biは多量に添加すると熱間
加工性を阻害するが、Znは製造性に悪影響を及ぼさず
に、打ち抜き加工性を改善できるため有効な添加元素で
ある。その上限は熱・電気の伝導性を考慮し、1.5w
t%、好ましくは1.0wt%である。なお、本実施例
からも、Mgとの共添でより良い傾向にあることが示さ
れている。
Although Zn does not contribute to the stress relaxation characteristics, it can improve the bending workability. 0.2-1.5 Zn
By containing 0.3 wt%, preferably 0.3 to 1.0 wt%, a level of bending workability that does not pose a practical problem can be achieved even when Mg is contained up to a maximum of 0.20 wt%. Also Z
n has the effect of improving the heat-peeling resistance and migration characteristics of Sn plating and solder plating, and also has the effect of improving punching workability.
t%, preferably 0.3 wt% or more. Elements that improve the punching workability include P
There are b and Bi, but when Pb and Bi are added in a large amount, hot workability is impaired, but Zn is an effective additive element because it can improve punching workability without adversely affecting the productivity. The upper limit is 1.5w considering thermal and electrical conductivity.
t%, preferably 1.0 wt%. This example also shows that co-addition with Mg has a better tendency.

【0017】以上、Mg、Sn、Znの添加範囲を限定
した理由を詳述したが、これらの元素の限定範囲内でそ
れぞれ最大含有量とすることは好ましくない。実用上、
最もバランスの良好な含有量の範囲は、Mg:0.05
〜0.15wt%、Sn:0.2〜0.5wt%、Z
n:0.3〜0.8wt%である。
Although the reasons for limiting the addition ranges of Mg, Sn and Zn have been described in detail above, it is not preferable to set the respective maximum contents within the limited ranges of these elements. In practice,
The most well-balanced content range is Mg: 0.05.
0.15 wt%, Sn: 0.2-0.5 wt%, Z
n: 0.3 to 0.8 wt%.

【0018】次に、Ag、Mn、Fe、Cr、Co、P
の含有量の範囲を限定した理由を説明する。Ag、M
n、Fe、Cr、Co、Pは、加工性を改善するという
点で類似の機能を有しているものであり、Ag、Mn、
Fe、Cr、Co、Pの中から選ばれ1種または2種以
上を0.005wt%〜2.0wt%含有させるもので
ある。
Next, Ag, Mn, Fe, Cr, Co, P
The reason for limiting the range of the content of is described. Ag, M
n, Fe, Cr, Co, and P have similar functions in terms of improving workability, and include Ag, Mn,
One or more selected from Fe, Cr, Co, and P are contained at 0.005 wt% to 2.0 wt%.

【0019】Agは、耐熱性を上げ、強度を上昇させる
と同時に、結晶粒の粗大化を阻止し、曲げ加工性を改善
することができる。従来より、Cu−Ni−Si系合金
の強度を上昇させるために種々の第三元素を添加するこ
とが試みられている処であるが、それらは大幅に導電率
を下げたり、曲げ成形性が劣化し、電子機器用用途とし
て好ましくない特性が現れるものであった。本発明は、
強度を向上し、且つその他の特性に悪影響を及ぼさない
元素の検討を繰り返した結果、Agが有効であることを
見いだしたものである。含有量が0.005wt%未満
であるとその効果が現れず、逆に0.3wt%越えて含
有すると特性上の悪影響はないものの、コスト高となる
ので、Agの最適含有量は0.005〜0.3wt%で
あり、より好ましくは0.005〜0.1wt%であ
る。
Ag can increase the heat resistance and the strength, and at the same time, can prevent the crystal grains from becoming coarse and improve the bending workability. Heretofore, it has been attempted to add various third elements in order to increase the strength of Cu-Ni-Si alloys. It deteriorated and exhibited unfavorable characteristics for use in electronic devices. The present invention
As a result of repeating examination of elements that improve strength and do not adversely affect other characteristics, they have found that Ag is effective. If the content is less than 0.005% by weight, the effect is not exhibited. Conversely, if the content exceeds 0.3% by weight, there is no adverse effect on the characteristics, but the cost increases, so the optimal content of Ag is 0.005%. To 0.3 wt%, more preferably 0.005 to 0.1 wt%.

【0020】Mnは、強度を上昇させると同時に熱間加
工性を改善する効果があり、0.01wt%未満である
とその効果が小さく、0.5wt%を越えて含有して
も、含有量に見合った効果が得られないばかりでなく、
伝導性を劣化させる。よってMnの最適含有範囲は、
0.01〜0.5wt%であり、より好ましくは0.0
3〜0.3wt%である。
Mn has the effect of improving the hot workability at the same time as increasing the strength. If the content is less than 0.01 wt%, the effect is small, and even if the content exceeds 0.5 wt%, the content is increased. In addition to not being able to obtain the effect corresponding to
Deteriorates conductivity. Therefore, the optimal content range of Mn is
0.01 to 0.5 wt%, more preferably 0.0 to 0.5 wt%.
3 to 0.3 wt%.

【0021】Fe、Crは、Siと結合し、Fe−Si
化合物、Cr−Si化合物を形成し強度を上昇させる。
またNiとの化合物を形成せずに銅マトリックス中に残
存するSiをトラップし、導電性を改善する効果があ
る。Fe−Si化合物、Cr−Si化合物は析出硬化能
が低いため、多くの化合物を生成させることは得策でな
い。また、0.2wt%を越えて含有すると曲げ加工性
が劣化してくる。これらの観点から、Fe、Crを含有
する場合の添加量は、0.005〜0.2wt%であ
り、より好ましくは0.005〜0.1wt%である。
Fe and Cr combine with Si to form Fe-Si
Compounds and Cr-Si compounds are formed to increase the strength.
Further, there is an effect of trapping Si remaining in the copper matrix without forming a compound with Ni and improving conductivity. Since Fe-Si compounds and Cr-Si compounds have low precipitation hardening ability, it is not advisable to produce many compounds. On the other hand, if the content exceeds 0.2 wt%, the bending workability deteriorates. From these viewpoints, when Fe and Cr are contained, the addition amount is 0.005 to 0.2 wt%, and more preferably 0.005 to 0.1 wt%.

【0022】Coは、Niと同様にSiと化合物を形成
し、機械的強度を向上させる。Coは、Niに比し高価
であるため、本発明ではCu−Ni−Si系合金を利用
しているが、コスト的に許されるのであれば、Cu−C
o−Si系やCu−Ni−Co−Si系を選択しても良
い。Cu−Co−Si系は時効析出させた場合に、Cu
−Ni−Si系より機械的強度、導電性共に僅かに良く
なる。したがって熱・電気の伝導性をが重視される部材
には有効である。また、Co−Si化合物は析出硬化能
が僅かに高いため、応力緩和特性も若干改善される傾向
にある。これらの観点から、Coを添加する場合の最適
添加量は、0.05〜2.0wt%である。
Co forms a compound with Si similarly to Ni, and improves mechanical strength. Since Co is more expensive than Ni, the present invention uses a Cu-Ni-Si alloy. However, if cost is acceptable, Cu-C
An o-Si system or a Cu-Ni-Co-Si system may be selected. Cu-Co-Si system, when aging precipitation, Cu
-Both mechanical strength and electrical conductivity are slightly better than those of the Ni-Si system. Therefore, it is effective for members in which thermal and electrical conductivity is important. Further, since the Co—Si compound has a slightly higher precipitation hardening ability, the stress relaxation property tends to be slightly improved. From these viewpoints, the optimum addition amount when Co is added is 0.05 to 2.0 wt%.

【0023】Pは、強度を上昇させると同時に導電性を
改善する効果を有する。多量の含有は粒界析出を助長し
て曲げ加工性を低下させる。よってPを添加する場合の
最適含有範囲は、0.005〜0.1wt%であり、よ
り好ましくは0.005〜0.05wt%である。これ
らを2種以上同時に添加する場合には、求められる特性
に応じて適宜決定すれば良いが、耐熱性、Snメッキ、
ハンダメッキ耐熱剥離性、伝導性などの観点から総量で
0.005〜2.0wt%とした。
P has the effect of increasing the strength and at the same time improving the conductivity. A large amount promotes grain boundary precipitation and lowers bending workability. Therefore, the optimum content range when P is added is 0.005 to 0.1 wt%, and more preferably 0.005 to 0.05 wt%. When two or more of these are added at the same time, they may be appropriately determined according to the required characteristics.
The total amount was set to 0.005 to 2.0 wt% from the viewpoints of solder plating heat resistance, conductivity and the like.

【0024】次に、Pb、Biの含有量の範囲を限定し
た理由を説明する。Pb、Biは、打ち抜き加工性を改
善するもので、Pb、Biの1種または2種を0.00
5〜0.13wt%含有するものである。Pbは打ち抜
き加工性を改善する添加元素である。近年のプレス高速
化にともない、端子用材料にはより優れた加工性が求め
られている。Pbは銅マトリックス中に分散し、破壊の
起点になるため打ち抜き加工性を改善する。Pb量が
0.005wt%未満であると特性改善効果がなく、
0.1wt%を越えて添加すると熱間加工性を低下させ
るばかりでなく、曲げ加工性をも劣化させるため、0.
005〜0.1wt%が最適であり、より好ましくは
0.005〜0.05wt%である。Biも打ち抜き加
工性を改善する添加元素である。0.005wt%未満
であると特性改善効果が小さく、0.03wt%を越え
て添加するとPbと同様の特性低下を来す。よってBi
の最適含有範囲は、0.005〜0.03wt%であ
り、より好ましくは0.005〜0.02wt%であ
る。
Next, the reason for limiting the range of the content of Pb and Bi will be described. Pb and Bi improve punching workability, and one or two of Pb and Bi are 0.00
It contains 5 to 0.13 wt%. Pb is an additive element for improving the punching workability. With the recent increase in the speed of pressing, more excellent workability is required for terminal materials. Pb is dispersed in the copper matrix and serves as a starting point for destruction, thereby improving the punching workability. If the amount of Pb is less than 0.005 wt%, there is no property improving effect,
If added in excess of 0.1 wt%, not only the hot workability is reduced, but also the bending workability is deteriorated.
005 to 0.1 wt% is optimal, and more preferably 0.005 to 0.05 wt%. Bi is also an additive element for improving the punching workability. If the content is less than 0.005 wt%, the effect of improving the properties is small, and if it exceeds 0.03 wt%, the same property deterioration as Pb is caused. Therefore Bi
Is 0.005 to 0.03 wt%, more preferably 0.005 to 0.02 wt%.

【0025】これらAg、Mn、Fe、Cr、Co、P
の中から選ばれ1種または2種以上、及びPb、Biの
1種または2種を同時に含有する場合には、求められる
特性に応じて適宜決定すれば良いが、耐熱性、Snメッ
キ、ハンダメッキ耐熱剥離性、伝導性などの観点から総
量で0.005〜2.0wt%とした。
These Ag, Mn, Fe, Cr, Co, P
When one or two or more selected from Pb and Bi and one or two of Pb and Bi are contained at the same time, heat resistance, Sn plating, soldering, and the like may be appropriately determined according to the required properties. The total amount was 0.005 to 2.0 wt% from the viewpoints of plating heat resistance, conductivity and the like.

【0026】次に、S、O含有量を0.005wt%未
満に制限しした理由を説明する。通常、工業的な銅材料
にはS、O等が微量含まれるが、本発明はこれらの含
有量を厳密に制限することで上述した合金成分と後述す
る結晶粒度の規定と相まって優れた特性の実現を図るも
のである。Sは、熱間加工性を悪化させる元素であり、
その含有量を0.005wt%未満と規定することで、
熱間加工性を向上させる。特にS含有量を0.002w
t%未満にすることが望ましい。Oは、その含有量が
0.005wt%以上であると、Mgが酸化されて曲げ
加工性が劣化する。O含有量を0.005wt%以下、
特に0.002wt%未満にすることが望ましい。以上
説明したS、Oは、通常の銅系材料中に微量に含有され
る場合が多いが、本発明の銅合金においては特に重要で
あり、その含有量を規定することで優れた特性が得られ
るもので、端子、コネクター用材料に好適な特性を実現
することを見いだしたのである。
Next, the reason why the S and O contents are limited to less than 0.005 wt% will be described. Normally, industrial copper materials contain trace amounts of S, O 2, etc., but the present invention restricts these contents strictly to provide excellent characteristics in combination with the above-mentioned alloy components and the definition of crystal grain size described below. Is to be realized. S is an element that deteriorates hot workability,
By specifying the content as less than 0.005 wt%,
Improves hot workability. Especially S content is 0.002w
It is desirable to make it less than t%. If the content of O is 0.005 wt% or more, Mg is oxidized and bending workability is deteriorated. O content 0.005 wt% or less,
In particular, the content is desirably less than 0.002 wt%. Although S and O described above are often contained in trace amounts in ordinary copper-based materials, they are particularly important in the copper alloy of the present invention, and excellent properties can be obtained by regulating the contents. It has been found that it achieves characteristics suitable for terminal and connector materials.

【0027】上述した本発明の銅合金の構成において、
その特性を好適に実現するためには、結晶粒度が1μm
を越え25μm以下とすることが必要である。結晶粒度
が1μm以下であると、再結晶組織において混粒と成り
易く、曲げ加工性が低下すると同時に応力緩和特性が低
下する。逆に結晶粒度が25μmを越えて成長しても、
曲げ加工性に悪影響を及ぼす。従って、結晶粒度は1μ
mを越え25μm以下に調整する必要がある。
In the structure of the copper alloy of the present invention described above,
In order to suitably realize the characteristics, the crystal grain size is 1 μm
Over 25 μm. When the crystal grain size is 1 μm or less, it is easy to form a mixed grain in the recrystallized structure, and the bending workability is lowered and the stress relaxation property is lowered. Conversely, even if the grain size grows beyond 25 μm,
This has an adverse effect on bending workability. Therefore, the grain size is 1μ
It is necessary to adjust the thickness to more than m and 25 μm or less.

【0028】次いで、本発明の銅合金の製造法について
説明する。本発明の銅合金は、冷間加工、例えば冷間圧
延した後に、再結晶と溶体化させる目的で熱処理を行
い、直ちに焼き入れを行う。また必要に応じて時効処理
を行うものである。本発明の銅合金における結晶粒度を
1μmを越え25μm以下の範囲に調整するためには、
再結晶処理の条件を詳細に制御する必要がある。700
℃未満の温度での熱処理は、混粒となり易く、920℃
を越える温度では結晶粒が粗大に成長しやすいので、冷
間加工後に再結晶処理を700〜920℃で行うもので
ある。また、冷却速度は出来るだけ素早く、10℃/s
以上の速度で冷却することが望ましい。
Next, a method for producing the copper alloy of the present invention will be described. The copper alloy of the present invention is subjected to heat treatment for the purpose of recrystallization and solution treatment after cold working, for example, cold rolling, and is immediately quenched. Further, aging processing is performed as needed. In order to adjust the crystal grain size in the copper alloy of the present invention to a range of more than 1 μm and 25 μm or less,
It is necessary to control the conditions of the recrystallization treatment in detail. 700
Heat treatment at a temperature lower than ℃ is 920 ° C.
If the temperature exceeds the limit, the crystal grains are likely to grow coarsely, so that the recrystallization treatment is performed at 700 to 920 ° C. after the cold working. The cooling rate is as fast as possible at 10 ° C / s.
It is desirable to cool at the above speed.

【0029】次に、時効熱処理の条件については、時効
温度が420℃未満であると、析出硬化量が不十分であ
り、充分な特性を引き出すことができない。逆に550
℃を越える温度で処理すると、析出相が粗大に成長し、
強度が低下するばかりでなく、応力緩和特性も低下させ
てしまう。よって、時効処理温度は420〜550℃と
した。さらには、応力緩和特性は析出相の状態に大きく
影響を受けることが判っており、時効強度がピークを示
す温度近傍が最良条件である。一方、曲げ加工性は時効
強度がピークを示す温度から若干過時効側で熱処理を行
うことが望ましい。このような観点から好ましくは46
0〜530℃での処理が最適である。
Next, regarding the condition of the aging heat treatment, if the aging temperature is lower than 420 ° C., the amount of precipitation hardening is insufficient, and sufficient characteristics cannot be obtained. 550
When treated at a temperature exceeding ℃, the precipitated phase grows coarsely,
Not only does the strength decrease, but also the stress relaxation characteristics. Therefore, the aging treatment temperature was set to 420 to 550 ° C. Furthermore, it has been found that the stress relaxation characteristics are greatly affected by the state of the precipitated phase, and the best condition is near the temperature at which the aging strength shows a peak. On the other hand, as for bending workability, it is desirable to perform the heat treatment on the slightly overaged side from the temperature at which the aging strength shows a peak. From such a viewpoint, preferably 46
Processing at 0-530 ° C. is optimal.

【0030】また、冷間加工後に再結晶処理(溶体化)
を700〜920℃で行い、さらに冷間加工(25%以
下)を行った後に420〜550℃で時効処理を行うも
のである。 後に述べる実施例では、溶体化後直ぐに時
効処理を行ったが、溶体化と時効の間に冷間加工を施す
ことも有効である。この場合には、曲げ加工性を劣化さ
せない断面減少率25%以下の加工が望ましい。また、
冷間加工後に再結晶処理(溶体化)を700〜920℃
で行い、冷間加工(25%以下)、420〜550℃で
時効処理を行った後に、さらに25%以下の冷間加工、
及び低温焼鈍を行うものである。このように時効処理後
に冷間加工を施しても構わない。この場合は本発明の特
徴である曲げ加工性を劣化させないために、断面減少率
25%以下の加工が望ましい。更に、前述の時効処理後
の冷間加工を行う場合には、その後に比較的低温での焼
鈍を行うことが推奨される。この焼鈍をバッチ式焼鈍で
行う場合には、250〜400℃の温度で0.5〜5h
r、走間焼鈍で行う場合には600〜800℃の温度で
5〜60sの条件で行うことが望ましい。この焼鈍は冷
間加工で導入された転位を再配列し、結果的には転位の
移動を抑制する作用を有する。従って、前述の冷間加工
を行った場合には、焼鈍を行うことにより応力緩和特性
を改善することができる。必要に応じて最終の熱処理前
若しくは後にテンションレベラーやローラーベラー等の
矯正を行っても良い。
Further, recrystallization treatment (solution solution) after cold working
At 700 to 920 ° C., and after further cold working (25% or less), aging at 420 to 550 ° C. In the examples described later, the aging treatment was performed immediately after solution treatment, but it is also effective to perform cold working between solution treatment and aging. In this case, it is desirable to perform processing with a cross-sectional reduction rate of 25% or less that does not deteriorate bending workability. Also,
700-920 ° C after recrystallization treatment (solution solution) after cold working
Cold working (25% or less), after aging treatment at 420 to 550 ° C, further cold working of 25% or less,
And low-temperature annealing. Thus, cold working may be performed after the aging treatment. In this case, in order not to deteriorate the bending workability, which is a feature of the present invention, it is desirable to perform processing with a cross-sectional reduction rate of 25% or less. Furthermore, when performing cold working after the above-mentioned aging treatment, it is recommended to perform annealing at a relatively low temperature thereafter. When performing this annealing by batch type annealing, at a temperature of 250 to 400 ° C. for 0.5 to 5 hours.
r, when performing annealing during running, it is desirable to perform at a temperature of 600 to 800 ° C. for 5 to 60 s. This annealing has the effect of rearranging the dislocations introduced in the cold working and consequently suppressing the movement of the dislocations. Therefore, when the above-mentioned cold working is performed, the stress relaxation characteristics can be improved by annealing. If necessary, before or after the final heat treatment, a correction such as a tension leveler or a roller leveler may be performed.

【0031】[0031]

【発明の実施の形態】本発明の銅合金は、優れた機械的
強度、曲げ加工性、応力緩和特性、Snメッキ剥離性、
打ち抜き性等を有し、特に、端子・コネクター材、スイ
ッチ材、リレー材等、一般導電材料等に求められる特性
を備えたものであり、実施例により詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The copper alloy of the present invention has excellent mechanical strength, bending workability, stress relaxation property, Sn plating releasability,
It has a punching property and the like, and particularly has characteristics required for a general conductive material such as a terminal / connector material, a switch material, a relay material, etc., and will be described in detail with reference to Examples.

【0032】[0032]

【実施例1】本発明の第1の実施例を表1〜6に示し説
明する。表1は本発明例の合金組成、表2、表3は比較
例、従来例の合金組成であり、表4は本発明例合金の特
性、表5、表6は比較例、従来例の合金の特性を示すも
のである。なお、なお、表中の矢印は上の欄と同じこと
を示すものであり、(*)は耐力値が低く、試料セット
段階で塑性変形を起こしたために試験中止したものであ
る。
Embodiment 1 A first embodiment of the present invention will be described with reference to Tables 1 to 6. Table 1 shows the alloy compositions of the examples of the present invention, Tables 2 and 3 show the alloy compositions of the comparative examples and the conventional examples, Table 4 shows the properties of the alloys of the present invention, Tables 5 and 6 show the alloys of the comparative examples and the conventional examples. This shows the characteristics of The arrows in the table indicate the same as those in the upper column, and (*) indicates that the test was stopped because the yield strength was low and plastic deformation occurred at the sample setting stage.

【0033】まず、高周波溶解炉にて、表1〜表3に記
す組成の合金を溶解し、冷却速度6℃/sで鋳込んだ。
鋳塊のサイズは厚さ30mm、幅100mm、長さ15
0mmである。次にこれらの鋳塊を900℃で熱間圧延
をしてから、速やかに冷却を行った。表面の酸化膜を除
去するため厚さ9mmまで面削してから、冷間圧延によ
り厚さ0.25mmに加工した。この後、供試材を再結
晶と溶体化させる目的で、750℃で30sの熱処理を
行い、直ちに15℃/s以上の冷却速度で焼き入れを行
った。時効処理は、不活性雰囲気中で515℃×2時間
の熱処理を施し、試験に供する材料とした。
First, alloys having the compositions shown in Tables 1 to 3 were melted in a high-frequency melting furnace and cast at a cooling rate of 6 ° C./s.
The size of the ingot is 30 mm in thickness, 100 mm in width, and 15 in length.
0 mm. Next, these ingots were hot-rolled at 900 ° C., and then immediately cooled. After removal of the oxide film on the surface, the surface was cut to a thickness of 9 mm, and then worked by cold rolling to a thickness of 0.25 mm. Thereafter, a heat treatment was performed at 750 ° C. for 30 seconds, and quenching was immediately performed at a cooling rate of 15 ° C./s or more in order to recrystallize and solution-treat the test material. In the aging treatment, a heat treatment was performed at 515 ° C. for 2 hours in an inert atmosphere to obtain a material to be subjected to the test.

【0034】製造した材料からサンプリングして、結晶
粒度を測定し、TS(引張り強度)N/mm、El
(伸び)%、EC(導電率)%IACS、曲げ加工性、
S.R.R(応力緩和率)%、Snメッキ剥離性、打ち
抜き性として破断面比率(%)、バリ(μm)の各種特
性評価を行った。
The crystal size is measured by sampling from the manufactured material, and TS (tensile strength) N / mm 2 , El
(Elongation)%, EC (conductivity)% IACS, bending workability,
S. R. Various characteristics such as R (stress relaxation rate)%, Sn plating releasability, and punching properties were evaluated for fracture surface ratio (%) and burr (μm).

【0035】結晶粒度、即ち結晶粒の大きさは、JIS
H0501に準じ、比較法と切断法を併用し観察を行っ
た。比較法では試験片を顕微鏡観察(75倍または20
0倍)して測定した。切断法では加工方向に平行な板厚
断面で測定を行った。引っ張り強度はJISZ2241
で、熱・電気の伝導性を示す値として、導電率をJIS
H0505に準じて測定した。
The crystal grain size, that is, the size of the crystal grain is determined according to JIS.
Observation was performed according to H0501 using both the comparison method and the cutting method. In the comparative method, the specimen was observed under a microscope (75 times or 20 times).
0). In the cutting method, the measurement was performed on a section having a plate thickness parallel to the processing direction. The tensile strength is JISZ2241
In JIS, electrical conductivity is used as a value indicating thermal and electrical conductivity.
It was measured according to H0505.

【0036】曲げ加工性の評価は、内側曲げ半径がOR
の180°密着曲げを行った。評価の指標は、 A.しわもなく良好 B.小さなしわが観察される C.大きなしわが観察されるが、クラックには至ってい
ない D.微細なクラックが観察される E.明瞭にクラックが観察される の5段階で評価し、評価C以上を実用上問題の無いレベ
ルと判断した。
The bending workability was evaluated by determining whether the inner bending radius was OR
180 ° close bending. The evaluation index is as follows. Good without wrinkles C. Small wrinkles are observed. A large wrinkle was observed, but no crack was observed. E. Fine cracks are observed. Evaluation was made on a scale of 1 to 5 in which cracks were clearly observed, and a rating of C or higher was judged as a level having no practical problem.

【0037】応力緩和特性の評価は、日本電子材料工業
会標準規格であるEMAS−3003に準拠して行っ
た。ここで片持ちブロック式を採用し、表面最大応力が
450N/mmとなるように負荷応力を設定し、15
0℃の恒温槽で試験を行った。表4〜表6には、100
0hr試験後の緩和率(S.R.R)で示した。
The evaluation of the stress relaxation characteristics was carried out in accordance with EMAS-3003, which is a standard of the Electronic Materials Industries Association of Japan. Here, a cantilever block type is adopted, and the applied stress is set so that the surface maximum stress is 450 N / mm 2 ,
The test was performed in a thermostat at 0 ° C. In Tables 4 to 6, 100
The relaxation rate (SRR) after the 0 hr test was shown.

【0038】応力緩和の試験方法の片持ちブロック法に
ついて、図1(a)(b)(c)に示す。図1(a)は
斜視図、(b)は側面図であり、サンプル(1)の一方
は基台(2)に保持部材(3)で片持ち状態に支持し、
もう一方はブロック(4)によりサンプル(1)に歪み
δo(初期たわみ変位)を与えた状態にする。この状態
でサンプル(1)を150℃に所定時間(本実施例では
1000hr)加熱する。所定時間経過後、図1(c)
の側面図に示すように、ブロック(4)を取り除いた状
態での歪みδt(永久たわみ変位)を測定し、応力緩和
率(%)は次式で求めた。 応力緩和率(%)=(δt/δo)×100 なお、初期たわみ変位は、表面最大応力が所定の値(4
50N/mm)になるよう、ヤング率、板厚等から計
算するものである(計算方法はEMAS−3003によ
る)。
FIGS. 1A, 1B and 1C show the cantilever block method of the stress relaxation test method. FIG. 1A is a perspective view, and FIG. 1B is a side view. One of the samples (1) is supported on a base (2) by a holding member (3) in a cantilever state.
The other is brought into a state in which the sample (1) is given a strain δo (initial deflection displacement) by the block (4). In this state, the sample (1) is heated to 150 ° C. for a predetermined time (1000 hours in this embodiment). After a lapse of a predetermined time, FIG.
As shown in the side view, the strain δt (permanent flexural displacement) with the block (4) removed was measured, and the stress relaxation rate (%) was obtained by the following equation. Stress relaxation rate (%) = (δt / δo) × 100 Incidentally, the initial deflection displacement is such that the maximum surface stress is a predetermined value (4
It is calculated from Young's modulus, plate thickness, and the like so as to be 50 N / mm 2 ) (the calculation method is based on EMAS-3003).

【0039】Snメッキの加熱剥離性は、1μmの光沢
Snメッキを施した試験片を150℃×1000時間の
大気加熱をしてから、180度の密着曲げ、および曲げ
戻しをした後、その部分のメッキ剥離を目視にて評価し
た。半田の剥離が認められる場合、表4〜6に「有」と
記した。
The heat-peeling property of the Sn plating was as follows. A test piece coated with a 1 μm glossy Sn plating was heated at 150 ° C. for 1000 hours in the air, and then bent 180 ° in close contact and bent back. Was visually evaluated for plating peeling. When the peeling of the solder was recognized, "Yes" was described in Tables 4 to 6.

【0040】打ち抜き性は、金型(SKD11製)で打
ち抜き試験(1mm×5mmの角孔を設ける)を行うこ
とにより調べた。そして5001回目から10000回
目の打ち抜き分から20個無作為に抽出したサンプルの
打ち抜き面を観察して破断部の厚さを測定した。表4〜
6には試験片の厚さに対する破断部の厚さの割合の平均
値を%表示で示す(表中でF.A.Rと表示)。バリ測
定についても同様に、5001回目から10000回目
の打ち抜き部分から20個無作為に抽出したサンプルの
バリの高さを接触式形状測定機で求め、平均値を表に記
載した。
The punching property was examined by performing a punching test (providing a square hole of 1 mm × 5 mm) with a mold (manufactured by SKD11). Then, the thickness of the fractured part was measured by observing the punched surfaces of 20 randomly extracted samples from the 5001st to 10000th punchings. Table 4-
6 shows the average value of the ratio of the thickness of the fractured portion to the thickness of the test piece in% (shown as FAR in the table). Similarly, for the burr measurement, the heights of the burr of 20 randomly extracted samples from the 5001st to 10000th punched portions were determined by a contact type shape measuring instrument, and the average value was described in the table.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

【0041】表4から明らかなように、本発明例1〜2
1は、TS(引張り強度)、El(伸び)、EC(導電
率)、曲げ加工性、S.R.R(応力緩和率)、Snメ
ッキ剥離性、打ち抜き性の各種特性の何れも優れた特性
を示していることが判る。
As is clear from Table 4, Examples 1 to 2 of the present invention
1 is TS (tensile strength), El (elongation), EC (conductivity), bending workability, S.I. R. It can be seen that R (stress relaxation rate), Sn plating releasability, and punching properties all show excellent properties.

【0042】一方、Ni−Si量の少ない比較例No.
22は、目的とする強度が得られず、打ち抜き加工性も
他の材料と比較して劣っている。逆にNi−Si量の多
い比較例No.23は、Ni−Si量の少ない本発明例
No.4と比較し強度の点では差はないが、曲げ加工性
では劣化傾向を示した。即ち、本発明で規定する量以上
のNi−Siを添加することは、曲げ加工性が劣るの
で、端子・コネクター用として不適である。
On the other hand, in Comparative Example No.
In No. 22, the intended strength was not obtained, and the punching workability was inferior to other materials. Conversely, Comparative Example No. No. 23 of the present invention example No. 23 having a small amount of Ni-Si. Although there was no difference in strength in comparison with No. 4, the bending workability showed a tendency to deteriorate. That is, the addition of Ni-Si in an amount equal to or more than the amount specified in the present invention is inferior in bending workability, and thus is not suitable for terminals and connectors.

【0043】Mgの添加量が少ない比較例No.24
は、本発明例のNo.2,No.5と比較し、応力緩和
特性が大幅に劣っている。これと同じ理由で比較例N
o.25は本発明例No.6,No.7より劣ってい
る。このことは、従来のCu−Ni−Si合金(従来例
No.42)にSnを単独で添加しても、応力緩和特性
には大きな改善効果を期待できないことを示すものであ
り、従来のSn入りCu−Ni−Si合金(従来例N
o.43)の特性と一致する。
Comparative Example No. 24
Is No. of the present invention example. 2, No. As compared with No. 5, the stress relaxation property was significantly inferior. Comparative Example N for the same reason
o. No. 25 is Example No. 25 of the present invention. 6, No. Inferior to 7. This indicates that even if Sn is solely added to the conventional Cu-Ni-Si alloy (conventional example No. 42), a large improvement effect on the stress relaxation characteristics cannot be expected. Cu-Ni-Si alloy (conventional example N
o. 43).

【0044】Mgの添加量が、本発明の規定量以上であ
る比較例No.26は、曲げ加工性が劣化している。こ
れは端子・コネクター材としては不適である。曲げ加工
性を若干改善できるZnを1wt%以上添加しても良好
な曲げ加工性は確保できなかった。Snの添加量が少な
い比較例No.27は、本発明例のNo.2と比較し、
応力緩和特性の点で劣っている。逆にSnの添加量が多
い比較例No.28は、Mgの効果と相まり、今回製造
を行った中で最も優れた応力緩和特性を示した組成の一
つであった。しかしながら、導電率が最も低くなり、バ
ランス的に優れているとは言えない。Znの添加量が多
い比較例No.29も導電率が低くなり、特性バランス
に優れない。
Comparative Example No. 1 in which the amount of Mg added was not less than the specified amount of the present invention. No. 26 has deteriorated bending workability. This is unsuitable as a terminal / connector material. Good bending workability could not be ensured even when 1 wt% or more of Zn, which can slightly improve the bending workability, was added. Comparative Example No. No. 27 of the present invention example. Compared to 2,
Poor in terms of stress relaxation characteristics. Conversely, Comparative Example No. No. 28 was one of the compositions exhibiting the most excellent stress relaxation characteristics in this production, combined with the effect of Mg. However, the conductivity is the lowest, and it cannot be said that it is excellent in balance. Comparative Example No. 29 also has a low conductivity and is not excellent in the property balance.

【0045】Feの添加量が規定量以上である比較例N
o.30は、Fe−Si化合物が多量に生成し、析出硬
化量が低下したばかりでなく、曲げ加工性にも悪影響を
及ぼした。Pbの添加量を多くした比較例No.31は
熱間加工中に割れを生じ、正常に製造することが出来な
かった。その他、Sが本発明範囲外にある比較例No.
32は、熱間加工時に割れが生じ、その後の特性評価を
行えなかった。また、Oが多い比較例No.33は、M
gの酸化物が生成しており、曲げ加工性が劣化した。
Comparative Example N in which the amount of Fe added was not less than the specified amount
o. In No. 30, not only a large amount of Fe-Si compound was generated, the precipitation hardening amount was reduced, but also the bending workability was adversely affected. Comparative Example No. 1 in which the added amount of Pb was increased. No. 31 cracked during hot working and could not be manufactured normally. In addition, Comparative Example No. S in which S is out of the range of the present invention.
In No. 32, cracks occurred during hot working, and subsequent characteristic evaluation could not be performed. Further, in Comparative Example No. 33 is M
g of oxide was generated, and the bending workability was deteriorated.

【0046】比較例No.34は、再結晶させるための
焼鈍を680℃×30sで行った。その結果、平均結晶
粒は1μm以下で、比較的大きな結晶粒と小さな結晶粒
が混在する組織となった。不均一な組織のため、曲げ加
工性を行う試験片を採取する場所によっては、クラック
を生ずる結果となった。逆に、比較例No.35は93
0℃×30sで熱処理を行ったため、結晶粒はおよそ3
0μmとなった。粗大な結晶粒となったため、曲げ加工
性に悪影響を及ぼすばかりでなく、若干応力緩和特性も
低下した。
Comparative Example No. In No. 34, annealing for recrystallization was performed at 680 ° C. × 30 s. As a result, the average crystal grain was 1 μm or less, and a structure in which relatively large crystal grains and small crystal grains were mixed was obtained. Due to the non-uniform structure, cracking occurred depending on the place where the test piece to be subjected to bending workability was collected. Conversely, Comparative Example No. 35 is 93
Since the heat treatment was performed at 0 ° C. × 30 s, the crystal grains were about 3
It was 0 μm. The coarse crystal grains not only adversely affected bending workability but also slightly reduced stress relaxation characteristics.

【0047】また比較例No.36〜No.41は、C
u−Ni−Si−Mg−Zn合金にSn以外の元素を添
加した比較例である。これらいずれの合金の応力緩和特
性もSnの添加量が少ない比較例No.27と同程度の
応力緩和特性であり、これらの元素の添加は応力緩和に
ほとんど寄与しないことが判る。
In Comparative Example No. 36-No. 41 is C
This is a comparative example in which an element other than Sn is added to a u-Ni-Si-Mg-Zn alloy. Regarding the stress relaxation characteristics of each of these alloys, Comparative Example No. It has a stress relaxation characteristic comparable to that of No. 27, indicating that the addition of these elements hardly contributes to stress relaxation.

【0048】次に、従来から存在する合金についてみる
と、従来例No.42は、Cu−Ni−Si合金であ
り、その他の添加元素は含まれていない。この場合、応
力緩和特性が良くない点と、Znを含まないため、Sn
メッキの加熱剥離性に問題がある。従来例No.43は
先述のとおり、Cu−Ni−Si系合金にSnとZnを
添加した材料である。Snメッキの加熱剥離性は改善さ
れているが、応力緩和特性は従来例No.41と同等で
あり不十分である。
Next, the conventional alloys will be described. Reference numeral 42 denotes a Cu-Ni-Si alloy, which does not include other additional elements. In this case, since the stress relaxation property is not good and Zn is not included, Sn
There is a problem with the heat peelability of plating. Conventional example No. 43 is a material obtained by adding Sn and Zn to a Cu-Ni-Si alloy as described above. Although the heat-peeling property of the Sn plating is improved, the stress relaxation property is the same as that of the conventional example. Equivalent to 41, insufficient.

【0049】No.44は、Mgを添加し、応力緩和特
性の改善を図った材料である。Mgの効果により応力緩
和特性は改善されているが、曲げ加工性に問題がある。
この従来例No.44と同等の応力緩和特性と良好な曲
げ加工性を得るためには、本発明例No.2のように、
Mg量を減らし、Snを添加し、更に曲げ加工性を改善
するZnを添加することで達成される。Zn添加効果に
より、Snメッキの加熱剥離性も改善される。
No. Reference numeral 44 denotes a material to which Mg is added to improve stress relaxation characteristics. Although the stress relaxation property is improved by the effect of Mg, there is a problem in bending workability.
This conventional example No. In order to obtain the same stress relaxation characteristics and good bending workability as those of Example No. 44 of the present invention. Like 2,
This is achieved by reducing the amount of Mg, adding Sn, and further adding Zn which improves bending workability. Due to the Zn addition effect, the heat peelability of Sn plating is also improved.

【0050】[0050]

【実施例2】本発明の第2の実施例を表7、表8で説明
する。第2の実施例は、上記実施例1に示した本発明例
No.2の組成からなる合金を、表7よる工程で製造し
て、表8に示すように、TS(引張り強度)N/m
、El(伸び)%、EC(導電率)%IACS、曲
げ加工性、S.R.R(応力緩和率)%、Snメッキ剥
離性、打ち抜き性としてF.A.R(%)、バリ(μ
m)の各種特性評価を行った。評価方法は実施例1と同
様である。
Embodiment 2 A second embodiment of the present invention will be described with reference to Tables 7 and 8. The second embodiment corresponds to the present invention example No. 1 shown in the first embodiment. An alloy having the composition of No. 2 was manufactured by the steps shown in Table 7, and as shown in Table 8, TS (tensile strength) N / m
m 2 , El (elongation)%, EC (conductivity)% IACS, bending workability, S.M. R. R (stress relaxation rate)%, Sn plating peeling property, punching property A. R (%), burr (μ
m) were evaluated. The evaluation method is the same as in the first embodiment.

【表7】 [Table 7]

【表8】 [Table 8]

【0051】表7、表8から明らかなように、本発明例
の工程で製造した合金である本発明例No.45〜N
o.53は何れも優れた特性を示した。しかしながら、
比較例No.54は熱処理温度が低く、結果的に、結晶
粒が均一でなく、曲げ加工性が劣化した。比較例No.
55は930℃×30sで熱処理を行ったために、結晶
粒はおよそ30μmとなった。粗大な結晶粒であるた
め、曲げ加工性に悪影響を及ぼすばかりでなく、若干応
力緩和特性も低下した。
As is apparent from Tables 7 and 8, the alloy of the present invention No. No. 45-N
o. No. 53 showed excellent characteristics. However,
Comparative Example No. In No. 54, the heat treatment temperature was low, and as a result, the crystal grains were not uniform, and the bending workability was deteriorated. Comparative Example No.
In the case of No. 55, since the heat treatment was performed at 930 ° C. × 30 s, the crystal grains became approximately 30 μm. The coarse crystal grains not only adversely affected the bending workability but also slightly reduced the stress relaxation characteristics.

【0052】比較例No.56は時効温度が低く、析出
が不十分なため強度特性が劣化した。同時に応力緩和特
性も大幅に低下した。逆にNo.57は時効温度が高
く、析出物が粗大化したため、応力緩和特性が大幅に低
下した。比較例No.58は時効後に本発明で規定する
以上の加工率で冷間加工を行った例である。応力緩和特
性はむしろ優れるが、曲げ加工性が低下した。比較例N
o.59は時効後の冷間加工率は高くないが、その後熱
処理を行わなかった例である。伸びが低く曲げ加工性が
低下したばかりでなく、応力緩和特性も若干低下した。
Comparative Example No. In No. 56, the aging temperature was low, and the precipitation was insufficient, so that the strength characteristics were deteriorated. At the same time, the stress relaxation characteristics were significantly reduced. Conversely, No. In No. 57, the aging temperature was high and the precipitates were coarsened, so that the stress relaxation characteristics were significantly reduced. Comparative Example No. Reference numeral 58 denotes an example in which cold working is performed after the aging at a working ratio higher than that specified in the present invention. Although the stress relaxation characteristics were rather excellent, the bending workability was lowered. Comparative Example N
o. 59 is an example in which the cold working ratio after aging is not high, but the heat treatment is not performed thereafter. Not only the elongation was low and the bending workability was lowered, but also the stress relaxation properties were slightly lowered.

【0053】[0053]

【発明の効果】以上記述したように、本発明の銅合金
は、Cuマトリックス中にNiとSiの化合物を析出さ
せ、Sn、Mg、或いは更にZnを特定量添加し、S、
O含有量を制限して、かつ結晶粒度を1μmを越え25
μm以下としたことにより、優れた機械的特性、伝導
性、応力緩和特性と曲げ加工性を兼ね備えた銅合金が得
られるという効果を奏するものである。特に、端子・コ
ネクター用として、強度や伝導性、応力緩和特性、曲げ
成形性に優れ、またSnメッキの耐加熱剥離性や打ち抜
き性にも優れるものであるから、近年の傾向である小
型、高性能化に好適に対応できる。また本発明は端子・
コネクター用途に好適なものであるが、その他スイッ
チ、リレー材等、一般導電材料としても好適な銅合金を
提供するという効果を奏するものである。
As described above, in the copper alloy of the present invention, a compound of Ni and Si is precipitated in a Cu matrix, and a specific amount of Sn, Mg, or Zn is added.
O content is limited and the grain size exceeds 25
When the thickness is not more than μm, there is an effect that a copper alloy having excellent mechanical properties, conductivity, stress relaxation properties and bending workability can be obtained. In particular, for terminals and connectors, they are excellent in strength, conductivity, stress relaxation characteristics, bending formability, and Sn plating heat resistance and punching properties. Applicable to performance improvement. In addition, the present invention
Although it is suitable for connector applications, it also has the effect of providing a copper alloy that is also suitable as a general conductive material, such as switches and relay materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明実施例の応力緩和の試験を説明する図FIG. 1 is a diagram illustrating a stress relaxation test according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 サンプル 2 基台 3 保持部材 4 ブロック 1 sample 2 base 3 holding member 4 block

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 661 C22F 1/00 661A 685 685Z 686 686A 686B 691 691B 694 694A (72)発明者 大山 好正 東京都千代田区丸の内2丁目6番1号古河 電気工業株式 会社内────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 661 C22F 1/00 661A 685 685Z 686 686A 686B 691 691B 694 694A (72) Inventor Yoshimasa Oyama Marunouchi, Chiyoda-ku, Tokyo 2-6-1, Furukawa Electric Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 主成分としてNiを1.0〜3.5wt
%、Siを0.2〜0.9wt%、Mgを0.01〜
0.20wt%、Snを0.05〜1.5wt%含み、
S、O含有量をそれぞれ0.005wt%未満に制限
し、残部Cu及び不可避的不純物からなり、その結晶粒
度が1μmを越え25μm以下であることを特徴とする
導電性ばね用銅合金。
1. Ni is 1.0 to 3.5 wt.
%, 0.2-0.9 wt% of Si, 0.01-% of Mg
0.20 wt%, Sn containing 0.05-1.5 wt%,
A copper alloy for a conductive spring, wherein the S and O contents are each limited to less than 0.005 wt%, the balance being Cu and unavoidable impurities, and having a crystal grain size of more than 1 μm and 25 μm or less.
【請求項2】 主成分としてNiを1.0〜3.5wt
%、Siを0.2〜0.9wt%、Mgを0.01〜
0.20wt%、Snを0.05〜1.5wt%、Zn
を0.2〜1.5wt%含み、S、O含有量をそれぞれ
0.005wt%未満に制限し、残部Cu及び不可避的
不純物からなり、その結晶粒度が1μmを越え25μm
以下であることを特徴とする導電性ばね用銅合金。
2. Ni is 1.0 to 3.5 wt.
%, 0.2-0.9 wt% of Si, 0.01-% of Mg
0.20 wt%, 0.05 to 1.5 wt% Sn, Zn
, The content of S and O is limited to less than 0.005% by weight, and the balance consists of Cu and unavoidable impurities, and the crystal grain size exceeds 1 μm and 25 μm.
A copper alloy for a conductive spring, comprising:
【請求項3】 請求項1又は2に記載の銅合金に、さら
に0.005〜0.3wt%Ag、0.01〜0.5w
t%Mn、それぞれ0.005〜0.2wt%のFe、
Cr、0.05〜2.0wt%Co、0.005〜0.
1wt%Pの中から選ばれ1種または2種以上を総量で
0.005wt%〜2.0wt%含むことを特徴とする
導電性ばね用銅合金。
3. The copper alloy according to claim 1, further comprising 0.005 to 0.3 wt% Ag, 0.01 to 0.5 w.
t% Mn, 0.005 to 0.2 wt% Fe,
Cr, 0.05 to 2.0 wt% Co, 0.005 to 0.
A copper alloy for a conductive spring, comprising one or more selected from 1 wt% P in a total amount of 0.005 wt% to 2.0 wt%.
【請求項4】 請求項1又は2に記載の銅合金に、さら
に0.005〜0.1wt%Pb、0.005〜0.0
3wtBiの1種または2種を総量で0.005〜0.
13wt%含むことを特徴とする導電性ばね用銅合金。
4. The copper alloy according to claim 1 or 2, further comprising 0.005 to 0.1 wt% Pb, 0.005 to 0.0 wt% Pb.
One or two kinds of 3 wtBi in a total amount of 0.005 to 0.
A copper alloy for conductive springs, comprising 13 wt%.
【請求項5】 請求項1又は2に記載の銅合金に、さら
に0.005〜0.3wt%Ag、0.01〜0.5w
t%Mn、それぞれ0.005〜0.2wt%のFe、
Cr、0.05〜2.0wt%Co、0.005〜0.
1wt%Pの中から選ばれ1種または2種以上、及び
0.005〜0.1wt%Pb、0.005〜0.03
wtBiの1種または2種を総量で0.005wt%〜
2.0wt%含むことを特徴とする導電性ばね用銅合
金。
5. The copper alloy according to claim 1, further comprising 0.005 to 0.3 wt% Ag, 0.01 to 0.5 w.
t% Mn, 0.005 to 0.2 wt% Fe,
Cr, 0.05 to 2.0 wt% Co, 0.005 to 0.
One or more selected from 1 wt% P, and 0.005 to 0.1 wt% Pb, 0.005 to 0.03
One or two types of wtBi in a total amount of 0.005 wt% or more
A copper alloy for a conductive spring, comprising 2.0 wt%.
【請求項6】 端子、コネクター材、スイッチ材のいず
れかに用いられるものであることを特徴とする請求項1
乃至5のいずれかに記載の導電性ばね用銅合金。
6. The method according to claim 1, wherein the material is used for any one of a terminal, a connector material, and a switch material.
6. The copper alloy for a conductive spring according to any one of items 1 to 5.
【請求項7】 冷間加工後に再結晶処理を700〜92
0℃で行うことを特徴とする請求項1乃至6のいずれか
に記載の導電性ばね用銅合金の製造方法。
7. A recrystallization treatment after cold working is performed in a range of 700 to 92.
The method for producing a conductive spring copper alloy according to any one of claims 1 to 6, wherein the method is performed at 0 ° C.
【請求項8】 冷間加工後に再結晶処理を700〜92
0℃で行った後に、420〜550℃で時効処理を行う
ことを特徴とする請求項1乃至6のいずれかに記載の導
電性ばね用銅合金の製造方法。
8. After cold working, a recrystallization treatment is carried out at 700 to 92.
The method for producing a conductive spring copper alloy according to any one of claims 1 to 6, wherein the aging treatment is performed at 420 to 550 ° C after performing at 0 ° C.
【請求項9】 冷間加工後に再結晶処理を700〜92
0℃で行い、さらに25%以下の冷間加工を行った後
に、420〜550℃で時効処理を行うことを特徴とす
る請求項1乃至6のいずれかに記載の導電性ばね用銅合
金の製造方法。
9. After cold working, recrystallization treatment is carried out at 700 to 92.
The copper alloy for a conductive spring according to any one of claims 1 to 6, wherein the copper alloy for a conductive spring is subjected to an aging treatment at 420 to 550 ° C after performing a cold working of 25% or less at 0 ° C. Production method.
【請求項10】 冷間加工後に再結晶処理を700〜9
20℃で行い、次に25%以下の冷間加工、420〜5
50℃での時効処理を行った後に、さらに25%以下の
冷間加工、及び低温焼鈍を行うことを特徴とする請求項
1乃至6のいずれかに記載の導電性ばね用銅合金の製造
方法。
10. A recrystallization treatment after cold working is performed in a range of 700 to 9
Perform at 20 ° C., then cold work up to 25%, 420-5
The method for producing a copper alloy for a conductive spring according to any one of claims 1 to 6, wherein after performing the aging treatment at 50 ° C, cold working and low temperature annealing of 25% or less are further performed. .
JP03362898A 1998-01-30 1998-01-30 Copper alloy for conductive spring and method for producing the same Expired - Fee Related JP3510469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03362898A JP3510469B2 (en) 1998-01-30 1998-01-30 Copper alloy for conductive spring and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03362898A JP3510469B2 (en) 1998-01-30 1998-01-30 Copper alloy for conductive spring and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11222641A true JPH11222641A (en) 1999-08-17
JP3510469B2 JP3510469B2 (en) 2004-03-29

Family

ID=12391726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03362898A Expired - Fee Related JP3510469B2 (en) 1998-01-30 1998-01-30 Copper alloy for conductive spring and method for producing the same

Country Status (1)

Country Link
JP (1) JP3510469B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008479A1 (en) * 2000-07-25 2002-01-31 The Furukawa Electric Co., Ltd. Copper alloy material for electronic or electric equipment parts
EP1245690A1 (en) * 2001-03-27 2002-10-02 Nippon Mining &amp; Metals Co., Ltd. Copper, copper alloy, and manufacturing method therefor
WO2004005560A2 (en) 2002-07-05 2004-01-15 Olin Corporation Copper alloy containing cobalt, nickel, and silicon
US6783611B2 (en) * 2001-03-13 2004-08-31 Mitsubishi Materials Corporation Phosphorized copper anode for electroplating
US6893514B2 (en) 2000-12-15 2005-05-17 The Furukawa Electric Co., Ltd. High-mechanical strength copper alloy
US7090732B2 (en) 2000-12-15 2006-08-15 The Furukawa Electric, Co., Ltd. High-mechanical strength copper alloy
JP2006283059A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd High strength copper alloy sheet with excellent bendability, and its manufacturing method
KR100642571B1 (en) 2003-07-31 2006-11-10 닛코킨조쿠 가부시키가이샤 Cu-Ni-Si ALLOY HAVING EXCELLENT FATIGUE CHARACTERISTIC
WO2008126681A1 (en) * 2007-03-26 2008-10-23 The Furukawa Electric Co., Ltd. Copper alloy for electrical/electronic device and method for producing the same
JP2009009887A (en) * 2007-06-29 2009-01-15 Mitsubishi Shindoh Co Ltd Copper alloy strip material for terminal and its manufacturing method
WO2009041197A1 (en) 2007-09-28 2009-04-02 Nippon Mining & Metals Co., Ltd. Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
JP2010100911A (en) * 2008-10-24 2010-05-06 Mitsubishi Shindoh Co Ltd Copper alloy deformed bar stock and method for producing the same
EP2184371A1 (en) * 2007-08-07 2010-05-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
US7727344B2 (en) 2000-04-28 2010-06-01 The Furukawa Electric Co., Ltd. Copper alloy suitable for an IC lead pin for a pin grid array provided on a plastic substrate
WO2010113553A1 (en) 2009-03-31 2010-10-07 日鉱金属株式会社 Cu-co-si copper alloy for use in electronics, and manufacturing method therefor
WO2011068121A1 (en) * 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
WO2011129281A1 (en) 2010-04-14 2011-10-20 Jx日鉱日石金属株式会社 Cu-si-co alloy for electronic materials, and method for producing same
JPWO2010016428A1 (en) * 2008-08-05 2012-01-19 古河電気工業株式会社 Copper alloy material for electrical and electronic parts
WO2012043170A1 (en) 2010-09-29 2012-04-05 Jx日鉱日石金属株式会社 Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JP5144814B2 (en) * 2009-08-10 2013-02-13 古河電気工業株式会社 Copper alloy material for electrical and electronic parts
JP5400877B2 (en) * 2009-12-02 2014-01-29 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101172A1 (en) 2005-03-24 2006-09-28 Nippon Mining & Metals Co., Ltd. Copper alloy for electronic material
JP4068626B2 (en) 2005-03-31 2008-03-26 日鉱金属株式会社 Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727344B2 (en) 2000-04-28 2010-06-01 The Furukawa Electric Co., Ltd. Copper alloy suitable for an IC lead pin for a pin grid array provided on a plastic substrate
WO2002008479A1 (en) * 2000-07-25 2002-01-31 The Furukawa Electric Co., Ltd. Copper alloy material for electronic or electric equipment parts
US7172662B2 (en) 2000-07-25 2007-02-06 The Furukawa Electric Co., Ltd. Copper alloy material for parts of electronic and electric machinery and tools
KR100519850B1 (en) * 2000-07-25 2005-10-07 후루카와 덴키 고교 가부시키가이샤 Copper alloy material for parts of elec tronic and electric machinery and tools
US6893514B2 (en) 2000-12-15 2005-05-17 The Furukawa Electric Co., Ltd. High-mechanical strength copper alloy
US7090732B2 (en) 2000-12-15 2006-08-15 The Furukawa Electric, Co., Ltd. High-mechanical strength copper alloy
US6783611B2 (en) * 2001-03-13 2004-08-31 Mitsubishi Materials Corporation Phosphorized copper anode for electroplating
KR100815141B1 (en) * 2001-03-13 2008-03-19 미츠비시 마테리알 가부시키가이샤 Phosphorized copper anode for electroplating
EP1245690A1 (en) * 2001-03-27 2002-10-02 Nippon Mining &amp; Metals Co., Ltd. Copper, copper alloy, and manufacturing method therefor
EP1520054A2 (en) * 2002-07-05 2005-04-06 olin Corporation Copper alloy containing cobalt, nickel, and silicon
US8430979B2 (en) 2002-07-05 2013-04-30 Gbc Metals, Llc Copper alloy containing cobalt, nickel and silicon
WO2004005560A3 (en) * 2002-07-05 2004-06-17 Olin Corp Copper alloy containing cobalt, nickel, and silicon
CN101792872A (en) * 2002-07-05 2010-08-04 Gbc金属有限责任公司 Copper alloy containing cobalt, nickle and silicon
WO2004005560A2 (en) 2002-07-05 2004-01-15 Olin Corporation Copper alloy containing cobalt, nickel, and silicon
US7182823B2 (en) 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon
EP1520054A4 (en) * 2002-07-05 2007-03-07 Olin Corp Copper alloy containing cobalt, nickel, and silicon
US8257515B2 (en) 2002-07-05 2012-09-04 Gbc Metals, Llc Copper alloy containing cobalt, nickel and silicon
KR100642571B1 (en) 2003-07-31 2006-11-10 닛코킨조쿠 가부시키가이샤 Cu-Ni-Si ALLOY HAVING EXCELLENT FATIGUE CHARACTERISTIC
JP2006283059A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd High strength copper alloy sheet with excellent bendability, and its manufacturing method
JP4566048B2 (en) * 2005-03-31 2010-10-20 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP2008266783A (en) * 2007-03-26 2008-11-06 Furukawa Electric Co Ltd:The Copper alloy for electrical/electronic device and method for manufacturing the same
WO2008126681A1 (en) * 2007-03-26 2008-10-23 The Furukawa Electric Co., Ltd. Copper alloy for electrical/electronic device and method for producing the same
JP2009009887A (en) * 2007-06-29 2009-01-15 Mitsubishi Shindoh Co Ltd Copper alloy strip material for terminal and its manufacturing method
EP2184371A1 (en) * 2007-08-07 2010-05-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
EP2184371A4 (en) * 2007-08-07 2013-05-01 Kobe Steel Ltd Copper alloy sheet
EP2194151A1 (en) * 2007-09-28 2010-06-09 Nippon Mining & Metals Co., Ltd. Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
EP2194151A4 (en) * 2007-09-28 2011-01-26 Jx Nippon Mining & Metals Corp Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
US8444779B2 (en) 2007-09-28 2013-05-21 JX Nippon Mining & Metals Co., Ltd. Cu—Ni—Si—Co copper alloy for electronic materials and method for manufacturing same
WO2009041197A1 (en) 2007-09-28 2009-04-02 Nippon Mining & Metals Co., Ltd. Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
JPWO2010016428A1 (en) * 2008-08-05 2012-01-19 古河電気工業株式会社 Copper alloy material for electrical and electronic parts
JP2010100911A (en) * 2008-10-24 2010-05-06 Mitsubishi Shindoh Co Ltd Copper alloy deformed bar stock and method for producing the same
WO2010113553A1 (en) 2009-03-31 2010-10-07 日鉱金属株式会社 Cu-co-si copper alloy for use in electronics, and manufacturing method therefor
JP5144814B2 (en) * 2009-08-10 2013-02-13 古河電気工業株式会社 Copper alloy material for electrical and electronic parts
CN102597283A (en) * 2009-12-02 2012-07-18 古河电气工业株式会社 Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
JP4948678B2 (en) * 2009-12-02 2012-06-06 古河電気工業株式会社 Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same
WO2011068121A1 (en) * 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
JP5400877B2 (en) * 2009-12-02 2014-01-29 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
WO2011129281A1 (en) 2010-04-14 2011-10-20 Jx日鉱日石金属株式会社 Cu-si-co alloy for electronic materials, and method for producing same
US9499885B2 (en) 2010-04-14 2016-11-22 Jx Nippon Mining & Metals Corporation Cu—Si—Co alloy for electronic materials, and method for producing same
WO2012043170A1 (en) 2010-09-29 2012-04-05 Jx日鉱日石金属株式会社 Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME

Also Published As

Publication number Publication date
JP3510469B2 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
JP3510469B2 (en) Copper alloy for conductive spring and method for producing the same
JP3520034B2 (en) Copper alloy materials for electronic and electrical equipment parts
JP4660735B2 (en) Method for producing copper-based alloy sheet
EP0579278B1 (en) Processing of copper alloys with moderate conductivity and high strength
JP4729680B2 (en) Copper-based alloy with excellent press punchability
JP4809602B2 (en) Copper alloy
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
JP3520046B2 (en) High strength copper alloy
JP5192536B2 (en) Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and fatigue resistance and method for producing the same
JP3977376B2 (en) Copper alloy
JPWO2009057788A1 (en) Copper alloy material excellent in strength, bending workability and stress relaxation resistance and method for producing the same
US4728372A (en) Multipurpose copper alloys and processing therefor with moderate conductivity and high strength
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
JP2010270355A (en) Copper alloy sheet material and method for producing the same
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP3717321B2 (en) Copper alloy for semiconductor lead frames
JP2019507252A (en) Copper alloy material for automobile and electric / electronic parts and method for producing the same
JP2000256814A (en) Manufacture of copper-based alloy bar for terminal
US7090732B2 (en) High-mechanical strength copper alloy
JPH10195562A (en) Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production
JP2009068114A (en) Copper alloy excellent in press-punching property and its production method
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP2007246931A (en) Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
JP2007169764A (en) Copper alloy
JP3735005B2 (en) Copper alloy having excellent punchability and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031225

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees