JP2006283059A - High strength copper alloy sheet with excellent bendability, and its manufacturing method - Google Patents

High strength copper alloy sheet with excellent bendability, and its manufacturing method Download PDF

Info

Publication number
JP2006283059A
JP2006283059A JP2005101226A JP2005101226A JP2006283059A JP 2006283059 A JP2006283059 A JP 2006283059A JP 2005101226 A JP2005101226 A JP 2005101226A JP 2005101226 A JP2005101226 A JP 2005101226A JP 2006283059 A JP2006283059 A JP 2006283059A
Authority
JP
Japan
Prior art keywords
less
copper alloy
bending workability
cold rolling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005101226A
Other languages
Japanese (ja)
Other versions
JP4566048B2 (en
Inventor
Hiroshi Arai
浩史 荒井
Masahiro Yanagawa
政洋 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005101226A priority Critical patent/JP4566048B2/en
Publication of JP2006283059A publication Critical patent/JP2006283059A/en
Application granted granted Critical
Publication of JP4566048B2 publication Critical patent/JP4566048B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a Corson (Cu-Ni-Si based) copper alloy sheet having ≥700 N/mm<SP>2</SP>proof stress, ≥35% IACS electric conductivity and excellent bendability. <P>SOLUTION: The copper alloy sheet has a composition containing 2.5 to <6.0% (by mass, the same applies to the following) Ni and 0.5 to <1.5% Si under the condition that the mass ratio between Ni and Si, Ni/Si, ranges from 4 to 5, further containing 0.01 to <4% Sn and having the balance Cu with inevitable impurities and also has a crystalline texture having ≤10μm average grain size and containing ≥50% crystals with a cubic orientation ä001}<100> by ratio when measured by the SEM-EBSP method. The copper alloy sheet can be manufactured by performing continuous annealing to form a solution heat treated recrystallized structure, carrying out cold rolling at ≤20% draft and aging treatment at 400 to 600°C for 1 to 8 h, successively applying final cold rolling at 1 to 20% draft, and then carrying out short-time annealing at 400 to 500°C for ≤30 sec. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は端子、コネクタ、ワイヤハーネス、ターミナル、リレー、スイッチ、ばね材料などの電気・電子部品に用いられる曲げ加工性に優れた高強度銅合金板及びその製造方法に関する。   The present invention relates to a high-strength copper alloy plate excellent in bending workability used for electrical / electronic parts such as terminals, connectors, wire harnesses, terminals, relays, switches, and spring materials, and a method for producing the same.

上記の用途には、従来、Be銅合金(CDA17410:Cu−0.3Be)が用いられてきた。この合金は引張強さ:800N/mm以上、耐力:700N/mm以上、導電率:30%IACS程度で曲げ加工性にも優れるため高級ばね材として利用されている。しかしながら、最近携帯電話やパ−ソナルコンピュ−タの普及により本分野が急激に拡大しているのに対し、Beの環境問題(Beは酸化しやすく、生成した酸化物が人体に有害)から溶解鋳造、熱処理などの製造工程には細心の注意が必要で、特に溶解鋳造には特別な設備が必要であることから製造量が限られており、前記の需要増大に伴って供給不足が問題になってきている。さらに価格が高いという問題点もある。 Conventionally, a Be copper alloy (CDA17410: Cu-0.3Be) has been used for the above applications. This alloy tensile strength: 800 N / mm 2 or more, proof stress: 700 N / mm 2 or more, conductivity: is utilized as fine spring material for excellent in bending workability in 30% IACS about. However, while this field has expanded rapidly due to the recent spread of mobile phones and personal computers, it is dissolved due to environmental problems of Be (Be is easy to oxidize and the generated oxide is harmful to the human body). Manufacturing processes such as casting and heat treatment require careful attention, and in particular, the amount of production is limited because special equipment is required for melt casting, and supply shortages are a problem as demand increases. It has become to. There is also the problem of high prices.

このため、強度が高く、曲げ加工性に優れ、導電率が高く、かつ安価なコルソン合金(Cu−Ni−Si系)がこの種の電気・電子部品用に使用されるようになった。このコルソン合金はケイ化ニッケル化合物(NiSi)の銅に対する固溶限が温度によって著しく変化する合金で、焼き入れ・焼き戻しによって硬化する析出硬化型合金の一種であり、耐熱性や高温強度も良好で、これまでも導電用各種ばねや高抗張力用電線などに広く使用されている。 For this reason, a Corson alloy (Cu—Ni—Si series) having high strength, excellent bending workability, high conductivity, and low cost has come to be used for this kind of electric / electronic parts. This Corson alloy is an alloy in which the solubility limit of nickel silicide compound (Ni 2 Si) in copper changes significantly with temperature. It is a kind of precipitation hardening type alloy that hardens by quenching and tempering. So far, it has been widely used for various conductive springs and high tensile strength electric wires.

しかし、このコルソン合金においても、銅合金材料の強度(特にばね性に必要な耐力)を向上させると、やはり導電性や曲げ加工性は低下する。例えば下記特許文献1〜3には、コルソン合金からなる曲げ加工性に優れた高強度銅合金板が提案されているが、これら改良されたコルソン合金においても、銅合金材料の強度を向上させると、やはり導電性や曲げ加工性は低下する。曲げ加工性については、特に圧延方向に平行の曲げ線で行われる(いわゆるB.W.)厳しい曲げ加工には対応できない。すなわち、高強度のコルソン合金において、高導電率、高強度及び曲げ加工性を同時に実現することは非常に困難な課題である。   However, also in this Corson alloy, when the strength of the copper alloy material (especially the proof stress necessary for the spring property) is improved, the conductivity and bending workability are also lowered. For example, in Patent Documents 1 to 3 below, a high-strength copper alloy plate made of a Corson alloy and excellent in bending workability has been proposed, but even in these improved Corson alloys, the strength of the copper alloy material is improved. After all, conductivity and bending workability are lowered. As for the bending workability, it is not possible to cope with severe bending work (so-called BW) performed particularly with a bending line parallel to the rolling direction. That is, in a high-strength Corson alloy, it is a very difficult task to simultaneously realize high conductivity, high strength, and bending workability.

一方で、リードフレーム用のCu−Fe−P系銅合金において、B.W.などの厳しい曲げ加工に対し、集合組織を制御することにより曲げ加工性を向上させることが提案されている。例えば特許文献4,5では、Cu−Fe−P系銅合金の集合組織の中で、通常の製造方法では強く発達しすぎるCube方位の方位密度を抑制して、適正範囲に制御することにより、曲げ加工性の向上と安定化とを達成しようとしている。これは半導体リードフレーム用途におけるスタンピング加工等の曲げ加工の際に、変形中に均一変形させることを狙いとしているからである。
しかし、特許文献4,5に開示されたリードフレーム用のCu−Fe−P系銅合金は、耐力が400〜500N/mmレベルに過ぎず、耐力700N/mm以上のBe銅合金の代替をめざすコルソン合金と比べて強度レベルが著しく低く、また、合金系が全く異なる。
On the other hand, in the Cu—Fe—P copper alloy for lead frames, B. W. It has been proposed to improve the bending workability by controlling the texture for severe bending processes such as the above. For example, in Patent Documents 4 and 5, in the texture of the Cu-Fe-P-based copper alloy, by controlling the orientation density of the Cube orientation that is too strongly developed by a normal manufacturing method, and controlling it to an appropriate range, We are trying to achieve improved bending workability and stabilization. This is because it aims at uniform deformation during deformation during bending such as stamping in semiconductor lead frame applications.
However, Cu-Fe-P-based copper alloy lead frame disclosed in Patent Document 4 and 5, yield strength only 400~500N / mm 2 level, alternative proof stress 700 N / mm 2 or more Be copper alloy Compared with Corson alloy aiming for the strength, the strength level is remarkably low, and the alloy system is completely different.

特許第049137号公報Japanese Patent No. 049137 特開平6−184680号公報JP-A-6-184680 特開2002−266042号公報JP 2002-266042 A 特開2002−339028号公報JP 2002-339028 A 特開2000−328157号公報JP 2000-328157 A

本発明者らは、先に特願2004−346766において、Ni:2.0〜6.0%を含み、かつSiをNiとSiとの質量比Ni/Siが4〜5の範囲で含むコルソン合金について、最終溶体化処理前の冷間圧延を95%以上の加工率で行い、最終溶体化処理後に冷間圧延を20%以下の加工率で行った後、時効処理を施すことにより、Cube方位{001}〈100〉の割合が50%以上である集合組織を有する銅合金板とし、これにより700N/mm以上の引張強さと35%IACS以上の高導電率、及び優れた曲げ加工性を有する銅合金板が製造できることを示した。 The present inventors previously described in Japanese Patent Application No. 2004-346766, Ni: 2.0 to 6.0%, and Corson containing Si in a mass ratio Ni / Si of Ni / Si in the range of 4-5. For the alloy, cold rolling before the final solution treatment is performed at a processing rate of 95% or more, and after the final solution treatment, the cold rolling is performed at a processing rate of 20% or less, and then an aging treatment is performed. A copper alloy plate having a texture in which the ratio of the orientation {001} <100> is 50% or more, whereby a tensile strength of 700 N / mm 2 or more, a high conductivity of 35% IACS or more, and excellent bending workability. It was shown that a copper alloy plate having

しかし、上記先願方法で得られる銅合金板において、700N/mm以上の耐力を確保しようとしたとき、曲げ加工性が劣化するという問題があった。
従って、本発明は、上記先願の銅合金板及びその製造方法をさらに改良し、耐力が700N/mm以上、導電率が35%IACS以上、かつ曲げ加工性にも優れたコルソン(Cu−Ni−Si系)銅合金板を得ることを目的とする。
However, in the copper alloy plate obtained by the above-mentioned prior application method, there was a problem that bending workability deteriorated when it was attempted to secure a proof stress of 700 N / mm 2 or more.
Therefore, the present invention further improves the copper alloy plate of the prior application and the method for producing the same, has a proof stress of 700 N / mm 2 or more, an electrical conductivity of 35% IACS or more, and excellent bending workability (Cu— The object is to obtain a (Ni-Si) copper alloy sheet.

本発明に係る曲げ加工性に優れた高強度銅合金板は、Ni:2.5%以上6.0%未満、及びSi:0.5%以上1.5%未満を、NiとSiの質量比Ni/Siが4〜5の範囲となるように含み、さらにSn:0.01%以上4%未満を含み、残部がCu及び不可避的不純物からなる組成を有し、耐力が700N/mm以上、導電率が35%IACS以上、平均結晶粒径が10μm以下、かつSEM−EBSP法による測定結果でCube方位{001}〈100〉の割合が50%以上である集合組織を有することを特徴とする。
上記銅合金は、さらにZn:0.01%以上3%未満又は/及びMg:0.001%以上1%未満を含有することが望ましい。また、必要に応じて、さらにMn:0.01%以上0.1%未満、Ag:0.001%以上1%未満、Cr:0.001%以上1%未満、、Zr:0.001%以上0.5%未満、Co:0.01%以上0.5%未満、P:0.01%以上0.1%未満の1種又は2種以上を含有することができる。
The high-strength copper alloy sheet excellent in bending workability according to the present invention is obtained by adding Ni: 2.5% or more and less than 6.0%, and Si: 0.5% or more and less than 1.5% by mass of Ni and Si. The ratio Ni / Si is included in the range of 4 to 5, and Sn: 0.01% or more and less than 4%, and the balance is composed of Cu and inevitable impurities, and the proof stress is 700 N / mm 2. As described above, it has a texture with a conductivity of 35% IACS or more, an average crystal grain size of 10 μm or less, and a Cube orientation {001} <100> ratio of 50% or more as a result of measurement by SEM-EBSP method. And
The copper alloy preferably further contains Zn: 0.01% or more and less than 3% or / and Mg: 0.001% or more and less than 1%. Further, if necessary, Mn: 0.01% or more and less than 0.1%, Ag: 0.001% or more and less than 1%, Cr: 0.001% or more and less than 1%, Zr: 0.001% One or more of 0.5% or less, Co: 0.01% or more and less than 0.5%, and P: 0.01% or more and less than 0.1% can be contained.

また、上記銅合金板の製造方法は、上記組成の銅合金鋳塊に対し、必要に応じて熱間圧延し急冷した後、冷間圧延を行い、連続焼鈍を行って溶体化再結晶組織を得た後、加工率20%以下の冷間圧延及び400〜600℃×1〜8時間の時効処理を行い、続いて加工率1〜20%の最終冷間圧延後、400〜550℃×30秒以下の短時間焼鈍を行うことを特徴とする。   Moreover, the manufacturing method of the said copper alloy board is hot-rolling and quenching as needed with respect to the copper alloy ingot of the said composition, and then performing cold rolling, performing continuous annealing, and forming a solution recrystallized structure. After obtaining, cold rolling with a processing rate of 20% or less and aging treatment at 400 to 600 ° C. for 1 to 8 hours, followed by final cold rolling with a processing rate of 1 to 20%, followed by 400 to 550 ° C. × 30 It is characterized by performing a short time annealing for less than a second.

本発明によれば、強度(特に耐力)及び導電率が高く、優れた曲げ加工性を有するCu−Ni−Si系銅合金板を得ることができる。
この銅合金板は、700N/mm以上の耐力を有するにも関わらず、B.W.方向の90°W曲げ加工においてR/t=1(R:曲げ半径、t:板厚)でも割れが発生せず、かつ35%IACS以上の導電率を有し、さらには500N/mm以上のばね限界値を有するなど、次世代の端子、コネクタ及び携帯電話、パソコン等に使用される高級ばね材料として、従来のBe銅合金板に代替し得る特性を有する。
According to the present invention, it is possible to obtain a Cu—Ni—Si based copper alloy plate having high strength (particularly yield strength) and electrical conductivity and having excellent bending workability.
Although this copper alloy plate has a proof stress of 700 N / mm 2 or more, B.I. W. In the 90 ° W bending process in the direction, cracks do not occur even when R / t = 1 (R: bending radius, t: plate thickness), and the conductivity is 35% IACS or more, and further 500 N / mm 2 or more. As a high-grade spring material used for next-generation terminals, connectors, mobile phones, personal computers, etc., it has characteristics that can be substituted for the conventional Be copper alloy plate.

以下に本発明に係る銅合金板について詳細に説明する。
先ず、各添加元素の添加理由及び組成限定理由について説明する。
(Ni)
Niは、Siと共添されることによって生じる析出物(NiSi)により強度を付与する元素であり、含有量が2.5%未満では、Siが0.5%以上1.5%未満含有されていても強度は向上せず、また6.0%以上含有されてもそれ以上の強度は得られずに導電率が低下するとともに不経済である。よってNi量は2.5%以上6.0%未満、より好ましくは4.01%以上5.0%未満とする。
The copper alloy plate according to the present invention will be described in detail below.
First, the reason for adding each additive element and the reason for limiting the composition will be described.
(Ni)
Ni is an element that imparts strength by precipitates (Ni 2 Si) produced by co-addition with Si. When the content is less than 2.5%, Si is 0.5% or more and less than 1.5%. Even if it is contained, the strength is not improved, and even if it is contained in an amount of 6.0% or more, the strength is not obtained and the conductivity is lowered and it is uneconomical. Therefore, the Ni content is 2.5% or more and less than 6.0%, more preferably 4.01% or more and less than 5.0%.

(Si)
SiはNiと同様に強度を向上させる元素であり、0.5重量%未満では強度の向上は認められず、また1.5%以上含有されると熱間加工性を悪化させ、同時に導電率を低下させる。従って、Si量は0.5%以上1.5%未満、より好ましくは0.8%以上1.25%未満とする。
(Si)
Si, like Ni, is an element that improves strength. If the content is less than 0.5% by weight, no improvement in strength is observed. Reduce. Therefore, the Si content is 0.5% or more and less than 1.5%, more preferably 0.8% or more and less than 1.25%.

(Ni/Siの質量比)
Ni及びSiは共添されてNiSiの析出物を形成し、強度及び導電率の向上に寄与する元素である。但し、導電率及び強度の両特性を向上させるためには、NiとSiのそれぞれの含有量の範囲内において、NiSiを形成するのに必要な当量ずつ含まれることが必要である。これを質量比Ni/Siで表すと4〜5の範囲となる。この範囲より外れ、Ni及びSiが各々過剰に含まれた場合は、過剰分のNi又はSiが銅マトリックスに固溶するため導電率が低下する。また、Siが過剰に含まれた場合は鋳造性や熱間加工性が劣化し、鋳造割れ又は圧延割れが生じる。一方、Siの含有量が少ない場合はNiSi析出物が不足して強度を満足できない。
(Mass ratio of Ni / Si)
Ni and Si are elements that are co-added to form a precipitate of Ni 2 Si and contribute to improvement in strength and conductivity. However, in order to improve both the electrical conductivity and strength characteristics, it is necessary to include the equivalents necessary for forming Ni 2 Si within the range of the respective contents of Ni and Si. When this is expressed in terms of mass ratio Ni / Si, the range is 4-5. If the Ni and Si are excessively contained outside this range, the excess Ni or Si is dissolved in the copper matrix, so that the conductivity is lowered. Moreover, when Si is contained excessively, castability and hot workability will deteriorate, and a casting crack or a rolling crack will arise. On the other hand, when the Si content is small, Ni 2 Si precipitates are insufficient and the strength cannot be satisfied.

(Sn)
Snは引張強さ、耐力及びばね限界値等の向上に効果をもたらすが、0.01%以下では効果が得られず、反対に4%以上含有されると異方性が強くなり曲げ加工性の劣化を招き、導電率は低下し、さらに経済的でない。従って、Snの添加量0.01%以上4%未満とする。
(Zn)
本発明合金において、Znは耐マイグレーション性とはんだの耐候性向上及びSnめっき材のウイスカー発生の抑制に効果のある元素である。Zn含有量が0.01%未満では前記効果が小さく、Zn含有量が3%以上だと導電率が低下し、また応力腐食割れを起こし易くなる。従って、Zn含有量は0.01%以上3%未満とする。
(Sn)
Sn brings about an effect in improving the tensile strength, proof stress, spring limit value, etc., but the effect is not obtained if it is 0.01% or less, and conversely if 4% or more is contained, the anisotropy becomes strong and the bending workability. The electrical conductivity is lowered and is not economical. Therefore, the addition amount of Sn is set to 0.01% or more and less than 4%.
(Zn)
In the alloy of the present invention, Zn is an element effective in improving the migration resistance and the weather resistance of the solder and suppressing the occurrence of whiskers in the Sn plating material. If the Zn content is less than 0.01%, the effect is small, and if the Zn content is 3% or more, the electrical conductivity is lowered and stress corrosion cracking is likely to occur. Therefore, the Zn content is 0.01% or more and less than 3%.

(Mg)
MgはMnと同様にSを安定した化合物の形で母相中に固定し、熱間加工性を向上させる。さらに、Mgは微量でも、強度(特にばね限界値)及び耐熱性を向上させる効果を有する。Mgの含有量が0.01%未満であると前記効果が十分でない。また、その含有量が1%以上の場合、曲げ加工時にクラックの基点となり亀裂を伝播させて成形性を劣化させる。従って、Mg含有量は0.001%以上1%未満とする。
(Mg)
Mg, like Mn, fixes S in the matrix in the form of a stable compound and improves hot workability. Furthermore, even if Mg is a trace amount, it has the effect of improving strength (especially spring limit value) and heat resistance. If the Mg content is less than 0.01%, the effect is not sufficient. Moreover, when the content is 1% or more, the crack becomes a base point at the time of bending, and the crack propagates to deteriorate the formability. Therefore, the Mg content is 0.001% or more and less than 1%.

(Mn)
溶解鋳造工程で原料、雰囲気などからSやOが容易に侵入するが、本発明合金において、MnはSやOを安定した化合物の形で母相中に固定して、脱酸、脱硫を行い、熱間加工性を向上させる。さらに、Mnは耐熱性を向上させる効果を有する。Mnの含有量が0.01%未満であると前記効果が十分でない。また、その含有量が0.1%以上の場合、導電率、曲げ加工性およびはんだ耐候性が劣化する。従って、Mn含有量は0.01%以上0.1%未満とする。
(Mn)
S and O easily intrude from the raw material, atmosphere, etc. in the melt casting process. In the alloy of the present invention, Mn fixes S and O in the form of a stable compound in the matrix, and then deoxidizes and desulfurizes. , Improve hot workability. Furthermore, Mn has the effect of improving heat resistance. If the Mn content is less than 0.01%, the effect is not sufficient. Moreover, when the content is 0.1% or more, conductivity, bending workability, and solder weather resistance deteriorate. Therefore, the Mn content is 0.01% or more and less than 0.1%.

(Cr)
Crは主に結晶粒を微細化させて銅合金板の強度や曲げ加工性を向上させる。Crの含有量が0.001%未満ではその効果は認められない。一方、1%以上では熱間加工時に割れが発生して加工性を低下させる。従って含有させる場合は、0.001%以上1%未満とする。
(Zr)
Zrは主に結晶粒を微細化させて銅合金板の強度や曲げ加工性を向上させる。Zrの含有量が0.001%未満ではその効果は認められない。一方、0.5%以上では化合物を形成して熱間加工時に割れが発生して加工性を低下させる。従って含有させる場合は、0.001%以上0.5%未満とする。
(Cr)
Cr mainly refines crystal grains to improve the strength and bending workability of the copper alloy sheet. The effect is not recognized if the Cr content is less than 0.001%. On the other hand, if it is 1% or more, cracks occur during hot working, and workability is lowered. Therefore, when it contains, it is made into 0.001% or more and less than 1%.
(Zr)
Zr mainly refines the crystal grains to improve the strength and bending workability of the copper alloy sheet. The effect is not recognized if the content of Zr is less than 0.001%. On the other hand, if the content is 0.5% or more, a compound is formed and cracks occur during hot working, thereby reducing workability. Therefore, when it contains, it is made into 0.001% or more and less than 0.5%.

(Co)Coも主に結晶粒を微細化させて銅合金板の強度や曲げ加工性を向上させる。Coの含有量が0.01%未満ではその効果は認められない。一方、0.5%以上では化合物を形成して熱間加工時に割れが発生して加工性を低下させる。従って含有させる場合は、0.01以上0.5重量%未満とする。
(Ag)
Agは主に導電率を向上させる。従って導電率を向上させたい場合は選択的に含有させるが、含有量が0.01%未満ではその効果は認められない。一方、1%以上含有させてもコストが大幅に上昇し添加量に見合う効果が得られない。従って含有させる場合は、0.001%以上1%未満とする。
(Co) Co also mainly refines the crystal grains to improve the strength and bending workability of the copper alloy sheet. The effect is not recognized when the Co content is less than 0.01%. On the other hand, if the content is 0.5% or more, a compound is formed and cracks occur during hot working, thereby reducing workability. Therefore, when it contains, it is 0.01 or more and less than 0.5 weight%.
(Ag)
Ag mainly improves conductivity. Therefore, when it is desired to improve the electrical conductivity, it is selectively contained, but if the content is less than 0.01%, the effect is not recognized. On the other hand, even if it is contained in an amount of 1% or more, the cost is significantly increased and an effect commensurate with the amount added cannot be obtained. Therefore, when it contains, it is made into 0.001% or more and less than 1%.

(P)
Pは主として鋳塊の健全性向上(脱酸・湯流れ等)に寄与する元素である。従って鋳塊健全性を向上させたい場合は含有させるが、0.1%以上添加されると容易にNi−P金属間化合物を析出、凝集粗大化し、熱間加工時に割れが発生して加工性を低下させる。従って含有させる場合は、0.1重量%未満とする。
(その他の元素)
Ca,Be,Al,Fe,Ti,V,Nb,Mo,In,Hf,Ta,Bはいずれの元素も特性を劣化させる不純物であるが、総量で0.1%以下までは本発明の銅合金板の特性を損なわすことはない。従って、これら元素の1種又は2種以上の総量で0.1%以下の含有は許容される。
(P)
P is an element that mainly contributes to improving the soundness of the ingot (deoxidation, hot water flow, etc.). Therefore, if it is desired to improve the soundness of the ingot, it is included. However, when 0.1% or more is added, Ni-P intermetallic compounds are easily precipitated, agglomerated and coarsened, and cracks are generated during hot working. Reduce. Therefore, if included, the content is less than 0.1% by weight.
(Other elements)
Ca, Be, Al, Fe, Ti, V, Nb, Mo, In, Hf, Ta, and B are impurities that deteriorate the characteristics of any element, but the total amount is less than 0.1%. The properties of the alloy plate are not impaired. Accordingly, the total content of one or more of these elements is allowed to be 0.1% or less.

次に本発明に係る銅合金板の組織について説明する。
(平均結晶粒径)
本発明の銅合金において目標とする強度(特に耐力)を達成するには、板又は条の圧延表面において、JIS−H0501に規定されている切断法で測定して、板幅方向に測定した平均結晶粒径が10μm以下であることが望ましい。平均結晶粒径が10μmを超えて大きくなった場合は強度が低下する。従って平均結晶粒径は10μm以下とする。
Next, the structure of the copper alloy sheet according to the present invention will be described.
(Average crystal grain size)
In order to achieve the target strength (particularly yield strength) in the copper alloy of the present invention, the average measured in the sheet width direction is measured by the cutting method defined in JIS-H0501 on the rolled surface of the sheet or strip. The crystal grain size is desirably 10 μm or less. If the average crystal grain size exceeds 10 μm, the strength decreases. Therefore, the average crystal grain size is 10 μm or less.

(集合組織)
本発明合金板は、特にB.W.方向の曲げ加工における割れを抑制するために、SEM−EBSP法による測定結果でCube方位{001}<100>の割合が50%以上と、Cube方位が主方位である集合組織を有するものとする。
銅合金板の場合、主に以下に示すCube方位、Goss方位、Brass方位等と呼ばれる集合組織を有する。これらの集合組織の形成は同じ結晶系の場合でも加工率や熱処理条件によって異なる。圧延による板材の集合組織の場合は面と方向で表され、面は{ABC}、方向は<DEF>で表現される。
(Gathering organization)
In particular, the alloy plate of the present invention is B.I. W. In order to suppress cracking in the bending process in the direction, it is assumed that the measurement result by the SEM-EBSP method has a texture in which the ratio of the Cube orientation {001} <100> is 50% or more and the Cube orientation is the main orientation. .
In the case of a copper alloy plate, it mainly has a texture called Cube orientation, Goss orientation, Brass orientation, etc. shown below. The formation of these textures varies depending on the processing rate and heat treatment conditions even in the same crystal system. In the case of a texture of a plate material by rolling, the surface and direction are represented by {ABC}, and the direction is represented by <DEF>.

Cube方位 {001}<100>
Goss方位 {011}<100>
Rotated−Goss方位{011}<011>
Brass方位(B方位) {011}<211>
Copper方位(Cu方位){112}<111>
S方位 {123}<634>
B/G方位 {011}<511>
B/S方位 {168}<211>
P方位 {011}<111>
Cube orientation {001} <100>
Goss orientation {011} <100>
Rotated-Goss orientation {011} <011>
Brass orientation (B orientation) {011} <211>
Copper orientation (Cu orientation) {112} <111>
S orientation {123} <634>
B / G direction {011} <511>
B / S orientation {168} <211>
P direction {011} <111>

これらの集合組織の構成比率が変化すると板材の塑性異方性が変化し、曲げ等の加工性が変化する。従来のコルソン系銅合金の集合組織は、通常の方法で製造した場合、Cube方位{001}<100>以外のS方位{123}<634>やBrass方位{011}<211>が主体となり、Cube方位の割合は50%未満となり、そのためにB.W.曲げ加工において割れが発生していた。
従って、本発明合金板の集合組織は曲げ加工性の劣化を防止するために、SEM−EBSP法による測定結果でCube方位{001}<100>の割合が50%以上と、Cube方位が主方位である集合組織を有するものとする。なお、本発明においてCube方位{001}<100>の割合が50%以上であれば、他のGoss方位{011}<100>、Rotated−Goss方位{011}<011>、Brass方位{011}<211>、Copper方位{112}<111>、S方位{123}<634>等が副方位として存在することを許容する。
When the composition ratio of these textures changes, the plastic anisotropy of the plate material changes, and the workability such as bending changes. When the texture of the conventional Corson-based copper alloy is produced by a normal method, the S orientation {123} <634> or the Brass orientation {011} <211> other than the Cube orientation {001} <100> is mainly used. The ratio of the Cube orientation is less than 50%. W. Cracks occurred during bending.
Therefore, in order to prevent the deterioration of the bending workability of the texture of the alloy plate of the present invention, the ratio of the Cube orientation {001} <100> is 50% or more in the measurement result by the SEM-EBSP method, and the Cube orientation is the main orientation. It has a texture that is In the present invention, if the ratio of the Cube orientation {001} <100> is 50% or more, the other Goss orientation {011} <100>, the Rotated-Goss orientation {011} <011>, the Brass orientation {011} <211>, Copper azimuth {112} <111>, S azimuth {123} <634> etc. are allowed to exist as sub-azimuths.

Cube方位{001}<100>の集積度測定は、SEMによる1万倍の電子顕微鏡組織をEBSPを用いて測定したデータを基に、結晶方位分布関数(ODF)を用いて方位解析することによって得られる。なお、これらの方位分布は板厚方向に変化しているため、板厚方向に何点か任意に取って平均を取ることが望ましい。
このSEM−EBSP法は、Scanning Electron Microscopy−Electron Back Scattering diffraction Pattern法の略称であり、SEM画面上に現れる個々の結晶粒に電子ビームを照射し、その回折電子から個々の結晶方位を同定するものである。なお、本発明においては基本的にこれらの結晶面から±10°以内のずれのものは同一の結晶面に属するものとする。SEM−EBSP法により同定された結晶方位は、結晶方位分布関数(ODF)を用いた方位解析において、Cube方位{001}<100>や、{123}(<634>)面、{110}(<112>)面などの各方位の占める面積を各々求め、各方位の占める面積の合計である総面積に対する、Cube方位{001}<100>の占める割合を、Cube方位{001}<100>の割合(%)とする。
The degree of integration of the Cube orientation {001} <100> is measured by analyzing the orientation using a crystal orientation distribution function (ODF) based on data obtained by measuring an electron microscope structure of 10,000 times using SEM using EBSP. can get. Since these orientation distributions change in the plate thickness direction, it is desirable to take an average of some points in the plate thickness direction.
This SEM-EBSP method is an abbreviation for Scanning Electron Microscopy-Electron Back Scattering Diffraction Pattern Method, which irradiates individual crystal grains appearing on the SEM screen and identifies individual crystal orientations from the diffracted electrons. It is. In the present invention, basically, the deviations within ± 10 ° from these crystal planes belong to the same crystal plane. The crystal orientation identified by the SEM-EBSP method is obtained by analyzing the Cube orientation {001} <100>, {123} (<634>) plane, {110} ({110}) in the orientation analysis using the crystal orientation distribution function (ODF). <112>) The area occupied by each orientation, such as a plane, is obtained, and the ratio of the Cube orientation {001} <100> to the total area, which is the total area occupied by each orientation, is defined as the Cube orientation {001} <100>. The ratio (%).

次に本発明に係る銅合金板の製造方法について説明する。
製造工程の概略は次のとおりである。鋳造→熱間圧延→冷間圧延1→溶体化→冷間圧延2→時効処理→冷間圧延3→短時間焼鈍。必要に応じて冷間圧延1及び溶体化の工程を繰り返す(ダブル溶体化処理)ことができる。
このうち、鋳造〜溶体化の工程は従来の一般的な方法と変わらず、熱間圧延後は定法どおり急冷する。横型連鋳により板状の鋳塊を得た場合は、熱間圧延は省略できる。以下、熱間圧延以降の各工程について具体的に説明する。
Next, the manufacturing method of the copper alloy plate which concerns on this invention is demonstrated.
The outline of the manufacturing process is as follows. Casting → hot rolling → cold rolling 1 → solution treatment → cold rolling 2 → aging treatment → cold rolling 3 → short time annealing. If necessary, the cold rolling 1 and solution treatment steps can be repeated (double solution treatment).
Among these, the process of casting to solution treatment is not different from the conventional general method, and after hot rolling, it is rapidly cooled as usual. When a plate-shaped ingot is obtained by horizontal continuous casting, hot rolling can be omitted. Hereinafter, each process after hot rolling is demonstrated concretely.

(溶体化)
溶体化は、冷間圧延1によって形成された組織を溶体化、再結晶組織とするための熱処理であり、連続焼鈍炉で行うことが望ましい。条件としては、実体温度800〜950℃で30秒以下保持し、保持後は冷却速度10℃/秒以上での冷却が望ましい。
(Solution)
The solution treatment is a heat treatment for forming a structure formed by the cold rolling 1 into a solution and a recrystallized structure, and it is desirable to perform in a continuous annealing furnace. As conditions, it is desirable to hold at an actual temperature of 800 to 950 ° C. for 30 seconds or less and to cool at a cooling rate of 10 ° C./second or more after holding.

(冷間圧延1,2)
冷間圧延2は加工率20%以下で行う。20%を超える場合は曲げ加工性が低下する。従来の多くの高強度材の場合、強度向上を目的に溶体化後の冷間圧延(冷間圧延2)の加工率をできるかぎり高くするが、ここで加工率を高くすると、集合組織がCube方位{001}<100>以外のS方位{123}<634>やB方位{011}<211>が主体となり、Cube方位の割合は必然的に50%未満となり、曲げ加工性が劣化する。
本発明ではCube方位の割合を50%以上とするために、従来とは逆に溶体化後の冷間圧延(冷間圧延2)の加工率を低くして続く時効処理により強度を向上させる。具体的には溶体化(溶体化を2回以上行う場合は最終の溶体化)前の冷間圧延1の加工率を95%以上とし、溶体化(溶体化を2回以上行う場合は最終の溶体化)後の冷間圧延2の加工率を20%以下とすることが望ましい。冷間圧延1の加工率が95%未満ではCube方位割合を50%以上確保できない可能性が高く、また冷間圧延2の加工率が20%を超えてもCube方位を50%以上確保できない可能性が高い。
(Cold rolling 1, 2)
Cold rolling 2 is performed at a processing rate of 20% or less. When it exceeds 20%, bending workability is lowered. In the case of many conventional high-strength materials, the processing rate of cold rolling (cold rolling 2) after solution treatment is increased as much as possible for the purpose of improving the strength. When the processing rate is increased here, the texture becomes Cube. The S orientation {123} <634> and the B orientation {011} <211> other than the orientation {001} <100> are mainly used, and the ratio of the Cube orientation is inevitably less than 50%, so that the bending workability is deteriorated.
In the present invention, in order to set the ratio of the Cube orientation to 50% or more, the strength is improved by lowering the processing rate of cold rolling (cold rolling 2) after solution, and continuing aging treatment, contrary to the conventional case. Specifically, the processing rate of cold rolling 1 before solution treatment (final solution formation when solution treatment is performed twice or more) is set to 95% or more, and solution treatment (when solution treatment is performed twice or more is final) It is desirable that the processing rate of the cold rolling 2 after solution treatment is 20% or less. If the processing rate of cold rolling 1 is less than 95%, there is a high possibility that the Cube orientation ratio cannot be secured at 50% or more, and even if the processing rate of cold rolling 2 exceeds 20%, the Cube orientation cannot be secured at 50% or more. High nature.

(時効)
時効処理は、再結晶及び時効硬化により強度、伸び特性、導電率、曲げ加工性等を向上させるための熱処理である。バッチ炉を用いて、実体温度400〜600℃で1〜8時間保持し、保持後は冷却速度10℃/秒未満で炉冷することが望ましい。この条件より保持温度が低く又は短時間の場合、再結晶に至らずCube方位の割合が低下して曲げ加工性が向上せず、保持温度が高く又は長時間の場合、結晶粒が粗大化して耐力が低下する。
なお、冷間圧延2の圧延率が低いため、この時効条件では耐力値が低く目標値(700N/mm以上)を達成できない(前記特願2004−346766)。従って、冷間圧延3及び短時間焼鈍の工程を追加し、耐力及び曲げ加工性を改善する。
(Aging)
The aging treatment is a heat treatment for improving strength, elongation characteristics, conductivity, bending workability and the like by recrystallization and age hardening. It is desirable to hold at a body temperature of 400 to 600 ° C. for 1 to 8 hours using a batch furnace and to cool the furnace at a cooling rate of less than 10 ° C./second after the holding. When the holding temperature is lower than this condition or for a short time, recrystallization does not occur and the ratio of the Cube orientation is lowered and the bending workability is not improved, and when the holding temperature is high or for a long time, the crystal grains are coarsened. Yield decreases.
In addition, since the rolling rate of cold rolling 2 is low, the proof stress value is low under this aging condition, and the target value (700 N / mm 2 or more) cannot be achieved (Japanese Patent Application No. 2004-346766). Accordingly, the cold rolling 3 and the short annealing process are added to improve the proof stress and the bending workability.

(冷間圧延3)
冷間圧延3は耐力向上のための圧延であり、加工率は1〜20%が望ましい。1%未満では効果が小さく、20%を超えると、続く短時間焼鈍を行っても高強度(耐力)と優れた曲げ加工性を両立させることができない。
(短時間焼鈍)
この短時間焼鈍は、冷間圧延3で組織に導入された転位を再配列させて耐力を維持するとともに、伸びを回復させて曲げ加工性を向上させることが目的である。再結晶させずに連続焼鈍炉で行うことが望ましい。実体温度400〜550℃で30秒以下保持し、保持後は冷却速度10℃/秒以上での冷却が望ましい。この条件より保持温度が低い場合、伸びが回復せず曲げ加工性が劣り、保持温度が高く又は長時間の場合、再結晶して耐力、ばね性が劣るようになる。
なお、この短時間焼鈍において本発明者らは、耐力の維持と曲げ加工性の向上が導電率と密接な関係があることを知見した。すなわち、短時間焼鈍前の導電率に対して短時間焼鈍後の導電率が0.5〜3%IACSの範囲で低下する状態において、高い耐力と優れた曲げ加工性が確保される。導電率:0.5%IACS未満の低下では良好な曲げ加工性が確保できず、3%IACS以上低下すると耐力が目標の700N/mmを下回る。従って、短時間焼鈍は、導電率の低下範囲が0.5〜3%IACSとなるように行うのが望ましく、これは前記保持温度及び保持時間の範囲内で実現される。
(Cold rolling 3)
The cold rolling 3 is rolling for improving the yield strength, and the processing rate is desirably 1 to 20%. If it is less than 1%, the effect is small, and if it exceeds 20%, high strength (yield strength) and excellent bending workability cannot be achieved at the same time even if annealing is performed for a short time.
(Short time annealing)
The purpose of this short-time annealing is to rearrange the dislocations introduced into the structure in the cold rolling 3 to maintain the yield strength and to recover the elongation and improve the bending workability. It is desirable to carry out in a continuous annealing furnace without recrystallization. It is desirable to hold at an actual temperature of 400 to 550 ° C. for 30 seconds or less and to cool at a cooling rate of 10 ° C./second or more after holding. When the holding temperature is lower than this condition, the elongation is not recovered and bending workability is inferior, and when the holding temperature is high or for a long time, recrystallization occurs and the proof stress and spring property become inferior.
In addition, in this short-time annealing, the present inventors have found that maintenance of yield strength and improvement of bending workability are closely related to conductivity. That is, high proof stress and excellent bending workability are ensured in a state where the electrical conductivity after the short time annealing is lowered in the range of 0.5 to 3% IACS with respect to the electrical conductivity before the short time annealing. Conductivity: Good bending workability cannot be ensured if the decrease is less than 0.5% IACS, and if the decrease is 3% IACS or more, the yield strength is less than the target 700 N / mm 2 . Therefore, it is desirable to perform the short-time annealing so that the range of decrease in conductivity is 0.5 to 3% IACS, which is realized within the range of the holding temperature and holding time.

以下、本発明の実施例及び比較例を説明する。ここでは、板材の製造可否及び添加元素の効果について実証する。
表1,2に示す組成の銅合金を、電気炉により大気中にて木炭被覆下で溶解し、鋳造可否を判断した。溶製した鋳塊を熱間圧延し、厚さ15mmに仕上げ、ここで熱間圧延時に割れが発生していないか目視にて判定した。
その結果、本発明に規定する組成範囲内のNo.1〜6は、いずれも鋳造可能で、かつ熱間圧延時の割れも発生しなかった。
本発明に規定する組成範囲外のNo.7〜22のうち、No.10、19,20,21,22は、それぞれSi含有量、Cr含有量、Zr含有量、Co含有量、P含有量が規定を上回るため、熱間圧延時に割れが発生し、熱間圧延を中止するとともに、以後の工程を取りやめた。また、No.11は、Ni/Si比が規定を下回り、過剰Siが固溶したため、鋳造時に割れが発生し、以後の工程を取りやめた。
Examples of the present invention and comparative examples will be described below. Here, it will be demonstrated about whether the plate material can be produced and the effect of the additive element.
The copper alloys having the compositions shown in Tables 1 and 2 were melted under the charcoal coating in the atmosphere by an electric furnace, and castability was judged. The molten ingot was hot-rolled and finished to a thickness of 15 mm, and it was visually determined whether cracks occurred during hot-rolling.
As a result, No. in the composition range prescribed | regulated to this invention. Nos. 1 to 6 were all castable, and no cracks occurred during hot rolling.
No. outside the composition range defined in the present invention. 7-22, no. 10, 19, 20, 21 and 22 have Si content, Cr content, Zr content, Co content, and P content exceeding specifications, respectively, so that cracks occur during hot rolling, and hot rolling is performed. Canceled and canceled the subsequent steps. No. In No. 11, the Ni / Si ratio was less than specified and excessive Si was dissolved, so that cracking occurred during casting, and the subsequent steps were canceled.

Figure 2006283059
Figure 2006283059

Figure 2006283059
Figure 2006283059

続いて、No.1〜6,7〜9,12〜18の熱間圧延材に対し、本発明に規定する条件の冷間圧延及び熱処理(冷間圧延1→溶体化連続焼鈍→冷間圧延2→時効処理→冷間圧延3→短時間焼鈍)を施し、厚さ0.25mmの銅合金薄板を製造した。この銅合金板について各種材料特性を下記要領で測定及び評価した。また、平均結晶粒径及びCube方位の割合は先に記載した要領で測定した。その結果を表3に示す。   Subsequently, no. For the hot rolled materials 1-6, 7-9, 12-18, cold rolling and heat treatment under the conditions defined in the present invention (cold rolling 1 → solution annealing continuous → cold rolling 2 → aging treatment → Cold rolling 3 → short-time annealing) was performed to produce a 0.25 mm thick copper alloy sheet. Various material properties of this copper alloy plate were measured and evaluated in the following manner. Moreover, the average crystal grain size and the ratio of the Cube orientation were measured as described above. The results are shown in Table 3.

(機械的強度)
耐力、引張強さ及び伸びは、試験片の長手方向を圧延方向に平行としたJIS5号試験片にて測定した。
(ばね限界値)
アカシ製ばね限界値試験機(MODEL:APT)を用いてモーメント式試験により求めた。材料の試験方向は圧延方向に平行(L.D.)とした。
(はんだ耐候性)
MIL−STD−202F METHOD 208Dに基づいてはんだ付けを行なった後、大気中で150℃×1000Hr経過後、1mmφで180°曲げ戻しを行い、はんだの剥離の有無を目視で確認した。
(導電率)
導電率JISH0505に基づいて測定した。
(Mechanical strength)
Yield strength, tensile strength and elongation were measured with a JIS No. 5 test piece in which the longitudinal direction of the test piece was parallel to the rolling direction.
(Spring limit value)
This was determined by a moment type test using a spring limit value testing machine (MODEL: APT) manufactured by Akashi. The test direction of the material was parallel (LD) to the rolling direction.
(Solder weather resistance)
After soldering based on MIL-STD-202F METHOD 208D, it was bent back at 180 ° with 1 mmφ after 150 ° C. × 1000 Hr in the air, and the presence or absence of peeling of the solder was visually confirmed.
(conductivity)
Conductivity was measured based on JISH0505.

(耐マイグレーション性)
上記板材から、幅3.0mm、長さ80mmの試験片を採取した。この試験片を2枚1組として供試した。
図1及び図2は、上記試験片を使用した漏洩電流測定用の試験装置である。図1及び図2において2a、2bは試験片、3は厚さ1mmのABS樹脂、4はこのABS樹脂3の押え板である。5は押え板4を押圧固定するため表面に絶縁塗料を塗布したクリップ、6はバッテリ−、7は電線である。試験片2a、2bは端部に電線7が接続されている。
図1及び2図に示す2枚の試験片2a、2bにバッテリ−6から直流電流14Vを印加して、水道水中に5分間浸漬した後、続いて10分間乾燥する乾燥試験を50回行い、その間の最大漏洩電流を高感度レコ−ダ−(図示せず)で測定した。最大漏洩電流が1A以下であれば実用上問題ない。
(Migration resistance)
A test piece having a width of 3.0 mm and a length of 80 mm was collected from the plate material. This test piece was used as a set of two sheets.
1 and 2 show a test apparatus for measuring leakage current using the above test piece. 1 and 2, reference numerals 2a and 2b denote test pieces, 3 denotes an ABS resin having a thickness of 1 mm, and 4 denotes a press plate for the ABS resin 3. Reference numeral 5 denotes a clip whose surface is coated with an insulating paint for pressing and fixing the presser plate 4, 6 is a battery, and 7 is an electric wire. The test piece 2a, 2b has an electric wire 7 connected to the end.
A direct current of 14V is applied from the battery 6 to the two test pieces 2a and 2b shown in FIGS. 1 and 2 and immersed in tap water for 5 minutes, followed by drying for 10 minutes, followed by 50 drying tests. The maximum leakage current during that time was measured with a high sensitivity recorder (not shown). If the maximum leakage current is 1 A or less, there is no practical problem.

(耐応力腐食割れ性)
上記板材から、0.25mmt×12.7mmw×150mmlの試験片を切り出し、応力腐食割れ試験をトンプソンの方法(Materials Research & Standards(1961)1081)に準じて行った。すなわち、試験片を図3に示すようにループ状にした後、14wt%のアンモニア水を入れ、40℃の温度で飽和蒸気を充満させたデシケータ中に暴露し、試験片が破断するまでの時間を測定した。破損までの寿命が40時間以上であれば問題ない。
(Stress corrosion cracking resistance)
A test piece of 0.25 mmt × 12.7 mmw × 150 mml was cut out from the plate material, and a stress corrosion cracking test was performed according to the Thompson method (Materials Research & Standards (1961) 1081). That is, after making the test piece into a loop as shown in FIG. 3, it is exposed to a desiccator filled with 14 wt% ammonia water and filled with saturated vapor at a temperature of 40 ° C. until the test piece breaks. Was measured. If the life until breakage is 40 hours or more, there is no problem.

(曲げ加工性)
CESM0002金属材料W曲げ試験に規定されているB型曲げ治具で、曲げ線を圧延方向に平行(B.W.)に設定し、幅10mm、長さ35mmに加工した供試材をはさみ、島津製作所製万能試験機RH−30を使用して1tの荷重でR/t=1(R:曲げ半径、t:板厚)にて90°W曲げ加工を行った後、曲げ部の割れの有無を評価した。評価レベルは、曲げ部に割れがなく、微少窪みやしわのないものを○、割れは無いが、割れの起点となる微小窪みやしわが生成しているものを△、明確に割れが発生し、曲げ加工が不可なるものを×とした。
(Bending workability)
With a B-type bending jig specified in the CESM0002 metal material W bending test, the bending line is set parallel to the rolling direction (BW), and the test material processed to a width of 10 mm and a length of 35 mm is sandwiched between Using a Shimadzu universal testing machine RH-30, bending at 90 ° W with a load of 1 t at R / t = 1 (R: bending radius, t: plate thickness), The presence or absence was evaluated. The evaluation level is ◯ when there is no crack in the bent part, and there is no micro-dent or wrinkle, but there is no crack, but there is a micro-dent or wrinkle that is the starting point of the crack. Those that cannot be bent are marked with x.

(耐熱性)
硝石炉を使用して、各温度で5分間加熱した後の硬さを測定し、硬さが加熱前の硬さの80%に低下する温度を求めた。この温度が550℃以上を耐熱性が良好とし、550℃未満を耐熱性不良とした。
(耐ウイスカー性)
短冊状の試験片を曲げて、約400N/mmの圧縮応力を負荷し、室温で3ヶ月保持した後、圧縮面のウイスカーの発生状況を実体顕微鏡にて観察した。
(Heat-resistant)
The hardness after heating for 5 minutes at each temperature was measured using a glass furnace, and the temperature at which the hardness decreased to 80% of the hardness before heating was determined. When the temperature is 550 ° C. or higher, the heat resistance is good, and when the temperature is less than 550 ° C., the heat resistance is poor.
(Whisker resistance)
The strip-shaped test piece was bent, and a compressive stress of about 400 N / mm 2 was applied and held at room temperature for 3 months. Then, the occurrence of whiskers on the compressed surface was observed with a stereomicroscope.

Figure 2006283059
Figure 2006283059

No.1〜6では、耐力(700N/mm以上)、ばね限界値(500N/mm以上)、曲げ加工性及び導電率(35%IACS以上)は良好で、耐マイグレーション性における最大漏洩電流値は低く抑制されており、さらにはんだ耐候性、耐応力腐食割れ性も良好であり、耐ウイスカー性にも優れている。なお、平均結晶粒径はすべて10μm以下、Cube方位{001}<100>の割合はすべて50%以上であった。 No. 1 to 6, the proof stress (700 N / mm 2 or more), spring limit value (500 N / mm 2 or more), bending workability and conductivity (35% IACS or more) are good, and the maximum leakage current value in migration resistance is Low solder resistance, solder weather resistance, stress corrosion cracking resistance, and whisker resistance are also excellent. The average crystal grain size was all 10 μm or less, and the ratios of Cube orientation {001} <100> were all 50% or more.

一方、No.7はNi含有量が規定を下回るため、耐力及びばね限界値が劣る。No.8はNi含有量が規定を上回るため、導電率が低下している。
No.9はSi含有量が規定を下回るため、耐力及びばね限界値が劣る。
No.12はNi/Si含有比率が規定を上回るため導電率が低く、伸び特性に劣り、曲げ加工では割れが発生した。
No.13はSn含有量が規定を下回るため、十分な耐力及びばね限界値が得られていない。No.14はSn含有量が規定を上回るため、導電率が低く、伸び特性に劣り、曲げ加工では割れが発生した。
No.15は耐力、導電率及び曲げ加工性は良好だが、Zn含有量が規定を下回るため耐マイグレーション性に劣り、はんだ耐候性でははんだ剥離を生じている。さらにウイスカー発生が認められる。No.16はZn含有量が規定を上回るため、導電率が低下し、応力腐食割れ性では短時間で破損している。
No.17は耐力、導電率及び曲げ加工性は良好だが、Mg含有量が規定を下回るため十分なばね限界値が得られず、耐熱性にも劣る。No.18はMg含有量が規定を上回るため、伸び特性に劣り、曲げ試験では割れが生じている。
On the other hand, no. No. 7 is inferior in proof stress and spring limit because the Ni content is below the specified value. No. In No. 8, since the Ni content exceeds the specified value, the conductivity is lowered.
No. No. 9 is inferior in yield strength and spring limit because the Si content is below the specified value.
No. In No. 12, the Ni / Si content ratio exceeded the specified value, so the conductivity was low, the elongation characteristics were inferior, and cracking occurred in bending.
No. Since the Sn content of No. 13 is less than the specified value, sufficient yield strength and spring limit values are not obtained. No. No. 14 had a Sn content exceeding the specified range, so the conductivity was low, the elongation characteristics were inferior, and cracking occurred in bending.
No. No. 15 has good proof stress, electrical conductivity, and bending workability, but the Zn content is less than the specified value, so it is inferior in migration resistance, and in solder weather resistance, solder peeling occurs. Furthermore, whisker generation is observed. No. No. 16 has a Zn content exceeding the specified value, so that the electrical conductivity is lowered, and the stress corrosion cracking property is damaged in a short time.
No. No. 17 has good yield strength, electrical conductivity, and bending workability, but since the Mg content is below the specified value, a sufficient spring limit value cannot be obtained, and the heat resistance is also poor. No. No. 18 has inferior elongation characteristics because the Mg content exceeds the specified value, and cracks are generated in the bending test.

ここでは、工程条件の効果について検証する。
表1のNo.1の組成の熱間圧延材(15mm厚)について、表4に示す条件の冷間圧延及び熱処理を施し、厚さ0.25mmの銅合金薄板を製造した。なお、表4において、溶体化焼鈍の時間、時効処理の時間、及び短時間焼鈍の時間は特に記載したもの以外は同一とした。No.1−1〜1−9については、本発明に規定する条件の冷間圧延及び熱処理を施し、No.1−10〜1−23については、いずれかの工程が本発明の規定又は望ましい条件と異なる。
この銅合金板について各種材料特性を前記要領で評価した。その結果を表5に示す。
Here, the effect of the process conditions will be verified.
No. in Table 1 The hot rolled material (15 mm thick) having the composition 1 was subjected to cold rolling and heat treatment under the conditions shown in Table 4 to produce a 0.25 mm thick copper alloy sheet. In Table 4, the time for solution annealing, the time for aging treatment, and the time for short-time annealing were the same except those specifically described. No. 1-1 to 1-9 were subjected to cold rolling and heat treatment under the conditions specified in the present invention. For 1-10 to 1-23, any process is different from the prescribed or desirable conditions of the present invention.
Various characteristics of the copper alloy sheet were evaluated in the above manner. The results are shown in Table 5.

Figure 2006283059
Figure 2006283059

Figure 2006283059
Figure 2006283059

No.1−1〜1−9では、平均結晶粒径とCube方位の割合が本発明の規定範囲内にあり、耐力(700N/mm以上)、ばね限界値(500N/mm以上)、曲げ加工性及び導電率(35%IACS以上)が良好であり、強度と曲げ加工性の相反する特性を兼備している。
なお、No.1−1,1−8,1−9の短時間焼鈍前の導電率は42.8%IACS(No.1−17参照)であり、短時間焼鈍後の導電率は、それぞれ0.7%IACS、0.6%IACS、2.9%IACS低下している。
No. In 1-1 to 1-9, the ratio between the average crystal grain size and the Cube orientation is within the specified range of the present invention, the proof stress (700 N / mm 2 or more), the spring limit value (500 N / mm 2 or more), bending work. Property and electrical conductivity (35% IACS or more) are good, and both strength and bending properties conflict with each other.
In addition, No. The electrical conductivity of 1-1, 1-8, and 1-9 before short-time annealing is 42.8% IACS (see No. 1-17), and the electrical conductivity after short-time annealing is 0.7%, respectively. IACS, 0.6% IACS, 2.9% IACS decreased.

一方、No.1−10は溶体化温度が高いため結晶粒が粗大化し、耐力が低下している。
No.1−11は冷間圧延2の加工率が規定を超える条件で行われたため、Cube方位の割合が低下して曲げ加工性が劣る。
No.1−12は時効処理の温度が規定を下回るため再結晶せず(平均結晶粒径は測定不可)、Cube方位の割合が低下し、曲げ加工性が劣り、導電率も劣化している。No.1−13は時効処理の温度が規定を超えたため、結晶粒が粗大化し、耐力が低下している。No.1−14は時効処理の保持時間が規定を下回るため再結晶せず(平均結晶粒径は測定不可)、Cube方位の割合が低下し、曲げ加工性が劣り、導電率も劣化している。
No.1−15は冷間圧延3が実施されていないため耐力が劣る。No.1−16は冷間圧延3の加工率が規定を超えたため、耐力は向上しているが曲げ加工性に劣る。
No.1−17は最終の短時間焼鈍が実施されていないため、曲げ加工性に劣り、ばね限界値の向上も認められない。No.1−18は短時間焼鈍の温度が規定を下回るため、ばね限界値が十分に回復せず、曲げ加工性も向上せずしわが発生した。No.1−19は短時間焼鈍の温度が規定を超える条件であったため、導電率は焼鈍前(No.1−17)に比べて約20%低下し、結晶粒が粗大化して耐力も低下している。No.1−20は短時間焼鈍の保持時間が規定より長時間であったため、導電率は焼鈍前(No.1−17)に比べて約20%低下し、結晶粒が粗大化して耐力も低下している。No.1−21は冷間圧延3及び短時間焼鈍を実施しなかったため、耐力が向上せず、曲げ加工性も向上せずしわが発生した。No.22は冷間圧延2の加工率が規定を超える条件で行われ、かつ短時間焼鈍が実施されていないため、Cube方位の割合が低下して曲げ加工性が劣る。No.23は冷間圧延2の加工率が規定を超える条件で行われ、かつ短時間焼鈍の温度が規定を超える条件であったため、Cube方位の割合が低く、導電率が低下し、結晶粒が粗大化して耐力が低下している。
On the other hand, no. Since 1-10 has a high solution temperature, the crystal grains are coarsened and the yield strength is lowered.
No. No. 1-11 was performed under conditions where the working rate of the cold rolling 2 exceeded the specified range, so that the ratio of the Cube orientation was lowered and the bending workability was inferior.
No. 1-12 does not recrystallize because the temperature of the aging treatment is below the specified value (average crystal grain size is not measurable), the ratio of the Cube orientation is lowered, bending workability is inferior, and the conductivity is also deteriorated. No. In No. 1-13, since the temperature of the aging treatment exceeded the specified value, the crystal grains became coarse and the proof stress was lowered. No. 1-14 is not recrystallized because the retention time of the aging treatment is less than specified (the average crystal grain size cannot be measured), the ratio of the Cube orientation is lowered, the bending workability is inferior, and the conductivity is also deteriorated.
No. 1-15 is inferior in yield strength since cold rolling 3 is not performed. No. In No. 1-16, since the processing rate of the cold rolling 3 exceeded the regulation, the yield strength was improved but the bending workability was inferior.
No. Since No. 1-17 was not subjected to final short-time annealing, bending workability was inferior, and no improvement in the spring limit value was observed. No. In 1-18, since the temperature for short-term annealing was lower than the specified value, the spring limit value was not sufficiently recovered, the bending workability was not improved, and wrinkles were generated. No. Since 1-19 was a condition in which the temperature of short-time annealing exceeded the specified value, the conductivity was reduced by about 20% compared to before annealing (No. 1-17), the crystal grains were coarsened and the proof stress was also reduced. Yes. No. In 1-20, since the holding time for short-time annealing was longer than specified, the conductivity was reduced by about 20% compared to that before annealing (No. 1-17), the crystal grains were coarsened, and the yield strength was also reduced. ing. No. For 1-21, cold rolling 3 and short-time annealing were not performed, so the yield strength was not improved, the bending workability was not improved, and wrinkles occurred. No. No. 22 is performed under the condition that the processing rate of the cold rolling 2 exceeds the specified value, and since the annealing is not performed for a short time, the ratio of the Cube orientation is lowered and the bending workability is inferior. No. No. 23 was performed under conditions where the processing rate of the cold rolling 2 exceeded the specified value and the temperature of the short-time annealing exceeded the specified value. Therefore, the ratio of the Cube orientation was low, the conductivity decreased, and the crystal grains were coarse. The yield strength is reduced.

実施例の耐マイグレーション性の試験方法を説明する平面図である。It is a top view explaining the test method of migration resistance of an Example. その正面断面図である。It is the front sectional drawing. 実施例の耐応力腐食割れ性の試験方法を説明する側面図である。It is a side view explaining the test method of the stress corrosion cracking resistance of an Example.

符号の説明Explanation of symbols

2a,2b 試験片
3 ABS樹脂
4 押さえ板
5 クリップ
2a, 2b Test piece 3 ABS resin 4 Holding plate 5 Clip

Claims (5)

Ni:2.5%(質量%、以下同じ)以上6.0%未満、及びSi:0.5%以上1.5%未満を、NiとSiの質量比Ni/Siが4〜5の範囲となるように含み、さらにSn:0.01%以上4%未満を含み、残部がCu及び不可避的不純物からなる組成を有し、耐力が700N/mm以上、導電率が35%IACS以上、平均結晶粒径が10μm以下、かつSEM−EBSP法による測定結果でCube方位{001}〈100〉の割合が50%以上である集合組織を有することを特徴とする曲げ加工性に優れた高強度銅合金板。 Ni: 2.5% (mass%, hereinafter the same) or more and less than 6.0%, and Si: 0.5% or more and less than 1.5%, the mass ratio of Ni to Si, Ni / Si is in the range of 4-5 In addition, Sn: 0.01% or more and less than 4%, the balance is composed of Cu and inevitable impurities, the proof stress is 700 N / mm 2 or more, the conductivity is 35% IACS or more, High strength excellent in bending workability characterized by having a texture with an average crystal grain size of 10 μm or less and a Cube orientation {001} <100> ratio of 50% or more as measured by SEM-EBSP method Copper alloy plate. さらに、Zn:0.01%以上3%未満を含有することを特徴とする請求項1に記載された曲げ加工性に優れた高強度銅合金板。 Furthermore, Zn: 0.01% or more and less than 3% are contained, The high-strength copper alloy plate excellent in the bending workability described in Claim 1 characterized by the above-mentioned. さらに、Mg:0.001%以上1%未満を含有することを特徴とする請求項1又は2に記載された曲げ加工性に優れた高強度銅合金板。 Furthermore, Mg: 0.001% or more and less than 1% is contained, The high-strength copper alloy plate excellent in the bending workability described in Claim 1 or 2 characterized by the above-mentioned. さらに、Mn:0.01%以上0.1%未満、Ag:0.001%以上1%未満、Cr:0.001%以上1%未満、Zr:0.001%以上0.5%未満、Co:0.01%以上0.5%未満、P:0.01%以上0.1%未満の1種又は2種以上を含有することを特徴とする請求項1〜3のいずれかに記載された曲げ加工性に優れた高強度銅合金板。 Furthermore, Mn: 0.01% or more and less than 0.1%, Ag: 0.001% or more and less than 1%, Cr: 0.001% or more and less than 1%, Zr: 0.001% or more and less than 0.5%, Co: 0.01% or more and less than 0.5%, P: 0.01% or more and less than 0.1% of one kind or two kinds or more are contained. High strength copper alloy sheet with excellent bending workability. 請求項1〜4のいずれかに記載された組成からなる銅合金鋳塊に対し、必要に応じて熱間圧延し急冷した後、冷間圧延を行い、連続焼鈍を行って溶体化再結晶組織を得た後、加工率20%以下の冷間圧延及び400〜600℃×1〜8時間の時効処理を行い、続いて加工率1〜20%の最終冷間圧延後、400〜550℃×30秒以下の短時間焼鈍を行うことを特徴とする請求項1〜4のいずれかに記載された曲げ加工性に優れた高強度銅合金板の製造方法。 The copper alloy ingot having the composition described in any one of claims 1 to 4, after being hot-rolled and rapidly cooled as necessary, cold-rolled and continuously annealed to form a solution recrystallized structure After performing cold rolling at a processing rate of 20% or less and aging treatment at 400 to 600 ° C. for 1 to 8 hours, followed by final cold rolling at a processing rate of 1 to 20%, 400 to 550 ° C. The method for producing a high-strength copper alloy plate excellent in bending workability according to any one of claims 1 to 4, wherein the annealing is performed for a short time of 30 seconds or less.
JP2005101226A 2005-03-31 2005-03-31 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof Expired - Fee Related JP4566048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101226A JP4566048B2 (en) 2005-03-31 2005-03-31 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101226A JP4566048B2 (en) 2005-03-31 2005-03-31 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006283059A true JP2006283059A (en) 2006-10-19
JP4566048B2 JP4566048B2 (en) 2010-10-20

Family

ID=37405274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101226A Expired - Fee Related JP4566048B2 (en) 2005-03-31 2005-03-31 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4566048B2 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066697A1 (en) * 2005-12-07 2007-06-14 The Furukawa Electric Co., Ltd. Electrical wire conductor for wiring, electrical wire for wiring, and their production methods
WO2009057788A1 (en) * 2007-11-01 2009-05-07 The Furukawa Electric Co., Ltd. Copper alloy material excellent in strength, bending workability and stress relaxation resistance, and method for producing the same
WO2009060873A1 (en) * 2007-11-05 2009-05-14 The Furukawa Electric Co., Ltd. Copper alloy sheet material
WO2009123159A1 (en) 2008-03-31 2009-10-08 古河電気工業株式会社 Copper alloy material for electric and electronic apparatuses, and electric and electronic components
WO2009123140A1 (en) * 2008-03-31 2009-10-08 日鉱金属株式会社 Cu-ni-si alloy to be used in electrically conductive spring material
WO2009148101A1 (en) 2008-06-03 2009-12-10 古河電気工業株式会社 Copper alloy sheet material and manufacturing method thereof
EP2143810A1 (en) * 2007-03-26 2010-01-13 The Furukawa Electric Co., Ltd. Copper alloy for electrical/electronic device and method for producing the same
WO2010047373A1 (en) 2008-10-22 2010-04-29 古河電気工業株式会社 Copper alloy material, electric and electronic parts, and copper alloy material manufacturing method
JP2011012321A (en) * 2009-07-03 2011-01-20 Furukawa Electric Co Ltd:The Copper alloy material and production method therefor
WO2011019042A1 (en) * 2009-08-10 2011-02-17 古河電気工業株式会社 Copper alloy material for electrical/electronic components
JP2011038126A (en) * 2009-08-06 2011-02-24 Jx Nippon Mining & Metals Corp Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
JP2011052316A (en) * 2009-08-04 2011-03-17 Kobe Steel Ltd Copper alloy having high strength and excellent bending workability
WO2011068126A1 (en) 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same
WO2011068135A1 (en) 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same
WO2011068124A1 (en) * 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet
WO2011068134A1 (en) 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet material having low young's modulus and method for producing same
WO2011068121A1 (en) 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
JP4830048B1 (en) * 2010-07-07 2011-12-07 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and method for producing the same
JP4857395B1 (en) * 2011-03-09 2012-01-18 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy and method for producing the same
WO2012026611A1 (en) 2010-08-27 2012-03-01 古河電気工業株式会社 Copper alloy sheet and method for producing same
WO2012029717A1 (en) 2010-08-31 2012-03-08 古河電気工業株式会社 Copper alloy sheet material and process for producing same
WO2012111674A1 (en) * 2011-02-16 2012-08-23 株式会社日本製鋼所 High-strength copper alloy forging
JP5030191B1 (en) * 2011-05-25 2012-09-19 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and method for producing the same
WO2012150702A1 (en) 2011-05-02 2012-11-08 古河電気工業株式会社 Copper alloy sheet material and process for producing same
WO2012160726A1 (en) * 2011-05-25 2012-11-29 三菱伸銅株式会社 Cu-ni-si copper alloy sheet with excellent deep drawability and process for producing same
WO2013058083A1 (en) * 2011-10-21 2013-04-25 Jx日鉱日石金属株式会社 Corson alloy and method for producing same
KR20140002001A (en) 2011-03-16 2014-01-07 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-ni-si alloy wire having excellent bendability
JP2014019888A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The High strength copper alloy material, and method of manufacturing the same
JP2014019889A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The Copper alloy material having excellent strength and plating property and production method thereof
KR20140053376A (en) 2011-08-29 2014-05-07 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-ni-si alloy and method for manufacturing same
KR20140148437A (en) 2012-03-26 2014-12-31 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Corson alloy and method for producing same
JP2015034328A (en) * 2013-08-09 2015-02-19 古河電気工業株式会社 Copper alloy sheet material and production method thereof
CN105039775A (en) * 2015-06-02 2015-11-11 苏州晓锋知识产权运营管理有限公司 Manufacturing method of electroconductive spring plate
JP2016084542A (en) * 2012-03-26 2016-05-19 Jx金属株式会社 Corson alloy and manufacturing method therefor
US9401230B2 (en) 2010-12-13 2016-07-26 Jx Nippon Mining & Metals Corporation Cu-Ni-Si-Co copper alloy for electronic materials and manufacturing method thereof
KR20160090871A (en) 2013-11-25 2016-08-01 제이엑스금속주식회사 Copper alloy plate having excellent electroconductivity, moldability, and stress relaxation properties
US9476109B2 (en) 2010-03-31 2016-10-25 Jx Nippon Mining & Metals Corporation Cu—Ni—Si—Co copper alloy for electronic material and process for producing same
US9478323B2 (en) 2011-03-28 2016-10-25 Jx Nippon Mining & Metals Corporation Cu—Si—Co-based copper alloy for electronic materials and method for producing the same
US9490039B2 (en) 2011-03-29 2016-11-08 Jx Nippon Mining & Metals Corporation Strip of Cu—Co—Si-based copper alloy for electronic materials and the method for producing the same
CN107267803A (en) * 2016-03-31 2017-10-20 Jx金属株式会社 The manufacture method of copper alloy plate and copper alloy plate
WO2018174079A1 (en) 2017-03-21 2018-09-27 Jx金属株式会社 Copper alloy strip exhibiting improved dimensional accuracy after press-working
WO2018174081A1 (en) 2017-03-22 2018-09-27 Jx金属株式会社 Copper alloy strip exhibiting improved dimensional accuracy after press-working
CN109844147A (en) * 2016-12-14 2019-06-04 古河电气工业株式会社 Copper alloy wire bar and its manufacturing method
US11021774B2 (en) 2013-08-13 2021-06-01 Jx Nippon Mining & Metals Corporation Copper alloy plate having excellent electrical conductivity and bending deflection coefficient
US11091827B2 (en) 2015-12-28 2021-08-17 Poongsan Corporation Copper alloy material for automobile and electrical and electronic components and method of producing the same
JP2021531403A (en) * 2018-07-12 2021-11-18 マテリオン コーポレイション Copper-nickel-silicon alloy with high strength and high electrical conductivity
CN115627379A (en) * 2022-10-31 2023-01-20 宁波金田铜业(集团)股份有限公司 Copper alloy bar and preparation method thereof
CN117385230A (en) * 2023-12-13 2024-01-12 中铝科学技术研究院有限公司 Copper alloy material with excellent punching performance and preparation method and application thereof
CN117802428A (en) * 2024-02-29 2024-04-02 中铝科学技术研究院有限公司 Method for improving etching precision of copper material by utilizing grain orientation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107794406B (en) * 2017-10-16 2019-05-17 北京科技大学 A kind of production technology of high-strength highly-conductive corson alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199647A (en) * 1984-10-20 1986-05-17 Kobe Steel Ltd Material for lead frame for semiconductor and its manufacture
JPH03188247A (en) * 1989-12-14 1991-08-16 Nippon Mining Co Ltd Production of high strength and high conductivity copper alloy excellent in bendability
JPH11222641A (en) * 1998-01-30 1999-08-17 Furukawa Electric Co Ltd:The Copper alloy for elctrically conductive spring and its production
JP2001181759A (en) * 1999-12-17 2001-07-03 Nippon Mining & Metals Co Ltd Copper alloy for electronic material excellent in surface characteristic and producing method therefor
JP3094045U (en) * 2002-11-13 2003-05-30 古河電気工業株式会社 Copper alloy conductive spring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199647A (en) * 1984-10-20 1986-05-17 Kobe Steel Ltd Material for lead frame for semiconductor and its manufacture
JPH03188247A (en) * 1989-12-14 1991-08-16 Nippon Mining Co Ltd Production of high strength and high conductivity copper alloy excellent in bendability
JPH11222641A (en) * 1998-01-30 1999-08-17 Furukawa Electric Co Ltd:The Copper alloy for elctrically conductive spring and its production
JP2001181759A (en) * 1999-12-17 2001-07-03 Nippon Mining & Metals Co Ltd Copper alloy for electronic material excellent in surface characteristic and producing method therefor
JP3094045U (en) * 2002-11-13 2003-05-30 古河電気工業株式会社 Copper alloy conductive spring

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305566A (en) * 2005-12-07 2007-11-22 Furukawa Electric Co Ltd:The Electric wire conductor for cabling, electric wire for cabling, and manufacturing method of the same
US7560649B2 (en) 2005-12-07 2009-07-14 The Furukawa Electric Co., Ltd. Conductor of electric cable for wiring, electric cable for wiring, and methods of producing them
WO2007066697A1 (en) * 2005-12-07 2007-06-14 The Furukawa Electric Co., Ltd. Electrical wire conductor for wiring, electrical wire for wiring, and their production methods
EP2143810A1 (en) * 2007-03-26 2010-01-13 The Furukawa Electric Co., Ltd. Copper alloy for electrical/electronic device and method for producing the same
US20100193092A1 (en) * 2007-03-26 2010-08-05 Ryosuke Matsuo Copper alloy for electrical/electronic device and method for producing the same
EP2143810A4 (en) * 2007-03-26 2012-06-27 Furukawa Electric Co Ltd Copper alloy for electrical/electronic device and method for producing the same
WO2009057788A1 (en) * 2007-11-01 2009-05-07 The Furukawa Electric Co., Ltd. Copper alloy material excellent in strength, bending workability and stress relaxation resistance, and method for producing the same
WO2009060873A1 (en) * 2007-11-05 2009-05-14 The Furukawa Electric Co., Ltd. Copper alloy sheet material
JP4596493B2 (en) * 2008-03-31 2010-12-08 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy used for conductive spring material
JP2009263784A (en) * 2008-03-31 2009-11-12 Nippon Mining & Metals Co Ltd Cu-Ni-Si BASE ALLOY TO BE USED IN ELECTRICALLY CONDUCTIVE SPRING MATERIAL
WO2009123140A1 (en) * 2008-03-31 2009-10-08 日鉱金属株式会社 Cu-ni-si alloy to be used in electrically conductive spring material
WO2009123159A1 (en) 2008-03-31 2009-10-08 古河電気工業株式会社 Copper alloy material for electric and electronic apparatuses, and electric and electronic components
WO2009148101A1 (en) 2008-06-03 2009-12-10 古河電気工業株式会社 Copper alloy sheet material and manufacturing method thereof
EP2298945A1 (en) * 2008-06-03 2011-03-23 The Furukawa Electric Co., Ltd. Copper alloy sheet material and manufacturing method thereof
EP2298945A4 (en) * 2008-06-03 2012-07-04 Furukawa Electric Co Ltd Copper alloy sheet material and manufacturing method thereof
US8641838B2 (en) 2008-06-03 2014-02-04 The Furukawa Electric Co., Ltd. Copper alloy sheet material and method of producing the same
WO2010047373A1 (en) 2008-10-22 2010-04-29 古河電気工業株式会社 Copper alloy material, electric and electronic parts, and copper alloy material manufacturing method
US8795446B2 (en) 2008-10-22 2014-08-05 Furukawa Electric Co., Ltd. Copper alloy material, electrical or electronic parts, and method of producing a copper alloy material
JP2011012321A (en) * 2009-07-03 2011-01-20 Furukawa Electric Co Ltd:The Copper alloy material and production method therefor
JP2011052316A (en) * 2009-08-04 2011-03-17 Kobe Steel Ltd Copper alloy having high strength and excellent bending workability
JP2011038126A (en) * 2009-08-06 2011-02-24 Jx Nippon Mining & Metals Corp Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
JP5144814B2 (en) * 2009-08-10 2013-02-13 古河電気工業株式会社 Copper alloy material for electrical and electronic parts
WO2011019042A1 (en) * 2009-08-10 2011-02-17 古河電気工業株式会社 Copper alloy material for electrical/electronic components
EP2508633A1 (en) * 2009-12-02 2012-10-10 Furukawa Electric Co., Ltd. Copper alloy sheet and process for producing same
WO2011068134A1 (en) 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet material having low young's modulus and method for producing same
KR101747475B1 (en) 2009-12-02 2017-06-14 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet and process for producing same
JP4885332B2 (en) * 2009-12-02 2012-02-29 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
JP5400877B2 (en) * 2009-12-02 2014-01-29 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
JP2014029031A (en) * 2009-12-02 2014-02-13 Furukawa Electric Co Ltd:The Copper alloy sheet material and production method of the same
JP4934759B2 (en) * 2009-12-02 2012-05-16 古河電気工業株式会社 Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP4948678B2 (en) * 2009-12-02 2012-06-06 古河電気工業株式会社 Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same
CN102695811B (en) * 2009-12-02 2014-04-02 古河电气工业株式会社 Copper alloy sheet and process for producing same
WO2011068121A1 (en) 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
CN102597283A (en) * 2009-12-02 2012-07-18 古河电气工业株式会社 Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
CN102630251A (en) * 2009-12-02 2012-08-08 古河电气工业株式会社 Copper alloy sheet material having low young's modulus and method for producing same
CN102639732A (en) * 2009-12-02 2012-08-15 古河电气工业株式会社 Copper alloy sheet
CN102597283B (en) * 2009-12-02 2014-04-09 古河电气工业株式会社 Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
KR101419147B1 (en) 2009-12-02 2014-07-11 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet and process for producing same
CN102666889A (en) * 2009-12-02 2012-09-12 古河电气工业株式会社 Copper alloy sheet and process for producing same
KR101419145B1 (en) 2009-12-02 2014-07-11 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
EP2508633A4 (en) * 2009-12-02 2014-07-23 Furukawa Electric Co Ltd Copper alloy sheet and process for producing same
CN102695811A (en) * 2009-12-02 2012-09-26 古河电气工业株式会社 Copper alloy sheet and process for producing same
WO2011068124A1 (en) * 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet
WO2011068126A1 (en) 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same
WO2011068135A1 (en) 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same
US9476109B2 (en) 2010-03-31 2016-10-25 Jx Nippon Mining & Metals Corporation Cu—Ni—Si—Co copper alloy for electronic material and process for producing same
EP2592164A4 (en) * 2010-07-07 2015-07-15 Mitsubishi Shindo Kk Cu-ni-si copper alloy plate with excellent deep-draw characteristics and production method thereof
WO2012004868A1 (en) 2010-07-07 2012-01-12 三菱伸銅株式会社 Cu-ni-si copper alloy plate with excellent deep-draw characteristics and production method thereof
US9435016B2 (en) 2010-07-07 2016-09-06 Mitsubishi Shindoh Co., Ltd. Cu-Ni-Si-based copper alloy plate having excellent deep drawing workability and method of manufacturing the same
KR20130122536A (en) 2010-07-07 2013-11-07 미츠비시 신도 가부시키가이샤 Cu-ni-si copper alloy plate with excellent deep-draw characteristics and production method thereof
KR101703679B1 (en) 2010-07-07 2017-02-07 미츠비시 신도 가부시키가이샤 Cu-ni-si copper alloy plate with excellent deep-draw characteristics and production method thereof
JP4830048B1 (en) * 2010-07-07 2011-12-07 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and method for producing the same
CN103080347A (en) * 2010-08-27 2013-05-01 古河电气工业株式会社 Copper alloy sheet and method for producing same
WO2012026611A1 (en) 2010-08-27 2012-03-01 古河電気工業株式会社 Copper alloy sheet and method for producing same
KR20150143893A (en) 2010-08-31 2015-12-23 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material
CN103069026A (en) * 2010-08-31 2013-04-24 古河电气工业株式会社 Copper alloy sheet material and process for producing same
WO2012029717A1 (en) 2010-08-31 2012-03-08 古河電気工業株式会社 Copper alloy sheet material and process for producing same
US9401230B2 (en) 2010-12-13 2016-07-26 Jx Nippon Mining & Metals Corporation Cu-Ni-Si-Co copper alloy for electronic materials and manufacturing method thereof
WO2012111674A1 (en) * 2011-02-16 2012-08-23 株式会社日本製鋼所 High-strength copper alloy forging
CN103384727A (en) * 2011-02-16 2013-11-06 株式会社日本制钢所 High-strength copper alloy forging
JP2012167347A (en) * 2011-02-16 2012-09-06 Japan Steel Works Ltd:The High-rigidity copper alloy forged material
JP4857395B1 (en) * 2011-03-09 2012-01-18 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy and method for producing the same
CN103403202A (en) * 2011-03-09 2013-11-20 Jx日矿日石金属株式会社 Cu-Ni-Si based alloy and process for manufacturing same
WO2012121109A1 (en) * 2011-03-09 2012-09-13 Jx日鉱日石金属株式会社 Cu-Ni-Si BASED ALLOY AND PROCESS FOR MANUFACTURING SAME
KR20140002001A (en) 2011-03-16 2014-01-07 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-ni-si alloy wire having excellent bendability
US9478323B2 (en) 2011-03-28 2016-10-25 Jx Nippon Mining & Metals Corporation Cu—Si—Co-based copper alloy for electronic materials and method for producing the same
US9490039B2 (en) 2011-03-29 2016-11-08 Jx Nippon Mining & Metals Corporation Strip of Cu—Co—Si-based copper alloy for electronic materials and the method for producing the same
WO2012150702A1 (en) 2011-05-02 2012-11-08 古河電気工業株式会社 Copper alloy sheet material and process for producing same
KR20140004748A (en) 2011-05-02 2014-01-13 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material and process for producing same
WO2012160684A1 (en) * 2011-05-25 2012-11-29 三菱伸銅株式会社 Cu-ni-si copper alloy sheet with excellent deep drawability and process for producing same
JP5030191B1 (en) * 2011-05-25 2012-09-19 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and method for producing the same
KR101803801B1 (en) 2011-05-25 2017-12-04 미츠비시 신도 가부시키가이샤 Cu-ni-si copper alloy sheet with excellent deep drawability and process for producing same
WO2012160726A1 (en) * 2011-05-25 2012-11-29 三菱伸銅株式会社 Cu-ni-si copper alloy sheet with excellent deep drawability and process for producing same
KR20140053376A (en) 2011-08-29 2014-05-07 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-ni-si alloy and method for manufacturing same
WO2013058083A1 (en) * 2011-10-21 2013-04-25 Jx日鉱日石金属株式会社 Corson alloy and method for producing same
JP2013100591A (en) * 2011-10-21 2013-05-23 Jx Nippon Mining & Metals Corp Corson alloy and method for producing the same
KR20160148716A (en) 2011-10-21 2016-12-26 제이엑스금속주식회사 Corson alloy and method for producing same
KR20140075788A (en) 2011-10-21 2014-06-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Corson alloy and method for producing same
CN103890206A (en) * 2011-10-21 2014-06-25 Jx日矿日石金属株式会社 Corson alloy and method for producing same
KR20140148437A (en) 2012-03-26 2014-12-31 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Corson alloy and method for producing same
JP2016084542A (en) * 2012-03-26 2016-05-19 Jx金属株式会社 Corson alloy and manufacturing method therefor
JP2014019889A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The Copper alloy material having excellent strength and plating property and production method thereof
JP2014019888A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The High strength copper alloy material, and method of manufacturing the same
JP2015034328A (en) * 2013-08-09 2015-02-19 古河電気工業株式会社 Copper alloy sheet material and production method thereof
US11021774B2 (en) 2013-08-13 2021-06-01 Jx Nippon Mining & Metals Corporation Copper alloy plate having excellent electrical conductivity and bending deflection coefficient
KR20160090871A (en) 2013-11-25 2016-08-01 제이엑스금속주식회사 Copper alloy plate having excellent electroconductivity, moldability, and stress relaxation properties
CN105039775A (en) * 2015-06-02 2015-11-11 苏州晓锋知识产权运营管理有限公司 Manufacturing method of electroconductive spring plate
US11091827B2 (en) 2015-12-28 2021-08-17 Poongsan Corporation Copper alloy material for automobile and electrical and electronic components and method of producing the same
CN107267803A (en) * 2016-03-31 2017-10-20 Jx金属株式会社 The manufacture method of copper alloy plate and copper alloy plate
CN109844147A (en) * 2016-12-14 2019-06-04 古河电气工业株式会社 Copper alloy wire bar and its manufacturing method
US11203799B2 (en) 2017-03-21 2021-12-21 Jx Nippon Mining & Metals Corporation Copper alloy strip exhibiting improved dimensional accuracy after press-working
KR20190119619A (en) 2017-03-21 2019-10-22 제이엑스금속주식회사 Copper alloy bath with improved dimensional accuracy after press working
WO2018174079A1 (en) 2017-03-21 2018-09-27 Jx金属株式会社 Copper alloy strip exhibiting improved dimensional accuracy after press-working
CN110462075B (en) * 2017-03-21 2021-08-31 Jx金属株式会社 Copper alloy strip with improved dimensional accuracy after stamping
WO2018174081A1 (en) 2017-03-22 2018-09-27 Jx金属株式会社 Copper alloy strip exhibiting improved dimensional accuracy after press-working
KR20190119621A (en) 2017-03-22 2019-10-22 제이엑스금속주식회사 Copper alloy bath with improved dimensional accuracy after press working
US11499207B2 (en) 2017-03-22 2022-11-15 Jx Nippon Mining & Metals Corporation Copper alloy strip exhibiting improved dimensional accuracy after press-working
JP2021531403A (en) * 2018-07-12 2021-11-18 マテリオン コーポレイション Copper-nickel-silicon alloy with high strength and high electrical conductivity
CN115627379A (en) * 2022-10-31 2023-01-20 宁波金田铜业(集团)股份有限公司 Copper alloy bar and preparation method thereof
CN115627379B (en) * 2022-10-31 2023-12-26 宁波金田铜业(集团)股份有限公司 Copper alloy bar and preparation method thereof
CN117385230A (en) * 2023-12-13 2024-01-12 中铝科学技术研究院有限公司 Copper alloy material with excellent punching performance and preparation method and application thereof
CN117385230B (en) * 2023-12-13 2024-04-12 中铝科学技术研究院有限公司 Copper alloy material with excellent punching performance and preparation method and application thereof
CN117802428A (en) * 2024-02-29 2024-04-02 中铝科学技术研究院有限公司 Method for improving etching precision of copper material by utilizing grain orientation

Also Published As

Publication number Publication date
JP4566048B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP4566048B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
JP4584692B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP4294196B2 (en) Copper alloy for connector and manufacturing method thereof
JP3953357B2 (en) Copper alloy for electrical and electronic parts
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
WO2013018228A1 (en) Copper alloy
WO2008038593A1 (en) Cu-Ni-Si ALLOY
TW526272B (en) High strength copper alloy excellent in bendability and method for producing the same and terminal and connector using the same
JP5192536B2 (en) Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and fatigue resistance and method for producing the same
JPWO2009096546A1 (en) Copper alloy material for electrical and electronic parts and method for producing the same
JP5619389B2 (en) Copper alloy material
JP4653240B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP2011508081A (en) Copper-nickel-silicon alloy
JP2004225060A (en) Copper alloy, and production method therefor
JP5036623B2 (en) Copper alloy for connector and manufacturing method thereof
JP2010031379A (en) Electronic component composed of copper alloy sheet having excellent bending workability
TW201522671A (en) Copper alloy plate, and electronic component for large current applications and electronic component for heat dissipation applications each provided with same
JPWO2009116649A1 (en) Copper alloy material for electrical and electronic parts
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP2009007625A (en) Method for producing high strength copper alloy for electric/electronic component
JP4166147B2 (en) Method for producing copper alloy plate for high-strength electrical and electronic parts
JP5150908B2 (en) Copper alloy for connector and its manufacturing method
JP4186095B2 (en) Copper alloy for connector and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

R150 Certificate of patent or registration of utility model

Ref document number: 4566048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees