JP4948678B2 - Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same - Google Patents

Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same Download PDF

Info

Publication number
JP4948678B2
JP4948678B2 JP2011513177A JP2011513177A JP4948678B2 JP 4948678 B2 JP4948678 B2 JP 4948678B2 JP 2011513177 A JP2011513177 A JP 2011513177A JP 2011513177 A JP2011513177 A JP 2011513177A JP 4948678 B2 JP4948678 B2 JP 4948678B2
Authority
JP
Japan
Prior art keywords
copper alloy
heat treatment
temperature
rolling
alloy sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011513177A
Other languages
Japanese (ja)
Other versions
JPWO2011068121A1 (en
Inventor
洋 金子
浩二 佐藤
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011513177A priority Critical patent/JP4948678B2/en
Application granted granted Critical
Publication of JP4948678B2 publication Critical patent/JP4948678B2/en
Publication of JPWO2011068121A1 publication Critical patent/JPWO2011068121A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Description

本発明は銅合金板材に関し、さらに詳しくは車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどに適用される銅合金板材、これを用いたコネクタ、並びにこれを製造する銅合金板材の製造方法に関する。   The present invention relates to a copper alloy plate material, and more specifically, a copper alloy plate material applied to lead frames, connectors, terminal materials, relays, switches, sockets, etc. for in-vehicle components and electrical / electronic devices, and a connector using the same, and The present invention relates to a method for producing a copper alloy sheet for producing the same.

車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどの用途に使用される銅合金板材には、特性項目として、導電率、耐力(降伏応力)、引張強度、曲げ加工性、耐応力緩和特性が要求される。近年、電気・電子機器の小型化、軽量化、高機能化、高密度実装化や、使用環境の高温化に伴って、これらの特性に要求されるレベルが高まっている。いくつか代表的な事例を示す。
鉱物資源の低減や、部品の軽量化を背景に、材料の薄肉化が進行しており、なおかつバネ接圧を保つために、従来よりも高強度な材料が使用されている。その際、一般的に曲げ加工性は強度とトレードオフの関係にあるため、高強度の材料を従来通りの曲げ半径で加工すると、クラックが発生する問題が生じる。特に、車載端子や電子機器用途のコネクタなどにはU字型に180°に曲げる設計が必要な場合が多いが、曲げ部外側に大きな応力が付与されるため、曲げ加工性に乏しい材料では、クラックが発生し、コネクタの接圧低下による導通障害が問題になる。対策として、180°曲げする内側に複数のノッチ加工を施したり、密着曲げの設計から内側曲げ半径を大きく取る設計変更などを行ったりする場合があるが、曲げ部品の設計がプレスコストの低減や電子機器部品の小型化と両立できないという問題が生じている。
また、使用環境の高温化が進行している。例えば自動車部品では、二酸化炭素発生量の低減のために、車体軽量化をはかっており、従来、ドアに設置していたような、エンジン制御用のECUなど、電子機器をエンジンルーム内やエンジン付近に設置し、電子機器とエンジンの間のワイヤーハーネスを短くする動きが進んでいる。また、電気自動車化に伴って高電流の用途が増加すると、ジュール熱が問題になる。コネクタに使用される接点材料が100℃以上の高温に長くされされた場合、弾性限内の変位が塑性変位となり、端子嵌合部の接触圧力が低下する問題がある。そこで、耐応力緩和特性に優れた銅合金板材の開発が望まれている。
上記のような問題を解決するため、耐応力緩和特性に優れ、かつ、曲げ加工性を向上させた銅合金材料が要望されている。
Copper alloy sheet materials used for applications such as lead frames, connectors, terminal materials, relays, switches, sockets, etc. for automotive parts and electrical / electronic equipment are characterized by electrical conductivity, yield strength (yield stress), and tensile properties. Strength, bending workability, and stress relaxation resistance are required. In recent years, the level required for these characteristics has increased with the reduction in size, weight, functionality, and high-density mounting of electric and electronic devices and the increase in the use environment. Some typical cases are shown.
In view of the reduction of mineral resources and the weight reduction of parts, the material is becoming thinner, and in order to maintain the spring contact pressure, a material having higher strength than the conventional material is used. At that time, since bending workability is generally in a trade-off relationship with strength, when a high-strength material is processed with a conventional bending radius, there is a problem that cracks occur. In particular, in-vehicle terminals and connectors for use in electronic devices often require a U-shaped bend design of 180 °. However, since a large stress is applied to the outside of the bent portion, a material with poor bending workability is used. Cracks occur, and conduction failure due to a decrease in connector contact pressure becomes a problem. As countermeasures, there are cases where a plurality of notches are made on the inner side to bend 180 °, or a design change that increases the inner bending radius from the design of close contact bending, etc., but the bending part design reduces the press cost. There is a problem that it cannot be compatible with downsizing of electronic device parts.
In addition, the use environment is increasing in temperature. For example, in automobile parts, the body weight has been reduced in order to reduce the amount of carbon dioxide generated, and electronic devices such as ECUs for engine control, which have been installed on doors in the past, are installed in the engine room or near the engine. The movement to shorten the wire harness between the electronic device and the engine is progressing. In addition, when the use of high current increases with the shift to electric vehicles, Joule heat becomes a problem. When the contact material used for the connector is lengthened to a high temperature of 100 ° C. or higher, the displacement within the elastic limit becomes a plastic displacement, and there is a problem that the contact pressure of the terminal fitting portion is lowered. Therefore, development of a copper alloy sheet material excellent in stress relaxation resistance is desired.
In order to solve the above problems, there is a demand for a copper alloy material that is excellent in stress relaxation resistance and has improved bending workability.

この銅合金材料の曲げ加工性向上の要求に対して、結晶方位の制御によって解決する提案がいくつかなされている。
特許文献1では、Cu−Ni−Si系銅合金において、結晶粒径と、{311}、{220}、{200}面からのX線回折強度がある条件を満たす様な結晶方位の場合に、曲げ加工性が優れることが見出されている。また、特許文献2では、Cu−Ni−Si系銅合金において、{200}面および{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。また、特許文献3では、Cu−Ni−Si系銅合金において、Cube方位{100}<001>の割合を適宜制御することによって曲げ加工性が優れることが見出されている。
また、耐応力緩和特性向上の要求に対して、一般的に結晶粒径が大きいほど応力緩和し難い特徴があるため、それを利用して、Cu−Ni−Si系銅合金において耐応力緩和特性と曲げ加工性を両立させることが特許文献4などに示されている。
Several proposals have been made to solve the demand for improving the bending workability of the copper alloy material by controlling the crystal orientation.
In Patent Document 1, in a Cu—Ni—Si based copper alloy, the crystal grain size and the X-ray diffraction intensity from the {311}, {220}, {200} planes satisfy a certain condition. It has been found that bending workability is excellent. Further, in Patent Document 2, in a Cu—Ni—Si based copper alloy, bending workability is excellent when the crystal orientation satisfies the condition that the X-ray diffraction intensity from the {200} plane and the {220} plane is satisfied. Has been found. In Patent Document 3, it has been found that in a Cu—Ni—Si based copper alloy, bending workability is excellent by appropriately controlling the ratio of the Cube orientation {100} <001>.
In addition, in response to the demand for improved stress relaxation resistance, generally, the larger the crystal grain size, the more difficult it is to relax the stress. Patent Document 4 and the like show that both the bending workability and the bending workability are compatible.

特開2006−009137号公報JP 2006-009137 A 特開2008−013836号公報JP 2008-013836 A 特開2006−283059号公報JP 2006-283059 A 特開2008−106356号公報JP 2008-106356 A

ところで、特許文献1、2、4に記載された発明においては、特定面からのX線回折による結晶方位の測定は、ある広がりを持った結晶方位の分布の中のごく一部の特定の面にのみ関するものである。しかも、板面方向の結晶面のみを測定しているに過ぎず、圧延方向や板幅方向にどの結晶面が向いているかについては評価されていないため、結晶方位の制御が不十分であり、曲げ加工性の改善が不十分な場合があった。また、これらの文献に示されている板表面のX線測定では、X線の侵入長は数十ミクロンであるため、それより内部の結晶方位については制御されていなかった。また、特許文献3に記載された発明においては、Cube方位の有効性が指摘されているが、板厚方向の分布やその他の結晶方位成分については制御されていなかった。このように、先行技術では曲げ加工性の改善が不十分な場合があり、特に180°密着曲げの高い応力においてクラックなく曲げ加工ができるレベルには不十分な場合があった。   By the way, in the inventions described in Patent Documents 1, 2, and 4, the measurement of crystal orientation by X-ray diffraction from a specific surface is performed by measuring only a part of specific surfaces in a distribution of crystal orientation having a certain spread. It is only related to Moreover, only the crystal plane in the plate surface direction is measured, and since it has not been evaluated which crystal plane is oriented in the rolling direction or the plate width direction, the control of the crystal orientation is insufficient, In some cases, the improvement of bending workability was insufficient. Further, in the X-ray measurement of the plate surface shown in these documents, since the penetration length of the X-ray is several tens of microns, the internal crystal orientation has not been controlled. In the invention described in Patent Document 3, the effectiveness of the Cube orientation is pointed out, but the distribution in the plate thickness direction and other crystal orientation components were not controlled. As described above, in the prior art, the improvement in bending workability may be insufficient, and in particular, the level at which bending can be performed without cracking at a high stress of 180 ° contact bending may be insufficient.

上記のような課題に鑑み、本発明の目的は、曲げ加工性に優れ、優れた強度を有し、なおかつ、耐応力緩和特性に優れ、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した銅合金板材を提供することにある。また、上記銅合金板材を用いたコネクタ、並びにこれを好適に製造する銅合金板材の製造方法の提供を目的とする。   In view of the problems as described above, the object of the present invention is to provide excellent bending workability, excellent strength, excellent stress relaxation resistance, lead frames for electrical / electronic devices, connectors, terminal materials, etc. Another object of the present invention is to provide a copper alloy sheet material suitable for connectors, terminal materials, relays, switches and the like for automobiles. Moreover, it aims at provision of the manufacturing method of the connector using the said copper alloy board | plate material, and the copper alloy board | plate material which manufactures this suitably.

本発明者らは、種々検討を重ね、電気・電子部品用途に適した銅合金について研究を行い、板厚表層及び、板厚1/4位置のCube方位面積率を制御することによって、180°密着曲げ特性を著しく向上させることができ、加えて結晶粒径を特定範囲に制御することで上記課題を解決しうることを見出した。また、Brass方位の低減が曲げ加工性にさらに寄与することを見出した。また、それに加えて、上記銅合金において特定の添加元素を用いることにより、導電率や曲げ加工性を損なうことなく、強度や応力緩和特性を向上させうることを見出した。本発明者らは、これらの知見に基づき本発明をなすに至ったものである。   The present inventors have made various studies, studied copper alloys suitable for electric / electronic component applications, and controlled the plate thickness surface layer and the Cube orientation area ratio at 1/4 position of the plate thickness to obtain 180 °. It has been found that the close contact bending characteristics can be remarkably improved, and that the above problem can be solved by controlling the crystal grain size within a specific range. It has also been found that the reduction of the Brass orientation further contributes to bending workability. In addition, it has been found that the use of a specific additive element in the copper alloy can improve strength and stress relaxation characteristics without impairing electrical conductivity and bending workability. The present inventors have made the present invention based on these findings.

すなわち、本発明は、以下の手段を提供するものである。
(1)NiとCoの少なくとも1種を合計で0.5〜5.0mass%、Siを0.1〜1.2mass%含み、残部がCuと不可避不純物からなる銅合金組成よりなる板材であって、電子後方散乱回折測定における結晶方位解析における、材料表層のCube方位{0 0 1}<1 0 0>の面積率をW0、材料の深さ位置で全体の1/4の位置でのCube方位面積率をW4としたときに、W0/W4の比が0.8以上1.5以下、W0が5〜48%、平均結晶粒径が12〜100μmであることを特徴とする、180°密着曲げ加工性と耐応力緩和特性に優れた銅合金板材。
(2)さらに、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfからなる群から選ばれる少なくとも1種を合計で0.005〜2.0mass%含有する(1)に記載の銅合金板材。
(3)Brass方位{1 1 0}<1 1 2>の面積率が20%以下であることを特徴とする、(1)または(2)記載の銅合金板材。
(4)(1)〜(3)のいずれか1項に記載の合金板材からなるコネクタ。
(5)(1)〜(3)のいずれか1項に記載の合金板材の製造方法であって、
(1)又は(2)に記載の組成を有する銅合金鋳塊に対し、少なくとも下記の工程I、II、IIIIV、及びVによる処理をその順で施した後、加工率5〜40%の仕上げ圧延を行うことを特徴とする銅合金板材の製造方法。
[工程I:1パス加工率を30%以下とし各パス間の保持時間を20〜30秒とした熱間圧延工程]
[工程II:加工率80%〜99%の冷間圧延工程]
[工程III:300〜700℃の温度で10秒〜5時間の中間熱処理工程及びその後に行う加工率5〜50%の冷間圧延工程]
[工程IV:800〜1000℃で行う溶体化熱処理工程]
[工程V:350〜600℃の温度で5分間〜20時間の時効析出熱処理工程及び加工率5〜40%の仕上げ冷間圧延工程]
That is, the present invention provides the following means.
(1) A plate material comprising a copper alloy composition containing 0.5 to 5.0 mass% in total of at least one of Ni and Co, 0.1 to 1.2 mass% of Si, and the balance of Cu and inevitable impurities. Then, in the crystal orientation analysis in the electron backscattering diffraction measurement, the area ratio of the Cube orientation {0 0 1} <1 0 0> of the material surface layer is W0, and the Cube at the 1/4 position of the whole at the depth position of the material. When the orientation area ratio is W4, the ratio of W0 / W4 is 0.8 to 1.5, W0 is 5 to 48%, and the average crystal grain size is 12 to 100 μm, 180 ° Copper alloy sheet with excellent adhesion bending workability and stress relaxation resistance.
(2) Further, 0.005 to 2.0 mass% in total of at least one selected from the group consisting of Sn, Zn, Ag, Mn, B, P, Mg, Cr, Fe, Ti, Zr, and Hf is contained. The copper alloy sheet according to (1).
(3) The copper alloy sheet material according to (1) or (2), wherein the area ratio of the Brass orientation {1 1 0} <1 1 2> is 20% or less.
(4) A connector comprising the copper alloy sheet according to any one of (1) to (3).
(5) A method for producing a copper alloy sheet according to any one of (1) to (3),
After the copper alloy ingot having the composition described in (1) or (2) is subjected to at least the following steps I, II, III , IV , and V in that order, the processing rate is 5 to 40%. A method for producing a copper alloy sheet material comprising performing finish rolling.
[Step I: Hot rolling step with a pass processing rate of 30% or less and a holding time between passes of 20 to 30 seconds]
[Step II: Cold rolling step with a processing rate of 80% to 99%]
[Step III: An intermediate heat treatment step at a temperature of 300 to 700 ° C. for 10 seconds to 5 hours and a cold rolling step performed thereafter at a processing rate of 5 to 50%]
[Step IV: Solution heat treatment step performed at 800 to 1000 ° C.]
[Step V: Aging precipitation heat treatment step at 350 to 600 ° C. for 5 minutes to 20 hours and finish cold rolling step with a processing rate of 5 to 40%]

本発明の銅合金板材は、曲げ加工性に優れ、優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに好適である。また、本発明の銅合金板材の製造方法によれば、上記の優れた特性を有する銅合金板材を好適に製造することができる。   The copper alloy sheet material of the present invention is excellent in bending workability and has excellent strength, such as lead frames, connectors and terminal materials for electric and electronic equipment, connectors and terminal materials for automobiles, relays, switches, etc. It is suitable for. Moreover, according to the manufacturing method of the copper alloy plate material of this invention, the copper alloy plate material which has said outstanding characteristic can be manufactured suitably.

Cube方位からの回転角の計算方法を示した説明図である。It is explanatory drawing which showed the calculation method of the rotation angle from Cube azimuth | direction. 実施例における応力緩和特性の試験方法の説明図であり、(a)は熱処理前、(b)は熱処理後の状態をそれぞれ示す。It is explanatory drawing of the test method of the stress relaxation characteristic in an Example, (a) shows the state before heat processing, (b) shows the state after heat processing, respectively.

本発明の銅合金板材の好ましい実施の態様について、詳細に説明する。ここで、「銅合金材料」とは、銅合金素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。そのなかで板材とは、特定の厚みを有し形状的に安定しており面方向に広がりをもつものを指し、広義には条材を含む意味である。ここで、板材において、「材料表層」とは、「板表層」を意味し、「材料の深さ位置」とは、「板厚方向の位置」を意味する。板材の厚さは特に限定されないが、本発明の効果が一層よく顕れ実際的なアプリケーションに適合することを考慮すると、8〜800μmが好ましく、50〜70μmがより好ましい。
なお、本発明の銅合金板材は、その特性を圧延板の所定の方向における原子面の集積率で規定するものであるが、これは銅合金板材としてそのような特性を有していれば良いのであって、銅合金板材の形状は板材や条材に限定されるものではなく、本発明では、管材も板材として解釈して取り扱うことができるものとする。
A preferred embodiment of the copper alloy sheet material of the present invention will be described in detail. Here, the “copper alloy material” means a material obtained by processing a copper alloy material into a predetermined shape (for example, a plate, a strip, a foil, a bar, a wire, or the like). Among them, the plate material refers to a material having a specific thickness and stable in shape and having a spread in the surface direction, and in a broad sense, includes a strip material. Here, in the plate material, “material surface layer” means “plate surface layer”, and “material depth position” means “position in the plate thickness direction”. The thickness of the plate material is not particularly limited, but it is preferably 8 to 800 μm, and more preferably 50 to 70 μm, considering that the effects of the present invention are better manifested and suitable for practical applications.
In addition, although the copper alloy plate material of this invention prescribes | regulates the characteristic with the integration rate of the atomic surface in the predetermined direction of a rolled sheet, this should just have such a characteristic as a copper alloy plate material. Therefore, the shape of the copper alloy sheet is not limited to a sheet or a strip, and in the present invention, the pipe can be interpreted and handled as a sheet.

(EBSD測定による規定)
材料の曲げ加工時のクラックが発生する原因を明らかにするために、本発明者らは、曲げ変形した後の断面の金属組織を電子顕微鏡及び電子後方散乱回折測定(以下、EBSDともいう)によって詳細に調査した。その結果、基体材料は均一に変形しているのではなく、特定の結晶方位の領域のみに変形が集中する、不均一な変形が進行することが観察された。そして、その不均一変形により、曲げ加工した後の基体材料表面には、数μmの深さのシワや、クラックが発生することが解った。
さらに、90°曲げ加工では歪みは板厚方向最表層に付与されるのに対し、180°曲げにおいては薄板の板厚方向最表層のみならず、板厚1/4位置まで大きく歪んでおり、表層から発達する局所変形領域に対し、表層近傍の結晶粒のみならず板厚1/4位置の深さまでの結晶粒が関与していることが解った。そして、その局所変形帯はCube方位粒にはあまり観察されず、Cube方位は不均一変形を抑制する効果があることが解った。その結果、板表面に発生するシワが低減され、クラックが抑制されることが解った。またBrass方位は曲げ変形後に局所変形が伴っていることが多く、曲げ性には悪影響を及ぼすことが解った。
(Regulation by EBSD measurement)
In order to clarify the cause of the occurrence of cracks during bending of the material, the present inventors analyzed the metal structure of the cross section after bending deformation by an electron microscope and electron backscatter diffraction measurement (hereinafter also referred to as EBSD). We investigated in detail. As a result, it was observed that the base material was not uniformly deformed, but non-uniform deformation progressed, in which the deformation was concentrated only in a region having a specific crystal orientation. Then, it was found that due to the non-uniform deformation, wrinkles and cracks having a depth of several μm were generated on the surface of the base material after bending.
Furthermore, in 90 ° bending, strain is applied to the outermost layer in the plate thickness direction, whereas in 180 ° bending, not only the outermost layer in the plate thickness direction of the thin plate but also greatly distorted to the position of the plate thickness ¼, It was found that not only the crystal grains in the vicinity of the surface layer but also the crystal grains up to the depth of the plate thickness ¼ position are involved in the local deformation region developed from the surface layer. And the local deformation | transformation zone | band was not observed so much in Cube direction grain, and it turned out that Cube direction has the effect which suppresses nonuniform deformation. As a result, it was found that wrinkles generated on the plate surface were reduced and cracks were suppressed. In addition, it was found that the Brass orientation is often accompanied by local deformation after bending deformation, and adversely affects bendability.

板表層のCube方位の面積率W0が5〜48%で、板厚1/4深さ位置でのCube方位面積率W4との比であるW0/W4が0.8以上の場合に、180°密着曲げ性が優れる。好ましくはW0は10〜40%、W0/W4は0.9以上である。W0/W4を上記の範囲とすることで、特に曲げ加工性の向上が図られ、曲げ加工性と材料強度とを好適に両立することができる。
板表層のBrass方位面積率は20%以下であることが好ましく、より好ましくは15%以下、さらに好ましくは10%以下である。Brass方位面積率を上記の範囲とすることが、同様に、高い曲げ加工性を実現し、これと材料強度との両立の観点から好ましい。
180 ° when the area ratio W0 of the Cube orientation of the plate surface layer is 5 to 48% and the ratio of W0 / W4, which is the ratio of the Cube orientation area ratio W4 at the ¼ depth position, is 0.8 or more. Excellent adhesion bendability. Preferably, W0 is 10 to 40% and W0 / W4 is 0.9 or more. By setting W0 / W4 in the above range, the bending workability can be particularly improved, and both the bending workability and the material strength can be suitably achieved.
The Brass surface area ratio of the plate surface layer is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less. Similarly, it is preferable to set the Brass azimuth area ratio within the above range from the viewpoint of achieving both high bending workability and material strength.

本明細書における結晶方位の表示方法は、材料の圧延方向(RD)をX軸、板幅方向(TD)をY軸、圧延法線方向(ND)をZ軸の直角座標系を取り、材料中の各領域がZ軸に垂直な(圧延面に平行な)結晶面の指数(hkl)と、X軸に平行な結晶方向の指数[uvw]とを用いて、(hkl)[uvw]の形で示す。また、(1 3 2)[6 −4 3]と(2 3 1)[3 −4 6]などのように、銅合金の立方晶の対称性のもとで等価な方位については、ファミリーを表すカッコ記号を使用し、{hkl}<uvw>と示す。
Cube方位とは、圧延面法線方向(ND)に(100)面を、圧延方向(RD)に(100)面を向いている状態であり、{0 0 1}<1 0 0>の指数で示される。
Brass方位とは、圧延面法線方向(ND)に(110)面を、圧延方向(RD)に(112)面を向いている状態であり、{1 1 0}<1 1 2>の指数で示される。
The crystal orientation display method in the present specification takes a rectangular coordinate system in which the rolling direction (RD) of the material is the X axis, the sheet width direction (TD) is the Y axis, and the rolling normal direction (ND) is the Z axis. Using the index (hkl) of the crystal plane in which each region is perpendicular to the Z axis (parallel to the rolling surface) and the index [uvw] of the crystal direction parallel to the X axis, (hkl) [uvw] Shown in shape. For the equivalent orientations under the cubic symmetry of the copper alloy, such as (1 3 2) [6 -4 3] and (2 3 1) [3 -4 6], The parenthesis is used to indicate {hkl} <uvw>.
The Cube orientation is a state in which the (100) plane faces the rolling surface normal direction (ND) and the (100) plane faces the rolling direction (RD), and an index of {0 0 1} <1 0 0> Indicated by
The Brass orientation is a state in which the (110) plane faces the rolling surface normal direction (ND) and the (112) plane faces the rolling direction (RD), and an index of {1 1 0} <1 1 2> Indicated by

本発明における上記結晶方位の解析には、EBSD法を用いる。EBSDとは、Electron Back Scatter Diffraction(電子後方散乱回折)の略で、走査電子顕微鏡(Scanning Electron Microscope:SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用した結晶方位解析技術のことである。本発明においては、結晶粒を200個以上含む、500μm四方の試料面積に対し、0.5μmのステップでスキャンし、方位を解析する。
Cube方位及びBrass方位の面積率とは、各理想方位(上記Cube方位またはBrass方位)からのずれ角度が10°以内の領域の面積を、測定面積で割って算出したものである。
理想方位からのずれ角度については、共通の回転軸を中心に回転角を計算し、ずれ角度とした。図1に、Cube方位からのずれ角度が10°以内の方位の例を示した。ここでは、(100)及び(110)及び(111)の回転軸に関して、10°以内の方位を示しているが、あらゆる回転軸に関してCube方位との回転角度を計算した。回転軸は最も小さいずれ角度で表現できるものを採用した。全ての測定点に対してこのずれ角度を計算して小数第一位までを有効数字とし、Cube方位、Brass方位のそれぞれから10°以内の方位を持つ結晶粒の面積を全測定面積で除し、面積率とした。
EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、本明細書中では面積率として記載した。また、方位分布は板表面から測定した。
The EBSD method is used for the analysis of the crystal orientation in the present invention. EBSD is an abbreviation for Electron Back Scatter Diffraction (Electron Backscatter Diffraction). Reflected Electron Kikuchi Line Diffraction (Kikuchi pattern) generated when a sample is irradiated with an electron beam in a Scanning Electron Microscope (SEM). This is the crystal orientation analysis technology used. In the present invention, a 500 μm square sample area containing 200 or more crystal grains is scanned in steps of 0.5 μm and the orientation is analyzed.
The area ratio of the Cube azimuth and the Brass azimuth is calculated by dividing the area of the region whose deviation angle from each ideal azimuth (the Cube azimuth or the Brass azimuth) is within 10 ° by the measurement area.
Regarding the deviation angle from the ideal orientation, the rotation angle was calculated around the common rotation axis, and was taken as the deviation angle. FIG. 1 shows an example of an orientation whose deviation angle from the Cube orientation is within 10 °. Here, although the azimuth | direction within 10 degrees is shown regarding the rotation axis of (100) and (110) and (111), the rotation angle with Cube azimuth | direction was calculated about all the rotation axes. The rotation axis that can be expressed at the smallest angle is adopted. The deviation angle is calculated for all measurement points, and the first decimal place is an effective number, and the area of the crystal grains having an orientation within 10 ° from each of the Cube orientation and the Brass orientation is divided by the total measurement area. And the area ratio.
The information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers at which the electron beam penetrates into the sample. It was described as an area ratio. The orientation distribution was measured from the plate surface.

なお、EBSD測定にあたっては、鮮明な菊池線回折像を得るために、機械研磨の後に、コロイダルシリカの砥粒を使用して、基体表面を鏡面研磨した後に、測定を行うことが好ましい。
板厚1/4位置でEBSD測定にあたっては、電解研磨によって1/4位置までの表層部を溶解させた後、その面を鏡面研磨し、上記の板表層の場合と同様に測定した。
In the EBSD measurement, in order to obtain a clear Kikuchi line diffraction image, it is preferable to perform the measurement after mirror polishing the surface of the substrate using colloidal silica abrasive grains after mechanical polishing.
In the EBSD measurement at the plate thickness 1/4 position, the surface layer portion up to the 1/4 position was dissolved by electrolytic polishing, and then the surface was mirror-polished and measured in the same manner as in the case of the above plate surface layer.

ここで、EBSD測定の特徴について、X線回折測定との対比として説明する。まず1点目に挙げられるのは、X線回折測定によったのでは測定することができない結晶方位があり、それがS方位及びBR方位となる。換言すれば、EBSDを採用することにより、初めて、S方位及びBR方位に関する情報が得られ、それにより特定される合金組織と作用との関係が明らかになる。2点目は、X線回折はND//{hkl}の±0.5°程度に含まれる結晶方位の分量を測定している。一方、EBSDは当該方位から±10°に含まれる結晶方位の分量を測定している。したがって、EBSD測定によれば桁違いに広範な合金組織に関する情報が網羅的に得られ、合金材料全体としてX線回折では特定することが難しい状態が明らかになる。以上のとおり、EBSD測定とX線回折測定とで得られる情報はその内容及び性質が異なる。なお、本明細書において特に断らない限り、EBSDの結果は、銅合金板材のND方向に対して行ったものである。   Here, the characteristics of the EBSD measurement will be described as contrast with the X-ray diffraction measurement. First, the first point is a crystal orientation that cannot be measured by X-ray diffraction measurement, and these are the S orientation and the BR orientation. In other words, by using EBSD, information on the S orientation and the BR orientation is obtained for the first time, and the relationship between the alloy structure and the action specified thereby becomes clear. Second, X-ray diffraction measures the amount of crystal orientation included in about ± 0.5 ° of ND // {hkl}. On the other hand, EBSD measures the amount of crystal orientation included within ± 10 ° from the orientation. Therefore, according to the EBSD measurement, information on an extremely wide range of alloy structure is comprehensively obtained, and it becomes clear that it is difficult to specify the entire alloy material by X-ray diffraction. As described above, contents and properties of information obtained by EBSD measurement and X-ray diffraction measurement are different. In addition, unless otherwise indicated in this specification, the result of EBSD was performed with respect to the ND direction of a copper alloy board | plate material.

(合金組成等)
コネクタ用材料として好適に用いられる銅系材料は、純銅系と高強度銅系に分けられ、高強度銅系材料はさらに固溶型と析出型に分けられる。本発明においては、コネクタに要求される導電性、機械的強度および耐熱性を有する析出型銅合金が好ましい。特に、高強度と高導電性を両立させるためには、Cu−Ni−Si系、Cu−Ni−Co−Si系、Cu−Co−Si系合金が好ましい。
(Alloy composition, etc.)
Copper-based materials suitably used as connector materials are classified into pure copper-based and high-strength copper-based materials, and high-strength copper-based materials are further classified into a solid solution type and a precipitation type. In this invention, the precipitation type copper alloy which has the electroconductivity, mechanical strength, and heat resistance which are requested | required of a connector is preferable. In particular, in order to achieve both high strength and high conductivity, Cu—Ni—Si, Cu—Ni—Co—Si, and Cu—Co—Si alloys are preferable.

・Ni,Co,Si
本発明において、銅(Cu)に添加する第1の添加元素群であるニッケル(Ni)とコバルト(Co)とケイ素(Si)について、それぞれの添加量を制御することにより、Ni−Si、Co−Si、Ni−Co−Siの化合物を析出させて銅合金の強度を向上させることができる。その添加量は、NiとCoのいずれか1種または2種を合計で、好ましくは0.5〜5.0mass%、さらに好ましくは0.6〜4.5mass%、より好ましくは0.8〜4.0mass%である。Siの含有量としては、好ましくは0.1〜1.5mass%、さらに好ましくは0.2〜1.2mass%である。これらの元素は多すぎると導電率を低下させやすく、また、少なすぎると強度が不足しやすい。なお、導電率を高めたい場合は、Coの添加を必須とすることが好ましく、その場合のCoの添加量は、0.4〜1.5mass%、より好ましくは0.6〜2.0mass%である。なお、Coは希少元素であるとともに、添加によって溶体化温度を高めるため、用途に応じて顕著に導電性を高める必要が無い場合は、添加しないことが好ましい。
・ Ni, Co, Si
In the present invention, nickel (Ni), cobalt (Co), and silicon (Si), which are the first additive element group to be added to copper (Cu), are controlled by controlling the addition amount of Ni—Si, Co. It is possible to improve the strength of the copper alloy by precipitating a compound of -Si and Ni-Co-Si. The amount of addition is one or two of Ni and Co in total, preferably 0.5 to 5.0 mass%, more preferably 0.6 to 4.5 mass%, more preferably 0.8 to 4.0 mass%. As content of Si, Preferably it is 0.1-1.5 mass%, More preferably, it is 0.2-1.2 mass%. If the amount of these elements is too large, the electrical conductivity tends to decrease, and if the amount is too small, the strength tends to be insufficient. In addition, when it is desired to increase the electrical conductivity, it is preferable to add Co. In this case, the amount of Co added is 0.4 to 1.5 mass%, more preferably 0.6 to 2.0 mass%. It is. In addition, since Co is a rare element and increases the solution temperature by addition, it is preferable not to add it when there is no need to significantly increase the conductivity depending on the application.

・平均粒径
平均結晶粒径は12〜100μmとする。小さすぎると耐応力緩和特性が劣り、また大きすぎる場合は曲げ加工性が劣るため、好ましくない。また、結晶粒径を12μmよりも小さい範囲に制御するためには、後述するように最終溶体化熱処理にて到達温度を比較的低温に制御する必要があるが、その場合、溶質元素の固溶が不十分となり、時効析出硬化の減少を伴う場合がある。その観点からも平均結晶粒径は12μm以上とする。更に好ましくは、22〜80μmである。
なお、本発明における平均結晶粒径は、JIS H 0501(切断法)に準じて測定したものをいう。
-Average particle diameter An average crystal grain diameter shall be 12-100 micrometers. If it is too small, the stress relaxation resistance is inferior, and if it is too large, the bending workability is inferior. Further, in order to control the crystal grain size to a range smaller than 12 μm, it is necessary to control the ultimate temperature in the final solution heat treatment as will be described later. May become insufficient and may be accompanied by a decrease in age precipitation hardening. From this viewpoint, the average crystal grain size is 12 μm or more. More preferably, it is 22-80 micrometers.
In addition, the average crystal grain diameter in the present invention is a value measured according to JIS H 0501 (cutting method).

・その他の元素
本発明の銅合金板材は、上記第1の添加元素群とともに、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfからなる群から選ばれる少なくとも1種を含有してもよい。この組成での平均結晶粒径とその好ましい範囲も上記と同じである。
添加効果を充分に発現させ、かつ導電率を低下させないためには、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfからなる群から選ばれる少なくとも1種の添加元素の含有量は、総量で0.005〜2.0mass%とし、好ましくは0.1〜1.5mass%、より好ましくは、0.7〜1.2mass%である。これらの添加元素が総量で多すぎると導電率を低下させる。少なすぎると、これらの元素を添加した効果がほとんど発揮されない。
-Other elements The copper alloy sheet material of the present invention is selected from the group consisting of Sn, Zn, Ag, Mn, B, P, Mg, Cr, Fe, Ti, Zr and Hf together with the first additive element group. You may contain at least 1 sort. The average crystal grain size in this composition and its preferred range are also the same as above.
At least one selected from the group consisting of Sn, Zn, Ag, Mn, B, P, Mg, Cr, Fe, Ti, Zr and Hf in order to fully exhibit the additive effect and not lower the electrical conductivity The total content of additive elements is 0.005 to 2.0 mass%, preferably 0.1 to 1.5 mass%, and more preferably 0.7 to 1.2 mass%. If the total amount of these additive elements is too large, the conductivity is lowered. If the amount is too small, the effect of adding these elements is hardly exhibited.

以下に、各元素の添加効果を示す。Mg、Sn、Znは、Cu−Ni−Si系、Cu−Ni−Co−Si系、Cu−Co−Si系銅合金に添加することで耐応力緩和特性が向上する。それぞれを添加した場合よりも併せて添加した場合に相乗効果によってさらに耐応力緩和特性が向上する。また、半田脆化を著しく改善する効果がある。Mg、Sn、Znの合計の好ましい範囲は、合計で0.12〜1.0mass%である。   The effect of adding each element is shown below. When Mg, Sn, and Zn are added to Cu—Ni—Si, Cu—Ni—Co—Si, and Cu—Co—Si copper alloys, the stress relaxation resistance is improved. The stress relaxation resistance is further improved by a synergistic effect when added together than when they are added. In addition, there is an effect of remarkably improving solder embrittlement. A preferable range of the total of Mg, Sn, and Zn is 0.12 to 1.0 mass% in total.

Mn、Ag、B、Pは添加すると熱間加工性を向上させるとともに、強度を向上する。Mn、Ag、B、Pの合計の好ましい範囲は、合計で0.12〜0.5mass%である。   When Mn, Ag, B, and P are added, the hot workability is improved and the strength is improved. A preferable range of the total of Mn, Ag, B, and P is 0.12 to 0.5 mass% in total.

Cr、Fe、Ti、Zr、Hfは、主な添加元素であるNiやCoやSiとの化合物や単体で微細に析出し、析出硬化に寄与する。また、化合物として50〜500nmの大きさで析出し、粒成長を抑制することによって結晶粒径を微細にする効果があり、曲げ加工性を良好にする。Cr、Fe、Ti、Zr、Hfの合計の好ましい範囲は、合計で0.12〜0.5mass%である。   Cr, Fe, Ti, Zr, and Hf are finely precipitated as a single additive or a compound with Ni, Co, or Si as main additive elements, and contribute to precipitation hardening. Moreover, it precipitates with the magnitude | size of 50-500 nm as a compound, and there exists an effect which makes a crystal grain size fine by suppressing grain growth, and makes bending workability favorable. A preferable total range of Cr, Fe, Ti, Zr, and Hf is 0.12 to 0.5 mass% in total.

(製造方法等)
次に、板厚表層付近及び板厚1/4位置のCube方位及びBrass方位の面積率を制御する方法について説明する。ここでは、析出型銅合金の板材(条材)を例に挙げて説明するが、固溶型合金材料、希薄系合金材料、純銅系材料に展開することが可能である。
一般に、析出型銅合金は、均質化熱処理した鋳塊を熱間圧延と冷間圧延の各ステップで薄板化し、700〜1020℃の温度範囲で最終溶体化熱処理を行って溶質原子を再固溶させた後に、時効析出熱処理と仕上げ冷間圧延によって必要な強度を満足させるように製造される。時効析出熱処理と仕上げ冷間圧延の条件は、所望の強度及び導電性などの特性に応じて、調整される。集合組織は、この一連のステップにおける、最終溶体化熱処理中に起きる再結晶によってそのおおよそが決定し、仕上げ圧延中に起きる方位の回転により、最終的に決定される。
上記熱間圧延は、高温での低い変形抵抗と高い変形能を利用するためであり、冷間に比べて加工に必要なエネルギーを少なくする大きな利点がある。一方、析出硬化型合金においては、熱間圧延温度によっては析出が起きる場合があるが、この高温での析出物は一般的に粗大であるため、最終溶体化熱処理においても完全に固溶されず、結果として時効析出熱処理での析出硬化が不足する場合がある。もしくは、最終溶体化熱処理を高温化し、熱間圧延中の析出物を完全固溶させると結晶粒が粗大化し、今度は曲げ加工性が劣化する場合がある。この様な理由から、熱間圧延中には極力析出を抑制するために、1パス加工率を極力高めて総パス数を減少させ、パスとパスの間の保持は取らないことで、熱間圧延を高温短時間で終え、熱間圧延後は水冷などの方法によって急冷し、過飽和固溶体に近い状態に保つことが一般的な熱間圧延工程の設計指針である。
(Manufacturing method etc.)
Next, a method for controlling the area ratio of the Cube orientation and the Brass orientation in the vicinity of the plate thickness surface layer and the 1/4 thickness position will be described. Here, a plate material (strip material) of a precipitation-type copper alloy will be described as an example, but the present invention can be applied to a solid solution alloy material, a dilute alloy material, and a pure copper material.
In general, a precipitation-type copper alloy is obtained by thinning a homogenized heat-treated ingot at each step of hot rolling and cold rolling, and performing a final solution heat treatment in a temperature range of 700 to 1020 ° C. to re-solidify solute atoms. Then, it is manufactured so as to satisfy the required strength by aging precipitation heat treatment and finish cold rolling. The conditions for the aging precipitation heat treatment and the finish cold rolling are adjusted according to characteristics such as desired strength and conductivity. The texture is roughly determined by recrystallization occurring during the final solution heat treatment in this series of steps, and finally determined by the orientation rotation occurring during finish rolling.
The hot rolling is for utilizing low deformation resistance and high deformability at high temperatures, and has a great advantage of reducing energy required for processing as compared with cold. On the other hand, in precipitation hardening type alloys, precipitation may occur depending on the hot rolling temperature. However, precipitates at this high temperature are generally coarse, so they are not completely dissolved in the final solution heat treatment. As a result, precipitation hardening in the aging precipitation heat treatment may be insufficient. Alternatively, if the final solution heat treatment is heated to a high temperature and the precipitates in hot rolling are completely dissolved, the crystal grains become coarse, and this time the bending workability may deteriorate. For this reason, in order to suppress precipitation as much as possible during hot rolling, the number of passes is reduced by increasing the one-pass processing rate as much as possible, and no holding is taken between passes. It is a design guideline for a general hot rolling process that rolling is finished in a short time at a high temperature, and after hot rolling, it is rapidly cooled by a method such as water cooling to keep it close to a supersaturated solid solution.

上記のような一般的な熱間圧延及び一連の製造方法では板厚表層付近及び板厚1/4位置のCube方位及びBrass方位の面積率を、本発明の規定する範囲に安定して制御することは困難であり、下記に示す製造方法によって達成されることが確認された。
・ 工程条件I
一つ目に、熱間圧延は、1パス加工率は30%以下とし、リバース式圧延によって材料にとっての圧延方向が1パスごとに交互に変わる圧延が良い。これは、大きな剪断応力が付与される表層に対して1回毎の圧延において交互に圧延方向を変えることで、剪断歪みを打ち消し合って板表層の結晶の回転を制御し、圧縮応力が付与される内部とは異なる組織が形成されることを抑制する効果によると考えられる。上記の条件によって、板厚方向の組織の変動を軽減できる。また、パスとパスの間の保持時間は20秒〜100秒(好ましくは20〜50秒、より好ましくは20〜30秒)とし、パスとパスの間の温度低下は5〜100℃とするのが良い。このパスとパスの間の時間及び温度の制御によって材料中に静的な再結晶及び回復が起き、板厚方向の組織の変動を軽減にすることができる。パスとパスの間の温度は放射温度計や接触式熱電対温度計によって測定する。パスとパスの温度の制御にあたっては、バーナーなどによって加熱、及び空冷や水冷によって冷却する。
なお、パスとパスの保持時間が100秒を超える場合は、材料温度が下がり過ぎてしまうために、圧延中に面割れやエッジ割れを起こすため、好ましくない。
・工程条件II
二つ目に、熱間圧延とその後のスケール除去の後に行う冷間圧延は、加工率が90%〜99%で潤滑圧延が好ましい。90%未満では、熱間圧延で形成された表層と内部の組織変動の影響を受ける場合がある。また99%を超えるとエッヂ割れが発生する場合がある。
In the general hot rolling and a series of manufacturing methods as described above, the area ratios of the Cube orientation and the Brass orientation in the vicinity of the thickness surface layer and the 1/4 thickness position are stably controlled within the range defined by the present invention. This is difficult to achieve and has been confirmed to be achieved by the manufacturing method shown below.
・ Process conditions I
First, the hot rolling is preferably one in which the one-pass processing rate is 30% or less, and the rolling direction for the material is alternately changed for each pass by reverse rolling. This is because by changing the rolling direction alternately in each rolling for the surface layer to which a large shear stress is applied, the shear strain is canceled and the rotation of the crystal on the plate surface layer is controlled, and the compressive stress is applied. This is considered to be due to the effect of suppressing the formation of a different structure from the inside. Under the above conditions, the fluctuation of the structure in the thickness direction can be reduced. Also, the holding time between passes is 20 to 100 seconds (preferably 20 to 50 seconds, more preferably 20 to 30 seconds), and the temperature drop between passes is 5 to 100 ° C. Is good. By controlling the time and temperature between the passes, static recrystallization and recovery occur in the material, and the variation of the structure in the thickness direction can be reduced. The temperature between passes is measured with a radiation thermometer or a contact thermocouple thermometer. In controlling the pass and the temperature of the pass, it is heated by a burner or the like, and cooled by air cooling or water cooling.
Note that when the pass and the holding time of the pass exceed 100 seconds, the material temperature is excessively lowered, so that surface cracks and edge cracks occur during rolling, which is not preferable.
・ Process condition II
Second, cold rolling performed after hot rolling and subsequent scale removal is preferably 90% to 99% and lubricated rolling. If it is less than 90%, the surface layer formed by hot rolling and the internal structure may be affected. If it exceeds 99%, edge cracks may occur.

・工程条件III
三つ目に、最終溶体化熱処理の前に、焼鈍熱処理(中間熱処理)とその後に低い加工率の冷間圧延を導入し、その後に最終溶体化熱処理を施すのが良い。この導入される焼鈍熱処理は300〜700℃の温度で10秒〜5時間が、その後の冷間圧延は、5〜50%の加工率が良い。
・工程条件IV
四つ目に、最終溶体化熱処理を平均結晶粒径が12〜100μmのサイズになるような比較的高い温度で行うのが良い。これは上記熱間圧延のパスとパスの間に発生した析出物と、最終溶体化熱処理の前の焼鈍熱処理に発生した析出物を固溶させるためである。上記の一般的な工程では、最終溶体化熱処理の温度を高めると結晶粒の粗大化により曲げ加工性が低下するが、本発明のようにCube方位面積率を高めた場合には、結晶方位の効果によって曲げ性の劣化は軽微である。平均結晶粒径を12〜100μmに制御するための温度は、合金成分によって異なるが、800℃〜1000℃の温度が良い。
・ Process condition III
Third, before the final solution heat treatment, it is preferable to introduce an annealing heat treatment (intermediate heat treatment) and then cold rolling with a low processing rate, and then perform the final solution heat treatment. This introduced annealing heat treatment is performed at a temperature of 300 to 700 ° C. for 10 seconds to 5 hours, and the subsequent cold rolling has a working rate of 5 to 50%.
・ Process condition IV
Fourth, the final solution heat treatment is preferably performed at a relatively high temperature such that the average crystal grain size is 12 to 100 μm. This is because the precipitate generated between the hot rolling passes and the precipitate generated in the annealing heat treatment before the final solution heat treatment are dissolved. In the above general process, when the temperature of the final solution heat treatment is increased, the bending workability is lowered due to the coarsening of the crystal grains, but when the Cube orientation area ratio is increased as in the present invention, the crystal orientation is increased. The deterioration of bendability is slight due to the effect. The temperature for controlling the average crystal grain size to 12 to 100 μm varies depending on the alloy components, but a temperature of 800 ° C. to 1000 ° C. is preferable.

上記の四つの中でも、一つ目(条件I)、三つ目(条件III)及び四つ目(条件IV)に示した製造方法は従来の一般的な析出型銅合金の製造方法とは異なり、本発明にとって極めて重要である。二つ目に示した製造方法を併用することによって、更に好ましい状態が得られる。   Among the above four, the production methods shown in the first (condition I), the third (condition III) and the fourth (condition IV) are different from the conventional production methods for precipitation type copper alloys. It is extremely important for the present invention. A more preferable state can be obtained by using the second production method in combination.

Cu−Ni−Si系における熱間圧延についてのこれまでの文献では、熱間圧延中の析出は極力抑制すべき現象と記載されている。そのため、曲げ加工性や強度の低下を招くNi及びSiの析出、及びその析出物の粗大化を抑制する方法として、例えば特許第4209749号の段落[0025]では、熱間圧延時間を短縮する方法が開示されている。また、例えば特許第4444143号では、熱間圧延自体を行わない方法として双ロール鋳造法が開示されている。
本発明における新規の製法は、板厚方向の組織差低減という困難な課題を達成するために、工程条件Iの様にパス間の保持時間をあえて長くとり、一方でその間に起こる析出の対策として、工程条件IVのように積極的に高い温度を採用するものである。
Previous literature on hot rolling in the Cu—Ni—Si system describes precipitation during hot rolling as a phenomenon that should be suppressed as much as possible. Therefore, as a method for suppressing the precipitation of Ni and Si that causes a decrease in bending workability and strength, and the coarsening of the precipitate, for example, in paragraph [0025] of Japanese Patent No. 4209749, a method of shortening the hot rolling time Is disclosed. Further, for example, in Japanese Patent No. 4444143, a twin roll casting method is disclosed as a method in which hot rolling itself is not performed.
In order to achieve the difficult task of reducing the structural difference in the sheet thickness direction, the novel manufacturing method in the present invention takes a long holding time between passes as in process condition I, and on the other hand, as a countermeasure against precipitation that occurs during that time. The high temperature is positively adopted as in the process condition IV.

上記内容を満たすことで、たとえばコネクタ用銅合金板材に要求される特性を満足することができる。本発明の銅合金板材の一つの好ましい実施態様では、0.2%耐力が500MPa以上、かつ導電率が30%IACS以上である。特に好ましくは、0.2%耐力については700MPa以上、曲げ加工性については試験片幅が1mmの180°密着曲げ試験においてクラックなく曲げ加工が可能、導電率については35%IACS以上、耐応力緩和特性については後述する温度150℃で1000時間保持する測定方法によって30%以下の良好な特性を有する銅合金板材であり、このような特性を実現可能なことが、本発明の一つの利点である。なお、本発明において、0.2%耐力はJIS Z 2241に基づく値である。また、上記の%IACSとは、万国標準軟銅(International Annealed Cupper Standard)の抵抗率1.7241×10−8Ωmを100%IACSとした場合の導電率を表したものである。By satisfy | filling the said content, the characteristic requested | required of the copper alloy board | plate material for connectors, for example can be satisfied. In one preferred embodiment of the copper alloy sheet according to the present invention, the 0.2% proof stress is 500 MPa or more, and the conductivity is 30% IACS or more. Particularly preferably, 0.2% proof stress is 700 MPa or more, bending workability is possible without cracking in a 180 ° contact bending test with a test piece width of 1 mm, conductivity is 35% IACS or more, stress relaxation Regarding the characteristics, it is a copper alloy sheet material having good characteristics of 30% or less by a measuring method that is held at a temperature of 150 ° C. for 1000 hours, which will be described later, and it is one advantage of the present invention that such characteristics can be realized. . In the present invention, the 0.2% yield strength is a value based on JIS Z 2241. Moreover, said% IACS represents the electrical conductivity when the resistivity 1.7241 × 10 −8 Ωm of universal standard annealed copper (International Annealed Copper Standard) is 100% IACS.

以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

実施例1
表1−1及び表1−2の合金成分の欄の組成に示すように、Ni、Co、Siを含有し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを鋳造して鋳塊を得た。この状態を提供材とし、下記A〜Gのいずれかの工程にて、本発明例1−1〜1−12および比較例1−1〜1−8の銅合金板材の供試材を製造した。なお、表1−1及び表1−2にA〜Gのいずれの工程を用いたのかを示した。最終的な合金板材の厚さは特に断らない限り150μmとした。
なお、A〜Gには示していないが、パスとパスの保持時間が100秒を超える条件で試作した場合は、材料温度が下がり過ぎてしまい、圧延中に面割れやエッジ割れを起こしたため、試作を中止した。
Example 1
As shown in the composition of the column of alloy components in Table 1-1 and Table 1-2, an alloy containing Ni, Co, Si and the balance consisting of Cu and inevitable impurities is melted in a high frequency melting furnace, and this is cast. As a result, an ingot was obtained. With this state as the providing material, the test materials of the copper alloy sheet materials of Invention Examples 1-1 to 1-12 and Comparative Examples 1-1 to 1-8 were produced in any of the following steps A to G. . Table 1-1 and Table 1-2 show which step A to G was used. The final thickness of the alloy plate was 150 μm unless otherwise specified.
In addition, although not shown in A to G, when a prototype was produced under conditions where the pass and the holding time of the pass exceeded 100 seconds, the material temperature was too low, and surface cracks and edge cracks occurred during rolling. Prototype was stopped.

(工程A)
900〜1020℃の温度で3分〜10時間の均質化熱処理後、熱間加工を行った後に水冷し、酸化スケール除去のために面削を行った。その熱間圧延は、1パス加工率が10〜30%のリバース式圧延を合計4〜12パス行い、パスとパスの間の保持時間は20〜100秒とした。その後に90〜99%の加工率の冷間圧延を行い、300〜700℃の温度で10秒〜5時間の熱処理を行い、5〜50%の加工率の冷間圧延を行った。その後に、800℃以上の温度に5秒以上保持する溶体化熱処理を行い、350〜600℃の温度で5分間〜20時間の時効析出熱処理を行い、5〜40%の仕上げ圧延を行い、300〜700℃の温度で10秒〜2時間保持する調質焼鈍を行った。
(Process A)
After a homogenization heat treatment at a temperature of 900 to 1020 ° C. for 3 minutes to 10 hours, after hot working, it was cooled with water and chamfered to remove oxide scale. In the hot rolling, reverse rolling with a 1-pass processing rate of 10 to 30% was performed for a total of 4 to 12 passes, and the holding time between passes was set to 20 to 100 seconds. Thereafter, cold rolling at a processing rate of 90 to 99% was performed, heat treatment was performed at a temperature of 300 to 700 ° C. for 10 seconds to 5 hours, and cold rolling at a processing rate of 5 to 50% was performed. Thereafter, a solution heat treatment is performed at a temperature of 800 ° C. or higher for 5 seconds or more, an aging precipitation heat treatment is performed at a temperature of 350 to 600 ° C. for 5 minutes to 20 hours, a finish rolling of 5 to 40% is performed, and 300 Temper annealing was performed at a temperature of ˜700 ° C. for 10 seconds to 2 hours.

(工程B)
900〜1020℃の温度で3分〜10時間の均質化熱処理後、熱間加工を行った後に水冷し、酸化スケール除去のために面削を行った。その熱間圧延は、1パス加工率が10〜30%のリバース式圧延を合計4〜12パス行い、パスとパスの間の保持時間は20〜100秒とした。その後に80〜89%の加工率の冷間圧延を行い、300〜700℃の温度で10秒〜5時間の熱処理を行い、5〜50%の加工率の冷間圧延を行った。その後に、800℃以上の温度に5秒以上保持する溶体化熱処理を行い、350〜600℃の温度で5分間〜20時間の時効析出熱処理を行い、5〜40%の仕上げ圧延を行い、300〜700℃の温度で10秒〜2時間保持する調質焼鈍を行った。
(Process B)
After a homogenization heat treatment at a temperature of 900 to 1020 ° C. for 3 minutes to 10 hours, after hot working, it was cooled with water and chamfered to remove oxide scale. In the hot rolling, reverse rolling with a 1-pass processing rate of 10 to 30% was performed for a total of 4 to 12 passes, and the holding time between passes was set to 20 to 100 seconds. Thereafter, cold rolling at a processing rate of 80 to 89% was performed, heat treatment was performed at a temperature of 300 to 700 ° C. for 10 seconds to 5 hours, and cold rolling at a processing rate of 5 to 50% was performed. Thereafter, a solution heat treatment is performed at a temperature of 800 ° C. or higher for 5 seconds or more, an aging precipitation heat treatment is performed at a temperature of 350 to 600 ° C. for 5 minutes to 20 hours, a finish rolling of 5 to 40% is performed, and 300 Temper annealing was performed at a temperature of ˜700 ° C. for 10 seconds to 2 hours.

(工程C)
900〜1020℃の温度で3分〜10時間の均質化熱処理後、熱間加工を行った後に水冷し、酸化スケール除去のために面削を行った。その熱間圧延は、1パス加工率が10〜30%のリバース式圧延を合計4〜12パス行い、パスとパスの間の保持時間は20〜100秒とした。その後に90〜99%の加工率の冷間圧延を行い、300〜700℃の温度で10秒〜5時間の熱処理を行い、5〜50%の加工率の冷間圧延を行った。その後に、800℃以上の温度に5秒以上保持する溶体化熱処理を行い、350〜600℃の温度で5分間〜20時間の時効析出熱処理を行い、40〜50%の仕上げ圧延を行い、300〜700℃の温度で10秒〜2時間保持する調質焼鈍を行った。
(Process C)
After a homogenization heat treatment at a temperature of 900 to 1020 ° C. for 3 minutes to 10 hours, after hot working, it was cooled with water and chamfered to remove oxide scale. In the hot rolling, reverse rolling with a 1-pass processing rate of 10 to 30% was performed for a total of 4 to 12 passes, and the holding time between passes was set to 20 to 100 seconds. Thereafter, cold rolling at a processing rate of 90 to 99% was performed, heat treatment was performed at a temperature of 300 to 700 ° C. for 10 seconds to 5 hours, and cold rolling at a processing rate of 5 to 50% was performed. Thereafter, a solution heat treatment is performed at a temperature of 800 ° C. or higher for 5 seconds or more, an aging precipitation heat treatment is performed at a temperature of 350 to 600 ° C. for 5 minutes to 20 hours, a finish rolling of 40 to 50% is performed, and 300 Temper annealing was performed at a temperature of ˜700 ° C. for 10 seconds to 2 hours.

(工程D)
900〜1020℃の温度で3分〜10時間の均質化熱処理後、熱間加工を行った後に水冷し、酸化スケール除去のために面削を行った。その熱間圧延は、1パス加工率が30%を超えるタンデム式の1方向圧延を合計2〜8パス行い、パスとパスの間の保持時間は20秒未満とした。その後に80〜89%の加工率の冷間圧延を行い、300〜700℃の温度で10秒〜5時間の熱処理を行い、5〜50%の加工率の冷間圧延を行った。その後に、800℃以上の温度に5秒以上保持する溶体化熱処理を行い、350〜600℃の温度で5分間〜20時間の時効析出熱処理を行い、5〜40%の仕上げ圧延を行い、300〜700℃の温度で10秒〜2時間保持する調質焼鈍を行った。
(Process D)
After a homogenization heat treatment at a temperature of 900 to 1020 ° C. for 3 minutes to 10 hours, after hot working, it was cooled with water and chamfered to remove oxide scale. In the hot rolling, a total of 2 to 8 passes of tandem unidirectional rolling with a one-pass working rate exceeding 30% was performed, and the holding time between passes was set to less than 20 seconds. Thereafter, cold rolling at a processing rate of 80 to 89% was performed, heat treatment was performed at a temperature of 300 to 700 ° C. for 10 seconds to 5 hours, and cold rolling at a processing rate of 5 to 50% was performed. Thereafter, a solution heat treatment is performed at a temperature of 800 ° C. or higher for 5 seconds or more, an aging precipitation heat treatment is performed at a temperature of 350 to 600 ° C. for 5 minutes to 20 hours, a finish rolling of 5 to 40% is performed, and 300 Temper annealing was performed at a temperature of ˜700 ° C. for 10 seconds to 2 hours.

(工程E)
900〜1020℃の温度で3分〜10時間の均質化熱処理後、熱間加工を行った後に水冷し、酸化スケール除去のために面削を行った。その熱間圧延は、1パス加工率が30%を超えるタンデム式の1方向圧延を合計2〜8パス行い、パスとパスの間の保持時間は20秒未満とした。その後に80〜89%の加工率の冷間圧延を行い、800℃以上の温度に5秒以上保持する溶体化熱処理を行い、350〜600℃の温度で5分間〜20時間の時効析出熱処理を行い、5〜40%の仕上げ圧延を行い、300〜700℃の温度で10秒〜2時間保持する調質焼鈍を行った。
(Process E)
After a homogenization heat treatment at a temperature of 900 to 1020 ° C. for 3 minutes to 10 hours, after hot working, it was cooled with water and chamfered to remove oxide scale. In the hot rolling, a total of 2 to 8 passes of tandem unidirectional rolling with a one-pass working rate exceeding 30% was performed, and the holding time between passes was set to less than 20 seconds. Thereafter, cold rolling at a working rate of 80 to 89% is performed, solution heat treatment is performed at a temperature of 800 ° C. or higher for 5 seconds or more, and aging precipitation heat treatment is performed at a temperature of 350 to 600 ° C. for 5 minutes to 20 hours. Then, finish rolling of 5 to 40% was performed, and temper annealing was performed at a temperature of 300 to 700 ° C for 10 seconds to 2 hours.

(工程F)
900〜1020℃の温度で3分〜10時間の均質化熱処理後、熱間加工を行った後に水冷し、酸化スケール除去のために面削を行った。その熱間圧延は、1パス加工率が10〜30%のリバース式圧延を合計4〜12パス行い、パスとパスの間の保持時間は20〜100秒とした。その後に90〜99%の加工率の冷間圧延を行い、300〜700℃の温度で10秒〜5時間の熱処理を行い、5〜50%の加工率の冷間圧延を行った。650〜750℃の温度に2時間保持する溶体化熱処理を行い、350〜600℃の温度で5分間〜20時間の時効析出熱処理を行い、5〜40%の仕上げ圧延を行い、300〜700℃の温度で10秒〜2時間保持する調質焼鈍を行った。
(Process F)
After a homogenization heat treatment at a temperature of 900 to 1020 ° C. for 3 minutes to 10 hours, after hot working, it was cooled with water and chamfered to remove oxide scale. In the hot rolling, reverse rolling with a 1-pass processing rate of 10 to 30% was performed for a total of 4 to 12 passes, and the holding time between passes was set to 20 to 100 seconds. Thereafter, cold rolling at a processing rate of 90 to 99% was performed, heat treatment was performed at a temperature of 300 to 700 ° C. for 10 seconds to 5 hours, and cold rolling at a processing rate of 5 to 50% was performed. Solution heat treatment is performed at a temperature of 650 to 750 ° C. for 2 hours, aging precipitation heat treatment is performed at a temperature of 350 to 600 ° C. for 5 minutes to 20 hours, finish rolling is performed at 5 to 40%, and 300 to 700 ° C. Refining annealing was performed at a temperature of 10 seconds to 2 hours.

(工程G)
900〜1020℃の温度で3分〜10時間の均質化熱処理後、熱間加工を行った後に水冷し、酸化スケール除去のために面削を行った。その熱間圧延は、1パス加工率が10〜30%のリバース式圧延を合計4〜12パス行い、パスとパスの間の保持時間は20〜100秒とした。その後に80〜89%の加工率の冷間圧延を行い、300〜700℃の温度で10秒〜5時間の熱処理を行い、5〜50%の加工率の冷間圧延を行った。730〜770℃の温度に5〜30秒保持する溶体化熱処理を行い、350〜600℃の温度で5分間〜20時間の時効析出熱処理を行い、5〜40%の仕上げ圧延を行い、300〜700℃の温度で10秒〜2時間保持する調質焼鈍を行った。
(Process G)
After a homogenization heat treatment at a temperature of 900 to 1020 ° C. for 3 minutes to 10 hours, after hot working, it was cooled with water and chamfered to remove oxide scale. In the hot rolling, reverse rolling with a 1-pass processing rate of 10 to 30% was performed for a total of 4 to 12 passes, and the holding time between passes was set to 20 to 100 seconds. Thereafter, cold rolling at a processing rate of 80 to 89% was performed, heat treatment was performed at a temperature of 300 to 700 ° C. for 10 seconds to 5 hours, and cold rolling at a processing rate of 5 to 50% was performed. A solution heat treatment is performed at a temperature of 730 to 770 ° C. for 5 to 30 seconds, an aging precipitation heat treatment is performed at a temperature of 350 to 600 ° C. for 5 minutes to 20 hours, a finish rolling of 5 to 40% is performed, and 300 to Temper annealing was performed at a temperature of 700 ° C. for 10 seconds to 2 hours.

(工程H)
冷間圧延の間の中間熱処理(300〜700℃の温度で10秒〜5時間)を行わなかった以外、工程Aと同じ条件を採用した。
(Process H)
The same conditions as in Step A were adopted except that the intermediate heat treatment during the cold rolling (at a temperature of 300 to 700 ° C. for 10 seconds to 5 hours) was not performed.

Figure 0004948678
Figure 0004948678

なお、各熱処理や圧延の後に、材料表面の酸化や粗度の状態に応じて酸洗浄や表面研磨を、形状に応じてテンションレベラーによる矯正を行った。   After each heat treatment and rolling, acid cleaning and surface polishing were performed according to the state of oxidation and roughness of the material surface, and correction with a tension leveler was performed according to the shape.

この供試材について下記のようにして各特性を測定、評価した。ここで、供試材の厚さは0.15mmとした。結果を表1−1及び表1−2に示す。
a.Cube方位の面積率 [W0、W0/W4]:
EBSD法により、約500μm四方の測定領域で、スキャンステップが0.5μmの条件で測定を行った。測定面積は結晶粒を200個以上含むことを基準として調整した。 上述したように、理想方位からのずれ角度については、共通の回転軸を中心に回転角を計算し、ずれ角度とした。あらゆる回転軸に関してCube方位との回転角度を計算した。回転軸は最も小さいずれ角度で表現できるものを採用した。全ての測定点に対してこのずれ角度を計算して小数第一位までを有効数字とし、Cube方位から10°以内の方位を持つ結晶粒の面積を全測定面積で除し、面積率を算出した。W0は板表面からの測定結果、W4は板厚方向1/4深さ位置の測定結果であり、W0/W4はこれらの比である。
Each characteristic was measured and evaluated for this specimen as follows. Here, the thickness of the test material was 0.15 mm. The results are shown in Table 1-1 and Table 1-2.
a. Cube orientation area ratio [W0, W0 / W4]:
By the EBSD method, measurement was performed in a measurement region of about 500 μm square under the condition that the scan step was 0.5 μm. The measurement area was adjusted based on the inclusion of 200 or more crystal grains. As described above, with respect to the deviation angle from the ideal orientation, the rotation angle is calculated around the common rotation axis, and is set as the deviation angle. The rotation angle with the Cube orientation was calculated for all rotation axes. The rotation axis that can be expressed at the smallest angle is adopted. The deviation angle is calculated for all measurement points, the first decimal place is an effective number, the area of crystal grains with an orientation within 10 ° from the Cube orientation is divided by the total measurement area, and the area ratio is calculated. did. W0 is a measurement result from the plate surface, W4 is a measurement result at a 1/4 depth position in the plate thickness direction, and W0 / W4 is a ratio thereof.

b.Brass方位の面積率 [B0]:
上述のCube方位の面積率と同様に、板表面から測定した。
c.平均結晶粒径 [GS]:
JIS H 0501(切断法)に基づき測定した。圧延方向に対して平行の断面と、垂直の断面において測定し、その両者の平均をとった。金属組織の観察は、鏡面研磨した材料面を化学エッジングし、光学顕微鏡観察により行った。
b. Area ratio of Brass orientation [B0]:
It measured from the plate | board surface similarly to the area ratio of the above-mentioned Cube azimuth | direction.
c. Average crystal grain size [GS]:
Measured based on JIS H 0501 (cutting method). Measurements were taken on a cross section parallel to the rolling direction and a cross section perpendicular to the rolling direction, and the average of the two was taken. The metal structure was observed by chemically edging the mirror-polished material surface and observing with an optical microscope.

d.180°密着曲げ加工性 [曲げ加工性]:
圧延方向に垂直に幅1mm、長さ25mmにプレスで打ち抜き、これに曲げの軸が圧延方向に直角になるようにW曲げしたものをGW(Good Way)、圧延方向に平行になるようにW曲げしたものをBW(Bad Way)とした。JIS Z 2248に準じて曲げ加工を行った。0.4mmRの90°曲げ金型を使用して予備曲げを行った後に、圧縮試験機によって密着曲げを行った。曲げ部外側における割れの有無を50倍の光学顕微鏡で目視観察によりその曲げ加工部位を観察し、割れの有無を調査した。曲げ加工部にクラックがなく、シワも軽微なものを◎、クラックがないがシワが大きいものを○、クラックのあるものを×と判定した。
d. 180 ° adhesion bending workability [bending workability]:
GW (Good Way) obtained by punching with a press perpendicularly to the rolling direction to a width of 1 mm and a length of 25 mm, and W bent so that the axis of bending is perpendicular to the rolling direction is W to be parallel to the rolling direction. The bent one was designated as BW (Bad Way). Bending was performed according to JIS Z 2248. Preliminary bending was performed using a 0.4 mm R 90 ° bending mold, and then contact bending was performed using a compression tester. The presence or absence of cracks on the outside of the bent part was observed by visual observation with a 50 × optical microscope, and the presence or absence of cracks was investigated. Bending parts were evaluated as “A” when there were no cracks and slight wrinkles, “B” when there were no cracks but large wrinkles, and “C” when there were cracks.

e.0.2%耐力 [YS]:
圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値を示した。ここでは、YSの値が550MPa以上であるものを、強度に優れているものとした。
f:導電率 [EC]:
20℃(±0.5℃)に保たれた恒温漕中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。ここでは、ECの値が35%IACS以上であるものを、導電性に優れているものとした。
g.応力緩和率 [SR]:
日本伸銅協会の仮規格である、JCBA T309:2001(旧日本電子材料工業会標準規格 EMAS−3003に相当)に準じ、以下に示すように、150℃で1000時間保持後の条件で測定した。片持ち梁法により耐力の80%の初期応力を負荷した。ここでは、SRの値が30%以下であるものを、耐応力緩和性に優れているものとした。
e. 0.2% yield strength [YS]:
Three test pieces of JIS Z2201-13B cut out from the rolling parallel direction were measured according to JIS Z2241, and the average value was shown. Here, the YS value of 550 MPa or more was assumed to be excellent in strength.
f: Conductivity [EC]:
The specific resistance was measured by a four-terminal method in a constant temperature bath maintained at 20 ° C. (± 0.5 ° C.) to calculate the conductivity. In addition, the distance between terminals was 100 mm. Here, the one having an EC value of 35% IACS or more is considered to have excellent conductivity.
g. Stress relaxation rate [SR]:
In accordance with JCBA T309: 2001 (corresponding to the former Japan Electronic Materials Industry Association Standard EMAS-3003), which is a provisional standard of the Japan Copper and Brass Association, as shown below, measurement was performed under conditions after holding at 150 ° C. for 1000 hours. . An initial stress of 80% of the proof stress was applied by the cantilever method. Here, the SR value of 30% or less was assumed to be excellent in stress relaxation resistance.

図2は応力緩和特性の試験方法の説明図であり、(a)は熱処理前、(b)は熱処理後の状態である。図2(a)に示すように、試験台4に片持ちで保持した試験片1に、耐力の80%の初期応力を付与した時の試験片1の位置は、基準からδの距離である。これを150℃の恒温槽に1000時間保持(前記試験片1の状態での熱処理)し、負荷を除いた後の試験片2の位置は、図2(b)に示すように基準からHの距離である。3は応力を負荷しなかった場合の試験片であり、その位置は基準からHの距離である。この関係から、応力緩和率(%)は(H−H)/(δ―H)×100と算出した。式中、δは、基準から試験片1までの距離であり、Hは、基準から試験片3までの距離であり、Hは、基準から試験片2までの距離である。FIG. 2 is an explanatory view of a stress relaxation characteristic test method, in which (a) shows a state before heat treatment and (b) shows a state after heat treatment. As shown in FIG. 2A, the position of the test piece 1 when an initial stress of 80% of the proof stress is applied to the test piece 1 held in a cantilever manner on the test stand 4 is a distance of δ 0 from the reference. is there. This is held in a thermostatic bath at 150 ° C. for 1000 hours (heat treatment in the state of the test piece 1), and the position of the test piece 2 after removing the load is determined from the reference H t as shown in FIG. Is the distance. 3 is a test piece when no stress is applied, and its position is a distance H 1 from the reference. From this relationship, the stress relaxation rate (%) was calculated as (H t −H 1 ) / (δ 0 −H 1 ) × 100. In the equation, δ 0 is the distance from the reference to the test piece 1, H 1 is the distance from the reference to the test piece 3, and H t is the distance from the reference to the test piece 2.

Figure 0004948678
Figure 0004948678

Figure 0004948678
Figure 0004948678

表1−2に示すように、比較例の試料では、いずれかの特性が劣る結果となった。
すなわち、比較例1−1は、NiとCoの総量が少ないために、析出硬化に寄与する析出物の密度が低下し強度が劣った。また、NiまたはCoと化合物を形成しないSiが金属組織中に過剰に固溶し導電率が劣った。また、耐応力緩和性も劣った。比較例1−2は、NiとCoの総量が多いために、導電率が劣った。比較例1−3は、Siが少ないために強度が劣った。比較例1−4は、Siが多いために導電率が劣った。
比較例1−5はW0/W4が低く、180°密着曲げ加工性が劣った。比較例1−6はW0/W4及びW0が低く、180°密着曲げ加工性が劣った。比較例1−7はW0と平均結晶粒径が高く、180°密着曲げ加工性が劣った。比較例1−8は平均結晶粒径が小さく、耐応力緩和特性が劣った。
これに対し、表1−1に示すように、本発明例1−1〜1−12は、180°密着曲げ加工性、耐力、導電率、応力緩和特性のいずれにおいても優れていた。特に、表層のBrass方位面積率が20%以下の本発明例1−1、1−2、1−4、1−6、1−7、1−8、1−9、1−11、1−12では、GW、BWの少なくとも一方においてクラックがなく、シワも軽微なものであるという極めて優れた曲げ加工性を示した。
As shown in Table 1-2, the sample of the comparative example resulted in inferior properties.
That is, in Comparative Example 1-1, since the total amount of Ni and Co was small, the density of precipitates contributing to precipitation hardening was lowered and the strength was inferior. Further, Si that does not form a compound with Ni or Co was excessively dissolved in the metal structure, resulting in poor conductivity. Moreover, the stress relaxation resistance was also inferior. Since Comparative Example 1-2 had a large total amount of Ni and Co, the conductivity was inferior. Comparative Example 1-3 was inferior in strength due to a small amount of Si. Comparative Example 1-4 was inferior in electrical conductivity because of a large amount of Si.
Comparative Example 1-5 had a low W0 / W4 and was inferior in 180 ° contact bending workability. In Comparative Example 1-6, W0 / W4 and W0 were low, and the 180 ° contact bending workability was inferior. In Comparative Example 1-7, W0 and the average crystal grain size were high, and the 180 ° contact bending workability was inferior. In Comparative Example 1-8, the average crystal grain size was small and the stress relaxation resistance was inferior.
On the other hand, as shown in Table 1-1, Examples 1-1 to 1-12 of the present invention were excellent in any of 180 ° contact bending workability, yield strength, electrical conductivity, and stress relaxation characteristics. In particular, Examples 1-1, 1-2, 1-4, 1-6, 1-7, 1-8, 1-9, 1-11, 1- 1 of the present invention having a Brass layer area ratio of 20% or less on the surface layer. In No. 12, at least one of GW and BW showed very excellent bending workability with no cracks and slight wrinkles.

実施例2
表2の合金成分の欄に示す組成で、残部がCuと不可避不純物からなる銅合金について、実施例1と同様にして、本発明例2−1〜2−8、比較例2−1〜2−3の銅合金板材の供試材を製造し、実施例1と同様に各特性を測定、評価した。結果を表2に示す。
Example 2
In the composition shown in the column of alloy components in Table 2, with respect to the copper alloy consisting of Cu and inevitable impurities, the same as Example 1, Invention Examples 2-1 to 2-8 and Comparative Examples 2-1 to 2 -3 copper alloy sheet materials were produced, and each characteristic was measured and evaluated in the same manner as in Example 1. The results are shown in Table 2.

Figure 0004948678
Figure 0004948678

比較例3
本発明例1−1の合金組成を採用し、工程Hを介して銅合金板材を作製した。これについて、上記各実施例と同様の評価を行った結果が下記のとおりである。
Comparative Example 3
The alloy composition of Example 1-1 of the present invention was adopted, and a copper alloy sheet was produced through process H. About this, the result of having performed evaluation similar to said each Example is as follows.

Figure 0004948678
Figure 0004948678

上記のとおり中間熱処理を介さずに作製した銅合金板材は所定の合金組成及び熱間圧延条件、溶体化熱処理条件を採用したとしても、 W0が少なく、180°密着曲げ加工性が劣っていた。   The copper alloy sheet produced without the intermediate heat treatment as described above had a small W0 and poor 180 ° contact bending workability even when the predetermined alloy composition, hot rolling conditions and solution heat treatment conditions were adopted.

表2に示すように、比較例2−1、2−2、2−3は、その他の元素として示したSn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfの合計の添加量が多すぎるために、導電率が劣った。
これに対し、本発明例2−1〜本発明例2−8は、曲げ加工性、耐力、導電率、応力緩和特性のいずれにも優れていた。
このように、本発明の銅合金板材は、コネクタ材に適した優れた特性を有する。
As shown in Table 2, Comparative Examples 2-1, 2-2, and 2-3 are Sn, Zn, Ag, Mn, B, P, Mg, Cr, Fe, Ti, Zr and other elements shown as other elements. The conductivity was inferior because the total amount of Hf added was too large.
On the other hand, Invention Example 2-1 to Invention Example 2-8 were excellent in all of bending workability, yield strength, conductivity, and stress relaxation characteristics.
Thus, the copper alloy plate material of the present invention has excellent characteristics suitable for a connector material.

つづいて、従来の製造条件により製造した銅合金板材について、本願発明に係る銅合金板材との相違を明確化するために、その条件で銅合金板材を作製し、上記と同様の特性項目の評価を行った。なお、各板材の厚さは特に断らない限り上記実施例と同じ厚さになるように加工率を調整した。   Subsequently, in order to clarify the difference from the copper alloy sheet material according to the present invention, the copper alloy sheet material produced under the conventional production conditions, the copper alloy sheet material is produced under the conditions, and the same characteristic items as described above are evaluated. Went. In addition, the processing rate was adjusted so that the thickness of each board | plate material might become the same thickness as the said Example unless there is particular notice.

(比較例101)・・・特開2009−007666号公報の条件
上記本発明例1−1と同様の金属元素を配合し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1020℃で3分から10時間の保持後、熱間加工を行った後に水焼き入れを行い、酸化スケール除去のために面削を行った。この後の工程は、次に記載する工程A−3,B−3の処理を施すことによって銅合金c01を製造した。なお、上記熱間加工については、上記公報からは詳細な条件が明らかではなく、本願出願当時に一般的な条件であった温度:800〜1020℃、1パス加工率35〜40%、各パス間の保持時間:3〜7秒という条件を採用して行った。
製造工程には、1回または2回以上の溶体化熱処理を含み、ここでは、その中の最後の溶体化熱処理の前後で工程を分類し、中間溶体化までの工程でA−3工程とし、中間溶体化より後の工程でB−3工程とした。
(Comparative Example 101) ... Conditions of JP2009-007666 A metal element similar to that of Invention Example 1-1 is blended, and an alloy composed of Cu and inevitable impurities is melted in a high-frequency melting furnace. This was cast at a cooling rate of 0.1 to 100 ° C./second to obtain an ingot. This was held at 900 to 1020 ° C. for 3 minutes to 10 hours, then hot worked, then water quenched, and chamfered to remove oxide scale. In the subsequent steps, the copper alloy c01 was manufactured by performing the processes of steps A-3 and B-3 described below. In addition, about the said hot working, detailed conditions are not clear from the said gazette, Temperature: 800-1020 degreeC which was general conditions at the time of this-application application: 1 pass processing rate 35-40%, each pass Holding time in between: The conditions of 3 to 7 seconds were adopted.
The manufacturing process includes one or more solution heat treatments, and here, the process is classified before and after the last solution heat treatment, and the process up to the intermediate solution is A-3 process, It was set as B-3 process in the process after intermediate solution.

工程A−3:断面減少率が20%以上の冷間加工を施し、350〜750℃で5分〜10時間の熱処理を施し、断面減少率が5〜50%の冷間加工を施し、800〜1000℃で5秒〜30分の溶体化熱処理を施す。
工程B−3:断面減少率が50%以下の冷間加工を施し、400〜700℃で5分〜10時間の熱処理を施し、断面減少率が30%以下の冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を施す。
Step A-3: A cold working with a cross-sectional reduction rate of 20% or more is performed, a heat treatment is performed at 350 to 750 ° C. for 5 minutes to 10 hours, a cold working with a cross-sectional reduction rate of 5 to 50% is performed, and 800 A solution heat treatment is performed at ˜1000 ° C. for 5 seconds to 30 minutes.
Step B-3: cold working with a cross-section reduction rate of 50% or less, heat treatment at 400 to 700 ° C. for 5 minutes to 10 hours, and cold working with a cross-section reduction rate of 30% or less, 200 to Temper annealing is performed at 550 ° C. for 5 seconds to 10 hours.

得られた試験体c01は、上記実施例とは製造条件について 熱間加工条件の点で異なり、180°密着曲げ加工性について要求特性を満たさない結果となった。   The obtained specimen c01 was different from the above example in terms of manufacturing conditions in terms of hot working conditions, and did not satisfy the required characteristics for 180 ° contact bending workability.

(比較例102)・・・特開2006−009137号公報の条件
上記本発明例1−1と同じ組成の銅合金を高周波溶解炉にて熔解し、DC法により厚さ30mm、幅100mm、長さ150mmの鋳塊に鋳造した。次にこれらの鋳塊を1000℃に加熱し、この温度に1時間保持後、厚さ12mmに熱間圧延し、速やかに冷却した。なお、熱間圧延の条件は、同公報の段落[0027]を参照し、温度を900〜1000℃の範囲で、熱間圧延後の冷間圧延を加工率90%以上とした。1パスの加工率及び各パス間の保持時間は、本願出願当時に一般的な条件であった35〜40%及び3〜7秒間という条件を採用して行った。
次いで熱間圧延板を両面各1.5mmずつ切削して酸化皮膜を除去した後、冷間圧延(イ)により厚さ0.15〜0.25mmに加工し、次いで溶体化処理温度を825〜925℃の温度範囲で変化させ15秒間熱処理し、その後直ちに15℃/秒以上の冷却速度で冷却した。次に不活性ガス雰囲気中で475℃で2時間の時効処理を施し、次いで最終塑性加工である冷間圧延(ハ)を行い、最終的な板厚を揃えた。前記最終塑性加工後、引き続き375℃で2時間の低温焼鈍を施して銅合金板材(試料c02)を製造した。
(Comparative Example 102) ... Conditions of JP-A-2006-009137 A copper alloy having the same composition as that of Example 1-1 of the present invention was melted in a high-frequency melting furnace, and a thickness of 30 mm, a width of 100 mm, and a length were measured by a DC method. Cast into a 150 mm ingot. Next, these ingots were heated to 1000 ° C., held at this temperature for 1 hour, hot-rolled to a thickness of 12 mm, and quickly cooled. In addition, the conditions of the hot rolling refer to paragraph [0027] of the same publication, the temperature is in the range of 900 to 1000 ° C., and the cold rolling after hot rolling is set to a processing rate of 90% or more. The processing rate for one pass and the holding time between each pass were performed under the conditions of 35 to 40% and 3 to 7 seconds, which were general conditions at the time of filing this application.
Next, the hot-rolled plate was cut at 1.5 mm on both sides to remove the oxide film, and then processed to a thickness of 0.15 to 0.25 mm by cold rolling (a), and then the solution treatment temperature was 825- The temperature was changed in the temperature range of 925 ° C. and heat-treated for 15 seconds, and then immediately cooled at a cooling rate of 15 ° C./second or more. Next, an aging treatment was performed at 475 ° C. for 2 hours in an inert gas atmosphere, and then cold rolling (c), which was the final plastic working, was performed, and the final plate thickness was made uniform. After the final plastic working, a low temperature annealing was subsequently performed at 375 ° C. for 2 hours to produce a copper alloy sheet (sample c02).

得られた試験体c02は、上記実施例とは製造条件について 熱間圧延の条件及び中間熱処理の有無の点で異なり、180°密着曲げ加工性を満たさない結果となった。   The obtained test body c02 was different from the above examples in terms of manufacturing conditions in terms of hot rolling conditions and the presence or absence of intermediate heat treatment, and did not satisfy the 180 ° contact bending workability.

(比較例103)・・・特開平11−335756号公報の条件
上記本発明例1−1と同じ成分組成の銅合金を、クリプトル炉にて木炭被覆下で大気溶解し、ブックモールドに鋳造し、50mm×80mm×200mmの鋳塊を作製した。この鋳塊を930℃に加熱して厚さ15mmまで熱間圧延後、直ちに水中急冷した。この熱延材の表面の酸化スケールを除去するため、表面をグラインダで切削した。これを冷間圧延した後、750℃で20秒の熱処理、30%の冷間圧延、480℃で2時間の析出焼鈍を施し、板厚を調整した材料を得て、試験に供した(c02)。なお、熱間圧延において、1パスの加工率及び各パス間の保持時間は、本願出願当時に一般的な条件であった1パス加工率35〜40%、各パス間の保持時間:3〜7秒という条件を採用して行った。
(Comparative Example 103) ... Conditions of Japanese Patent Application Laid-Open No. 11-335756 A copper alloy having the same composition as that of Example 1-1 of the present invention is dissolved in the atmosphere under a charcoal coating in a kryptor furnace and cast into a book mold. An ingot of 50 mm × 80 mm × 200 mm was produced. The ingot was heated to 930 ° C., hot-rolled to a thickness of 15 mm, and immediately quenched in water. In order to remove the oxide scale on the surface of the hot rolled material, the surface was cut with a grinder. This was cold-rolled, then heat treated at 750 ° C. for 20 seconds, cold-rolled at 30%, and subjected to precipitation annealing at 480 ° C. for 2 hours to obtain a material with adjusted sheet thickness, which was subjected to the test (c02 ). In the hot rolling, the processing rate of one pass and the holding time between the passes are the one-pass processing rate of 35 to 40%, which was a general condition at the time of filing of the present application, and the holding time between the passes: 3 to 3. The condition of 7 seconds was adopted.

得られた試験体c02は、上記実施例とは製造条件について 熱間圧延の条件及び中間熱処理の有無の点で異なり、180°密着曲げ加工性を満たさない結果となった。   The obtained test body c02 was different from the above examples in terms of manufacturing conditions in terms of hot rolling conditions and the presence or absence of intermediate heat treatment, and did not satisfy the 180 ° contact bending workability.

(比較例104)・・・特開2006−283059号公報の条件
上記本発明例1−1の組成の銅合金を、電気炉により大気中にて木炭被覆下で溶解し、鋳造可否を判断した。溶製した鋳塊を熱間圧延し、厚さ15mmに仕上げた。つづいてこの熱間圧延材に対し、冷間圧延及び熱処理(冷間圧延1→溶体化連続焼鈍→冷間圧延2→時効処理→冷間圧延3→短時間焼鈍)を施し、所定の厚さの銅合金薄板(c04)を製造した。なお、溶体化は同公報の段落[0027]を参照し、実体温度800〜950℃で30秒以下保持する条件とした。熱間圧延については詳細な開示はなく、本願出願当時に一般的な条件であった 1パス加工率を35〜40%、各パス間の保持時間を3〜7秒という条件を採用して行った。
(Comparative Example 104) ... Conditions of Japanese Patent Application Laid-Open No. 2006-283059 The copper alloy having the composition of Example 1-1 of the present invention was melted under charcoal coating in the atmosphere in an electric furnace, and castability was judged. . The molten ingot was hot-rolled to a thickness of 15 mm. Subsequently, the hot rolled material is subjected to cold rolling and heat treatment (cold rolling 1 → solution annealing, cold rolling 2 → aging treatment → cold rolling 3 → short annealing) to a predetermined thickness. A copper alloy sheet (c04) was produced. In addition, the solution treatment was performed under the condition of referring to paragraph [0027] of the same publication and maintaining the body temperature at 800 to 950 ° C. for 30 seconds or less. There is no detailed disclosure about hot rolling, which was a general condition at the time of filing this application, adopting the conditions of 1-pass processing rate of 35-40% and holding time between each pass of 3-7 seconds It was.

得られた試験体c04は、上記実施例1とは製造条件について熱間圧延の条件及び中間熱処理の有無の点で異なり、180°密着曲げ加工性を満たさない結果となった。   The obtained specimen c04 differs from the above Example 1 in terms of manufacturing conditions in terms of hot rolling conditions and the presence or absence of intermediate heat treatment, and did not satisfy the 180 ° contact bending workability.

(比較例105)・・・特開2006−152392号公報の条件
上記本発明例1−1の組成をもつ合金について、クリプトル炉において大気中で木炭被覆下で溶解し、鋳鉄製ブックモールドに鋳造し、厚さが50mm、幅が75mm、長さが180mmの鋳塊を得た。そして、鋳塊の表面を面削した後、950℃の温度で厚さが15mmになるまで熱間圧延し、750℃以上の温度から水中に急冷した。次に、酸化スケールを除去した後、冷間圧延を行い、所定の厚さの板を得た。なお、熱間圧延において、1パスの加工率及び各パス間の保持時間は、本願出願当時に一般的な条件であった1パス加工率を35〜40%、各パス間の保持時間を3〜7秒という条件を採用して行った。
(Comparative Example 105) ... Conditions of Japanese Patent Application Laid-Open No. 2006-152392 The alloy having the composition of Invention Example 1-1 was melted under a charcoal coating in the atmosphere in a kryptor furnace and cast into a cast iron book mold. Thus, an ingot having a thickness of 50 mm, a width of 75 mm, and a length of 180 mm was obtained. Then, after chamfering the surface of the ingot, it was hot-rolled at a temperature of 950 ° C. until the thickness became 15 mm, and rapidly cooled into water from a temperature of 750 ° C. or higher. Next, after removing the oxide scale, cold rolling was performed to obtain a plate having a predetermined thickness. In hot rolling, the processing rate of one pass and the holding time between each pass are 35 to 40% of the one-pass processing rate, which was a general condition at the time of filing the present application, and the holding time between each pass is 3%. The condition of ˜7 seconds was adopted.

続いて、塩浴炉を使用し、温度で20秒間加熱する溶体化処理を行なった後に、水中に急冷した後、後半の仕上げ冷間圧延により、各厚みの冷延板にした。この際、下記に示すように、これら冷間圧延の加工率(%)を種々変えて冷延板(c05)にした。これらの冷延板を、下記に示すように、温度(℃)と時間(hr)とを種々変えて時効処理した。   Subsequently, after using a salt bath furnace and performing a solution treatment by heating at a temperature for 20 seconds, the solution was rapidly cooled in water, and then cold-rolled sheets having various thicknesses were obtained by finish cold rolling in the latter half. At this time, as shown below, the cold-rolled sheet (c05) was obtained by variously changing the cold rolling processing rate (%). As shown below, these cold-rolled sheets were subjected to aging treatment at various temperatures (° C.) and times (hr).

冷間加工率: 95%
溶体化処理温度: 900℃
人工時効硬化処理温度×時間: 450℃×4時間
板厚: 0.6mm
Cold working rate: 95%
Solution treatment temperature: 900 ° C
Artificial age hardening temperature x time: 450 ° C x 4 hours Thickness: 0.6mm

得られた試験体c05は、上記実施例1とは製造条件について熱間圧延の条件及び中間熱処理の有無の点で異なり、180°密着曲げ加工性を満たさない結果となった。   The obtained specimen c05 differs from the above Example 1 in terms of manufacturing conditions in terms of hot rolling conditions and the presence or absence of intermediate heat treatment, and did not satisfy the 180 ° contact bending workability.

(比較例106)・・・特開2008−223136号公報の条件
実施例1に示す銅合金を溶製し、縦型連続鋳造機を用いて鋳造した。得られた鋳片(厚さ180mm)から厚さ50mmの試料を切り出し、これを950℃に加熱したのち抽出して、熱間圧延を開始した。その際、950℃〜700℃の温度域での圧延率が60%以上となり、かつ700℃未満の温度域でも圧延が行われるようにパススケジュールを設定した。熱間圧延の最終パス温度は600℃〜400℃の間にある。鋳片からのトータルの熱間圧延率は約90%である。熱間圧延後、表層の酸化層を機械研磨により除去(面削)した。なお、熱間圧延において、各パス間の保持時間は、本願出願当時に一般的な条件であった3〜7秒とした。
(Comparative Example 106) ... Conditions of JP-A-2008-223136 The copper alloy shown in Example 1 was melted and cast using a vertical continuous casting machine. A sample with a thickness of 50 mm was cut out from the obtained slab (thickness 180 mm), heated to 950 ° C., extracted, and hot rolling was started. At that time, the pass schedule was set so that the rolling rate in the temperature range of 950 ° C. to 700 ° C. was 60% or more and the rolling was performed even in the temperature range of less than 700 ° C. The final pass temperature of hot rolling is between 600 ° C and 400 ° C. The total hot rolling rate from the slab is about 90%. After hot rolling, the surface oxide layer was removed (faced) by mechanical polishing. In the hot rolling, the holding time between the passes was set to 3 to 7 seconds, which was a common condition at the time of filing the present application.

次いで、冷間圧延を行った後、溶体化処理に供した。試料表面に取り付けた熱電対により溶体化処理時の温度変化をモニターし、昇温過程における100℃から700℃までの昇温時間を求めた。溶体化処理後の平均結晶粒径(双晶境界を結晶粒界とみなさない)が10〜60μmとなるように到達温度を合金組成に応じて700〜850℃の範囲内で調整し、700〜850℃の温度域での保持時間を10sec〜10minの範囲で調整した。続いて、上記溶体化処理後の板材に対して、圧延率で中間冷間圧延を施し、次いで時効処理を施した。時効処理温度は材温450℃とし、時効時間は合金組成に応じて450℃の時効で硬さがピークになる時間に調整した。このような合金組成に応じて最適な溶体化処理条件や時効処理時間は予備実験により把握してある。次いで、圧延率で仕上げ冷間圧延を行った。仕上げ冷間圧延を行ったものについては、その後さらに、400℃の炉中に5min装入する低温焼鈍を施した。このようにして供試材を得た。なお、必要に応じて途中で面削を行い、供試材の板厚は0.2mmに揃えた。主な製造条件は下記に記載してある。   Subsequently, after performing cold rolling, it used for the solution treatment. The temperature change during the solution treatment was monitored by a thermocouple attached to the sample surface, and the temperature raising time from 100 ° C. to 700 ° C. in the temperature raising process was determined. The ultimate temperature is adjusted within the range of 700 to 850 ° C. according to the alloy composition so that the average crystal grain size after solution treatment (the twin boundary is not regarded as a grain boundary) is 10 to 60 μm. The holding time in the temperature range of 850 ° C. was adjusted in the range of 10 sec to 10 min. Subsequently, the plate material after the solution treatment was subjected to intermediate cold rolling at a rolling rate and then subjected to an aging treatment. The aging treatment temperature was adjusted to a material temperature of 450 ° C., and the aging time was adjusted to a time when the hardness peaked at 450 ° C. according to the alloy composition. The optimum solution treatment conditions and aging treatment time according to such an alloy composition have been grasped by preliminary experiments. Next, finish cold rolling was performed at a rolling rate. About what performed finish cold rolling, the low temperature annealing which puts it in a 400 degreeC furnace for 5 minutes after that was given after that. In this way, a test material was obtained. If necessary, chamfering was performed in the middle, and the thickness of the specimen was adjusted to 0.2 mm. The main production conditions are described below.

[特開2008−223136 比較例1の条件]
700℃未満〜400℃での熱間圧延率: 17%(1パス)
溶体化処理前 冷間圧延率: 90%
中間冷間圧延 冷間圧延率: 20%
仕上げ冷間圧延 冷間圧延率: 30%
100℃から700℃までの昇温時間: 10秒
[Conditions of Comparative Example 1 of JP2008-223136A]
Hot rolling ratio at less than 700 ° C to 400 ° C: 17% (1 pass)
Before solution treatment Cold rolling rate: 90%
Intermediate cold rolling Cold rolling rate: 20%
Finish cold rolling Cold rolling rate: 30%
Temperature rising time from 100 ° C to 700 ° C: 10 seconds

得られた試験体c05は、上記実施例1とは製造条件について熱間圧延の条件及び中間熱処理の有無の点で異なり、180°密着曲げ加工性を満たさない結果となった。   The obtained specimen c05 differs from the above Example 1 in terms of manufacturing conditions in terms of hot rolling conditions and the presence or absence of intermediate heat treatment, and did not satisfy the 180 ° contact bending workability.

1 初期応力を付与した時の試験片
2 負荷を除いた後の試験片
3 応力を負荷しなかった場合の試験片
4 試験台
DESCRIPTION OF SYMBOLS 1 Test piece when initial stress was applied 2 Test piece after removing load 3 Test piece when stress was not applied 4 Test stand

Claims (5)

NiとCoの少なくとも1種を合計で0.5〜5.0mass%、Siを0.1〜1.2mass%含み、残部がCuと不可避不純物からなる銅合金組成よりなる板材であって、電子後方散乱回折測定における結晶方位解析における、材料表層のCube方位{0 0 1}<1 0 0>の面積率をW0、材料の深さ位置で全体の1/4の位置でのCube方位面積率をW4としたときに、W0/W4の比が0.8以上1.5以下、W0が5〜48%、平均結晶粒径が12〜100μmであることを特徴とする、180°密着曲げ加工性と耐応力緩和特性に優れた銅合金板材。  A plate material composed of a copper alloy composition containing at least one of Ni and Co in a total amount of 0.5 to 5.0 mass%, Si of 0.1 to 1.2 mass%, and the balance of Cu and inevitable impurities, In the crystal orientation analysis in the backscatter diffraction measurement, the area ratio of the Cube orientation {0 0 1} <1 0 0> of the material surface layer is W0, and the Cube orientation area ratio at the 1/4 position of the whole at the depth position of the material. W0 / W4 ratio is 0.8 or more and 1.5 or less, W0 is 5 to 48%, and average crystal grain size is 12 to 100 μm, where W4 is W4. Copper alloy sheet with excellent heat resistance and stress relaxation resistance. さらに、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfからなる群から選ばれる少なくとも1種を合計で0.005〜2.0mass%含有する請求項1に記載の銅合金板材。  Furthermore, 0.005-2.0 mass% in total containing at least 1 sort (s) chosen from the group which consists of Sn, Zn, Ag, Mn, B, P, Mg, Cr, Fe, Ti, Zr, and Hf is contained. The copper alloy sheet material described in 1. Brass方位{1 1 0}<1 1 2>の面積率が20%以下であることを特徴とする、請求項1または請求項2に記載の銅合金板材。  The copper alloy sheet material according to claim 1 or 2, wherein the area ratio of the Brass orientation {1 1 0} <1 1 2> is 20% or less. 請求項1〜3のいずれか1項に記載の合金板材からなるコネクタ。The connector which consists of a copper alloy board | plate material of any one of Claims 1-3. 請求項1〜3のいずれか1項に記載の合金板材の製造方法であって、
請求項1又は2に記載の組成を有する銅合金鋳塊に対し、少なくとも下記の工程I、II、IIIIV、及びVによる処理をその順で施した後、加工率5〜40%の仕上げ圧延を行うことを特徴とする銅合金板材の製造方法。
[工程I:1パス加工率を30%以下とし各パス間の保持時間を20〜30秒とした熱間圧延工程]
[工程II:加工率80%〜99%の冷間圧延工程]
[工程III:300〜700℃の温度で10秒〜5時間の中間熱処理工程及びその後に行う加工率5〜50%の冷間圧延工程]
[工程IV:800〜1000℃で行う溶体化熱処理工程]
[工程V:350〜600℃の温度で5分間〜20時間の時効析出熱処理工程及び加工率5〜40%の仕上げ冷間圧延工程]
It is a manufacturing method of the copper alloy sheet material according to any one of claims 1 to 3,
A copper alloy ingot having the composition according to claim 1 or 2 is subjected to at least the following steps I, II, III , IV , and V in that order, and then finished at a processing rate of 5 to 40%. A method for producing a copper alloy sheet comprising rolling.
[Step I: Hot rolling step with a pass processing rate of 30% or less and a holding time between passes of 20 to 30 seconds]
[Step II: Cold rolling step with a processing rate of 80% to 99%]
[Step III: An intermediate heat treatment step at a temperature of 300 to 700 ° C. for 10 seconds to 5 hours and a cold rolling step performed thereafter at a processing rate of 5 to 50%]
[Step IV: Solution heat treatment step performed at 800 to 1000 ° C.]
[Step V: Aging precipitation heat treatment step at 350 to 600 ° C. for 5 minutes to 20 hours and finish cold rolling step with a processing rate of 5 to 40%]
JP2011513177A 2009-12-02 2010-12-01 Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same Active JP4948678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011513177A JP4948678B2 (en) 2009-12-02 2010-12-01 Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009274892 2009-12-02
JP2009274892 2009-12-02
PCT/JP2010/071484 WO2011068121A1 (en) 2009-12-02 2010-12-01 Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
JP2011513177A JP4948678B2 (en) 2009-12-02 2010-12-01 Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP4948678B2 true JP4948678B2 (en) 2012-06-06
JPWO2011068121A1 JPWO2011068121A1 (en) 2013-04-18

Family

ID=44114967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011513177A Active JP4948678B2 (en) 2009-12-02 2010-12-01 Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same

Country Status (5)

Country Link
EP (1) EP2508631A1 (en)
JP (1) JP4948678B2 (en)
KR (1) KR101419145B1 (en)
CN (1) CN102597283B (en)
WO (1) WO2011068121A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5916418B2 (en) * 2012-02-13 2016-05-11 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
JP6111028B2 (en) 2012-03-26 2017-04-05 Jx金属株式会社 Corson alloy and manufacturing method thereof
WO2014115307A1 (en) * 2013-01-25 2014-07-31 三菱伸銅株式会社 Copper-alloy plate for terminal/connector material, and method for producing copper-alloy plate for terminal/connector material
JP5957083B2 (en) * 2013-07-10 2016-07-27 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP6223057B2 (en) 2013-08-13 2017-11-01 Jx金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6050738B2 (en) 2013-11-25 2016-12-21 Jx金属株式会社 Copper alloy sheet with excellent conductivity, moldability and stress relaxation properties
WO2015099098A1 (en) * 2013-12-27 2015-07-02 古河電気工業株式会社 Copper alloy sheet material, connector, and production method for copper alloy sheet material
CN105829555B (en) * 2013-12-27 2018-04-20 古河电气工业株式会社 The manufacture method of copper alloy plate, connector and copper alloy plate
JP6387755B2 (en) * 2014-09-10 2018-09-12 三菱マテリアル株式会社 Copper rolled sheets and parts for electronic and electrical equipment
WO2016158589A1 (en) * 2015-04-01 2016-10-06 古河電気工業株式会社 Rectangular rolled copper foil, flexible flat cable, rotating connector, and method for manufacturing rectangular rolled copper foil
JP6579980B2 (en) * 2016-03-09 2019-09-25 Jx金属株式会社 Ni-plated copper or copper alloy material, connector terminal, connector and electronic component using the same
JP6440760B2 (en) 2017-03-21 2018-12-19 Jx金属株式会社 Copper alloy strip with improved dimensional accuracy after press working
JP6345290B1 (en) 2017-03-22 2018-06-20 Jx金属株式会社 Copper alloy strip with improved dimensional accuracy after press working
JP6756348B2 (en) * 2018-08-15 2020-09-16 三菱マテリアル株式会社 Copper rolled plate and parts for electronic and electrical equipment
JP6713074B1 (en) * 2019-04-16 2020-06-24 Dowaメタルテック株式会社 Copper alloy sheet and method for producing the same
CN114502755B (en) * 2020-01-15 2023-11-17 古河电气工业株式会社 Copper plate material, method for producing same, and insulating substrate with copper plate material
CN112030030B (en) * 2020-08-06 2021-09-10 国网江西省电力有限公司电力科学研究院 High-strength high-conductivity copper alloy wire and preparation method thereof
CN113817932A (en) * 2021-07-27 2021-12-21 中国兵器科学研究院宁波分院 High-strength heat-resistant stress relaxation-resistant copper alloy material and preparation method thereof
JP7311651B1 (en) 2022-02-01 2023-07-19 Jx金属株式会社 Copper alloys for electronic materials and electronic parts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222641A (en) * 1998-01-30 1999-08-17 Furukawa Electric Co Ltd:The Copper alloy for elctrically conductive spring and its production
JP2006089763A (en) * 2004-09-21 2006-04-06 Dowa Mining Co Ltd Copper alloy and its production method
JP2006283059A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd High strength copper alloy sheet with excellent bendability, and its manufacturing method
JP2008075172A (en) * 2006-09-25 2008-04-03 Nikko Kinzoku Kk Cu-Ni-Si-BASED ALLOY

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122264A (en) * 1997-07-04 1999-01-26 Sony Corp Identification signal collating device
JP4209749B2 (en) 2003-09-24 2009-01-14 株式会社神戸製鋼所 Copper alloy with high strength and excellent bendability
JP4809602B2 (en) 2004-05-27 2011-11-09 古河電気工業株式会社 Copper alloy
JP4444143B2 (en) 2005-03-07 2010-03-31 古河電気工業株式会社 Copper alloy strip manufacturing method
JP5028657B2 (en) 2006-07-10 2012-09-19 Dowaメタルテック株式会社 High-strength copper alloy sheet with little anisotropy and method for producing the same
JP4247922B2 (en) * 2006-09-12 2009-04-02 古河電気工業株式会社 Copper alloy sheet for electrical and electronic equipment and method for producing the same
JP5156317B2 (en) 2006-09-27 2013-03-06 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP4981748B2 (en) * 2007-05-31 2012-07-25 古河電気工業株式会社 Copper alloy for electrical and electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222641A (en) * 1998-01-30 1999-08-17 Furukawa Electric Co Ltd:The Copper alloy for elctrically conductive spring and its production
JP2006089763A (en) * 2004-09-21 2006-04-06 Dowa Mining Co Ltd Copper alloy and its production method
JP2006283059A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd High strength copper alloy sheet with excellent bendability, and its manufacturing method
JP2008075172A (en) * 2006-09-25 2008-04-03 Nikko Kinzoku Kk Cu-Ni-Si-BASED ALLOY

Also Published As

Publication number Publication date
KR20120104532A (en) 2012-09-21
CN102597283A (en) 2012-07-18
EP2508631A1 (en) 2012-10-10
CN102597283B (en) 2014-04-09
JPWO2011068121A1 (en) 2013-04-18
KR101419145B1 (en) 2014-07-11
WO2011068121A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP4948678B2 (en) Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same
JP5158909B2 (en) Copper alloy sheet and manufacturing method thereof
JP4885332B2 (en) Copper alloy sheet and manufacturing method thereof
JP5158910B2 (en) Copper alloy sheet and manufacturing method thereof
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP5916964B2 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
TWI447239B (en) Copper alloy sheet and method of manufacturing the same
KR101935987B1 (en) Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet
JP5503791B2 (en) Copper alloy sheet and manufacturing method thereof
JP2011017072A (en) Copper alloy material
JP5261619B2 (en) Copper alloy sheet and manufacturing method thereof
JP5144814B2 (en) Copper alloy material for electrical and electronic parts
JPWO2015099098A1 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
JP5117602B1 (en) Copper alloy sheet with low deflection coefficient and excellent bending workability

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4948678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350