JP5916418B2 - Copper alloy sheet and manufacturing method thereof - Google Patents

Copper alloy sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5916418B2
JP5916418B2 JP2012028122A JP2012028122A JP5916418B2 JP 5916418 B2 JP5916418 B2 JP 5916418B2 JP 2012028122 A JP2012028122 A JP 2012028122A JP 2012028122 A JP2012028122 A JP 2012028122A JP 5916418 B2 JP5916418 B2 JP 5916418B2
Authority
JP
Japan
Prior art keywords
mass
copper alloy
orientation
less
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012028122A
Other languages
Japanese (ja)
Other versions
JP2013163853A (en
Inventor
岳己 磯松
岳己 磯松
洋 金子
洋 金子
立彦 江口
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2012028122A priority Critical patent/JP5916418B2/en
Publication of JP2013163853A publication Critical patent/JP2013163853A/en
Application granted granted Critical
Publication of JP5916418B2 publication Critical patent/JP5916418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどに適用される銅合金板材およびその製造方法に関する。   The present invention relates to a copper alloy plate material applied to lead frames, connectors, terminal materials, relays, switches, sockets, and the like for electrical and electronic equipment, and a method for manufacturing the same.

車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどの用途に使用される銅合金板材に要求される特性項目は、導電率、耐力(降伏応力)、引張強度、曲げ加工性、耐応力緩和特性、疲労特性がある。近年、電気・電子機器の小型化、軽量化、高機能化、高密度実装化や、使用環境の高温化に伴って、これらの要求特性レベルが高まっている。   Characteristic items required for copper alloy sheets used in automotive parts and lead frames, connectors, terminal materials, relays, switches, sockets, etc. for electric components, electrical conductivity, yield strength, Has tensile strength, bending workability, stress relaxation resistance, and fatigue characteristics. In recent years, with the miniaturization, weight reduction, high functionality, high density mounting, and high temperature of use environment of electric / electronic devices, the required characteristic level has been increased.

近年、リードフレーム、コネクタなどの車載部品用や電気・電子機器用部品は、高集積化、小型化および軽量化が進む傾向にあり、それとともに、銅や銅合金の板材は、より薄肉化の傾向にある。そのため、材料に要求される強度レベルはより厳しいものとなっている。とりわけ、自動車用コネクタなどは、激しい振動が繰り返し付加される環境で使用されるため、その材料には、疲労破壊を生じ難い性質の一層の向上、すなわちより高い疲れ強さ(優れた疲労特性)を有することが求められる。   In recent years, automotive components such as lead frames and connectors, as well as electrical and electronic equipment components, have tended to be highly integrated, downsized, and lightened. At the same time, copper and copper alloy plate materials have become thinner. There is a tendency. For this reason, the strength level required for the material is more severe. In particular, automobile connectors are used in an environment where severe vibrations are repeatedly applied, so the material has a further improved property that is less susceptible to fatigue failure, that is, higher fatigue strength (excellent fatigue properties). It is required to have.

また、車載部品や電気・電子部品を構成するコネクタ、リードフレーム、リレー、スイッチなどの部品に使用される材料には、電気・電子機器の組み立て時や作動時に付与される応力に耐えうる高い強度が要求される。また、電気・電子部品は一般に曲げ加工により成形されることから、曲げ加工性の一層の向上も求められる。   In addition, materials used for components such as connectors, lead frames, relays, and switches that make up in-vehicle components and electrical / electronic components have high strength to withstand the stress applied during assembly and operation of electrical / electronic devices. Is required. In addition, since electric / electronic parts are generally formed by bending, further improvement in bending workability is also required.

これらの高度の要求に対応する強度を高める強化法として、材料中に微細な第二相を析出させる析出強化がある。この強化方法は強度が高くなることに加えて、導電率を同時に向上させるメリットがある。しかし、昨今の電子機器や自動車に使用される部品の小型化に伴って、使用される銅合金材については、上記のようにより高強度な材料がより小さい半径で曲げ加工できることが要求されるようになっており、曲げ加工性にも優れた銅合金板材が強く要求されている。しかし析出強化では曲げ加工性がまだ十分なものは得られなかった。   As a strengthening method for increasing the strength corresponding to these high requirements, there is precipitation strengthening in which a fine second phase is precipitated in the material. This strengthening method has the merit of improving the conductivity at the same time in addition to increasing the strength. However, with the recent miniaturization of parts used in electronic devices and automobiles, the copper alloy materials used are required to be able to bend a higher-strength material with a smaller radius as described above. Therefore, there is a strong demand for a copper alloy sheet material having excellent bending workability. However, it was not possible to obtain a material with sufficient bending workability by precipitation strengthening.

また、従来のCu−Ni−Si系において、高い強度を得るには、圧延加工率を高めて大きな加工硬化を得ていたが、この方法は逆に曲げ加工性を劣化させてしまい、高強度と良好な曲げ加工性を両立することができなかった。
さらに、高強度、高ばね性と良好な曲げ加工性を有する板材でも、圧延方向と圧延垂直方向とで特性差があることは好ましくなく、いずれの方向でも良好な特性を示すことが重要である。特に、超小型端子として用いられる際、狭幅でピン型に微細な加工が施されるが、このような場合にもいずれの方向でも良好な特性を示すことが重要である。
In addition, in the conventional Cu-Ni-Si system, in order to obtain a high strength, the rolling process rate was increased and a large work hardening was obtained. However, this method conversely deteriorated the bending workability, resulting in a high strength. And good bending workability could not be achieved at the same time.
Furthermore, it is not preferable that there is a difference in properties between the rolling direction and the vertical direction of rolling even in a plate material having high strength, high spring property and good bending workability, and it is important to show good properties in any direction. . In particular, when used as an ultra-small terminal, a pin-type and fine processing is performed with a narrow width. In such a case, it is important to show good characteristics in any direction.

曲げ加工性向上の要求に対しては、結晶方位の制御によって解決する提案がいくつかなされている。例えば、Cu−Ni−Si系銅合金において以下のような開示がなされている。特許文献1には、Cu−Ni−Si系銅合金において、結晶粒径と、{311}、{220}、{200}面からのX線回折強度Iがある条件を満たす様な結晶方位の場合に、曲げ加工性が優れることが開示されている。また、特許文献2には、Cu−Ni−Si系銅合金において、{200}面および{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、曲げ加工性が優れることが開示されている。また、特許文献3には、Cu−Ni−Si系銅合金において、Cube方位{001}<100>の割合の制御によって曲げ加工性が優れることが開示されている。
特許文献4には、強い冷間加工で歪んだ状態にある結晶組織を再結晶させて、異方性の小さい結晶組織に変えるとともに、伸びを向上させることによって曲げ加工性が良好となることが開示されている。
特許文献5には、Cu−Ni−Si系合金中に、Cube方位とBrass、S、Copper方位を集積させることで、強度異方性が小さく、曲げ加工性に優れた特性を有することが示されている。
Several proposals have been made to solve the demand for improvement in bending workability by controlling the crystal orientation. For example, the following disclosures have been made on Cu—Ni—Si based copper alloys. Patent Document 1 discloses that in a Cu—Ni—Si based copper alloy, the crystal grain size and the crystal orientation such that the X-ray diffraction intensity I from the {311}, {220}, and {200} planes satisfies a certain condition are satisfied. In some cases, it is disclosed that bending workability is excellent. Patent Document 2 discloses that in a Cu—Ni—Si-based copper alloy, bending workability is excellent when the crystal orientation satisfies the condition that the X-ray diffraction intensity from the {200} plane and the {220} plane is satisfied. It is disclosed. Patent Document 3 discloses that in a Cu—Ni—Si based copper alloy, bending workability is excellent by controlling the ratio of the Cube orientation {001} <100>.
In Patent Document 4, the crystal structure in a distorted state due to strong cold working is recrystallized to change to a crystal structure with small anisotropy, and the bending workability is improved by improving the elongation. It is disclosed.
Patent Document 5 shows that by integrating the Cube orientation and the Brass, S, and Copper orientations in a Cu-Ni-Si-based alloy, the strength anisotropy is small and the material has excellent bending workability. Has been.

特許文献1および特許文献2に記載された発明では、特定面からのX線回折による結晶方位の解析は、ある広がりを持った結晶方位の分布の中のごく一部の特定の面に関するものである。また、特許文献3に記載された発明では、結晶方位の制御は溶体化熱処理後の圧延加工率の低減によって行っている。また、Cube方位結晶粒の面積、板厚方向での分布は記載されておらず、曲げ加工性、強度の異方性については開示されていない。特許文献4に記載された発明においては、強い冷間圧延で状態にある結晶組織を再結晶させて、異方性の小さい結晶組織を実現し、伸びの向上により良好な曲げ加工性を実現している。しかし、結晶方位制御による特性改善は行っていない。特許文献5では、Cube方位を20〜60%、Brass、S、Copper方位の平均合計面積率を20〜50%とし、また、粒内方位差(KAM)を規定し、組織を制御することで強度異方性を低減させている。しかし、板材表層は機械研磨により加工が入っているため、最表層部の組織については定量化できていない。   In the inventions described in Patent Document 1 and Patent Document 2, the analysis of crystal orientation by X-ray diffraction from a specific surface relates to a small part of a specific surface in a distribution of crystal orientations having a certain spread. is there. In the invention described in Patent Document 3, the crystal orientation is controlled by reducing the rolling rate after solution heat treatment. Further, the area of the Cube-oriented crystal grains and the distribution in the plate thickness direction are not described, and bending workability and strength anisotropy are not disclosed. In the invention described in Patent Document 4, the crystal structure in a state by strong cold rolling is recrystallized to realize a crystal structure with small anisotropy, and to realize good bending workability by improving elongation. ing. However, the characteristics are not improved by controlling the crystal orientation. In Patent Document 5, the Cube orientation is 20 to 60%, the average total area ratio of the Brass, S, and Copper orientations is 20 to 50%, the intragranular orientation difference (KAM) is defined, and the structure is controlled. Strength anisotropy is reduced. However, since the surface layer of the plate material is processed by mechanical polishing, the structure of the outermost layer portion cannot be quantified.

また上記の要求のうち疲労特性に関し、従来、銅合金の疲労特性は、引張強さを高める(高強度化)ことで改善していたが、銅合金の組成や析出物による方法では高強度化に限界があった。   Also, regarding fatigue characteristics among the above requirements, the fatigue characteristics of copper alloys have been improved by increasing the tensile strength (higher strength). There was a limit.

特許文献6では、合金の組成や析出物を制御して疲労特性を向上させているが、合金の組成や析出物による機械強度の増加には限界がある。また曲げ加工性や導電率とバランスさせながら、機械強度や疲労特性を向上させる点からも限界があった。   In Patent Document 6, fatigue properties are improved by controlling the alloy composition and precipitates, but there is a limit to the increase in mechanical strength due to the alloy composition and precipitates. In addition, there is a limit in terms of improving mechanical strength and fatigue characteristics while balancing with bending workability and conductivity.

さらに、電気・電子機器用途に使用される銅合金材料に要求される特性項目の一つとして、ヤング率(縦弾性係数)が低いことが求められている。近年コネクタなどの電子部品の小型化の進行に伴い、端子の寸法精度やプレス加工の公差が厳しくなっている。材料のヤング率を低減することで、コンタクト接圧に及ぼす寸法変動の影響を低減できるため、設計が容易となる。ヤング率の測定には、引張試験による応力−ひずみ線図の弾性領域の傾きから算出する方法、梁(片持ち梁)をたわませた際の応力−ひずみ線図の弾性領域の傾きから算出する方法の2つの方法がある。   Furthermore, a low Young's modulus (longitudinal elastic modulus) is required as one of the characteristic items required for copper alloy materials used for electrical and electronic equipment. In recent years, with the progress of miniaturization of electronic parts such as connectors, the dimensional accuracy of terminals and the tolerance of press working have become severe. By reducing the Young's modulus of the material, the influence of dimensional variation on the contact contact pressure can be reduced, so that the design becomes easy. The Young's modulus is measured by the method of calculating from the slope of the elastic region of the stress-strain diagram by tensile test, and from the slope of the elastic region of the stress-strain diagram when the beam (cantilever) is bent. There are two ways to do this.

特開2006−009137号公報JP 2006-009137 A 特開2008−013836号公報JP 2008-013836 A 特開2006−283059号公報JP 2006-283059 A 特開2005−350695号公報JP 2005-350695 A 特開2011−162848号公報JP 2011-162848 A 特開2004−225112号公報JP 2004-225112 A

このように曲げ加工性と高強度を両立し、ヤング率が低く、疲労特性がより高く、各特性の圧延平行方向と垂直方向の異方性の少ない銅合金材料が求められている。   Thus, there is a demand for a copper alloy material that achieves both bending workability and high strength, has a low Young's modulus, higher fatigue characteristics, and less anisotropy in the parallel and perpendicular directions of each characteristic.

上記の問題に鑑み、本発明の課題は、強度とともに曲げ加工性に優れ、優れた疲労強度を有し、各特性の圧延平行方向と垂直方向の異方性の少ない、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した銅合金板材を提供することにある。   In view of the above problems, the problem of the present invention is that it is excellent in bending workability as well as strength, has excellent fatigue strength, and has little anisotropy between the rolling parallel direction and the vertical direction of each characteristic. An object of the present invention is to provide a copper alloy plate material suitable for connectors, terminal materials, relays, switches, and the like for lead frames, connectors, terminal materials, and the like for automobiles.

本発明者らは、電気・電子部品用途に適した銅合金について研究を行い、Cu−Ni−Si系の銅合金において、曲げ加工性、強度、導電性を大きく向上させるために検討を重ねた結果、Cube方位集積割合と曲げ加工性との間に相関関係があることを見出した。従来、板厚方向で最表層部の組織の詳細は示されていなかった。板材を曲げ加工する場合、板の両面表層が一番変形量が大きくなるので、従来の結晶方位制御の考え方に則れば板の最表層にCube方位が集積することが望ましいと予想される。ところが、本発明者らの研究により、内部に一定量のCube方位が集積していれば、最表層のCube方位はわずかであっても曲げ加工性に優れ、低ヤング率を示すことがわかった。本発明はこの知見に基づきなされるに至った。   The present inventors have studied copper alloys suitable for electrical / electronic component applications, and have repeatedly studied to greatly improve bending workability, strength, and conductivity in Cu-Ni-Si based copper alloys. As a result, it was found that there is a correlation between the Cube orientation accumulation ratio and the bending workability. Conventionally, details of the structure of the outermost layer portion in the plate thickness direction have not been shown. When bending a plate material, the deformation amount of the double-sided surface layer of the plate is the largest, so it is expected that the Cube orientation is preferably accumulated on the outermost layer of the plate according to the conventional concept of crystal orientation control. However, as a result of studies by the present inventors, it has been found that if a certain amount of Cube orientation is accumulated inside, even if the Cube orientation of the outermost layer is small, it has excellent bending workability and exhibits a low Young's modulus. . The present invention has been made based on this finding.

すなわち、上記課題は以下の発明により解決された。
(1)Niを1.0〜5.0mass%、Siを0.1〜2.0mass%含有し、残部が銅及び不可避不純物からなる銅合金板材であって、EBSD測定における結晶方位解析において、板厚方向表層部(0t〜1/8t)でのBR方位{3 6 2}<8 −5 3>の面積率が5〜30%であり、板厚内部(1/8t〜1/2t)でのCube方位面積率{1 0 0}<0 0 1>が5%以上であることを特徴とする銅合金板材。
(2)Niを1.0〜5.0mass%、Siを0.1〜2.0mass%含有し、さらにSnを0.4mass%以下、Znを0.5mass%以下、Agを0.2mass%以下、Mnを0.1mass%以下、Bを0.1mass%以下、Pを0.01mass%以下、Mgを0.1mass%以下、Crを0.2mass%以下、Zrを0.01mass%以下、Feを0.01mass%以下およびHfを0.005mass%以下からなる群から選ばれる少なくとも1つを合計で0.005〜1.0mass%含有し、残部が銅及び不可避不純物からなる銅合金板材であって、EBSD測定における結晶方位解析において、板厚方向表層部(0t〜1/8t)でのBR方位{3 6 2}<8 −5 3>の面積率が5〜30%であり、板厚内部(1/8t〜1/2t)でのCube方位面積率{1 0 0}<0 0 1>が5%以上であることを特徴とする銅合金板材。
(3)板材の板バネ疲労試験にて、材料への負荷応力が500MPaでの、破断までの繰り返し回数が10回以上である、(1)または(2)に記載の銅合金板材。
(4)板材の180°U曲げ試験において、圧延平行・垂直方向のいずれもクラックなく曲げ加工が可能である、(1)〜(3)のいずれか1項に記載の銅合金板材。
(5)(1)〜(4)のいずれか1項に記載の銅合金板材を製造する方法であって、前記銅合金板材を与える合金成分組成からなる銅合金素材に、鋳造[工程1]、均質化熱処理[工程2]、熱間圧延[工程3]、水冷[工程4]、冷間圧延1[工程6]、中間焼鈍[工程7]、冷間圧延2[工程8]及び中間溶体化熱処理[工程9]をこの順に施し、
ここで、前記中間焼鈍[工程7]を、熱処理温度400〜600℃で行い、かつ、前記冷間圧延2[工程8]を、圧延ロールの表面粗度Ra0.5μm以上で、圧延張力100〜300MPaで行う
ことを特徴とする銅合金板材の製造方法
That is, the said subject was solved by the following invention.
(1) A copper alloy plate material containing 1.0 to 5.0 mass% Ni, 0.1 to 2.0 mass% Si, and the balance consisting of copper and inevitable impurities, and in crystal orientation analysis in EBSD measurement, The area ratio of the BR orientation {3 6 2} <8 −5 3> in the thickness direction surface layer portion (0t to 1 / 8t) is 5 to 30%, and the thickness inside (1 / 8t to 1 / 2t) Cube azimuth | direction area ratio {1 0 0} <0 0 1> in this is 5% or more, The copper alloy board | plate material characterized by the above-mentioned.
(2) Ni The 1.0~5.0mass%, the Si containing 0.1~2.0mass%, further 0.4 mass% of Sn or less, Zn and 0.5 mass% or less, Ag and 0.2 mass% Hereinafter , Mn is 0.1 mass% or less , B is 0.1 mass% or less , P is 0.01 mass% or less , Mg is 0.1 mass% or less , Cr is 0.2 mass% or less , Zr is 0.01 mass% or less , A copper alloy plate material containing 0.005 to 1.0 mass% in total of at least one selected from the group consisting of 0.01 mass% or less of Fe and 0.005 mass% or less of Hf , with the balance being made of copper and inevitable impurities In the crystal orientation analysis in the EBSD measurement, the area ratio of BR orientation {3 6 2} <8 −5 3> in the thickness direction surface layer portion (0t to 1 / 8t) is 5 to 30%. A copper alloy sheet having a Cube orientation area ratio {1 0 0} <0 0 1> within the sheet thickness (1 / 8t to 1 / 2t) of 5% or more.
(3) The copper alloy sheet according to (1) or (2), wherein, in a plate spring fatigue test of the sheet, the number of repetitions until breakage is 10 7 or more when the applied stress to the material is 500 MPa.
(4) The copper alloy sheet according to any one of (1) to (3), wherein in the 180 ° U bending test of the sheet, bending can be performed without cracks in both the rolling parallel direction and the vertical direction.
(5) A method for producing a copper alloy sheet according to any one of (1) to (4), wherein the copper alloy sheet is cast into a copper alloy material having an alloy composition that gives the copper alloy sheet (Step 1). , Homogenization heat treatment [step 2], hot rolling [step 3], water cooling [step 4], cold rolling 1 [step 6], intermediate annealing [step 7], cold rolling 2 [step 8] and intermediate solution and facilities for heat treatment [step 9] in this order,
Here, the intermediate annealing [Step 7] is performed at a heat treatment temperature of 400 to 600 ° C., and the cold rolling 2 [Step 8] is performed with a surface roughness Ra of 0.5 μm or more and a rolling tension of 100 to A method for producing a copper alloy sheet material, which is performed at 300 MPa .

本発明の銅合金板は、曲げ加工性に優れ、優れた強度を示し、疲労特性にも優れ、特性の圧延平行方向と垂直方向の異方性が少なく、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに特に適した性質を有する。上記本発明の構成により、強度、曲げ加工性、導電率の各特性に優れ、電気・電子機器の用途に好適な銅合金を提供することができる。また、本発明の製造方法によれば、上記銅合金板材を好適に製造することができる。   The copper alloy sheet of the present invention is excellent in bending workability, exhibits excellent strength, excellent fatigue characteristics, and has little anisotropy in the rolling parallel direction and perpendicular direction of the characteristics, and a lead frame for electrical and electronic equipment, It has properties particularly suitable for connectors, terminal materials, connectors for automobiles, terminal materials, relays, switches, and the like. According to the configuration of the present invention, a copper alloy having excellent strength, bending workability, and electrical conductivity and suitable for use in electrical / electronic equipment can be provided. Moreover, according to the manufacturing method of this invention, the said copper alloy board | plate material can be manufactured suitably.

疲労特性の試験方法の説明図である。It is explanatory drawing of the test method of a fatigue characteristic.

本発明の銅合金板材の好ましい実施の態様について、詳細に説明する。なお、本発明における「板材」には、「条材」も含むものとする。本発明の銅合金板材の厚みは特に制限はないが、好ましくは0.03〜0.5mmである。また、本発明で薄板とは厚みは特に制限するものではないが、好ましくは0.04〜0.3mm、より好ましくは0.05〜0.25mmである。   A preferred embodiment of the copper alloy sheet material of the present invention will be described in detail. The “plate material” in the present invention includes “strip material”. Although there is no restriction | limiting in particular in the thickness of the copper alloy board | plate material of this invention, Preferably it is 0.03-0.5 mm. In the present invention, the thickness of the thin plate is not particularly limited, but is preferably 0.04 to 0.3 mm, more preferably 0.05 to 0.25 mm.

材料の曲げ加工時のクラックが発生する原因を明らかにするために、本発明者らは、曲げ変形した後の断面の金属組織を電子顕微鏡及び電子後方散乱回折測定(以下、EBSDともいう)によって詳細に調査した。その結果、基体材料は均一に変形しているのではなく、特定の結晶方位の領域のみに変形が集中する、不均一な変形が進行することが観察された。そして、その不均一変形により、曲げ加工した後の基体材料表面には、数μmの深さのシワや、クラックが発生することが解った。   In order to clarify the cause of the occurrence of cracks during bending of the material, the present inventors analyzed the metal structure of the cross section after bending deformation by an electron microscope and electron backscatter diffraction measurement (hereinafter also referred to as EBSD). We investigated in detail. As a result, it was observed that the base material was not uniformly deformed, but non-uniform deformation progressed, in which the deformation was concentrated only in a region having a specific crystal orientation. Then, it was found that due to the non-uniform deformation, wrinkles and cracks having a depth of several μm were generated on the surface of the base material after bending.

さらに、90°曲げ加工では歪みは板厚方向最表層に付与されるのに対し、180°曲げにおいては薄板の板厚方向最表層のみならず、板厚1/8位置(板表面から板厚の1/8の位置、1/8tともいう)まで大きく歪んでおり、表層から発達する局所変形領域に対し、表層近傍の結晶粒のみならず板厚1/8位置の深さまでの結晶粒が関与していることが解った。そして、その局所変形帯はCube方位粒にはあまり観察されず、Cube方位は不均一変形を抑制する効果があることが解った。その結果、板表面に発生するシワが低減され、クラックが抑制されることが解った。またBrass方位は曲げ変形後に局所変形が伴っていることが多く、曲げ性には悪影響を及ぼすことが解った。   Further, in the 90 ° bending process, strain is applied to the outermost layer in the plate thickness direction, whereas in the 180 ° bending, not only the outermost layer in the plate thickness direction of the thin plate but also the plate thickness 1/8 position (from the plate surface to the plate thickness). 1/8 position, also referred to as 1 / 8t), and not only the crystal grains in the vicinity of the surface layer but also the grains up to the depth of the plate thickness 1/8 position with respect to the local deformation region developed from the surface layer. I found out that I was involved. And the local deformation | transformation zone | band was not observed so much in Cube direction grain, and it turned out that Cube direction has the effect which suppresses nonuniform deformation. As a result, it was found that wrinkles generated on the plate surface were reduced and cracks were suppressed. In addition, it was found that the Brass orientation is often accompanied by local deformation after bending deformation, and adversely affects bendability.

これまで、最表層0t〜板厚方向内部1/8tの集合組織の測定は困難であったが、研磨方法の改善により詳細な調査が可能となった。この、表層近傍(0t〜1/8t)でのCube方位面積率は、これまでは詳細な解析が出来なかったため、ここでの集合組織の影響を評価することは困難であった。本発明では、表層近傍の集合組織を制御する方法を見出し、その測定方法、効果を把握した。   Up to now, it has been difficult to measure the texture of the outermost layer 0t to the inner 1 / 8t in the thickness direction, but detailed investigation has become possible by improving the polishing method. Since the Cube orientation area ratio in the vicinity of the surface layer (0t to 1 / 8t) could not be analyzed in detail so far, it was difficult to evaluate the influence of the texture here. In the present invention, a method for controlling the texture in the vicinity of the surface layer has been found, and its measurement method and effect have been grasped.

[Cube方位の面積率]
銅合金板材の曲げ加工性を改善するために、本発明者らは曲げ加工部に発生するクラックの発生原因について検討した。その結果、塑性変形が局所的に発達して剪断変形帯を形成し、局所的な加工硬化によってマイクロボイドの生成と連結が起こり、成形限界に達することが原因するという結果を得た。そこで、その対策として、曲げ変形において加工硬化が起きにくい結晶方位の割合を高めることが有効であることを見出した。即ち、Cube方位{001}<100>の面積率が5%以上の場合に、良好な曲げ加工性を示すという知見を得た。より詳しくは、このCube方位面積率の制御は板厚内部1/8t〜1/2tの、内部のみでよく、最表層は必ずしもCube方位が集積していなくてもよい。この板厚内部でのCube方位の面積率が上記下限値以上の場合は、上述した作用効果が十分に発揮される。また、上記下限値以上であると、再結晶処理の後の冷間圧延加工を低加工率で行わなくてよく、強度が著しく低下してしまうことがないため、好ましい。上記の観点から、板厚内部(1/8t〜1/2t)の(Cube方位{001}<100>の面積率の好ましい範囲は5%以上、更に好ましくは、8%以上である。Cube方位面積率の上限は特に制限はないが、50%以下であるのが現実的である。
[Area ratio of Cube orientation]
In order to improve the bending workability of the copper alloy sheet material, the present inventors examined the cause of the occurrence of cracks in the bent portion. As a result, the plastic deformation was locally developed to form a shear deformation band, and the generation and connection of microvoids occurred due to local work hardening, resulting in reaching the forming limit. Therefore, as a countermeasure, it has been found that it is effective to increase the proportion of crystal orientation in which work hardening is unlikely to occur in bending deformation. That is, it was found that when the area ratio of the Cube orientation {001} <100> is 5% or more, good bending workability is exhibited. More specifically, the Cube azimuth area ratio may be controlled only inside the plate thickness inside 1 / 8t to 1 / 2t, and the outermost layer does not necessarily have Cube orientation accumulated. When the area ratio of the Cube orientation within the plate thickness is equal to or greater than the lower limit value, the above-described effects are sufficiently exhibited. Moreover, it is preferable that it is more than the said lower limit, since the cold rolling after a recrystallization process does not need to be performed with a low processing rate, and an intensity | strength does not fall remarkably. From the above viewpoint, the preferred range of the area ratio of the (Cube orientation {001} <100> inside the plate thickness (1 / 8t to 1 / 2t) is 5% or more, more preferably 8% or more. The upper limit of the area ratio is not particularly limited, but is practically 50% or less.

板厚内部(1/8t〜1/2t)のCube方位面積率が上記下限値以上であることで曲げ加工性が向上することは、上記本発明者らの検討により見出されたもので、180°曲げではこの領域の結晶粒も関与していることわかったことが大きな理由のひとつである。さらに、まだ定かではないが、表層部(0t〜1/8t)のCube方位面積率が低くても本発明の効果を奏する理由としては、曲げ加工時に発生するせん断帯発生の抑制は、板厚内部(1/8t〜1/2t)のCube方位粒が担うことができるためと推察される。   The fact that the bending workability is improved when the Cube orientation area ratio inside the plate thickness (1 / 8t to 1 / 2t) is not less than the above lower limit value has been found by the examination of the present inventors. One of the main reasons is that it was found that 180 ° bending also involved the crystal grains in this region. Furthermore, although it is not certain yet, the reason why the effect of the present invention can be achieved even if the Cube orientation area ratio of the surface layer portion (0t to 1 / 8t) is low is that the suppression of shear band generation that occurs during bending is the thickness of the plate It is presumed that the internal (1 / 8t to 1 / 2t) Cube-oriented grains can bear.

[Cube方位の板厚方向分布]
上記のように、Cube方位の板厚方向での面積率の分布は、板厚方向内部(1/8t〜1/2t)で5%以上に制御することで曲げ加工性、低ヤング率特性、異方性を改善することができる。板厚内部(1/8t〜1/2t)のCube方位面積率を5%以上に制御することで、曲げ加工によるせん断帯の発生を抑制することが出来る。表層のCube量が内部より低くても、曲げ加工時のせん断帯形成によるクラックの発生は、内部の組織により抑制することが出来る。すなわち、板厚表層部(0〜1/8t)にCube方位以外の結晶方位粒が集積した場合でも、曲げ加工時に発生するせん断帯発生の抑制は、板厚内部(1/8t〜1/2t)のCube方位粒が担うことができる。
[Cube orientation distribution in the plate thickness direction]
As described above, the distribution of the area ratio in the plate thickness direction of the Cube orientation is controlled to be 5% or more in the plate thickness direction inside (1 / 8t to 1 / 2t), whereby bending workability, low Young's modulus characteristics, Anisotropy can be improved. By controlling the Cube orientation area ratio inside the plate thickness (1 / 8t to 1 / 2t) to 5% or more, generation of shear bands due to bending can be suppressed. Even if the amount of Cube in the surface layer is lower than the inside, the generation of cracks due to the formation of a shear band during bending can be suppressed by the internal structure. That is, even when crystal orientation grains other than the Cube orientation are accumulated on the plate thickness surface layer portion (0 to 1/8 t), the suppression of the shear band generated during bending is suppressed within the plate thickness (1/8 t to 1/2 t). ) Cube orientation grains.

銅合金板材をコネクタとして用いる場合、バネ性を有する梁、曲げ加工の方向は圧延平行・垂直の双方で加工される。そこで、圧延平行・垂直方向の強度、曲げ加工性の異方性を低減することにより、いずれの方向でも加工の際の金型設計、コネクタのバネ力が安定するというメリットがある。Cube方位以外の結晶方位は、圧延平行方向(LD)と圧延垂直方向(TD)で異なる結晶面を有している。一方、本発明例の板厚内部(1/8t〜1/2t)で優先成長させたCube方位は、LD、TDのいずれも(100)面を向いているため、強度、曲げ加工性の異方性は小さくなる。   When a copper alloy sheet is used as a connector, the beam having a spring property and the bending direction are processed in both parallel and vertical directions. Therefore, by reducing the strength in the rolling parallel / vertical direction and the anisotropy of the bending workability, there is an advantage that the mold design and the spring force of the connector are stabilized in any direction. Crystal orientations other than the Cube orientation have different crystal faces in the rolling parallel direction (LD) and the rolling vertical direction (TD). On the other hand, since the Cube orientation preferentially grown in the thickness (1 / 8t to 1 / 2t) of the example of the present invention is directed to the (100) plane of both LD and TD, the strength and bending workability are different. The direction becomes smaller.

[BR方位]
本発明では、Cube方位の他に、最表層(0t〜1/8t)のBR方位{3 6 2}<8 −5 3>の制御も行っている。
BR方位はCube方位同様、再結晶時に優先的に成長する方位であるが、圧延平行方向、垂直方向のいずれも他の方位に比べてシュミット因子が0.5に近く、材料の強度を低下させるという難点がある。しかし、BR方位は、他の結晶方位に比べて結晶粒内のひずみ差(KAM値)が高く、平均結晶粒面積が大きい結晶方位であることがわかり、弾性域でのひずみの蓄積が抑制されることが、実験的に確認できた。さらに、このBR方位を板厚表層部にのみ集積させることができるのを確認でき、これにより疲労特性が改善することがわかった。BR方位は、強度を低下させる点と、疲労特性に優れる点のバランスから、最表層(0t〜1/8t)の面積率の好ましい範囲は5〜30%、更に好ましくは7〜25%である。
[BR orientation]
In the present invention, in addition to the Cube orientation, the BR orientation {3 6 2} <8 −5 3> of the outermost layer (0t to 1 / 8t) is also controlled.
The BR orientation is the orientation that preferentially grows during recrystallization, like the Cube orientation, but the Schmid factor is close to 0.5 in both the rolling parallel direction and the vertical direction compared to the other orientations, reducing the strength of the material. There is a difficulty. However, it can be seen that the BR orientation is a crystal orientation in which the strain difference (KAM value) in the crystal grains is higher than that of other crystal orientations and the average grain area is large, and the accumulation of strain in the elastic region is suppressed. It was confirmed experimentally. Furthermore, it was confirmed that the BR orientation could be accumulated only in the surface layer portion of the plate thickness, and it was found that this improves the fatigue characteristics. The BR orientation is preferably 5 to 30%, more preferably 7 to 25%, in terms of the area ratio of the outermost layer (0t to 1 / 8t) from the balance between reducing strength and excellent fatigue characteristics. .

[BR方位の板厚方向分布]
上記のようにBR方位の板厚方向での面積率の分布を、表層部(0t〜1/8t)で5〜30%に制御することで、疲労特性を改善することができる。表層部(0t〜1/8t)にて30%を超える方位面積率を有すると、強度が低下してしまい、さらに曲げ加工性に寄与するせん断帯発生の抑制を阻害するため、曲げ加工性が低下する。ただし、BR方位を表層部(0t〜1/8t)に5〜30%集積させることで、材料の疲労特性改善が見込まれる。
[Thickness direction distribution of BR orientation]
As described above, the fatigue characteristics can be improved by controlling the distribution of the area ratio in the plate thickness direction of the BR orientation to 5 to 30% in the surface layer portion (0t to 1 / 8t). When the surface area portion (0t to 1 / 8t) has an azimuth area ratio exceeding 30%, the strength is lowered, and further, inhibition of shear band generation that contributes to bending workability is hindered. descend. However, the fatigue characteristics of the material can be improved by accumulating 5 to 30% of the BR orientation in the surface layer portion (0t to 1 / 8t).

[Cube方位、BR方位以外の方位]
また、上記範囲のCube方位、BR方位の他に、S方位{3 2 1}<3 4 6>、Copper方位{1 2 1}<1 −1 1>、D方位{4 11 4}<11 −8 11>、Brass方位{1 1 0}<1 −1 2>、Goss方位{1 1 0}<0 0 1>、R1方位{2 3 6}<3 8 5>、RDW方位{1 0 2}<0 −1 0>などが発生する。本発明においては、観測される全方位の面積に対して、BR方位、Cube方位の面積率が上記の範囲にあれば、これらの方位成分を含んでいることは許容される。
[Cube orientation, orientation other than BR orientation]
In addition to the above-mentioned Cube orientation and BR orientation, S orientation {3 2 1} <3 4 6>, Copper orientation {1 2 1} <1 −1 1>, D orientation {4 11 4} <11 −8 11>, Brass orientation {1 1 0} <1 −1 2>, Goss orientation {1 1 0} <0 0 1>, R1 orientation {2 3 6} <3 8 5>, RDW orientation {1 0 2} <0 −1 0> or the like occurs. In the present invention, if the area ratio of the BR orientation and the Cube orientation is within the above range with respect to the observed area of all orientations, it is allowed to include these orientation components.

[EBSD法]
本発明における上記結晶方位の解析には、EBSD法を用いた。EBSD法とは、Electron BackScatter Diffractionの略で、走査電子顕微鏡(SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折を利用した結晶方位解析技術のことである。結晶粒を200個以上含む、1ミクロン四方の試料面積に対し、0.1μmステップでスキャンし、方位を解析した。測定面積およびスキャンステップは試料の結晶粒の大きさから300×300μmと0.1μmとした。各方位の面積率は、Cube方位{0 0 1}<1 0 0>の理想方位から±10°以内、BR方位{3 6 2}<8 −5 3>の理想方位から10°以内の面積の全測定面積に対する割合である。EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、本明細書中では面積率として記載した。また、方位分布は板厚方向に変化しているため、EBSDによる方位解析は板厚方向に何点かを任意にとって平均を取ることが好ましい。
[EBSD method]
The EBSD method was used for the analysis of the crystal orientation in the present invention. The EBSD method is an abbreviation for Electron BackScatter Diffraction, and is a crystal orientation analysis technique using reflected electron Kikuchi line diffraction that occurs when a sample is irradiated with an electron beam in a scanning electron microscope (SEM). A sample area of 1 micron square containing 200 or more crystal grains was scanned in 0.1 μm steps, and the orientation was analyzed. The measurement area and scan step were set to 300 × 300 μm and 0.1 μm from the size of the crystal grains of the sample. The area ratio of each azimuth is within ± 10 ° from the ideal azimuth of the Cube azimuth {0 0 1} <1 0 0>, and within 10 ° from the ideal azimuth of the BR azimuth {3 6 2} <8 −5 3>. It is a ratio with respect to the total measurement area. The information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers at which the electron beam penetrates into the sample. It was described as an area ratio. Further, since the azimuth distribution changes in the plate thickness direction, it is preferable that the azimuth analysis by EBSD takes an average for any number of points in the plate thickness direction.

[板厚方向の集合組織分布評価]
合金中のCube方位、BR方位面積率の、板厚方向での分布を調査するため、研磨量を変更して測定を行った。板厚方向で最表層部の組織を見るためには、試験片の裏面をマスキングし、表面だけ電解研磨を行う。この際、試験片表面が鏡面仕上げになっている点、研磨量が最小限である点に注意しながら研磨を行う。実際には、試験片表面の研磨量は3μmであり、最表層組織とする。ここでの電解研磨による研磨量の微調整により、0t〜1/8tの組織を正確に把握することが出来るようになり、EBSD解析にて詳細な解析が可能である。板厚方向内部の組織は、試験片表面を機械研磨し、仕上げに電解研磨により鏡面とする。これにより、1/8t〜1/2tの組織が得られ、各板厚方向での測定が可能となる。準備した試験片の測定は、EBSDによる方位解析にて300×300μmの範囲を0.1μmステップでスキャンし、Cube方位、BR方位の面積率を測定した。
[Evaluation of texture distribution in the thickness direction]
In order to investigate the distribution in the sheet thickness direction of the Cube orientation and BR orientation area ratio in the alloy, the measurement was performed by changing the polishing amount. In order to see the structure of the outermost layer portion in the plate thickness direction, the back surface of the test piece is masked and only the surface is electropolished. At this time, polishing is performed while paying attention to the point that the surface of the test piece is mirror-finished and the amount of polishing is minimal. Actually, the polishing amount on the surface of the test piece is 3 μm, which is the outermost layer structure. By fine adjustment of the polishing amount by electrolytic polishing here, it becomes possible to accurately grasp the structure of 0t to 1 / 8t, and detailed analysis can be performed by EBSD analysis. For the internal structure in the thickness direction, the surface of the test piece is mechanically polished and finished to a mirror surface by electrolytic polishing. Thereby, the structure | tissue of 1 / 8t-1 / 2t is obtained, and the measurement in each plate | board thickness direction is attained. The measurement of the prepared test piece was performed by scanning the range of 300 × 300 μm by 0.1 μm step by orientation analysis by EBSD, and measuring the area ratio of Cube orientation and BR orientation.

[副添加元素]
次に本合金への副添加元素の効果について示す。好ましい副添加元素としては、Sn、Zn、Ag、Mn、B、P、Mg、Cr、ZrおよびHfが挙げられる。これらの元素は総量で1質量%以下であると導電率を低下させる弊害を生じないため好ましい。これらを含有させる場合、添加効果を充分に活用し、かつ導電率を低下させないためには、総量で、0.005〜1.0質量%であることが好ましく、0.01〜0.9質量%がさらに好ましく、0.03mass%〜0.8mass%であることが特に好ましい。以下に、各元素の添加効果を示す。
[Sub-additive elements]
Next, the effect of the secondary additive element on this alloy will be described. Preferred secondary additive elements include Sn, Zn, Ag, Mn, B, P, Mg, Cr, Zr and Hf. The total amount of these elements is preferably 1% by mass or less because no adverse effect of decreasing the electrical conductivity occurs. When these are contained, the total amount is preferably 0.005 to 1.0% by mass and 0.01 to 0.9% by mass in order to fully utilize the additive effect and not lower the electrical conductivity. % Is more preferable, and 0.03 mass% to 0.8 mass% is particularly preferable. The effect of adding each element is shown below.

(Mg、Sn、Zn)
Mg、Sn、Znは、添加することで耐応力緩和特性を向上する。それぞれを添加した場合よりも併せて添加した場合に相乗効果によって更に耐応力緩和特性が向上する。また、半田脆化が著しく改善する効果がある。
(Mg, Sn, Zn)
Addition of Mg, Sn and Zn improves the stress relaxation resistance. The stress relaxation resistance is further improved by the synergistic effect when added together than when they are added. In addition, the solder embrittlement is remarkably improved.

(Mn、Ag、B、P)
Mn、Ag、B、Pは添加すると熱間加工性を向上させるとともに、強度を向上する。
(Mn, Ag, B, P)
When Mn, Ag, B, and P are added, the hot workability is improved and the strength is improved.

(Cr、Zr、Fe、Hf)
Cr、Zr、Fe、Hfは、化合物や単体で微細に析出し、析出硬化に寄与する。また、化合物として50〜500nmの大きさで析出し、粒成長を抑制することによって結晶粒径を微細にする効果があり、曲げ加工性を良好にする。
(Cr, Zr, Fe, Hf)
Cr, Zr, Fe, and Hf are finely precipitated as a compound or simple substance, and contribute to precipitation hardening. Moreover, it precipitates with the magnitude | size of 50-500 nm as a compound, and there exists an effect which makes a crystal grain size fine by suppressing grain growth, and makes bending workability favorable.

[銅合金板材の製造方法]
次に、本発明の銅合金板材の好ましい製造条件について説明する。従来の析出型銅合金の製造方法は、銅合金素材を鋳造[工程1]して鋳塊を得て、これを均質化熱処理[工程2]し、熱間圧延[工程3]、水冷[工程4]、面削[工程5]、冷間圧延[工程6]をこの順に行い薄板化し、700〜1000℃の温度範囲で中間溶体化熱処理[工程9]を行って溶質原子を再固溶させた後に、時効析出熱処理[工程10]と仕上げ冷間圧延[工程11]によって必要な強度を満足させるものである。この一連の工程の中で、材料の集合組織は、中間溶体化熱処理中に起きる再結晶によっておおよそが決定し、仕上げ圧延中に起きる方位の回転により、最終的に決定される。
[Method for producing copper alloy sheet]
Next, preferable production conditions for the copper alloy sheet of the present invention will be described. In the conventional method for producing a precipitation-type copper alloy, a copper alloy material is cast [Step 1] to obtain an ingot, which is subjected to homogenization heat treatment [Step 2], hot rolling [Step 3], and water cooling [Step] 4], chamfering [Step 5], cold rolling [Step 6] in this order to make a thin plate, intermediate solution heat treatment [Step 9] in a temperature range of 700-1000 ° C. to re-solidify solute atoms After that, the required strength is satisfied by aging precipitation heat treatment [Step 10] and finish cold rolling [Step 11]. In this series of steps, the texture of the material is roughly determined by recrystallization that occurs during the intermediate solution heat treatment, and finally determined by the orientation rotation that occurs during finish rolling.

本実施形態において、熱間圧延[工程3]後に、水冷[工程4]、面削[工程5]し、冷間圧延1[工程6]により圧延率80%以上圧延し、再結晶しない程度に好ましくは400℃〜600℃で5秒〜20時間の中間焼鈍[工程7]を行う。更に、冷間圧延2[工程8]により適度なひずみを加える。これらの処理によって、中間溶体化熱処理[工程9]の再結晶集合組織において表層部のBR方位と内部のCube方位面積率が増加する。また、中間溶体化熱処理[工程9]後には、時効析出熱処理[工程10]、仕上げ冷間圧延[工程11]及び、調質焼鈍[工程12]を施す。   In the present embodiment, after hot rolling [Step 3], water cooling [Step 4], chamfering [Step 5], cold rolling 1 [Step 6] is rolled to a rolling rate of 80% or more, and is not recrystallized. Preferably, intermediate annealing [Step 7] is performed at 400 ° C. to 600 ° C. for 5 seconds to 20 hours. Further, moderate strain is applied by cold rolling 2 [Step 8]. By these treatments, the BR orientation of the surface layer portion and the internal Cube orientation area ratio increase in the recrystallization texture of the intermediate solution heat treatment [Step 9]. Further, after the intermediate solution heat treatment [Step 9], an aging precipitation heat treatment [Step 10], finish cold rolling [Step 11], and temper annealing [Step 12] are performed.

以下に、各工程の好ましい条件をより詳細に設定した実施態様について記載する。
目的の合金組成となる合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造[工程1]して鋳塊を得る。これを800〜1020℃で3分から10時間の均質化熱処理[工程2]後、熱間加工[工程3]を行った後に水焼入れ(水冷[工程4]に相当)を行い、酸化スケール除去のために面削[工程5]を行う。その後に、加工率80〜99.8%の冷間圧延1[工程6]を施す。次に400〜600℃で5s〜20hの中間焼鈍[工程7]を行う。更に、冷間圧延2[工程8]では、張力を100〜300MPa、圧延機のロール粗度Raを0.5μm以上とし、圧延加工率は5〜30%とし、板材全体にひずみを加える。その後、中間溶体化熱処理[工程9]にて600〜1000℃で5秒〜1時間の熱処理を加える。時効析出熱処理[工程10]で400〜700℃で5分〜10時間の時効処理を行う。加工率が3〜25%の仕上げ冷間圧延[工程11]、200〜600℃で5秒〜10時間の調質焼鈍[工程12]を行って本発明の銅合金板材を得る。
Hereinafter, embodiments in which preferable conditions for each step are set in more detail will be described.
An alloy having the target alloy composition is melted in a high-frequency melting furnace, and this is cast at a cooling rate of 0.1 to 100 ° C./second [Step 1] to obtain an ingot. This was subjected to homogenization heat treatment [Step 2] at 800 to 1020 ° C. for 3 minutes to 10 hours, followed by hot working [Step 3], followed by water quenching (corresponding to water cooling [Step 4]) to remove oxide scale. Therefore, chamfering [Step 5] is performed. Then, the cold rolling 1 [process 6] with a processing rate of 80 to 99.8% is performed. Next, intermediate annealing [Step 7] is performed at 400 to 600 ° C. for 5 s to 20 h. Further, in the cold rolling 2 [Step 8], the tension is set to 100 to 300 MPa, the roll roughness Ra of the rolling mill is set to 0.5 μm or more, the rolling rate is set to 5 to 30%, and the entire plate material is strained. Thereafter, heat treatment is performed at 600 to 1000 ° C. for 5 seconds to 1 hour in the intermediate solution heat treatment [Step 9]. In the aging precipitation heat treatment [Step 10], an aging treatment is performed at 400 to 700 ° C. for 5 minutes to 10 hours. Finish cold rolling with a processing rate of 3 to 25% [Step 11] and temper annealing at 200 to 600 ° C. for 5 seconds to 10 hours [Step 12] to obtain the copper alloy sheet of the present invention.

本実施形態において、熱間圧延[工程3]では、再熱温度から700℃の温度域で、鋳造組織や偏析を破壊し均一な組織にするための加工と、動的再結晶による結晶粒の微細化のための加工を行う。中間焼鈍[工程7]にて合金中の組織を全面再結晶させない程度に熱処理を行った後、冷間圧延2[工程8]にて、板厚方向での加工ひずみを制御するために、圧延での張力とロール粗度を調整しながらひずみを加え、中間溶体化[工程9]での再結晶集合組織において、板厚内部(1/8t〜1/2t)のCube方位結晶粒、板厚表層部(0t〜1/8t)のBR方位結晶粒が増加する。   In the present embodiment, in the hot rolling [Step 3], in the temperature range from the reheating temperature to 700 ° C., the processing for breaking the cast structure and segregation into a uniform structure and the dynamic recrystallization are performed. Processing for miniaturization is performed. In the intermediate annealing [Step 7], after heat treatment to such an extent that the structure in the alloy is not completely recrystallized, in cold rolling 2 [Step 8], in order to control the processing strain in the sheet thickness direction, rolling is performed. In the recrystallized texture in the intermediate solution [Step 9], strain is applied while adjusting the tension and roll roughness in the cuvette, and the Cube-oriented crystal grains within the plate thickness (1 / 8t to 1 / 2t), the plate thickness The BR-oriented crystal grains in the surface layer portion (0t to 1 / 8t) increase.

ここで、中間溶体化[工程9]前の中間焼鈍[工程7]の熱処理温度が高すぎると、酸化スケールが形成され好ましくないため、ここでの熱処理温度は好ましくは400〜600℃とする。冷間圧延1[工程6]により更なる加工歪を入れ、中間焼鈍[工程7]にて、好ましくは400〜600℃で5分〜20時間の熱処理を加えることで、中間溶体化処理[工程9]での再結晶集合組織においてCube方位面積率が増加する。中間焼鈍[工程7]では完全に再結晶しておらず、部分的に再結晶している亜焼鈍組織を得ることが目的である。   Here, if the heat treatment temperature in the intermediate annealing [Step 7] before the intermediate solution [Step 9] is too high, an oxide scale is formed, which is not preferable. Therefore, the heat treatment temperature here is preferably 400 to 600 ° C. Cold rolling 1 [Step 6] is used to add further processing strain, and intermediate annealing [Step 7] is preferably performed at 400 to 600 ° C. for 5 minutes to 20 hours, so that an intermediate solution treatment [Step 9], the Cube orientation area ratio increases in the recrystallized texture. The purpose of the intermediate annealing [Step 7] is to obtain a sub-annealed structure that is not completely recrystallized but partially recrystallized.

なかでも特に、一義的には断定しがたいが、中間焼鈍[工程7]にて焼鈍温度を規定することにより、Cube方位面積率が増加する傾向がある。冷間圧延2[工程8]にて、圧延ロールの粗度Raと圧延中の板材の張力を制御することにより、BR方位面積率が増加する傾向がある。この冷間圧延2[工程8]にて、好ましくは、圧延ロールの粗度Raを0.5μm以上、かつ張力を100MPa以上とすることで、表層部(0t〜1/8t)にせん断ひずみが導入される。ここで、ロール粗度が小さすぎ、張力が低すぎる場合、表層部(0t〜1/8t)に十分にせん断ひずみが導入されない。表層部にせん断ひずみが導入された状態で、中間溶体化熱処理[工程9]にて再結晶させると、表層部(0t〜1/8t)はBR方位が粒成長する。一方で、内部(1/8t〜1/2t)は、冷間圧延2[工程8]にて圧縮ひずみが加わり、圧延集合組織が形成されることにより、ひずみ誘起粒界移動にて、中間溶体化熱処理[工程9]にてCube方位が粒成長する。   In particular, it is difficult to determine unambiguously, but by specifying the annealing temperature in the intermediate annealing [Step 7], the Cube orientation area ratio tends to increase. In the cold rolling 2 [Step 8], the BR orientation area ratio tends to increase by controlling the roughness Ra of the rolling roll and the tension of the plate during rolling. In this cold rolling 2 [Step 8], preferably, the roughness Ra of the rolling roll is 0.5 μm or more and the tension is 100 MPa or more, so that shear strain is generated in the surface layer portion (0 t to 1/8 t). be introduced. Here, when the roll roughness is too small and the tension is too low, the shear strain is not sufficiently introduced into the surface layer portion (0t to 1 / 8t). When recrystallization is performed in the intermediate solution heat treatment [Step 9] in a state where shear strain is introduced into the surface layer portion, BR orientation grows in the surface layer portion (0t to 1 / 8t). On the other hand, the inside (1 / 8t to 1 / 2t) is subjected to compressive strain in cold rolling 2 [Step 8], and a rolling texture is formed, so that strain-induced grain boundary movement causes intermediate solution. In the chemical heat treatment [Step 9], the Cube orientation grows.

また、冷間圧延2[工程8]では、好ましくは100〜300MPaの張力にてひずみの導入を施す。ここで、張力が低すぎると、加工歪が小さく、中間溶体化熱処理[工程9]にて結晶粒径が粗大化し、曲げシワが大きくなり特性が劣る。張力が高すぎると、加工歪の開放が進行するとともに再結晶してしまい、ひずみ誘起粒界移動でのCube方位粒の板厚方向での発達が不均一となり曲げ加工性が低下する。
中間溶体化熱処理[工程9]後には、時効析出熱処理[工程10]、仕上げ冷間圧延[工程11]、調質焼鈍[工程12]を施す。再結晶集合組織においては、ひずみ誘起粒界移動によるCube方位の面積率を増加させるために、加工を行う。なおかつ結晶方位を一定方向に制御することでCube方位の発達に寄与する。
In cold rolling 2 [Step 8], strain is preferably introduced with a tension of 100 to 300 MPa. Here, if the tension is too low, the processing strain is small, the crystal grain size becomes coarse in the intermediate solution heat treatment [Step 9], the bending wrinkles become large, and the characteristics are inferior. If the tension is too high, release of the working strain proceeds and recrystallization occurs, and the development of the Cube-oriented grains in the thickness direction due to strain-induced grain boundary movement becomes non-uniform, resulting in a decrease in bending workability.
After the intermediate solution heat treatment [Step 9], an aging precipitation heat treatment [Step 10], finish cold rolling [Step 11], and temper annealing [Step 12] are performed. In the recrystallized texture, processing is performed to increase the area ratio of the Cube orientation due to strain-induced grain boundary movement. In addition, it contributes to the development of the Cube orientation by controlling the crystal orientation to a certain direction.

[銅合金板材の特性]
本発明の銅合金板材は、たとえばコネクタ用銅合金板材に要求される特性を満足することができる。本発明において、銅合金板は下記の特性を有することが好ましい。
・0.2%耐力が700MPa以上であることが好ましい。更に好ましくは750MPa以上である。この詳細な測定条件は特に断らない限り実施例に記載のとおりとする。
・曲げ加工性が180°密着U曲げ密着試験において圧延平行・垂直方向のいずれにおいても曲げ加工表面部にクラックがないことが好ましい。この詳細な条件は特に断らない限り実施例に記載のとおりとする。
・疲労特性は、板ばね疲労試験にて、負荷応力500MPaでの破断までの繰り返し回数が10回以上であることが好ましい。この詳細な測定条件は特に断らない限り実施例に記載のとおりとする。
・導電率が5%IACS以上であることが好ましい。この詳細な測定条件は特に断らない限り実施例に記載のとおりとする。
・ヤング率は130GPa以下であることが好ましい。この詳細な条件は、特に断らない限り実施例に記載のとおりとする。
[Characteristics of copper alloy sheet]
The copper alloy sheet of the present invention can satisfy the characteristics required for a copper alloy sheet for connectors, for example. In the present invention, the copper alloy sheet preferably has the following characteristics.
-It is preferable that 0.2% yield strength is 700 Mpa or more. More preferably, it is 750 MPa or more. The detailed measurement conditions are as described in the examples unless otherwise specified.
-The bending workability is preferably 180 ° contact U-bend adhesion test, and there is no crack in the bending surface portion in both the rolling parallel and vertical directions. The detailed conditions are as described in the examples unless otherwise specified.
· Fatigue characteristics, at leaf spring fatigue test, it is preferred number of repetitions to failure at the load stress 500MPa is more than 10 7 times. The detailed measurement conditions are as described in the examples unless otherwise specified.
-It is preferable that electrical conductivity is 5% IACS or more. The detailed measurement conditions are as described in the examples unless otherwise specified.
-The Young's modulus is preferably 130 GPa or less. The detailed conditions are as described in the examples unless otherwise specified.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1)
Ni等を表1に示した量含有し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造[工程1]して鋳塊を得た。これを800〜1020℃で3分から10時間の均質化熱処理[工程2]後、1020〜500℃で熱間加工[工程3]を行った。その後、水焼入れ(水冷[工程4]に相当)し、酸化スケール除去のために面削[工程5]を行った。その後、加工率80〜99.8%の冷間圧延1[工程6]、次に400〜600℃で5秒〜20時間熱処理する、中間焼鈍[工程7]を行い、更に冷間圧延2[工程8](ロール表面粗度0.5μm以上、圧延張力100〜300MPa)にて加工ひずみを加える。600〜1000℃で5秒〜1時間の中間溶体化処理[工程9]を実施した。次に、400〜700℃で5分間〜1時間の時効析出熱処理[工程10]を行い、3〜25%の圧延率で仕上げ冷間圧延[工程11]、200〜600℃で5秒〜10時間の調質焼鈍[工程12]を行って供試材とした。これらの供試材の組成および特性を、本発明例および比較例について、表1、表2に示す。各熱処理や圧延の後に、材料表面の酸化や粗度の状態に応じて酸洗浄や表面研磨を、形状に応じてテンションレベラーによる矯正を行った。なお、熱間加工[工程3]での加工温度は、圧延機の入り側と出側に設置してある放射温度計により測定した。
Example 1
An alloy containing Ni and the like shown in Table 1 and the balance consisting of Cu and inevitable impurities is melted in a high-frequency melting furnace, and this is cast at a cooling rate of 0.1 to 100 ° C./second [Step 1]. An ingot was obtained. This was subjected to a homogenization heat treatment [Step 2] at 800 to 1020 ° C. for 3 minutes to 10 hours, followed by hot working [Step 3] at 1020 to 500 ° C. Thereafter, water quenching (corresponding to water cooling [step 4]) was performed, and chamfering [step 5] was performed to remove oxide scale. Then, cold rolling 1 with a processing rate of 80 to 99.8% [Step 6], then heat treatment at 400 to 600 ° C. for 5 seconds to 20 hours, intermediate annealing [Step 7], and further cold rolling 2 [ Step 8] Apply processing strain at (roll surface roughness 0.5 μm or more, rolling tension 100 to 300 MPa). An intermediate solution treatment [Step 9] was performed at 600 to 1000 ° C. for 5 seconds to 1 hour. Next, an aging precipitation heat treatment [Step 10] is performed at 400 to 700 ° C. for 5 minutes to 1 hour, finish cold rolling at a rolling rate of 3 to 25% [Step 11], and 200 to 600 ° C. for 5 seconds to 10 seconds. Tempering annealing [Step 12] was performed to obtain a specimen. The compositions and properties of these test materials are shown in Tables 1 and 2 for the invention examples and comparative examples. After each heat treatment and rolling, acid cleaning and surface polishing were performed according to the state of oxidation and roughness of the material surface, and correction with a tension leveler was performed according to the shape. In addition, the processing temperature in the hot processing [Step 3] was measured with a radiation thermometer installed on the entry side and the exit side of the rolling mill.

この供試材について下記の特性調査を行った。ここで、供試材の最終板厚は0.08mmとした。
a.Cube方位面積率
EBSD法により、測定面積が9×10μm、スキャンステップは0.5μmの条件で測定を行った。スキャンステップは微細な結晶粒を測定するため、0.5μmステップで行った。解析では、300×300μmのEBSD測定結果を、25ブロックに分割し、各ブロックのCube方位面積率、平均結晶粒面積、結晶粒の個数を確認した。電子線は走査電子顕微鏡のWフィラメントからの熱電子を発生源とした。
さらに、EBSD測定前の研磨では、表層部(0t)と、1/8t、1/4tと1/2tの組織観察を行うため、機械研磨、および電解研磨にて目的部組織を出し、研磨部分をEBSDにて観察した。
The following property investigation was conducted on this specimen. Here, the final thickness of the test material was 0.08 mm.
a. Cube orientation area ratio Measurement was carried out by EBSD method under the conditions of a measurement area of 9 × 10 4 μm 2 and a scan step of 0.5 μm. The scan step was performed in 0.5 μm steps in order to measure fine crystal grains. In the analysis, the 300 × 300 μm EBSD measurement result was divided into 25 blocks, and the Cube orientation area ratio, average crystal grain area, and number of crystal grains in each block were confirmed. The electron beam was generated from thermionic electrons from the W filament of the scanning electron microscope.
Further, in the polishing before the EBSD measurement, the surface layer portion (0t) and the structure of 1 / 8t, 1 / 4t and 1 / 2t are observed. Was observed with EBSD.

b.180°密着U曲げ試験
圧延方向に垂直に幅0.25mm、長さは1.5mmとなるようにプレスによる打ち抜きで加工した。これに曲げの軸が圧延方向に直角になるようにW曲げしたものをGW(Good Way)、圧延方向に平行になるようにW曲げしたものをBW(Bad Way)とし、90°W曲げ加工後、圧縮試験機にて180°密着曲げ加工を行った。曲げ加工表面を100倍の走査電子顕微鏡で観察し、クラックの有無を調査した。クラックの無いものを○、クラックのあるものを×と判定した。
b. 180 ° adhesion U-bend test The punch was punched by a press so that the width was 0.25 mm perpendicular to the rolling direction and the length was 1.5 mm. This is W bent so that the bending axis is perpendicular to the rolling direction, GW (Good Way), W bent so as to be parallel to the rolling direction is BW (Bad Way), and 90 ° W bending processing Thereafter, 180 ° contact bending was performed with a compression tester. The bent surface was observed with a 100-fold scanning electron microscope to investigate the presence or absence of cracks. The thing without a crack was judged as O, and the thing with a crack was judged as x.

c.ヤング率
試験片は、圧延平行方向・垂直方向からそれぞれ切り出し、幅20mm、長さ160mm、平行度は50mmあたり0.05mm以下になるように加工した。ヤング率は、引張試験による応力−ひずみ線図の弾性領域の傾きから算出した値を示した。
c. Young's modulus Test pieces were cut out from the rolling parallel direction and the vertical direction, respectively, and processed so that the width was 20 mm, the length was 160 mm, and the parallelism was 0.05 mm or less per 50 mm. The Young's modulus is a value calculated from the slope of the elastic region of the stress-strain diagram obtained by a tensile test.

d.耐力 [YS]
たわみ係数測定において、各試験片の弾性限界までの押し込み量(変位)から耐力[MPa]を算出し、強度とした。
耐力(MPa) Y={(3E/2)×t×(f/L)×1000}/L
E:たわみ係数、t:板厚、L:固定端と荷重点の距離、f:変位(押込み深さ)
ここで、圧延平行方向と垂直方向の異方性を確認した。
d. Yield strength [YS]
In the measurement of the deflection coefficient, the yield strength [MPa] was calculated from the indentation amount (displacement) up to the elastic limit of each test piece, and the strength was obtained.
Yield strength (MPa) Y = {(3E / 2) × t × (f / L) × 1000} / L
E: Deflection coefficient, t: Plate thickness, L: Distance between fixed end and load point, f: Displacement (indentation depth)
Here, the anisotropy of a rolling parallel direction and a perpendicular direction was confirmed.

e.疲労特性
疲労特性は、JCBA T308;2001(銅および銅合金薄板条の疲労特性試験方法)に準拠し、圧延平行・垂直方向の測定を行った。図1に説明図を示した(板バネ疲労試験)。1は試験片、2はナイフエッジである。試験片幅は、10mm±0.2mm、試験片の固定トルクは、下部2N・m、上部3N・mである。試験片の負荷応力値は、下記の式(a)にて求めた。
500MPaの負荷応力にて試験を行い、材料が破断するまでの繰り返し回数を求めた。破断までの繰り返し回数が、圧延平行・垂直方向のいずれも10回以上を示したものを○、圧延平行・垂直方向のいずれか、もしくはいずれも10回未満のものを×とした。

σ=(3×E×t×δ)/(2×l) ・・・ (a)
σ:最大曲げ応力(N/mm
δ:たわみ量(mm)
l:試験片セット長さ(mm)
t:試験片厚さ(mm)
E:たわみ係数(N/mm
e. Fatigue properties Fatigue properties were measured in the rolling parallel and vertical directions in accordance with JCBA T308; 2001 (Fatigue property test method for copper and copper alloy thin strips). FIG. 1 shows an explanatory diagram (plate spring fatigue test). 1 is a test piece, 2 is a knife edge. The width of the test piece is 10 mm ± 0.2 mm, and the fixing torque of the test piece is 2 N · m at the bottom and 3 N · m at the top. The load stress value of the test piece was obtained by the following formula (a).
The test was performed with a load stress of 500 MPa, and the number of repetitions until the material broke was determined. The case where the number of repetitions until breakage was 10 7 or more in both the rolling parallel and vertical directions was evaluated as “◯”, and either the rolling parallel and vertical directions or both were less than 10 7 times.

σ = (3 × E × t × δ) / (2 × l 2 ) (a)
σ: Maximum bending stress (N / mm 2 )
δ: Deflection (mm)
l: Test piece set length (mm)
t: Test piece thickness (mm)
E: Deflection coefficient (N / mm 2 )

f.導電率 [EC]
20℃(±0.5℃)に保たれた恒温槽中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。
f. Conductivity [EC]
The specific resistance was measured by a four-terminal method in a thermostat kept at 20 ° C. (± 0.5 ° C.) to calculate the conductivity. In addition, the distance between terminals was 100 mm.

本発明1〜本発明例11、比較例1〜比較例10について、表1に示す組成となるように、主原料CuとNi、Siを配合し、溶解・鋳造した。
表2に示すように、本発明例1〜本発明例11の製造方法で、冷間圧延2[工程8]は、ロール粗度を0.5μm以上、張力を100〜300MPaとした。組織は、本発明例1〜本発明例11の表層(0t〜1/8t)のBR方位面積率が5〜30%、内部(1/8t〜1/2t)のCube方位面積率が5%以上を示した。
比較例1〜比較例10では、本発明の規定する組織(BR方位、Cube方位面積率)を満たさない場合を示した。
About this invention 1-invention example 11 and comparative example 1- comparative example 10, the main raw material Cu, Ni, and Si were mix | blended so that it might become a composition shown in Table 1, and it melt | dissolved and casted.
As shown in Table 2, cold rolling 2 [Step 8] in the production methods of Invention Example 1 to Invention Example 11 had a roll roughness of 0.5 μm or more and a tension of 100 to 300 MPa. As for the structure, the BR orientation area ratio of the surface layer (0t to 1 / 8t) of Invention Example 1 to Invention Example 11 is 5 to 30%, and the Cube orientation area ratio of the inside (1 / 8t to 1 / 2t) is 5%. The above is shown.
In Comparative Examples 1 to 10, a case where the structure (BR orientation, Cube orientation area ratio) defined by the present invention is not satisfied was shown.

Figure 0005916418
Figure 0005916418

Figure 0005916418
Figure 0005916418

表2に示す様に、本発明例1〜11は各特性において良好であった。すなわち、板厚内部(1/8t〜1/2t)のCube方位面積率が5%以上を示した場合、180°U曲げ、ヤング率、耐力の特性のいずれも良好であった。さらに、表層付近(0t〜1/8t)のBR方位面積率が5〜30%であり、これを満たす場合には、疲労特性が良好であった。また、耐力の圧延平行方向と垂直方向での異方性は10GPa以内であり、異方性が小さい。
したがって、本発明の銅合金板材は、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載端子などのコネクタや端子材、リレー、スイッチなどに適した銅合金板材として提供することができる。
As shown in Table 2, Invention Examples 1 to 11 were good in each characteristic. That is, when the Cube orientation area ratio inside the plate thickness (1 / 8t to 1 / 2t) showed 5% or more, all of the 180 ° U-bend, Young's modulus, and yield strength characteristics were good. Furthermore, the BR orientation area ratio in the vicinity of the surface layer (0t to 1 / 8t) was 5 to 30%, and when this was satisfied, the fatigue characteristics were good. Further, the anisotropy of the proof stress in the direction parallel to the rolling direction is within 10 GPa, and the anisotropy is small.
Therefore, the copper alloy plate material of the present invention can be provided as a copper alloy plate material suitable for connectors, terminal materials, relays, switches, etc., such as lead frames, connectors, terminal materials, etc. for automobiles and terminals, etc. it can.

これに対し、表2に示すように、比較例の試料では、いずれかの特性が劣る結果となった。
すなわち、比較例1、5、7、10は、内部のCube方位面積率が5%以下と規定値より低いため、180°U曲げ、ヤング率、耐力異方性の特性が劣っている。
比較例1、3、4、8、9は、表層部のBR方位面積率が5%以下であるため、疲労特性が劣っている。比較例2、6、7は、表層部のBR方位が30%以上であるため、疲労特性は一部優れているものの、いずれも180°U曲げ、耐力が規定値より低く、劣っている。
なお、導電率はいずれも30〜45%を示した。
On the other hand, as shown in Table 2, in the sample of the comparative example, one of the characteristics was inferior.
That is, Comparative Examples 1, 5, 7, and 10 have inferior characteristics of 180 ° U bending, Young's modulus, and proof stress anisotropy because the internal Cube orientation area ratio is 5% or less, which is lower than the specified value.
In Comparative Examples 1, 3, 4, 8, and 9, since the BR orientation area ratio of the surface layer portion is 5% or less, the fatigue characteristics are inferior. Since Comparative Example 2, 6, and 7 have the BR orientation of the surface layer part of 30% or more, although fatigue properties are partially excellent, all are inferior because the 180 ° U-bending and the proof stress are lower than the specified values.
In addition, all showed 30 to 45% of electrical conductivity.

1 試験片
2 ナイフエッジ
1 Test piece 2 Knife edge

Claims (5)

Niを1.0〜5.0mass%、Siを0.1〜2.0mass%含有し、残部が銅及び不可避不純物からなる銅合金板材であって、EBSD測定における結晶方位解析において、板厚方向表層部(0t〜1/8t)でのBR方位{3 6 2}<8 −5 3>の面積率が5〜30%であり、板厚内部(1/8t〜1/2t)でのCube方位面積率{1 0 0}<0 0 1>が5%以上であることを特徴とする銅合金板材。   It is a copper alloy plate material containing 1.0 to 5.0 mass% Ni, 0.1 to 2.0 mass% Si, and the balance consisting of copper and inevitable impurities, and in the crystal orientation analysis in EBSD measurement, the plate thickness direction The area ratio of the BR orientation {3 6 2} <8 −5 3> in the surface layer portion (0t to 1 / 8t) is 5 to 30%, and the Cube inside the plate thickness (1 / 8t to 1 / 2t) A copper alloy sheet characterized by having an orientation area ratio {1 0 0} <0 0 1> of 5% or more. Niを1.0〜5.0mass%、Siを0.1〜2.0mass%含有し、さらにSnを0.4mass%以下、Znを0.5mass%以下、Agを0.2mass%以下、Mnを0.1mass%以下、Bを0.1mass%以下、Pを0.01mass%以下、Mgを0.1mass%以下、Crを0.2mass%以下、Zrを0.01mass%以下、Feを0.01mass%以下およびHfを0.005mass%以下からなる群から選ばれる少なくとも1つを合計で0.005〜1.0mass%含有し、残部が銅及び不可避不純物からなる銅合金板材であって、EBSD測定における結晶方位解析において、板厚方向表層部(0t〜1/8t)でのBR方位{3 6 2}<8 −5 3>の面積率が5〜30%であり、板厚内部(1/8t〜1/2t)でのCube方位面積率{1 0 0}<0 0 1>が5%以上であることを特徴とする銅合金板材。 Ni is contained in an amount of 1.0 to 5.0 mass%, Si is contained in an amount of 0.1 to 2.0 mass%, Sn is 0.4 mass% or less , Zn is 0.5 mass% or less , Ag is 0.2 mass% or less , Mn Is 0.1 mass% or less , B is 0.1 mass% or less , P is 0.01 mass% or less , Mg is 0.1 mass% or less , Cr is 0.2 mass% or less , Zr is 0.01 mass% or less , and Fe is 0 .01 mass% or less and Hf containing at least one selected from the group consisting of 0.005 mass% or less in a total of 0.005 to 1.0 mass%, the balance being a copper alloy sheet material made of copper and inevitable impurities, In the crystal orientation analysis in the EBSD measurement, the area ratio of the BR orientation {3 6 2} <8 −5 3> in the thickness direction surface layer portion (0t to 1 / 8t) is 5 to 30%, and the plate thickness A copper alloy sheet having a Cube orientation area ratio {1 0 0} <0 0 1> in the interior (1 / 8t to 1 / 2t) of 5% or more. 板材の板バネ疲労試験にて、材料への負荷応力が500MPaでの、破断までの繰り返し回数が10回以上である、請求項1または2に記載の銅合金板材。 The copper alloy plate material according to claim 1 or 2, wherein, in a plate spring fatigue test of the plate material, the number of repetitions until breakage is 10 7 times or more when the applied stress to the material is 500 MPa. 板材の180°U曲げ試験において、圧延平行・垂直方向のいずれもクラックなく曲げ加工が可能である、請求項1〜3のいずれか1項に記載の銅合金板材。   The copper alloy sheet according to any one of claims 1 to 3, which can be bent without cracking in both the rolling parallel and vertical directions in a 180 ° U bending test of the sheet. 請求項1〜4のいずれか1項に記載の銅合金板材を製造する方法であって、前記銅合金板材を与える合金成分組成からなる銅合金素材に、鋳造[工程1]、均質化熱処理[工程2]、熱間圧延[工程3]、水冷[工程4]、冷間圧延1[工程6]、中間焼鈍[工程7]、冷間圧延2[工程8]及び中間溶体化熱処理[工程9]をこの順に施し、
ここで、前記中間焼鈍[工程7]を、熱処理温度400〜600℃で行い、かつ、前記冷間圧延2[工程8]を、圧延ロールの表面粗度Ra0.5μm以上で、圧延張力100〜300MPaで行う
ことを特徴とする銅合金板材の製造方法
A method for producing a copper alloy sheet according to any one of claims 1 to 4, wherein a copper alloy material comprising an alloy component composition giving the copper alloy sheet is cast [step 1], homogenized heat treatment [ Step 2], hot rolling [Step 3], water cooling [Step 4], cold rolling 1 [Step 6], intermediate annealing [Step 7], cold rolling 2 [Step 8] and intermediate solution heat treatment [Step 9]. ] to facilities in this order,
Here, the intermediate annealing [Step 7] is performed at a heat treatment temperature of 400 to 600 ° C., and the cold rolling 2 [Step 8] is performed with a surface roughness Ra of 0.5 μm or more and a rolling tension of 100 to A method for producing a copper alloy sheet material, which is performed at 300 MPa .
JP2012028122A 2012-02-13 2012-02-13 Copper alloy sheet and manufacturing method thereof Active JP5916418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012028122A JP5916418B2 (en) 2012-02-13 2012-02-13 Copper alloy sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012028122A JP5916418B2 (en) 2012-02-13 2012-02-13 Copper alloy sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013163853A JP2013163853A (en) 2013-08-22
JP5916418B2 true JP5916418B2 (en) 2016-05-11

Family

ID=49175391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012028122A Active JP5916418B2 (en) 2012-02-13 2012-02-13 Copper alloy sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5916418B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6339361B2 (en) * 2013-12-20 2018-06-06 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
EP3088542A4 (en) * 2013-12-27 2017-08-16 Furukawa Electric Co., Ltd. Copper alloy sheet material, connector, and production method for copper alloy sheet material
KR102348993B1 (en) 2013-12-27 2022-01-10 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP6851963B2 (en) * 2015-04-01 2021-03-31 古河電気工業株式会社 Manufacturing method of flat rolled copper foil, flexible flat cable, rotary connector and flat rolled copper foil
KR101627696B1 (en) 2015-12-28 2016-06-07 주식회사 풍산 Copper alloy material for car and electrical and electronic components and process for producing same
JP6440760B2 (en) 2017-03-21 2018-12-19 Jx金属株式会社 Copper alloy strip with improved dimensional accuracy after press working
JP6345290B1 (en) * 2017-03-22 2018-06-20 Jx金属株式会社 Copper alloy strip with improved dimensional accuracy after press working
JP6494681B2 (en) * 2017-03-27 2019-04-03 Jx金属株式会社 Copper alloy and electronic parts for electronic materials

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097970B2 (en) * 2006-07-24 2012-12-12 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
CN102105610B (en) * 2008-06-03 2013-05-29 古河电气工业株式会社 Copper alloy sheet material and manufacturing method thereof
JP5140045B2 (en) * 2009-08-06 2013-02-06 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy plate or strip for electronic materials
CN102597283B (en) * 2009-12-02 2014-04-09 古河电气工业株式会社 Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
WO2011068135A1 (en) * 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same
JP4857395B1 (en) * 2011-03-09 2012-01-18 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy and method for producing the same

Also Published As

Publication number Publication date
JP2013163853A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP5916418B2 (en) Copper alloy sheet and manufacturing method thereof
JP5170916B2 (en) Copper alloy sheet and manufacturing method thereof
JP4875768B2 (en) Copper alloy sheet and manufacturing method thereof
KR101419147B1 (en) Copper alloy sheet and process for producing same
JP5261582B2 (en) Copper alloy sheet and manufacturing method thereof
JP5972484B2 (en) Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet
JP5916964B2 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
KR101579629B1 (en) Copper alloy sheet and method for producing same
WO2012004868A1 (en) Cu-ni-si copper alloy plate with excellent deep-draw characteristics and production method thereof
JP5400877B2 (en) Copper alloy sheet and manufacturing method thereof
KR20120104532A (en) Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
JP5261619B2 (en) Copper alloy sheet and manufacturing method thereof
WO2015001683A1 (en) Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and component and terminal for electrical and electronic equipment
JP6581755B2 (en) Copper alloy sheet and manufacturing method thereof
JP6219070B2 (en) Method for producing copper alloy sheet
JP5117602B1 (en) Copper alloy sheet with low deflection coefficient and excellent bending workability
JP6339361B2 (en) Copper alloy sheet and manufacturing method thereof
KR102499442B1 (en) Copper alloy sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160405

R151 Written notification of patent or utility model registration

Ref document number: 5916418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350