JP5261582B2 - Copper alloy sheet and manufacturing method thereof - Google Patents

Copper alloy sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5261582B2
JP5261582B2 JP2011553222A JP2011553222A JP5261582B2 JP 5261582 B2 JP5261582 B2 JP 5261582B2 JP 2011553222 A JP2011553222 A JP 2011553222A JP 2011553222 A JP2011553222 A JP 2011553222A JP 5261582 B2 JP5261582 B2 JP 5261582B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy sheet
heat treatment
rate
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011553222A
Other languages
Japanese (ja)
Other versions
JPWO2012029717A1 (en
Inventor
岳己 磯松
立彦 江口
洋 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011553222A priority Critical patent/JP5261582B2/en
Application granted granted Critical
Publication of JP5261582B2 publication Critical patent/JP5261582B2/en
Publication of JPWO2012029717A1 publication Critical patent/JPWO2012029717A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

{Problems} To provide a copper alloy sheet material and a method of producing the same, which sheet material is excellent in a bending property, and has an excellent mechanical strength, and which is suitable for lead frames, connectors, terminal materials, and the like in electrical/electronic equipments, for connectors, for example, to be mounted on automotive vehicles, and for terminal materials, relays, switches, and the like. {Means to solve} A copper alloy sheet material, containing Ti in an amount of 1.0 to 5.0 mass%, with the balance being copper and unavoidable impurities, wherein an area ratio of Cube orientation {0 0 1} <1 0 0> is 5 to 50%, in crystal orientation analysis by an EBSD analysis in the sheet thickness of the sheet material; and a method of producing the same.

Description

本発明は銅合金板材およびその製造方法に関し、詳しくは車載部品用や電気・電子機器用部品、例えば、リードフレーム、コネクタ、端子材、リレー、スイッチ、ソケット、モーターなどに適用される銅合金板材およびその製造方法に関する。   TECHNICAL FIELD The present invention relates to a copper alloy plate material and a method for manufacturing the same, and more particularly to a copper alloy plate material applied to in-vehicle components and components for electric and electronic devices, such as lead frames, connectors, terminal materials, relays, switches, sockets, motors and the like. And a manufacturing method thereof.

車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどの用途に使用される銅合金板材に要求される特性項目は、導電率、耐力(降伏応力)、引張強度、曲げ加工性、耐応力緩和特性がある。近年、電気・電子機器の小型化、軽量化、高機能化、高密度実装化や、使用環境の高温化に伴って、この要求特性が高まっている。   Characteristic items required for copper alloy sheets used in automotive parts and lead frames, connectors, terminal materials, relays, switches, sockets, etc. for electric components, electrical conductivity, yield strength, Has tensile strength, bending workability, and stress relaxation resistance. In recent years, the required characteristics have been increased with the downsizing, weight reduction, high functionality, high density mounting, and high usage environment of electric / electronic devices.

従来、一般的に電気・電子機器用材料としては、鉄系材料の他、リン青銅、丹銅、黄銅等の銅合金系材料も広く用いられている。これらの銅合金はSnやZnの固溶強化と、圧延や線引きなどの冷間加工による加工硬化の組み合わせにより強度を向上させている。この方法では、導電率が不十分であり、また、高い冷間加工率を加えることによって高強度を得ているために、曲げ加工性や耐応力緩和特性が不十分である。   Conventionally, as an electric / electronic device material, copper alloy materials such as phosphor bronze, red brass, brass and the like are widely used in addition to iron-based materials. These copper alloys have improved strength by a combination of solid solution strengthening of Sn and Zn and work hardening by cold working such as rolling and wire drawing. In this method, the electrical conductivity is insufficient, and high strength is obtained by adding a high cold work rate, so that bending workability and stress relaxation resistance are insufficient.

これに替わる強化法として材料中に微細な第二相を析出させる析出強化がある。この強化方法は強度が高くなることに加えて、導電率を同時に向上させるメリットがあるため、多くの合金系で行われている。しかし、昨今の電子機器や自動車に使用される部品の小型化に伴って、使用される銅合金板材は、より高強度な銅合金系材料をより小さい半径で曲げ加工が施される様になっており、曲げ加工性に優れた銅合金板材が強く要求されている。従来のCu−Ti系において、高い強度を得るには、圧延加工率を高めて大きな加工硬化を得ていたが、この方法は先述した様に曲げ加工性を劣化させてしまい、高強度と良好な曲げ加工性を両立することができなかった。   An alternative strengthening method is precipitation strengthening in which a fine second phase is precipitated in the material. This strengthening method has a merit of improving the conductivity at the same time in addition to increasing the strength, and is therefore performed in many alloy systems. However, with the recent miniaturization of parts used in electronic devices and automobiles, the copper alloy sheet used has been bent to a higher strength copper alloy material with a smaller radius. Therefore, there is a strong demand for a copper alloy sheet material excellent in bending workability. In the conventional Cu-Ti system, in order to obtain high strength, the rolling process rate was increased and large work hardening was obtained. However, as described above, this method deteriorates bending workability, and high strength and good. It was not possible to achieve both good bending workability.

この曲げ加工性向上の要求に対して、結晶方位の制御によって解決する提案がいくつかなされている。例えば、Cu−Ni−Si系銅合金において以下のような開示がなされている。特許文献1では、Cu−Ni−Si系銅合金において、結晶粒径と、{311}、{220}、{200}面からのX線回折強度Iがある条件を満たす様な結晶方位の場合に、曲げ加工性が優れることが見出されている。また、特許文献2では、Cu−Ni−Si系銅合金において、{200}面および{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。また、特許文献3では、Cu−Ni−Si系銅合金において、Cube方位{100}<001>の割合の制御によって曲げ加工性が優れることが見出されている。   Several proposals have been made to solve this demand for improvement in bending workability by controlling the crystal orientation. For example, the following disclosures have been made on Cu—Ni—Si based copper alloys. In Patent Document 1, in a Cu—Ni—Si based copper alloy, the crystal grain size and the crystal orientation satisfying a certain condition of X-ray diffraction intensity I from {311}, {220}, {200} planes Furthermore, it has been found that bending workability is excellent. Further, in Patent Document 2, in a Cu—Ni—Si based copper alloy, bending workability is excellent when the crystal orientation satisfies the condition that the X-ray diffraction intensity from the {200} plane and the {220} plane is satisfied. Has been found. Further, in Patent Document 3, it has been found that in a Cu—Ni—Si based copper alloy, bending workability is excellent by controlling the ratio of the Cube orientation {100} <001>.

また、Cu−Ti系銅合金においては次のような開示がある。特許文献4では、(311)面を発達させ、I(311)/I(111)≧0.5とすることでプレス打抜き性を向上させている。特許文献5では、TiとTi以外の第三元素の添加量、2段階で行う熱間圧延の各段階での温度と圧延率、冷間圧延の加工率、溶体化処理条件、時効析出条件を変更することで、平均結晶粒径と銅合金板材の板面におけるX線回折強度I{420}/I{420}>1.0を満たす結晶配向を有し、高強度かつノッチング後の曲げ加工性に優れる銅合金板材を提案している。特許文献6では、均質化条件、熱間圧延の最終パス温度、熱間圧延の各パスの平均加工度に加え、2段階で行う溶体化処理条件、各溶体化処理の後に行う冷間圧延での加工度、時効条件を変更することで、高い強度と優れた曲げ加工性と高い寸法安定性を有する銅合金を提案している。特許文献7では、{200}結晶面を主方位成分とする再結晶集合組織を得ることで、強度と曲げ加工性の両立を試みている。Moreover, there is the following disclosure in the Cu—Ti based copper alloy. In Patent Document 4, the (311) plane is developed, and the press punchability is improved by satisfying I (311) / I (111) ≧ 0.5. In Patent Document 5, the amount of addition of Ti and the third element other than Ti, the temperature and rolling rate in each stage of hot rolling performed in two stages, the processing rate of cold rolling, solution treatment conditions, and aging precipitation conditions are set. By changing, it has a crystal orientation that satisfies the average crystal grain size and the X-ray diffraction intensity I {420} / I 0 {420}> 1.0 on the plate surface of the copper alloy sheet, and has high strength and bending after notching We have proposed copper alloy sheet materials with excellent workability. In Patent Document 6, in addition to the homogenization conditions, the final pass temperature of hot rolling, the average degree of processing of each pass of hot rolling, solution treatment conditions performed in two stages, cold rolling performed after each solution treatment By changing the workability and aging conditions, a copper alloy having high strength, excellent bending workability and high dimensional stability is proposed. In Patent Document 7, an attempt is made to achieve both strength and bending workability by obtaining a recrystallized texture having a {200} crystal plane as a main orientation component.

また、電気・電子機器用途に使用される銅合金板材に要求される特性項目の一つとして、ヤング率(縦弾性係数)が低いことが求められている。近年コネクタなどの電子部品の小型化の進行に伴い、端子の寸法精度やプレス加工の公差が厳しくなっている。銅合金板材のヤング率を低減することで、コンタクト接圧に及ぼす寸法変動の影響を低減できるため、設計が容易となる。   In addition, as one of the characteristic items required for a copper alloy sheet used for electrical / electronic equipment applications, a low Young's modulus (longitudinal elastic modulus) is required. In recent years, with the progress of miniaturization of electronic parts such as connectors, the dimensional accuracy of terminals and the tolerance of press working have become severe. By reducing the Young's modulus of the copper alloy sheet material, the influence of dimensional variation on the contact contact pressure can be reduced, so that the design is facilitated.

特開2006−009137号公報JP 2006-009137 A 特開2008−013836号公報JP 2008-013836 A 特開2006−283059号公報JP 2006-283059 A 特開2006−249565号公報JP 2006-249565 A 特開2010−126777号公報JP 2010-126777 A 特開2007−270267号公報JP 2007-270267 A 特開2011−26635号公報JP 2011-26635 A

ところで、特許文献1または特許文献2に記載された発明においては、特定面からのX線回折による結晶方位の解析は、ある広がりを持った結晶方位の分布の中のごく一部の特定の面に関するものである。また、特許文献3に記載された発明においては、Cu−Ni−Si系合金についてCube方位面積率を50%以上に高めることで、強度と曲げ加工性を両立している。ここで、結晶方位の制御は溶体化熱処理後の圧延加工率の低減によって実現している。特許文献4に記載された発明においては、溶質原子を完全に固溶した状態で冷間圧延することによって、(311)面を発達させ、I(311)/I(111)≧0.5とすることでプレス打抜き性を向上させている。製造工程は、冷間圧延と再結晶焼鈍とその後工程で方位制御を行っている。特許文献5では、平均結晶粒径を5〜25μmとし、{420}結晶面を主方位成分とする集合組織を制御することで、ノッチング後の曲げ加工性を向上させている。製造方法においては、熱間圧延条件、冷間圧延条件、溶体化熱処理条件、時効析出条件に関する記載はあるが、熱間圧延は2段階で行っており、また、溶体化熱処理前の中間焼鈍とそれに続く冷間圧延とを行わずに溶体化処理を行っている。特許文献6では、第三元素群を第二相粒子として析出させることで、母相中に形成されるチタンの濃度波(いわゆる変調構造)の波長、振幅を安定化させている。さらに、この第二相粒子の数密度を制御することにより、強度と曲げ加工性を両立し、プレス加工の寸法精度も高めている。製造方法においては、最終溶体化前の冷間圧延加工率が70〜99%と高く、また、第一及び最終の2段階で行う溶体化処理においていずれも熱履歴が本発明で規定するものとは全く異なる。特許文献7では、溶体化熱処理にて再結晶粒の平均粒径を制御し、{200}結晶面を主方位成分とする再結晶集合組織を得ることで、強度と曲げ加工性を両立させている。工程においては、冷間圧延後の中間焼鈍にて、450〜600℃にて1〜20時間保持しており、本発明の条件とは大きく異なる。また、I{200}の回折強度を高めることで曲げ加工性を改善しているが、曲げシワ低減、ヤング率、たわみ係数に関しては記載されていない。
一方では、近年のますますの電気・電子機器の小型化、高機能化、高密度実装化等に伴い、電気・電子機器用の銅合金板材について、前述の各特許文献に記載された発明において想定されていた曲げ加工性よりも高い曲げ加工性、さらに、曲げ加工表面部の曲げシワの低減が要求されてきている。
By the way, in the invention described in Patent Document 1 or Patent Document 2, the analysis of crystal orientation by X-ray diffraction from a specific surface is performed by analyzing only a part of specific surfaces in a distribution of crystal orientation having a certain spread. It is about. In the invention described in Patent Document 3, the strength and bending workability are both achieved by increasing the Cube orientation area ratio to 50% or more for the Cu—Ni—Si based alloy. Here, the control of the crystal orientation is realized by reducing the rolling rate after the solution heat treatment. In the invention described in Patent Document 4, the (311) plane is developed by cold rolling in a state where the solute atoms are completely in solid solution, and I (311) / I (111) ≧ 0.5. This improves press punchability. In the manufacturing process, orientation control is performed by cold rolling, recrystallization annealing, and subsequent processes. In Patent Document 5, bending workability after notching is improved by controlling the texture having an average crystal grain size of 5 to 25 μm and a {420} crystal plane as a main orientation component. In the production method, there are descriptions regarding hot rolling conditions, cold rolling conditions, solution heat treatment conditions, and aging precipitation conditions, but hot rolling is performed in two stages, and intermediate annealing before solution heat treatment and Solution treatment is performed without subsequent cold rolling. In Patent Document 6, the wavelength and amplitude of the titanium concentration wave (so-called modulation structure) formed in the parent phase are stabilized by precipitating the third element group as second phase particles. Furthermore, by controlling the number density of the second phase particles, both strength and bending workability are achieved, and the dimensional accuracy of press working is also increased. In the production method, the cold rolling processing rate before the final solution treatment is as high as 70 to 99%, and the heat history is defined by the present invention in both the first and last two stages of solution treatment. Is completely different. In Patent Document 7, the average grain size of recrystallized grains is controlled by solution heat treatment, and a recrystallized texture having a {200} crystal plane as a main orientation component is obtained, thereby achieving both strength and bending workability. Yes. In the process, intermediate annealing after cold rolling is performed at 450 to 600 ° C. for 1 to 20 hours, which is greatly different from the conditions of the present invention. Although bending workability is improved by increasing the diffraction intensity of I {200}, there is no description regarding bending wrinkle reduction, Young's modulus, and deflection coefficient.
On the other hand, in connection with the recent miniaturization, high functionality, high density mounting, etc. of electrical / electronic devices, copper alloy sheet materials for electrical / electronic devices have been disclosed in the inventions described in the aforementioned patent documents. There has been a demand for higher bending workability than expected bending workability and further reduction of bending wrinkles on the bent surface portion.

Cu−Tiは、Tiの酸化を防止するために、鋳造は不活性ガス中もしくは真空溶解炉で行う必要があるが、それでも、鋳塊には酸化物からなる粗大な晶出物および析出物が存在し、80%以上の強加工(冷間圧延)の際にこれらの周りに転位、歪が導入され、Cube方位を成長させる再結晶溶体化熱処理にて方位回転を阻害する可能性が考えられる。   Cu-Ti needs to be cast in an inert gas or in a vacuum melting furnace to prevent oxidation of Ti. Nevertheless, the ingot contains coarse crystallized products and precipitates composed of oxides. There is a possibility that dislocations and strains are introduced around these during strong processing (cold rolling) of 80% or more, and the orientation rotation may be hindered by recrystallization solution heat treatment for growing the Cube orientation. .

上記のような課題に鑑み、本発明の課題は、曲げ加工性に優れ、優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した銅合金板材およびその製造方法を提供することにある。   In view of the problems as described above, the object of the present invention is to provide superior bending workability, excellent strength, and lead frames, connectors, terminal materials, etc. for electrical and electronic devices, such as connectors for automobiles and terminals. An object of the present invention is to provide a copper alloy sheet suitable for materials, relays, switches, and the like, and a method for manufacturing the same.

本発明者らは、電気・電子部品用途に適した銅合金板材について研究を行い、Cu−Ti系の銅合金において、曲げ加工性、強度、導電性、耐応力緩和特性を大きく向上させるために、Cube方位集積割合と曲げ加工性について相関があることを発見し、鋭意検討の末に、特定の銅合金組成において、特定の方位集合組織に制御することで、これら所望の特性を著しく向上させることができることを見出した。また、その結晶方位及び特性を有する銅合金板材において、さらに強度を向上させる働きのある添加元素を見出しさらに、それに加えて、本合金系において導電率や曲げ加工性を損なうことなく、強度を向上させる働きのある添加元素を見出した。また、上記の様な結晶方位を実現するための特定の工程を有してなる製造方法を見出した。本発明は、これらの知見に基づいてなされるに至ったものである。   In order to greatly improve bending workability, strength, conductivity, and stress relaxation resistance in Cu-Ti-based copper alloys, the present inventors have studied copper alloy sheet materials suitable for electric / electronic component applications. , Discovered that there is a correlation between the Cube orientation accumulation ratio and the bending workability, and after intensive studies, by controlling to a specific orientation texture in a specific copper alloy composition, these desired characteristics are remarkably improved. I found that I can do it. In addition, in the copper alloy sheet having the crystal orientation and characteristics, an additional element that works to further improve the strength is found, and in addition, the strength is improved without impairing the conductivity and bending workability in this alloy system. The additive element which has the function to make it discovered was discovered. Moreover, the manufacturing method which has a specific process for implement | achieving the above crystal orientations was discovered. The present invention has been made based on these findings.

すなわち、本発明によれば、以下の手段が提供される。
(1)Tiを1.0〜5.0mass%含有し、残部が実質的に銅及び不可避不純物からなる銅合金板材であって、EBSD測定における結晶方位解析において、Cube方位{0 0 1}<1 0 0>の面積率が10〜50%であることを特徴とする銅合金板材、
(2)前記銅合金板材は、その製造時の冷間圧延加工工程における中間焼鈍において、昇温速度10〜30℃/秒で加熱されて600〜800℃(但し600℃は除く)まで到達していることを特徴とする、(1)に記載の銅合金板材。
)前記銅合金が、さらに、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Zr、Si、FeおよびHfからなる群から選ばれる少なくとも1つを合計で0.005〜1.0mass%含有することを特徴とする(1)または(2)に記載の銅合金板材、
)0.2%耐力が850MPa以上であり、曲げ加工性が90°W曲げ試験においてクラックがなく、曲げシワの小さい曲げ加工が可能な最小曲げ半径(r、mm)を板厚(t、mm)で割った値(r/t)が1以下である、(1)〜(3)のいずれか1項に記載の銅合金板材、
)板材に一定の応力を加えた際の変位量を示す、引張試験で測定したヤング率が90〜120GPaであり、たわみ試験で測定したたわみ係数が80〜110GPaである、(1)〜()のいずれか1項に記載の銅合金板材、
)前記(1)〜()のいずれか1項に記載の銅合金板材を製造する方法であって、前記銅合金板材を与える合金成分組成から成る銅合金素材に、0.1〜100℃/秒の冷却速度で鋳造[工程1]、800〜1020℃で3分から10時間の均質化熱処理[工程2]、1020〜700℃で熱間圧延[工程3]、水冷[工程4]、加工率80〜99.8%の冷間圧延[工程6]、昇温速度10〜30℃/秒で加熱し、600〜800℃まで到達後、200℃/秒以上にて急冷する中間焼鈍[工程7]、2〜50%の加工率の冷間圧延[工程8]、及び600〜1000℃で5秒〜1時間の中間溶体化熱処理[工程9]
をこの順に施すことを特徴とする銅合金板材の製造方法、
)前記中間溶体化熱処理[工程9]の後で、400〜700℃で5分〜10時間の時効析出熱処理[工程10]、加工率が3〜25%の仕上げ冷間圧延[工程11]、及び200〜600℃で5秒〜10時間の調質焼鈍[工程12]をこの順に施し、ここで、前記時効析出熱処理[工程10]の処理温度は、前記中間溶体化熱処理[工程9]の処理温度よりも低く、前記調質焼鈍[工程12]の処理温度は、前記中間溶体化熱処理[工程9]の処理温度よりも低いことを特徴とする()項に記載の銅合金板材の製造方法、
)前記(1)〜()のいずれか1項に記載の銅合金板材からなる銅合金部品、及び
)前記(1)〜()のいずれか1項に記載の銅合金板材からなるコネクタ。
That is, according to the present invention, the following means are provided.
(1) A copper alloy plate material containing 1.0 to 5.0 mass% of Ti and the balance being substantially made of copper and inevitable impurities. In the crystal orientation analysis in EBSD measurement, the Cube orientation {0 0 1} < A copper alloy sheet characterized in that the area ratio of 1 0 0> is 10 to 50%;
(2) The copper alloy sheet is heated at a temperature rising rate of 10 to 30 ° C./second and reaches 600 to 800 ° C. (except 600 ° C.) in the intermediate annealing in the cold rolling process at the time of manufacture. The copper alloy sheet material according to (1), wherein
( 3 ) The copper alloy further contains at least one selected from the group consisting of Sn, Zn, Ag, Mn, B, P, Mg, Cr, Zr, Si, Fe and Hf in a total amount of 0.005 to 1. The copper alloy sheet material according to (1) or (2) , characterized by containing 0.0 mass%,
( 4 ) The 0.2% proof stress is 850 MPa or more, the bending workability is 90 ° W, there is no crack in the bending test, and the minimum bending radius (r, mm) that can be bent with small bending wrinkles is set to the thickness (t , Mm), the copper alloy sheet according to any one of (1) to (3), wherein the value (r / t) is 1 or less,
( 5 ) The Young's modulus measured by a tensile test showing a displacement amount when a certain stress is applied to the plate material is 90 to 120 GPa, and the deflection coefficient measured by the deflection test is 80 to 110 GPa. The copper alloy sheet material according to any one of ( 4 ),
( 6 ) A method for producing a copper alloy sheet according to any one of (1) to ( 5 ), wherein 0.1 to 0.1 is applied to a copper alloy material having an alloy component composition that gives the copper alloy sheet. Casting at a cooling rate of 100 ° C./sec [Step 1], homogenizing heat treatment at 800 to 1020 ° C. for 3 minutes to 10 hours [Step 2], hot rolling at 1020 to 700 ° C. [Step 3], water cooling [Step 4] , Cold rolling with a processing rate of 80 to 99.8% [Step 6], heating at a heating rate of 10 to 30 ° C / sec, reaching 600 to 800 ° C, and then rapidly cooling at 200 ° C / sec or more [Step 7], cold rolling with a processing rate of 2 to 50% [Step 8], and intermediate solution heat treatment at 600 to 1000 ° C. for 5 seconds to 1 hour [Step 9]
A method for producing a copper alloy sheet, characterized in that, in this order,
( 7 ) After the intermediate solution heat treatment [Step 9], aging precipitation heat treatment [Step 10] at 400 to 700 ° C. for 5 minutes to 10 hours, finish cold rolling with a processing rate of 3 to 25% [Step 11] And temper annealing [Step 12] at 200 to 600 ° C. for 5 seconds to 10 hours in this order, wherein the treatment temperature of the aging precipitation heat treatment [Step 10] is the intermediate solution heat treatment [Step 9]. lower than the processing temperature of, treatment temperature of the temper annealing [step 12] is characterized by lower than the processing temperature of the intermediate solution heat treatment [step 9] (6) a copper alloy according to item Manufacturing method of plate material,
( 8 ) A copper alloy part comprising the copper alloy sheet according to any one of (1) to ( 5 ), and ( 9 ) the copper alloy according to any one of (1) to ( 5 ). Connector made of plate material.

本発明の銅合金板材は、曲げ加工性に優れ、優れた強度を示し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに特に適した性質を有する。また、本発明の製造方法によれば、上記銅合金板材を好適に製造することができる。   The copper alloy sheet material of the present invention is excellent in bending workability and exhibits excellent strength. For lead frames, connectors, terminal materials, etc. for electrical and electronic equipment, connectors and terminal materials for automobiles, relays, switches, etc. It has particularly suitable properties. Moreover, according to the manufacturing method of this invention, the said copper alloy board | plate material can be manufactured suitably.

本発明の銅合金板材は、Tiを1.0〜5.0mass%含有し、残部が銅及び不可避不純物からなる組成を有し、EBSD測定における結晶方位解析において、Cube方位{0 0 1}<1 0 0>の面積率が5〜50%であるため、強度、曲げ加工性、導電率、耐応力緩和特性の各特性に優れ、自動車車載用や電気・電子機器の用途に好適な銅合金を提供することができる。   The copper alloy sheet material of the present invention contains 1.0 to 5.0 mass% of Ti, and the balance is composed of copper and inevitable impurities. In the crystal orientation analysis in EBSD measurement, the Cube orientation {0 0 1} < Since the area ratio of 1 0 0> is 5 to 50%, the copper alloy is excellent in strength, bending workability, electrical conductivity, and stress relaxation resistance, and suitable for use in automobiles and electrical / electronic devices. Can be provided.

本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。   The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.

図1は{001}<100>Cube方位からのずれ角度が10°以内の例を示す模式図である。FIG. 1 is a schematic diagram showing an example in which the deviation angle from the {001} <100> Cube orientation is within 10 °. 図2は応力緩和特性の試験方法の説明図であり、図2(a)は熱処理前、図2(b)は熱処理後の状態をそれぞれ示す。2A and 2B are explanatory diagrams of a stress relaxation characteristic test method. FIG. 2A shows a state before heat treatment, and FIG. 2B shows a state after heat treatment. 図3はJCBA T309:2001(仮)に基づく応力緩和試験方法の説明図である。FIG. 3 is an explanatory diagram of a stress relaxation test method based on JCBA T309: 2001 (provisional).

本発明の銅合金板材の好ましい実施の態様について、詳細に説明する。ここで、「銅合金材料」とは、(加工前であって所定の合金組成を有する)銅合金素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。その中で、板材とは、特定の厚みを有し形状的に安定しており面方向に広がりをもつものを指し、広義には条材を含む意味である。本発明において、板材の厚さは、特に限定されるものではないが、本発明の効果が一層よく顕れ実際的な用途に適合することを考慮すると、0.01〜1.0mmが好ましく、0.05〜0.5mmがより好ましい。
なお、本発明の銅合金板材は、その特性を圧延板の所定の方向における原子面の集積率で規定するものであるが、これは銅合金板材としてそのような特性を有しておれば良いのであって、銅合金板材の形状は板材や条材に限定されるものではない。本発明では、管材も板材として解釈して取り扱うことができるものとする。
A preferred embodiment of the copper alloy sheet material of the present invention will be described in detail. Here, “copper alloy material” means a copper alloy material (before processing and having a predetermined alloy composition) processed into a predetermined shape (for example, plate, strip, foil, bar, wire, etc.) Means. Among them, the plate material refers to a material having a specific thickness and being stable in shape and having a spread in the surface direction, and in a broad sense, includes a strip material. In the present invention, the thickness of the plate material is not particularly limited, but considering the fact that the effect of the present invention is better manifested and suitable for practical use, it is preferably 0.01 to 1.0 mm. 0.05 to 0.5 mm is more preferable.
In addition, although the copper alloy plate material of this invention prescribes | regulates the characteristic with the integration rate of the atomic surface in the predetermined direction of a rolled sheet, this should just have such a characteristic as a copper alloy plate material. Therefore, the shape of the copper alloy sheet is not limited to a sheet or strip. In the present invention, the pipe material can also be interpreted and handled as a plate material.

[Cube方位の面積率]
銅合金板材の曲げ加工性を改善するために、本発明者らは曲げ加工部に発生するクラックの発生原因について調査した。その結果、塑性変形が局所的に発達して剪断変形帯を形成し、局所的な加工硬化によってマイクロボイドの生成と連結が起こり、成形限界に達することが原因であることを確認した。その対策として、曲げ変形において加工硬化が起きにくい結晶方位の割合を高めることが有効であることを知見した。即ち、板材の厚さ方向でのEBSD測定における結晶方位解析において、Cube方位{001}<100>の面積率が5%〜50%の場合に、良好な曲げ加工性を示すことを見出し、この知見に基づいて本発明を完成するに至ったものである。Cube方位の面積率が上記下限値以上の場合は、上述した作用効果が十分に発揮される。また、上記上限値以下であると、再結晶処理の後の冷間圧延加工を低加工率で行わなくてよく、強度が著しく低下してしまうことがないため、好ましい。上記の観点から、Cube方位{001}<100>の面積率の好ましい範囲は7〜47%、更に好ましくは、10〜45%である。
[Area ratio of Cube orientation]
In order to improve the bending workability of the copper alloy sheet, the present inventors investigated the cause of the occurrence of cracks in the bent portion. As a result, it was confirmed that the plastic deformation was locally developed to form a shear deformation band, and the generation and connection of microvoids occurred due to local work hardening, reaching the forming limit. As a countermeasure, it has been found that it is effective to increase the ratio of crystal orientation in which work hardening hardly occurs in bending deformation. That is, in the crystal orientation analysis in the EBSD measurement in the thickness direction of the plate material, it was found that when the area ratio of the Cube orientation {001} <100> is 5% to 50%, good bending workability is exhibited. The present invention has been completed based on the findings. When the area ratio of the Cube orientation is equal to or greater than the lower limit, the above-described effects are sufficiently exhibited. Moreover, it is preferable that it is below the said upper limit, since the cold rolling after a recrystallization process does not need to be performed with a low processing rate, and an intensity | strength does not fall remarkably. From the above viewpoint, the preferable range of the area ratio of the Cube orientation {001} <100> is 7 to 47%, more preferably 10 to 45%.

[Cube方位以外の方位]
また、上記範囲のCube方位の他に、S方位{2 3 1}<3 4 6>、Copper方位{1 2 1}<1 1 1>、D方位{4 11 4}<11 8 11>、Brass方位{1 1 0}<1 1 2>、Goss方位{1 1 0}<0 0 1>、R1方位{3 5 2}<3 5 8>、RDW方位{1 0 2}<0 1 0>などが発生する。本発明においては、観測される全方位の面積に対して、Cube方位の面積率が上記の範囲にあれば、これらの方位成分を含んでいることは許容される。
[Direction other than Cube direction]
In addition to the Cube orientation in the above range, S orientation {2 3 1} <3 4 6>, Copper orientation {1 2 1} <1 1 1>, D orientation {4 11 4} <11 8 11>, Brass orientation {1 1 0} <1 1 2>, Goss orientation {1 1 0} <0 0 1>, R1 orientation {3 5 2} <3 5 8>, RDW orientation {1 0 2} <0 1 0 > Etc. occur. In the present invention, if the area ratio of the Cube azimuth is within the above range with respect to the observed area of all azimuths, it is allowed to include these azimuth components.

[EBSD法]
本明細書における結晶方位の表示方法は、銅合金板材の長手方向(LD){板材の圧延方向(RD)に等しい}をX軸、板幅方向(TD)をY軸、板材の厚さ方向{板材の圧延法線方向(ND)に等しい}をZ軸とする直角座標系を取り、銅合金板材中の各領域において、Z軸に垂直な(圧延面(XY面)に平行な)結晶面の指数(h k l)と、X軸に垂直な(YZ面に平行な)結晶面の指数[u v w]とを用いて、(h k l)[u v w]の形で表す。また、(1 3 2)[6 −4 3]と(2 3 1)[3 −4 6]などのように、銅合金の立方晶の対称性のもとで等価な方位については、ファミリーを表すカッコ記号を使用し、{h k l}<u v w>と表す。
本発明における上記結晶方位の解析には、EBSD法を用いた。EBSD法とは、Electron Backscatter Diffraction(電子後方散乱回折)の略で、走査電子顕微鏡(SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折を利用した結晶方位解析技術のことである。結晶粒を200個以上含む、1ミクロン四方の試料面積に対し、0.5ミクロンなどのステップでスキャンし、方位を解析した。測定面積およびスキャンステップは試料の結晶粒の大きさによって調整した。各方位の面積率は、Cube方位{0 0 1}<1 0 0>の理想方位から±10°以内の面積の全測定面積に対する割合である。EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、本明細書中では面積率として記載した。また、方位分布は板厚方向に変化しているため、EBSDによる方位解析は板厚方向に何点かを任意にとって平均を取ることが好ましい。
各方位の面積率とは、各理想方位からのずれ角度が10°以内の領域の面積を、測定面積で割って算出したものである。
理想方位からのずれ角度については、共通の回転軸を中心に回転角を計算し、ずれ角度とする。図1に、Cube方位からのずれ角度が10°以内の方位の例を示す。ここでは、(100)及び(110)及び(111)の回転軸に関して、10°以内の方位を示しているが、あらゆる回転軸に関してCube方位との回転角度を計算することができる。回転軸は最も小さいずれ角度で表現できるものを採用し、全ての測定点に対してこのずれ角度を計算し、各方位から10°以内の方位を持つ結晶粒の面積の和を全測定面積で除し、面積率とする。
EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して小さすぎるため、本明細書中では面積率を用いる。方位分布は銅合金板材の板材表面から測定し、方位分布が板厚方向に変化している場合は、EBSDによる方位解析は板厚方向に何点かを任意にとって平均を取った値をいう。
[EBSD method]
In the present specification, the crystal orientation display method is as follows: the longitudinal direction (LD) of the copper alloy plate material (equal to the rolling direction (RD) of the plate material) is the X axis, the plate width direction (TD) is the Y axis, and the thickness direction of the plate material. Takes a rectangular coordinate system whose Z axis is {equal to the rolling normal direction (ND) of the plate material}, and is perpendicular to the Z axis (parallel to the rolling surface (XY surface)) in each region in the copper alloy plate material Using the index of the face (h k l) and the index [u v w] of the crystal plane perpendicular to the X axis (parallel to the YZ plane), it is expressed in the form of (h k l) [u v w] . In addition, as for (1 3 2) [6 -4 3] and (2 3 1) [3 -4 6], etc. It uses {h k l} <u v w> to represent parenthesis symbols.
The EBSD method was used for the analysis of the crystal orientation in the present invention. The EBSD method is an abbreviation of Electron Backscatter Diffraction (electron backscatter diffraction), which is a crystal orientation analysis technique using reflected electron Kikuchi line diffraction that occurs when a sample is irradiated with an electron beam in a scanning electron microscope (SEM). It is. A sample area of 1 micron square containing 200 or more crystal grains was scanned in steps of 0.5 micron and the orientation was analyzed. The measurement area and scan step were adjusted according to the crystal grain size of the sample. The area ratio of each orientation is the ratio of the area within ± 10 ° from the ideal orientation of the Cube orientation {0 0 1} <1 0 0> to the total measured area. The information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers at which the electron beam penetrates into the sample. It was described as an area ratio. Further, since the azimuth distribution changes in the plate thickness direction, it is preferable that the azimuth analysis by EBSD takes an average for any number of points in the plate thickness direction.
The area ratio of each azimuth is calculated by dividing the area of a region whose deviation angle from each ideal azimuth is within 10 ° by the measurement area.
Regarding the deviation angle from the ideal orientation, the rotation angle is calculated around a common rotation axis, and is set as the deviation angle. FIG. 1 shows an example of an orientation whose deviation angle from the Cube orientation is within 10 °. Here, although the azimuth | direction within 10 degrees is shown regarding the rotation axis of (100) and (110) and (111), the rotation angle with Cube azimuth | direction can be calculated about all rotation axes. The rotation axis is the smallest one that can be expressed at any angle. The deviation angle is calculated for all measurement points, and the total area of crystal grains with orientations within 10 ° from each orientation is the total measurement area. Divided by the area ratio.
The information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers at which the electron beam penetrates into the sample, but is too small for the measured width. Use rate. The azimuth distribution is measured from the surface of the copper alloy sheet, and when the azimuth distribution changes in the sheet thickness direction, the azimuth analysis by EBSD refers to a value obtained by averaging several points in the sheet thickness direction.

ここで、EBSD測定の特徴について、X線回折測定との対比として説明する。
まず1点目に挙げられるのは、X線回折の方法で測定可能なのは、ブラッグの回折条件を満足し、かつ充分な回折強度が得られる、ND//(111)、(200)、(220)、(311)、(420)面の5種類のみであり、Cube方位からのずれ角度が15〜30°に相当する、例えばND//(511)面やND//(951)面などの高指数で表現される結晶方位については、測定出来ない。即ち、EBSD測定を採用することにより、初めて、それらの高指数で表現される結晶方位に関する情報が得られ、それにより特定される金属組織と作用の関係が明らかになる。
2点目は、X線回折はND//{hkl}の±0.5°程度に含まれる結晶方位の分量を測定しているのに対し、EBSD測定によれば菊池パターンを利用するため、特定の結晶面に限定されない、桁違いに広範な金属組織に関する情報が網羅的に得られ、合金材料全体としてX線回折では特定することが難しい状態が明らかになる。
以上のとおり、EBSD測定とX線回折測定とで得られる情報はその内容及び性質が異なる。
なお、本明細書において特に断らない限り、EBSDの測定は、銅合金板材のND方向に対して行ったものである。
Here, the characteristics of the EBSD measurement will be described as contrast with the X-ray diffraction measurement.
The first point is that ND // (111), (200), (220) that can be measured by the X-ray diffraction method satisfies the Bragg diffraction conditions and provides sufficient diffraction intensity. ), (311), and (420) planes, and the deviation angle from the Cube orientation corresponds to 15 to 30 °, such as ND // (511) plane and ND // (951) plane. The crystal orientation expressed by a high index cannot be measured. That is, by adopting EBSD measurement, for the first time, information on the crystal orientation expressed by these high indices can be obtained, and the relationship between the specified metal structure and the action becomes clear.
Second, X-ray diffraction measures the amount of crystal orientation contained within about ± 0.5 ° of ND // {hkl}, whereas the EBSD measurement uses the Kikuchi pattern. Information on a wide range of metal structures, not limited to a specific crystal plane, is obtained comprehensively, and it becomes clear that the entire alloy material is difficult to identify by X-ray diffraction.
As described above, contents and properties of information obtained by EBSD measurement and X-ray diffraction measurement are different.
In addition, unless otherwise indicated in this specification, the measurement of EBSD was performed with respect to the ND direction of a copper alloy board | plate material.

[X線回折強度]
本発明では、合金板表面における{200}面からのX線回折強度をI{200}とし、純銅標準粉末の{200}面からのX線回折強度をI{200}とする場合、下記(a)の式を満たすことが好ましく、下記(b)の式を満たす結晶配向を有することがさらに好ましい。
I{200}/I{200}≧ 1.3 式(a)
I{200}/I{200}≧ 2.5 式(b)
[X-ray diffraction intensity]
In the present invention, when the X-ray diffraction intensity from the {200} plane on the surface of the alloy plate is I {200} and the X-ray diffraction intensity from the {200} plane of the pure copper standard powder is I 0 {200}, It is preferable to satisfy the formula (a), and it is more preferable to have a crystal orientation that satisfies the formula (b) below.
I {200} / I 0 {200} ≧ 1.3 Formula (a)
I {200} / I 0 {200} ≧ 2.5 Formula (b)

[Ti]
本発明において、銅(Cu)に添加するチタン(Ti)について、添加量を制御することにより、Cu−Ti化合物を析出させて銅合金の強度を向上させることができる。Tiの含有量は1.0〜5.0mass%、好ましくは2.0〜4.0mass%である。この元素はこの規定範囲よりも添加量が多いと導電率を低下させ、また、少ないと強度が不足する。なお、本発明に係る銅合金のように第二合金成分としてTiを含有するものを「Ti系銅合金」と呼ぶことがある。
[Ti]
In the present invention, by controlling the amount of titanium (Ti) added to copper (Cu), the Cu—Ti compound can be precipitated and the strength of the copper alloy can be improved. The Ti content is 1.0 to 5.0 mass%, preferably 2.0 to 4.0 mass%. If this element is added in an amount greater than this specified range, the electrical conductivity is lowered, and if it is less, the strength is insufficient. In addition, what contains Ti as a 2nd alloy component like the copper alloy which concerns on this invention may be called "Ti type copper alloy."

[副添加元素]
次に本合金への副添加元素の効果について示す。好ましい副添加元素としては、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Zr、Si、FeおよびHfが挙げられる。これらの副添加元素の含有量は、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Zr、Si、FeおよびHfからなる群から選ばれた少なくとも1種の総量で1質量%以下であると導電率を低下させる弊害を生じないため好ましい。添加効果を充分に活用し、かつ導電率を低下させないためには、この総量で、0.005〜1.0質量%であることが好ましく、0.01〜0.9質量%がさらに好ましく、0.03mass%〜0.8mass%であることが特に好ましい。以下に、各元素の添加効果の例を示す。
[Sub-additive elements]
Next, the effect of the secondary additive element on this alloy will be described. Preferred secondary additive elements include Sn, Zn, Ag, Mn, B, P, Mg, Cr, Zr, Si, Fe, and Hf. The content of these sub-added elements is 1% by mass or less in the total amount of at least one selected from the group consisting of Sn, Zn, Ag, Mn, B, P, Mg, Cr, Zr, Si, Fe and Hf It is preferable because it does not cause a harmful effect of lowering the conductivity. In order to fully utilize the additive effect and not lower the electrical conductivity, the total amount is preferably 0.005 to 1.0% by mass, more preferably 0.01 to 0.9% by mass, It is especially preferable that it is 0.03 mass%-0.8 mass%. Below, the example of the addition effect of each element is shown.

(Mg、Sn、Zn)
Mg、Sn、Znは、添加することで耐応力緩和特性を向上する。それぞれを単独で添加した場合よりも併せて添加した場合に相乗効果によって更に耐応力緩和特性が向上する。また、半田脆化が著しく改善する効果がある。
(Mg, Sn, Zn)
Addition of Mg, Sn and Zn improves the stress relaxation resistance. The stress relaxation resistance is further improved by the synergistic effect when each of them is added together than when they are added alone. In addition, the solder embrittlement is remarkably improved.

(Mn、Ag、B、P)
Mn、Ag、B、Pは添加すると熱間加工性を向上させるとともに、強度を向上する。
(Mn, Ag, B, P)
When Mn, Ag, B, and P are added, the hot workability is improved and the strength is improved.

(Cr、Zr、Si、Fe、Hf)
Cr、Zr、Si、Fe、Hfは、化合物や単体で微細に析出し、析出硬化に寄与する。また、化合物として50〜500nmの大きさで析出し、粒成長を抑制することによって結晶粒径を微細にする効果があり、曲げ加工性を良好にする。
(Cr, Zr, Si, Fe, Hf)
Cr, Zr, Si, Fe, and Hf are finely precipitated as a compound or a simple substance, and contribute to precipitation hardening. Moreover, it precipitates with the magnitude | size of 50-500 nm as a compound, and there exists an effect which makes a crystal grain size fine by suppressing grain growth, and makes bending workability favorable.

[銅合金板材の製造方法]
次に、本発明の銅合金板材の好ましい製造条件について説明する。
従来の析出型銅合金の製造方法は、銅合金素材を鋳造[工程1]して鋳塊を得て、これを均質化熱処理[工程2]し、熱間圧延[工程3]、水冷[工程4]、面削[工程5]、冷間圧延[工程6]をこの順に行い薄板化し、700〜1000℃の温度範囲で中間溶体化熱処理[工程9]を行って溶質原子を再固溶させた後に、時効析出熱処理[工程10]と仕上げ冷間圧延[工程11]によって必要な強度を満足させるものである。この一連の工程の中で、銅合金板材の集合組織は、中間溶体化熱処理中[工程9]に起きる再結晶によっておおよそが決定し、仕上げ圧延[工程11]中に起きる方位の回転により、最終的に決定される。
[Method for producing copper alloy sheet]
Next, preferable production conditions for the copper alloy sheet of the present invention will be described.
In the conventional method for producing a precipitation-type copper alloy, a copper alloy material is cast [Step 1] to obtain an ingot, which is subjected to homogenization heat treatment [Step 2], hot rolling [Step 3], and water cooling [Step] 4], chamfering [Step 5], cold rolling [Step 6] in this order to make a thin plate, intermediate solution heat treatment [Step 9] in a temperature range of 700-1000 ° C. to re-solidify solute atoms After that, the required strength is satisfied by aging precipitation heat treatment [Step 10] and finish cold rolling [Step 11]. In this series of steps, the texture of the copper alloy sheet is roughly determined by recrystallization that occurs during the intermediate solution heat treatment [Step 9], and the final rotation is caused by the rotation of the orientation that occurs during the finish rolling [Step 11]. To be determined.

上記従来方に対して、本発明の一実施形態においては、熱間圧延[工程3]後に、水冷[工程4]、面削[工程5]し、冷間圧延[工程6]により圧延率80%以上99.8%以下で圧延し、その後に、再結晶しない程度に昇温速度10〜30℃/秒にて600〜800℃まで到達後、200℃/秒以上で急冷する中間焼鈍[工程7]を行い、更に、2〜50%の加工率の冷間圧延[工程8]を行うことによって、中間溶体化熱処理[工程9]の再結晶集合組織においてCube方位の面積率が増加する。また、中間溶体化熱処理[工程9]後には、時効析出熱処理[工程10]、仕上げ冷間圧延[工程11]及び調質焼鈍[工程12]を施してもよい。   In contrast to the conventional method described above, in one embodiment of the present invention, after hot rolling [Step 3], water cooling [Step 4], chamfering [Step 5], and cold rolling [Step 6] are performed at a rolling rate of 80. % Annealing is performed at a temperature rising rate of 10 to 30 ° C./second until reaching 600 to 800 ° C., and then rapidly cooled at 200 ° C./second or more [process] 7] and further cold rolling [Step 8] at a processing rate of 2 to 50% increases the area ratio of the Cube orientation in the recrystallized texture of the intermediate solution heat treatment [Step 9]. Further, after the intermediate solution heat treatment [Step 9], an aging precipitation heat treatment [Step 10], finish cold rolling [Step 11], and temper annealing [Step 12] may be performed.

以下に、各工程の条件をより詳細に設定した本発明の一実施態様について記載する。
少なくともTiを1.0〜5.0質量%含有し、他の前記副添加元素については適宜含有するように元素を配合し、残部がCuと不可避不純物から成る銅合金素材を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造[工程1]して鋳塊を得る。これを800〜1020℃で3分から10時間の均質化熱処理[工程2]後、1020〜700℃で熱間加工[工程3]を行った後に水焼入れ(水冷[工程4]に相当)を行う。この後、必要により、酸化スケール除去のために面削[工程5]を行ってもよい。その後に、加工率80〜99.8%の冷間圧延[工程6]し、次に昇温速度10〜30℃/秒で加熱し、600〜800℃まで到達後、200℃/秒以上にて急冷する中間焼鈍[工程7]を行い、更に、2〜50%の加工率の冷間圧延[工程8]を行い、600〜1000℃で5秒〜1時間の中間溶体化熱処理[工程9]を行う。この後、400〜700℃で5分〜10時間の時効析出熱処理[工程10]、加工率が3〜25%の仕上冷間圧延[工程11]、200〜600℃で5秒〜10時間の調質焼鈍[工程12]を行ってもよい。以上の方法によって、本発明の銅合金板材を得ることができる。
Hereinafter, an embodiment of the present invention in which the conditions of each step are set in more detail will be described.
At least 1.0 to 5.0% by mass of Ti, other elements added as appropriate, are added as appropriate, and the copper alloy material consisting of Cu and inevitable impurities is melted in a high-frequency melting furnace. Then, this is cast [Step 1] at a cooling rate of 0.1 to 100 ° C./sec to obtain an ingot. This is subjected to homogenization heat treatment [Step 2] at 800 to 1020 ° C. for 3 minutes to 10 hours, followed by hot working [Step 3] at 1024 to 700 ° C. and then water quenching (corresponding to water cooling [Step 4]). . Thereafter, if necessary, chamfering [Step 5] may be performed to remove oxide scale. Thereafter, cold rolling with a processing rate of 80 to 99.8% [Step 6], then heating at a heating rate of 10 to 30 ° C./second, reaching 600 to 800 ° C., and then 200 ° C./second or more Intermediate annealing [Step 7] is performed, followed by cold rolling [Step 8] at a processing rate of 2 to 50%, and intermediate solution heat treatment [Step 9] at 600 to 1000 ° C. for 5 seconds to 1 hour. ]I do. Thereafter, an aging precipitation heat treatment at 400 to 700 ° C. for 5 minutes to 10 hours [Step 10], finish cold rolling with a processing rate of 3 to 25% [Step 11], and 200 to 600 ° C. for 5 seconds to 10 hours. Conditioning annealing [Step 12] may be performed. By the above method, the copper alloy sheet of the present invention can be obtained.

本実施形態において、熱間圧延[工程3]では、再熱温度から700℃の温度域で、鋳造組織や偏析を破壊し均一な組織にするための加工と、動的再結晶による結晶粒の微細化のための加工を行う。中間焼鈍[工程7]にて合金中の組織を全面再結晶させない程度に熱処理を行った後、加工率2〜50%の冷間圧延[工程8]を行い、中間溶体化[工程9]での再結晶集合組織においてCube方位の面積率が増加する。ここで、中間溶体化[工程9]前の中間焼鈍[工程7]の熱処理到達温度を本発明の規定値より高くすると、酸化スケールが形成され好ましくないため、この中間焼鈍[工程7]での熱処理到達温度は600〜800℃とする。中でも特に、一義的には断定しがたいが、中間焼鈍[工程7]にて焼鈍到達温度を指定すること、冷間圧延[工程8]での加工率を調整することによりCube方位面積率が増加する傾向がある。つまり、中間焼鈍[工程7]では、焼鈍到達温度に保持することはなく、所定の昇温速度で加熱して、目標とする焼鈍到達温度に到達したら、直ちに所定の冷却速度で冷却する。
ここで、中間焼鈍[工程7]の昇温速度が10℃/秒より遅いと、粒成長が進行し結晶粒が粗大化し曲げシワが大きくなってしまう。昇温速度が30℃/秒より速いと、Cube方位が十分に発達せず、曲げ加工性が劣る。また、到達温度が600℃より低い場合、Cube方位が発達せず曲げ加工性が劣り、800℃より高い場合は、粒成長が進行し結晶粒が粗大化し曲げシワが大きくなり特性が劣る。また、上で述べたように、加工率80〜99.8%の冷間圧延[工程6]のような強加工を施すことにより、鋳造で生じる粗大な晶出物、析出物の周りに転位、歪が導入され、Cube方位を成長させる中間溶体化熱処理[工程9]にて方位回転を阻害する可能性が考えられるが、中間焼鈍[工程7]を施すことによって、ここでの転位、歪が開放されるため、中間溶体化熱処理[工程9]ではCube方位成長の阻害は抑制される。
In the present embodiment, in the hot rolling [Step 3], in the temperature range from the reheating temperature to 700 ° C., the processing for breaking the cast structure and segregation into a uniform structure and the dynamic recrystallization are performed. Processing for miniaturization is performed. In the intermediate annealing [Step 7], heat treatment is performed to such an extent that the entire structure in the alloy is not recrystallized, and then cold rolling [Step 8] is performed at a processing rate of 2 to 50%. In the recrystallized texture, the area ratio of the Cube orientation increases. Here, when the heat treatment arrival temperature of the intermediate annealing [Step 7] before the intermediate solution [Step 9] is higher than the specified value of the present invention, an oxide scale is formed, which is not preferable. Therefore, in the intermediate annealing [Step 7] The heat treatment ultimate temperature is 600 to 800 ° C. Among them, although it is difficult to determine unambiguously, it is possible to determine the Cube orientation area ratio by specifying the annealing temperature in intermediate annealing [Step 7] and adjusting the processing rate in cold rolling [Step 8]. There is a tendency to increase. That is, in the intermediate annealing [Step 7], the temperature is not maintained at the annealing reaching temperature, but is heated at a predetermined temperature increase rate, and when the target annealing temperature is reached, the cooling is immediately performed at the predetermined cooling rate.
Here, when the rate of temperature increase in the intermediate annealing [Step 7] is slower than 10 ° C./second, grain growth proceeds, the crystal grains become coarse, and bending wrinkles increase. When the rate of temperature rise is faster than 30 ° C./second, the Cube orientation does not develop sufficiently and the bending workability is poor. Further, when the ultimate temperature is lower than 600 ° C., the Cube orientation does not develop and the bending workability is inferior, and when it is higher than 800 ° C., the grain growth progresses, the crystal grains become coarse and bending wrinkles become large, resulting in poor characteristics. Further, as described above, dislocation occurs around coarse crystallized products and precipitates generated by casting by performing strong processing such as cold rolling [Step 6] at a processing rate of 80 to 99.8%. In the intermediate solution heat treatment [Step 9] in which strain is introduced and the Cube orientation is grown, there is a possibility that the orientation rotation is inhibited. However, by performing the intermediate annealing [Step 7], the dislocation, Therefore, the inhibition of Cube orientation growth is suppressed in the intermediate solution heat treatment [Step 9].

次に2〜50%の加工率にて冷間圧延[工程8]を施す。ここで、加工率が2%より低いと、加工歪が小さく、中間溶体化熱処理[工程9]にて結晶粒径が粗大化し、曲げシワが大きくなり特性が劣る。加工率が50%より高いと、Cube方位が十分に発達せず曲げ加工性が劣る。
中間溶体化熱処理[工程9]後には、時効析出熱処理[工程10]、仕上げ冷間圧延[工程11]、調質焼鈍[工程12]を施す。ここで、時効析出熱処理[工程10]の処理温度は、中間溶体化熱処理[工程9]の処理温度よりも低い。また、調質焼鈍[工程12]の処理温度は、中間溶体化熱処理[工程9]の処理温度よりも低い。
再結晶集合組織においてCube方位の面積率を増加させるために、仕上げ冷間加工[工程11]を行う。なおかつ結晶方位を一定方向に制御することでCube方位の発達に寄与する。
冷間圧延[工程6]により更なる加工歪を入れ、中間焼鈍[工程7]にて、昇温速度10〜30℃/秒、到達温度600〜800℃、到達後急冷の熱処理を加えることで、中間溶体化処理[工程9]で生じる再結晶集合組織においてCube方位面積率が増加する。中間焼鈍[工程7]では完全には再結晶しておらず、部分的に再結晶している亜焼鈍組織を得ることが目的である。冷間圧延[工程8]では、加工率2〜50%の圧延によって、微視的に不均一な歪を導入することが目的である。中間焼鈍[工程7]と冷間圧延[工程8]の作用効果によって、中間溶体化処理[工程9]におけるCube方位の成長を可能にする。通常、中間溶体化処理[工程9]のような熱処理は次工程での荷重を低減するために銅合金板材を再結晶させて強度を落とすことが主目的であるが、本発明ではその目的とは異なる。
Next, cold rolling [Step 8] is performed at a processing rate of 2 to 50%. Here, if the processing rate is lower than 2%, the processing strain is small, the crystal grain size becomes coarse in the intermediate solution heat treatment [Step 9], the bending wrinkles become large, and the characteristics are inferior. When the processing rate is higher than 50%, the Cube orientation is not sufficiently developed and the bending workability is inferior.
After the intermediate solution heat treatment [Step 9], an aging precipitation heat treatment [Step 10], finish cold rolling [Step 11], and temper annealing [Step 12] are performed. Here, the treatment temperature of the aging precipitation heat treatment [Step 10] is lower than the treatment temperature of the intermediate solution heat treatment [Step 9]. Further, the treatment temperature of the temper annealing [Step 12] is lower than the treatment temperature of the intermediate solution heat treatment [Step 9].
In order to increase the area ratio of the Cube orientation in the recrystallized texture, the finish cold working [Step 11] is performed. In addition, it contributes to the development of the Cube orientation by controlling the crystal orientation to a certain direction.
By adding further processing strain by cold rolling [Step 6] and applying intermediate heat treatment [Step 7], a heating rate of 10 to 30 ° C./second, an ultimate temperature of 600 to 800 ° C., and a rapid cooling process after the arrival. The Cube orientation area ratio increases in the recrystallized texture produced in the intermediate solution treatment [Step 9]. The purpose of the intermediate annealing [Step 7] is to obtain a sub-annealed structure that is not completely recrystallized but partially recrystallized. The purpose of cold rolling [Step 8] is to introduce microscopically non-uniform strain by rolling at a processing rate of 2 to 50%. The effect of the intermediate annealing [Step 7] and cold rolling [Step 8] enables the growth of the Cube orientation in the intermediate solution treatment [Step 9]. Usually, the heat treatment such as the intermediate solution treatment [Step 9] is mainly aimed at reducing the strength by recrystallizing the copper alloy plate material in order to reduce the load in the next step. Is different.

上記各圧延工程での加工率(圧下率、断面減少率とも言う。以下の比較例で言う圧延率も同義である。)は、圧延工程前の板厚tと圧延工程後の板厚tを用いて、下式の様に算出される値をいう。
加工率(%)=((t−t)/t)×100
材料表面のスケールのための面削、酸洗浄などによる溶解を、必要に応じて行ってもよい。圧延後の形状が良好でない場合は、テンションレベラーなどによる矯正を、必要に応じて行ってもよい。
各熱処理や圧延の後に、板材表面の酸化や粗度の状態に応じて酸洗浄や表面研磨を、形状に応じてテンションレベラーによる矯正を行っても、Cube方位{0 0 1}<1 0 0>の面積率が本発明の範囲内であれば問題はない。
The processing rate in each of the rolling processes (also referred to as rolling reduction and cross-sectional reduction rate. The rolling ratio in the following comparative examples is also synonymous) is the thickness t 1 before the rolling process and the thickness t after the rolling process. 2 is used to mean a value calculated as in the following equation.
Processing rate (%) = ((t 1 −t 2 ) / t 1 ) × 100
If necessary, the surface of the material may be subjected to chamfering for scale, acid cleaning, or the like. If the shape after rolling is not good, correction with a tension leveler or the like may be performed as necessary.
After each heat treatment and rolling, even if acid cleaning or surface polishing is performed according to the state of oxidation or roughness of the plate material, and correction is performed with a tension leveler according to the shape, the Cube orientation {0 0 1} <1 0 0 If the area ratio of> is within the range of the present invention, there is no problem.

[銅合金板材の特性]
上記内容を満たすことで、たとえばコネクタ用銅合金板材に要求される特性を満足することができる。本発明において、銅合金板材は下記の特性を有することが好ましい。
・0.2%耐力が850MPa以上であることが好ましい。更に好ましくは950MPa以上である。0.2%耐力の上限値は、特に制限はないが、通常、1000MPa以下である。この詳細な測定条件は特に断らない限り実施例に記載のとおりとする。
・曲げ加工性が90°W曲げ試験においてクラックがなく、曲げシワの小さい曲げ加工が可能な最小曲げ半径(r)を板厚(t)で割った値(r/t)が1以下であることが好ましい。曲げシワに関しては、シワ間隔が、曲げシワはGWで20μm以下、BWで25μm以下であることが好ましい。更に好ましくは、GWで15μm以下、BWで20μm以下のシワ間隔である。この詳細な測定条件は特に断らない限り実施例に記載のとおりとする。ここで、圧延方向に垂直に切出した供試材において、曲げの軸が圧延方向に直角になるようにW曲げしたものをGW(Good Way)、曲げの軸が圧延方向に平行になるようにW曲げしたものをBW(Bad Way)という。
・導電率が5%IACS以上であることが好ましい。更に好ましくは導電率が10%IACS以上である。導電率の上限値は、特に制限はないが、通常、30%IACS以下である。この詳細な測定条件は特に断らない限り実施例に記載のとおりとする。
・ヤング率は90〜120GPa、たわみ係数は80〜110GPaであることが好ましい。更に好ましくはヤング率が100〜110GPa、たわみ係数が90〜100GPaである。この詳細な条件は、特に断らない限り実施例に記載のとおりとする。
・耐応力緩和特性は5%以下の良好な特性を、本発明により実現することができる。この詳細な条件は、特に断らない限り実施例に記載のとおりとする。
[Characteristics of copper alloy sheet]
By satisfy | filling the said content, the characteristic requested | required of the copper alloy board | plate material for connectors, for example can be satisfied. In the present invention, the copper alloy sheet preferably has the following characteristics.
-It is preferable that 0.2% yield strength is 850 Mpa or more. More preferably, it is 950 MPa or more. The upper limit of 0.2% proof stress is not particularly limited, but is usually 1000 MPa or less. The detailed measurement conditions are as described in the examples unless otherwise specified.
The bending workability is 90 ° W. The value (r / t) obtained by dividing the minimum bending radius (r) that can be bent with small wrinkles by the plate thickness (t) is 1 or less in a 90 ° W bending test. It is preferable. Regarding bending wrinkles, the wrinkle spacing is preferably 20 μm or less for GW and 25 μm or less for BW. More preferably, the wrinkle spacing is 15 μm or less for GW and 20 μm or less for BW. The detailed measurement conditions are as described in the examples unless otherwise specified. Here, in the specimen cut out perpendicular to the rolling direction, W-bent so that the bending axis is perpendicular to the rolling direction is GW (Good Way), and the bending axis is parallel to the rolling direction. W bent is called BW (Bad Way).
-It is preferable that electrical conductivity is 5% IACS or more. More preferably, the electrical conductivity is 10% IACS or more. The upper limit value of the conductivity is not particularly limited, but is usually 30% IACS or less. The detailed measurement conditions are as described in the examples unless otherwise specified.
-The Young's modulus is preferably 90 to 120 GPa and the deflection coefficient is preferably 80 to 110 GPa. More preferably, the Young's modulus is 100 to 110 GPa and the deflection coefficient is 90 to 100 GPa. The detailed conditions are as described in the examples unless otherwise specified.
-Good stress relaxation characteristics of 5% or less can be realized by the present invention. The detailed conditions are as described in the examples unless otherwise specified.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1)
本発明例2〜本発明例21、比較例1〜比較例17について、表1に示す組成となるように、主原料CuとTi、試験例によってはそれ以外の副添加元素とを配合し、溶解・鋳造した。すなわち、Ti等を表1に示した量含有し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造[工程1]して鋳塊を得た。これを800〜1020℃で3分から10時間の均質化熱処理[工程2]後、1020〜700℃で熱間加工[工程3]を行った。その後、水焼入れ(水冷[工程4]に相当)し、酸化スケール除去のために面削[工程5]を行った。その後、加工率80〜99.8%の冷間圧延[工程6]、次に昇温速度10〜30℃/秒で加熱し、600〜800℃まで到達後、200℃/秒以上にて急冷する中間焼鈍[工程7]を行い、更に、2〜50%の加工率の冷間圧延[工程8]、600〜1000℃で5秒〜1時間の中間溶体化処理[工程9]を実施した。次に、400〜700℃で5分間〜1時間の時効析出熱処理[工程10]を行い、3〜25%の圧延率で仕上冷間圧延[工程11]、200〜600℃で5秒〜10時間の調質焼鈍[工程12]を行って供試材とした。比較例では、表2の通り、中間焼鈍[工程7]と冷間圧延[工程8]で前記条件から外して実施したものがある。これらの供試材の組成、中間焼鈍[工程7]と冷間圧延[工程8]での条件、および得られた特性を、本発明例および比較例について、表1、表2に示す。各熱処理や圧延の後に、材料表面の酸化や粗度の状態に応じて酸洗浄や表面研磨を、形状に応じてテンションレベラーによる矯正を行った。なお、熱間加工[工程3]での加工温度は、圧延機の入り側と出側に設置してある放射温度計により測定した。
Example 1
Inventive Example 2 to Inventive Example 21, Comparative Example 1 to Comparative Example 17, so as to have the composition shown in Table 1, the main raw materials Cu and Ti, depending on the test example, other auxiliary additive elements are blended, Melted and cast. That is, an alloy composed of Ti and the like shown in Table 1 and the balance consisting of Cu and inevitable impurities is melted in a high-frequency melting furnace and cast at a cooling rate of 0.1 to 100 ° C./second [Step 1]. As a result, an ingot was obtained. This was subjected to a homogenization heat treatment [Step 2] at 800 to 1020 ° C. for 3 minutes to 10 hours, followed by hot working [Step 3] at 1020 to 700 ° C. Thereafter, water quenching (corresponding to water cooling [step 4]) was performed, and chamfering [step 5] was performed to remove oxide scale. Thereafter, cold rolling with a processing rate of 80 to 99.8% [Step 6], then heating at a heating rate of 10 to 30 ° C./second, reaching 600 to 800 ° C., and then rapidly cooling at 200 ° C./second or more. Intermediate annealing [Step 7] is performed, and further cold rolling [Step 8] with a processing rate of 2 to 50% and intermediate solution treatment [Step 9] at 600 to 1000 ° C. for 5 seconds to 1 hour are performed. . Next, an aging precipitation heat treatment [Step 10] is performed at 400 to 700 ° C. for 5 minutes to 1 hour, and finish cold rolling [Step 11] at a rolling rate of 3 to 25%, and 200 to 600 ° C. for 5 seconds to 10 seconds. Tempering annealing [Step 12] was performed to obtain a specimen. In the comparative example, as shown in Table 2, there are those carried out by removing from the above conditions by intermediate annealing [Step 7] and cold rolling [Step 8]. Tables 1 and 2 show the compositions of these test materials, the conditions in the intermediate annealing [Step 7] and the cold rolling [Step 8], and the properties obtained for the present invention example and the comparative example. After each heat treatment and rolling, acid cleaning and surface polishing were performed according to the state of oxidation and roughness of the material surface, and correction with a tension leveler was performed according to the shape. In addition, the processing temperature in the hot processing [Step 3] was measured with a radiation thermometer installed on the entry side and the exit side of the rolling mill.

これらの供試材について下記の特性調査を行った。ここで、供試材の厚さは0.15mmとした。評価結果を表2に示す。   The following characteristics were investigated for these test materials. Here, the thickness of the test material was 0.15 mm. The evaluation results are shown in Table 2.

a.Cube方位とS方位の面積率
EBSD法により、測定面積が0.08〜0.15μm、スキャンステップが0.5〜1μmの条件で測定を行った。測定面積は結晶粒を200個以上含むことを基準として調整した。スキャンステップは結晶粒径に応じて調整し、平均結晶粒径が15μm以下の場合は0.5μmステップで、30μm以下の場合は1μmステップで行った。電子線は走査電子顕微鏡のWフィラメントからの熱電子を発生源とした。
EBSD法の測定装置としては、(株)TSLソリューションズ製 OIM5.0(商品名)を用いた。
b.曲げ加工性
圧延方向に垂直に幅10mm、長さ35mmに切出し、これに曲げの軸が圧延方向に直角になるようにW曲げしたものをGW(Good Way)、曲げの軸が圧延方向に平行になるようにW曲げしたものをBW(Bad Way)とし、曲げ部を50倍の光学顕微鏡で観察し、クラックの有無を調査した。クラックのないものを○(「良」)、クラックのあるものを×(「劣」)と判定した。各曲げ部の曲げ角度は90°、各曲げ部の内側半径は0.15mmとした。すなわち、最小曲げ半径(r)が0.15mm、板厚(t)が0.15mm、その比(r/t)が1となる条件とした。
c.曲げシワの判定
90°W曲げ試験、180°密着曲げ試験を行ったサンプルの曲げ加工部表面の曲げシワの判定を行った。サンプルを樹脂埋めし、曲げ断面をSEM観察した。シワのサイズは、断面観察で見られる、シワの溝と溝の間の寸法より測定した。曲げシワに関しては、シワ間隔が、曲げシワはGWで20μm以下、BWで25μm以下であれば合格と判定した。
a. Area ratio of Cube orientation and S orientation Measurement was performed by EBSD method under the conditions of a measurement area of 0.08 to 0.15 μm 2 and a scan step of 0.5 to 1 μm. The measurement area was adjusted based on the inclusion of 200 or more crystal grains. The scan step was adjusted according to the crystal grain size. When the average crystal grain size was 15 μm or less, the scan step was performed at 0.5 μm step, and when it was 30 μm or less, the scan step was performed at 1 μm step. The electron beam was generated from thermionic electrons from the W filament of the scanning electron microscope.
As a measuring device of the EBSD method, OIM5.0 (trade name) manufactured by TSL Solutions Co., Ltd. was used.
b. Bending workability GW (Good Way) is obtained by cutting W to be 10 mm wide and 35 mm long perpendicular to the rolling direction, and bending it so that the bending axis is perpendicular to the rolling direction, and the bending axis is parallel to the rolling direction. BW (Bad Way) was obtained by bending W so that the bent portion was observed with a 50 × optical microscope, and the presence or absence of cracks was investigated. Those having no cracks were judged as ◯ (“good”), and those with cracks were judged as × (“poor”). The bending angle of each bent portion was 90 °, and the inner radius of each bent portion was 0.15 mm. That is, the minimum bending radius (r) was 0.15 mm, the plate thickness (t) was 0.15 mm, and the ratio (r / t) was 1.
c. Judgment of bending wrinkles Judgment of bending wrinkles on the surface of the bent portion of the sample subjected to the 90 ° W bending test and the 180 ° adhesion bending test was performed. The sample was filled with resin, and the bending cross section was observed by SEM. The size of the wrinkles was measured from the size between the grooves of the wrinkles, which was observed by cross-sectional observation. With respect to bending wrinkles, if the wrinkle spacing was 20 μm or less for GW and 25 μm or less for BW, it was determined to be acceptable.

d.0.2%耐力 [YS]
圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値を示した。
e.導電率 [EC]
20℃(±0.5℃)に保たれた恒温槽中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。
f.ヤング率
試験片は、圧延平行方向から切り出し、幅20mm、長さ150mm、平行度は50mmあたり0.05mm以下になるように加工した。ヤング率は、引張試験による応力−ひずみ線図の弾性領域の傾きから算出した値を示した。
g.たわみ係数
試験片は、圧延平行方向から切り出し、日本伸銅協会技術標準により幅を10mm、板厚0.1〜0.65mm、長さは板厚の100倍以上とした。JIS H 3130に準じて、梁(片持ち梁)をたわませた際の応力−ひずみ線図における弾性領域での傾きを、各試験片の表裏についてそれぞれ2回ずつ測定し、その平均値を示した。
h.X線回折強度
反射法で試料に対して1つの回転軸の回りの回折強度を測定した。ターゲットには銅を使用し、KαのX線を使用した。管電流20mA、管電圧40kV、の条件で測定し、回折角と回折強度のプロファイルにおいて、回折強度のバックグラウンドを除去後、各ピークのKα1とKα2を合わせた積分回折強度を求め、I{200}とI{200}の回折強度比I{200}/I{200}を求めた。
d. 0.2% yield strength [YS]
Three test pieces of JIS Z2201-13B cut out from the rolling parallel direction were measured according to JIS Z2241, and the average value was shown.
e. Conductivity [EC]
The specific resistance was measured by a four-terminal method in a thermostat kept at 20 ° C. (± 0.5 ° C.) to calculate the conductivity. In addition, the distance between terminals was 100 mm.
f. Young's modulus The test piece was cut out from the rolling parallel direction and processed so that the width was 20 mm, the length was 150 mm, and the parallelism was 0.05 mm or less per 50 mm. The Young's modulus is a value calculated from the slope of the elastic region of the stress-strain diagram obtained by a tensile test.
g. Deflection coefficient The test piece was cut out from the rolling parallel direction, the width was 10 mm, the plate thickness was 0.1 to 0.65 mm, and the length was 100 times or more of the plate thickness according to the Japan Copper and Brass Association technical standard. In accordance with JIS H 3130, the inclination in the elastic region in the stress-strain diagram when the beam (cantilever) is bent is measured twice for each front and back of each test piece, and the average value is calculated. Indicated.
h. X-Ray Diffraction Intensity The diffraction intensity around one rotation axis was measured with respect to the sample by the reflection method. Copper was used for the target, and Kα X-rays were used. Measurement was performed under the conditions of a tube current of 20 mA and a tube voltage of 40 kV. After removing the background of the diffraction intensity in the diffraction angle and diffraction intensity profile, an integrated diffraction intensity obtained by combining Kα1 and Kα2 of each peak was obtained, and I {200 } And I 0 {200} diffraction intensity ratio I {200} / I 0 {200}.

i.応力緩和率 [SRR]
旧日本電子材料工業会標準規格(EMAS−3003)に準じ、以下に示すように、150℃×1000時間の条件で測定した。片持ち梁法により耐力の80%の初期応力を負荷した。
図2は応力緩和特性の試験方法の説明図であり、図2(a)は熱処理前、図2(b)は熱処理後の状態である。図2(a)に示すように、試験台4に片持ちで保持した試験片1に、耐力の80%の初期応力を付与した時の試験片1の位置は、基準からδの距離である。これを150℃の恒温槽に1000時間保持し、負荷を除いた後の試験片2の位置は、図1(b)に示すように基準からHの距離である。3は応力を負荷しなかった場合の試験片であり、その位置は基準からHの距離である。この関係から、応力緩和率(%)は(H−H)/δ×100と算出した。
なお、同様の試験方法として以下の方法も適用可能である;日本伸銅協会(JCBA:Japan Copper and Brass Association)の技術標準案である「JCBA T309:2001(仮);銅及び銅合金薄板条の曲げによる応力緩和試験方法」;米国材料試験協会(ASTM;American Society for Testing and Materials)の試験方法である「ASTM E328;Standard Test Methods for Stress Relaxation Tests for Materials and Structures」;など。
図3は、上述のJCBA T309:2001(仮)に基づく、下方たわみ式片持ちねじ式のたわみ変位負荷用試験ジグを用いた応力緩和試験方法の説明図である。この試験方法の原理は、図2の試験台を用いた試験方法と同様のため、応力緩和率の値もほぼ同様の値となる。
この試験方法では、まず、試験片11を試験ジグ(試験装置)12に取り付け、所定の変位を室温で与え、30秒間保持後除荷し、試験ジグ12の底面を基準面13とし、この面13と試験片11のたわみ負荷点との距離をHとして測定する。所定の時間が経過したら恒温槽又は加熱炉から試験ジグ12を常温に取り出し、たわみ負荷用ボルト14をゆるめ除荷する。試験片11を常温まで冷却後、基準面13と試験片11のたわみ負荷点との距離Hを測定する。測定後、再びたわみ変位を与える。なお、図中、11は除荷時の試験片を表し、15はたわみ負荷時の試験片を表す。永久たわみ変位δを次の式によって求める。
δ=H−H
この関係から、応力緩和率(%)はδ/δ×100と算出した。
なお、δは所定の応力を得るのに必要な試験片の初期たわみ変位で、次の式で算出する。
δ=σl /1.5Eh
ここで、σ:試験片の表面最大応力(N/mm);h:板厚(mm)、E:たわみ係数(N/mm)、l:スパン長さ(mm)である。
i. Stress relaxation rate [SRR]
In accordance with the former Japan Electronic Materials Industry Association Standard (EMAS-3003), the measurement was performed under the conditions of 150 ° C. × 1000 hours as shown below. An initial stress of 80% of the proof stress was applied by the cantilever method.
2A and 2B are explanatory diagrams of a stress relaxation characteristic test method. FIG. 2A shows a state before heat treatment, and FIG. 2B shows a state after heat treatment. As shown in FIG. 2A, the position of the test piece 1 when an initial stress of 80% of the proof stress is applied to the test piece 1 held in a cantilever manner on the test stand 4 is a distance of δ 0 from the reference. is there. This was held for 1000 hours in a thermostat at 0.99 ° C., the position of the test piece 2 after removing the load, the distance from the reference H t as shown in FIG. 1 (b). 3 is a test piece when no stress is applied, and its position is a distance H 1 from the reference. From this relationship, the stress relaxation rate (%) was calculated as (H t −H 1 ) / δ 0 × 100.
As a similar test method, the following method is also applicable; “JCBA T309: 2001 (provisional); copper and copper alloy sheet strip, which is the technical standard proposal of the Japan Copper and Brass Association (JCBA)” Stress relaxation test method by bending "American Society for Testing and Materials" ASTM E328; Standard Test Methods for Stress Test, etc .;
FIG. 3 is an explanatory diagram of a stress relaxation test method using a downward deflection type cantilever-type deflection displacement load test jig based on the above-mentioned JCBA T309: 2001 (provisional). Since the principle of this test method is the same as that of the test method using the test stand of FIG. 2, the value of the stress relaxation rate is almost the same.
In this test method, first, a test piece 11 is attached to a test jig (test apparatus) 12, given displacement is given at room temperature, unloaded after being held for 30 seconds, and the bottom surface of the test jig 12 is used as a reference surface 13, and this surface 13 and the distance between the deflection load point of the specimen 11 is measured as H i. When a predetermined time elapses, the test jig 12 is taken out from the thermostat or heating furnace to room temperature, and the flexible load bolt 14 is loosened and unloaded. After cooling the specimens 11 to room temperature, to measure the distance H t of the deflection load point of the reference plane 13 and the specimen 11. After the measurement, the deflection displacement is given again. In the figure, 11 represents a test piece at the time of unloading, and 15 represents a test piece at the time of bending load. Obtaining a permanent deflection displacement [delta] t by the following equation.
δ t = H i -H t
From this relationship, the stress relaxation rate (%) was calculated as δ t / δ 0 × 100.
Δ 0 is the initial deflection displacement of the test piece necessary to obtain a predetermined stress, and is calculated by the following equation.
δ 0 = σl s 2 /1.5Eh
Here, σ: surface maximum stress (N / mm 2 ) of the test piece; h: plate thickness (mm), E: deflection coefficient (N / mm 2 ), l S : span length (mm).

Figure 0005261582
Figure 0005261582

Figure 0005261582
Figure 0005261582

表2に示すように、本発明例〜本発明例21の製造方法で、中間焼鈍[工程7]は昇温速度10〜30℃/秒、到達温度は600〜800℃、温度到達後水焼入れによる急冷(冷却速度200℃/秒以上)で熱処理された。その後、2〜50%の加工率の冷間圧延[工程8]での処理に付した。比較例1〜比較例17では、本発明の製造方法における規定を満たさない場合を示した。比較例5、6、16、17はTi成分が範囲外であり、比較例1〜比較例17の中間焼鈍[工程7]は、比較例1、4、6、8、11、12、16、17で昇温速度が範囲外であり、比較例3〜6、10、11、14〜17では到達温度が範囲外であった。また、比較例2、6、7、9、12、13、15〜16では、冷間圧延[工程8]の加工率が範囲外であった。また、表1に示すように、比較例10では第三元素の添加量が、規定値である0.005〜1.0%の範囲を超えて多かった。
As shown in Table 2, in the production methods of Invention Example 2 to Invention Example 21, intermediate annealing [Step 7] is a heating rate of 10 to 30 ° C./second, an ultimate temperature of 600 to 800 ° C., and water after reaching the temperature. It was heat-treated by quenching by quenching (cooling rate of 200 ° C./second or more). Thereafter, it was subjected to a treatment in cold rolling [Step 8] at a processing rate of 2 to 50%. In Comparative Example 1 to Comparative Example 17, the case where the regulation in the production method of the present invention was not satisfied was shown. In Comparative Examples 5, 6, 16, and 17, the Ti component is out of range, and the intermediate annealing [Step 7] in Comparative Examples 1 to 17 is performed in Comparative Examples 1, 4, 6, 8, 11, 12, 16, 17, the temperature rising rate was out of range, and in Comparative Examples 3-6, 10, 11, 14-17, the ultimate temperature was out of range. Moreover, in Comparative Examples 2, 6, 7, 9, 12, 13, 15 to 16, the processing rate of the cold rolling [Step 8] was out of the range. Further, as shown in Table 1, in Comparative Example 10, the amount of the third element added was large beyond the specified range of 0.005 to 1.0%.

表2に示すように、本発明例〜本発明例21は、曲げ加工性、耐力に優れた。しかし、比較例1〜比較例17に示すように、本発明の規定を満たさない場合は、特性が劣る結果となった。本発明例〜本発明例21は、固溶温度より低い温度域で熱処理することによって、チタン銅の結晶方位回転を促進し、最終的にCube方位面積率を大幅に高め、曲げ性を改善した。本発明例〜本発明例21はいずれもCube方位が5%以上となった。本発明例〜本発明例21の曲げ加工表面部シワはGW≦20μm、BW≦25μmのサイズとなり、クラックが無くなり、曲げシワも小さいことから、曲げ加工性に優れていた。また、ヤング率とたわみ係数も規定の範囲内であった。
As shown in Table 2, Invention Example 2 to Invention Example 21 were excellent in bending workability and yield strength. However, as shown in Comparative Examples 1 to 17, when the conditions of the present invention were not satisfied, the characteristics were inferior. Invention Example 2 to Invention Example 21 promotes the crystal orientation rotation of titanium copper by heat treatment in a temperature range lower than the solid solution temperature, finally greatly increases the Cube orientation area ratio and improves bendability. did. Invention Example 2 to Invention Example 21 all had a Cube orientation of 5% or more. Bending surface part wrinkles of Invention Example 2 to Invention Example 21 had a size of GW ≦ 20 μm and BW ≦ 25 μm, had no cracks, and had small bending wrinkles, and was excellent in bending workability. The Young's modulus and the deflection coefficient were also within the specified ranges.

一方、比較例1〜7、比較例9、10、比較例12〜14、比較例16、17では曲げ表面にクラックが生じていた。比較例1〜17のCube方位面積率はいずれも規定値である5〜50%の範囲外であった。その中でも、Cube方位面積率の低い比較例5は曲げ加工性が劣り、Cube方位面積率の高い比較例8は耐力が劣っていた。
X線回折積分強度比I{200}/I{200}は、比較例1〜比較例17の内、比較例8、比較例11を除いて、すべて規定値の1.3以下であった。比較例8、比較例11は、1.3以上を示したが、耐力が劣っていた。
比較例5、6、16、17のTi含有量は、規定値である1.0〜5.0%の範囲外であった。
比較例1〜比較例17は、中間焼鈍の昇温速度、到達温度、冷間圧延加工率のいずれかが規定値の範囲外であり、特性も規定の範囲外となった。比較例1、比較例3、比較例4、比較例7〜9、比較例11、比較例13〜17では、ヤング率の規定値である90〜120GPaの範囲外であった。また、比較例1、比較例3〜8、比較例10〜11、比較例13〜17ではたわみ係数の規定値である80〜110GPaの範囲外であった。また、比較例10では第三元素の添加量が規定値よりも多く、導電率が低下しており、比較例14では第三元素添加量が規定値よりも少なかったが、これよりも、中間焼鈍での到達温度が高すぎたために、曲げ加工でクラックやシワを生じ、耐力(強度)が低く、ヤング率とたわみ係数が高すぎた。比較例15は、GW、BWともにクラック無く曲がっており、耐力も規定値を満たしているものの、曲げ加工表面部のシワが大きく、ヤング率、たわみ係数も規定値の上限を上回り、特性が劣っていた。比較例16、17では、Tiの含有量、製造工程のいずれも規定の範囲から外れており、Cube方位面積率、I{200}回折強度のいずれも規定の範囲外であった。
比較例3〜6、9、14〜17は、Cube方位の面積率が範囲外であり、さらに(耐応力緩和特性を向上させる)元素が添加されていないために、本発明例〜21に比べ、耐応力緩和特性が劣る結果となった。
On the other hand, in Comparative Examples 1 to 7, Comparative Examples 9 and 10, Comparative Examples 12 to 14, and Comparative Examples 16 and 17, cracks were generated on the bending surface. The Cube azimuth | direction area ratio of Comparative Examples 1-17 was outside the range of 5 to 50% which is a regulation value. Among them, Comparative Example 5 having a low Cube orientation area ratio was inferior in bending workability, and Comparative Example 8 having a high Cube orientation area ratio was inferior in yield strength.
The X-ray diffraction integrated intensity ratio I {200} / I 0 {200} was 1.3 or less of the specified value in all of Comparative Examples 1 to 17 except for Comparative Example 8 and Comparative Example 11. . Comparative Example 8 and Comparative Example 11 showed 1.3 or more, but the proof stress was inferior.
The Ti contents of Comparative Examples 5, 6, 16, and 17 were outside the specified range of 1.0 to 5.0%.
In Comparative Examples 1 to 17, any one of the temperature increase rate, ultimate temperature, and cold rolling rate of intermediate annealing was out of the specified value range, and the characteristics were out of the specified range. In comparative example 1, comparative example 3, comparative example 4, comparative examples 7-9, comparative example 11, and comparative examples 13-17, it was outside the range of 90-120 GPa which is a regulation value of Young's modulus. Moreover, in Comparative Example 1, Comparative Examples 3-8, Comparative Examples 10-11, and Comparative Examples 13-17, it was outside the range of 80-110 GPa which is a regulation value of a deflection coefficient. Further, in Comparative Example 10, the amount of the third element added was larger than the specified value, and the conductivity was lowered. In Comparative Example 14, the amount of the third element added was smaller than the specified value, Since the temperature reached in annealing was too high, cracks and wrinkles were generated in the bending process, the yield strength (strength) was low, and the Young's modulus and deflection coefficient were too high. In Comparative Example 15, both GW and BW are bent without cracks, and the proof stress satisfies the specified value, but wrinkles on the bent surface are large, the Young's modulus and deflection coefficient exceed the upper limit of the specified value, and the characteristics are inferior. It was. In Comparative Examples 16 and 17, both the Ti content and the manufacturing process were out of the specified range, and both the Cube orientation area ratio and the I {200} diffraction intensity were out of the specified range.
Comparative Example 3~6,9,14~17 is outside the area ratio of the Cube orientation, in order to further (increase the stress relaxation resistance) element is not added, the present invention Example 2-21 In comparison, the stress relaxation resistance was inferior.

本発明においては、中間焼鈍[工程7]の昇温速度、到達温度、冷間圧延[工程8]の加工率を制御することで、目標組織が得られ、曲げ加工性と強度を両立し、さらに曲げ加工表面部のシワのサイズ、ヤング率、たわみ係数を満足したチタン銅合金板材を得ることができる。   In the present invention, by controlling the rate of temperature rise in intermediate annealing [Step 7], the ultimate temperature, the processing rate of cold rolling [Step 8], a target structure can be obtained, and both bendability and strength can be achieved, Furthermore, it is possible to obtain a titanium-copper alloy plate material that satisfies the wrinkle size, Young's modulus, and deflection coefficient of the bent surface portion.

(従来例)
下記表3に記載の合金組成(残部は銅(Cu))に対して、中間焼鈍[工程7]とその後の冷間圧延[工程8]を行わない以外は、前記実施例1と同様にして、銅合金板材を作製した。その結果得られた銅合金板材の供試材について、前記実施例1と同様の方法で評価を行った。その結果を表3に併せて示す。
(Conventional example)
Except for not performing intermediate annealing [Step 7] and subsequent cold rolling [Step 8] for the alloy composition shown in Table 3 (the balance is copper (Cu)), the same as in Example 1 above. A copper alloy sheet was prepared. The test material of the copper alloy sheet obtained as a result was evaluated in the same manner as in Example 1. The results are also shown in Table 3.

Figure 0005261582
Figure 0005261582

表3から明らかなように、中間焼鈍[工程7]とその後の冷間圧延[工程8]を介さずに作製した従来例1〜3の銅合金板材は、所定の合金組成と、これら2つの工程以外の製造条件(各工程と条件)を採用したとしても、いずれもCube方位の面積率が少なく、曲げ加工性が劣ってクラックを生じたか著しく大きなシワを生じていた。   As is apparent from Table 3, the copper alloy sheet materials of Conventional Examples 1 to 3 manufactured without intermediate annealing [Step 7] and subsequent cold rolling [Step 8] have a predetermined alloy composition and these two Even when manufacturing conditions other than the process (each process and condition) were adopted, the area ratio of the Cube orientation was small, the bending workability was inferior, and cracks or remarkably large wrinkles were generated.

これらとは別に、従来の製造条件により製造した銅合金板材について、本発明に係る銅合金板材との相違を明確化するために、その従来の製造条件で銅合金板材を作製し、上記と同様の特性項目の評価を行った。なお、各板材の厚さは特に断らない限り上記実施例と同じ厚さになるように加工率を調整した。   Separately from these, in order to clarify the difference from the copper alloy sheet material according to the present invention for the copper alloy sheet material produced under the conventional production conditions, a copper alloy sheet material was produced under the conventional production conditions, and the same as described above. The characteristic items were evaluated. In addition, the processing rate was adjusted so that the thickness of each board | plate material might become the same thickness as the said Example unless there is particular notice.

(比較例101)・・・特開2011−26635公報本発明例1の条件
3.25質量%のTiを含み、残部がCuからなる組成の銅合金を溶製し、縦型半連続鋳造機を用いて鋳造した。
得られた鋳片を950℃に加熱し、950℃から400℃まで温度を下げながら熱間圧延を行って、厚さ約9mmの板材にした後、水冷によって急冷し、その後、表層の酸化層を機械研磨により除去(面削)した。その板材の厚さは、その後の各冷間圧延の圧延率と最終板厚との関係より決めたものである。次いで、84%の圧延率で第1の冷間圧延を行った後、中間焼鈍処理に供した。中間焼鈍(熱処理)は、550℃で6時間行った。中間焼鈍前後の導電率をそれぞれEbおよびEa、ビッカース硬さをそれぞれHbおよびHaとして、Ea/Ebが3.3、Ha/Hbが0.72であった。その後、圧延率86%で第2の冷間圧延を行った。
次いで、圧延板の表面における(JIS H0501の切断法による)平均結晶粒径が5μmより大きく且つ25μm以下になるように、合金の組成に応じて900℃で15秒間保持して溶体化処理を行った。
続く中間圧延は省略して行わなかった。
次いで、450℃で時効処理を行った。時効処理時間は、銅合金の組成に応じて、450℃の時効で硬さがピークになる時間に調整した。なお、この時効処理時間については、本発明例1の合金の組成に応じて最適な時効処理時間を予備実験により求めた。
次いで、上記時効処理後の板材に対して、更に15%の圧延率で仕上げ冷間圧延を施した。さらに、炉温450℃での焼鈍炉内に保持時間1minの低温焼鈍を実施した。なお、必要に応じて途中で研磨、面削を行い、板厚は0.10mmに揃えた。
これを試料c01とした。
得られた試験体c01は、上記本発明に係る実施例とは製造条件について、中間焼鈍処理の処理温度が低く処理時間が長い点で異なり、前記中間焼鈍処理後の第2の冷間圧延における圧延率が大きい点でも異なり、Cube方位は5%未満であり、圧延垂直方向の曲げ加工性について本発明の要求特性を満たさない結果となった。
(Comparative Example 101) ... Japanese Patent Application Laid-Open No. 2011-26635 Condition of Invention Example 1 A vertical semi-continuous casting machine that melts a copper alloy having a composition containing 3.25% by mass of Ti and the balance being Cu. Was used for casting.
The obtained slab is heated to 950 ° C., hot-rolled while lowering the temperature from 950 ° C. to 400 ° C., made into a plate material having a thickness of about 9 mm, and then rapidly cooled by water cooling, and then the surface oxide layer Was removed (face cut) by mechanical polishing. The thickness of the plate material is determined from the relationship between the rolling ratio of each subsequent cold rolling and the final plate thickness. Subsequently, after performing the first cold rolling at a rolling rate of 84%, it was subjected to an intermediate annealing treatment. Intermediate annealing (heat treatment) was performed at 550 ° C. for 6 hours. The electrical conductivity before and after the intermediate annealing was Eb and Ea, the Vickers hardness was Hb and Ha, respectively, and Ea / Eb was 3.3 and Ha / Hb was 0.72. Thereafter, the second cold rolling was performed at a rolling rate of 86%.
Next, a solution treatment is performed by holding at 900 ° C. for 15 seconds in accordance with the composition of the alloy so that the average crystal grain size (by the cutting method of JIS H0501) on the surface of the rolled plate is greater than 5 μm and less than 25 μm. It was.
Subsequent intermediate rolling was omitted and not performed.
Next, an aging treatment was performed at 450 ° C. The aging treatment time was adjusted to a time at which the hardness peaked with aging at 450 ° C. according to the composition of the copper alloy. As for the aging treatment time, an optimum aging treatment time was determined by a preliminary experiment according to the composition of the alloy of Example 1 of the present invention.
Next, the plate material after the aging treatment was further subjected to finish cold rolling at a rolling rate of 15%. Further, low-temperature annealing was performed in an annealing furnace at a furnace temperature of 450 ° C. for a holding time of 1 min. In addition, grinding | polishing and chamfering were performed in the middle as needed, and plate | board thickness was arranged to 0.10 mm.
This was designated as sample c01.
The obtained specimen c01 differs from the above-described example according to the present invention in terms of manufacturing conditions in that the processing temperature of the intermediate annealing treatment is low and the processing time is long, and in the second cold rolling after the intermediate annealing treatment. The difference is that the rolling rate is large, and the Cube orientation is less than 5%, and the bending property in the vertical direction of rolling does not satisfy the required characteristics of the present invention.

(比較例102)・・・特開2010−126777号公報実施例1の条件
3.18質量%のTiを含み、残部がCuからなる銅合金を溶製し、縦型半連続鋳造機を用いて鋳造して、厚さ60mmの鋳片を得た。
その鋳片を950℃に加熱した後に抽出し、熱間圧延を開始した。この熱間圧延では、750℃以上の温度域における圧延率が60%以上になり且つ700℃未満の温度域でも圧延が行われるようにパススケジュールを設定した。なお、700℃未満〜500℃における熱間圧延率を42%とし、熱間圧延の最終パス温度は600℃〜500℃の間とした。また、鋳片からのトータルの熱間圧延率は約95%であった。熱間圧延後、表層の酸化層を機械研磨により除去(面削)した。
次いで、圧延率98%で冷間圧延を行った後、溶体化処理を行った。この溶体化処理では、溶体化処理後の平均結晶粒径(双晶境界を結晶粒界とみなさない)が5〜25μmになるように、その合金組成に応じて750〜1000℃の温度域で該合金組成の固溶線より30℃以上高い温度に設定し、保持時間を5秒〜5分間の範囲で調整して熱処理を行った。具体的には、900℃で15秒間の熱処理を行った。
次いで、溶体化処理後の板材に対して、圧延率15%で冷間圧延を行った
このようにして得られた板材について、予備実験として300〜550℃の温度範囲で最大24時間までの時効処理実験を行って、合金組成に応じて最大硬さになる時効処理条件(時効温度T(℃)、時効時間t(分)、最大硬さH(HV))を把握した。そして、時効温度をT±10℃の範囲内の温度に設定するとともに、時効時間をtより短い時間であり且つ時効後の硬さが0.90H〜0.95Hの範囲になる時間に設定した。
次に、時効処理後の板材に対して、圧延率10%で仕上げ冷間圧延を行った後、450℃の焼鈍炉内で1分間保持する低温焼鈍を行った。
このようにして銅合金板材を得た。なお、必要に応じて途中で面削を行い、銅合金板材の板厚を0.15mmに揃えた。これを試料c02とした。
得られた試験体c02は、上記本発明に係る実施例とは製造条件について、熱間圧延を2段階で行っている点で異なり、溶体化処理前の中間焼鈍[工程7]と冷間圧延[工程8]とを行わずに溶体化処理を行っていて、冷間圧延[工程6]より後の熱処理と冷間圧延の工程が異なり、Cube方位は5%未満であり、圧延垂直方向の曲げ加工性について本発明の要求特性を満たさない結果となった。
(Comparative Example 102) ... Conditions of JP 2010-126777 A Example 1 3. Using a vertical semi-continuous casting machine, melting a copper alloy containing 3.18% by mass of Ti and the balance being Cu. To obtain a cast piece having a thickness of 60 mm.
The slab was heated to 950 ° C. and extracted, and hot rolling was started. In this hot rolling, the pass schedule was set so that the rolling rate in the temperature range of 750 ° C. or higher was 60% or higher and the rolling was performed in the temperature range of less than 700 ° C. In addition, the hot rolling rate in less than 700 degreeC-500 degreeC was 42%, and the final pass temperature of hot rolling was between 600 degreeC and 500 degreeC. The total hot rolling rate from the slab was about 95%. After hot rolling, the surface oxide layer was removed (faced) by mechanical polishing.
Next, after cold rolling at a rolling rate of 98%, solution treatment was performed. In this solution treatment, an average crystal grain size after solution treatment (a twin boundary is not regarded as a grain boundary) is 5 to 25 μm in a temperature range of 750 to 1000 ° C. according to the alloy composition. The temperature was set at 30 ° C. or more higher than the solid solution wire of the alloy composition, and the heat treatment was performed by adjusting the holding time in the range of 5 seconds to 5 minutes. Specifically, heat treatment was performed at 900 ° C. for 15 seconds.
Next, the sheet material after the solution treatment was cold-rolled at a rolling rate of 15%. As a preliminary experiment, the sheet material obtained in this way was aged in a temperature range of 300 to 550 ° C. for up to 24 hours. performing processing experiments, the maximum becomes hardness aging treatment conditions depending on the alloy composition (aging temperature T M (° C.), aging time t M (min), maximum hardness H M (HV)) was grasped. The aging temperature is set to a temperature within the range of T M ± 10 ° C., the aging time is shorter than t M , and the hardness after aging is in the range of 0.90 H M to 0.95 H M. Set to time.
Next, the plate material after the aging treatment was subjected to finish cold rolling at a rolling rate of 10%, and then subjected to low-temperature annealing that was held in a 450 ° C. annealing furnace for 1 minute.
In this way, a copper alloy sheet was obtained. If necessary, chamfering was performed in the middle, and the thickness of the copper alloy sheet was adjusted to 0.15 mm. This was designated as sample c02.
The obtained specimen c02 differs from the above-described example according to the present invention in terms of manufacturing conditions in that hot rolling is performed in two stages, and intermediate annealing before the solution treatment [Step 7] and cold rolling. The solution treatment is performed without performing [Step 8], the heat treatment after the cold rolling [Step 6] is different from the cold rolling step, the Cube orientation is less than 5%, and the vertical direction of the rolling is The bending workability did not satisfy the required characteristics of the present invention.

本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。   While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.

本願は、2010年8月31日に日本国で特許出願された特願2010−195120に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。   This application claims priority based on Japanese Patent Application No. 2010-195120 filed in Japan on August 31, 2010, the contents of which are incorporated herein by reference. Capture as part.

1 初期応力を付与した時の試験片
2 負荷を除いた後の試験片
3 応力を負荷しなかった場合の試験片
4 試験台
11 試験片(除荷時)
12 試験ジグ
13 基準面
14 たわみ負荷用ボルト
15 試験片(たわみ負荷時)
1 Test piece when initial stress is applied 2 Test piece after removing load 3 Test piece when stress is not applied 4 Test stand 11 Test piece (when unloaded)
12 Test Jig 13 Reference Surface 14 Deflection Load Bolt 15 Test Piece (When Deflection Load)

Claims (9)

Tiを1.0〜5.0mass%含有し、残部が銅及び不可避不純物からなる銅合金板材であって、EBSD測定における結晶方位解析において、Cube方位{0 0 1}<1 0 0>の面積率が10〜50%であることを特徴とする銅合金板材。 A copper alloy plate material containing 1.0 to 5.0 mass% of Ti and the balance of copper and inevitable impurities, and in the crystal orientation analysis in EBSD measurement, the area of Cube orientation {0 0 1} <1 0 0> A copper alloy sheet having a rate of 10 to 50%. 前記銅合金板材は、その製造時の冷間圧延加工工程における中間焼鈍において、昇温速度10〜30℃/秒で加熱されて600〜800℃(但し600℃は除く)まで到達していることを特徴とする、請求項1記載の銅合金板材。The copper alloy sheet is heated at a temperature rising rate of 10 to 30 ° C./second and reaches 600 to 800 ° C. (excluding 600 ° C.) in the intermediate annealing in the cold rolling process at the time of manufacture. The copper alloy sheet according to claim 1, wherein: 前記銅合金が、さらに、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Zr、Si、FeおよびHfからなる群から選ばれる少なくとも1つを合計で0.005〜1.0mass%含有することを特徴とする請求項1または2に記載の銅合金板材。 The copper alloy further comprises 0.005 to 1.0 mass% in total of at least one selected from the group consisting of Sn, Zn, Ag, Mn, B, P, Mg, Cr, Zr, Si, Fe, and Hf. copper alloy sheet according to claim 1 or 2, characterized in that it contains. 0.2%耐力が850MPa以上であり、曲げ加工性が90°W曲げ試験においてクラックがなく曲げシワの小さい曲げ加工が可能な最小曲げ半径(r、mm)を板厚(t、mm)で割った値(r/t)が1以下である、請求項1〜3のいずれか1項記載の銅合金板材。 0.2% proof stress is 850 MPa or more, and bending workability is 90 ° W. The minimum bending radius (r, mm) that can be bent with little cracks in the bending test is 90 mm. The copper alloy sheet material according to any one of claims 1 to 3, wherein a divided value (r / t) is 1 or less. 板材に一定の応力を加えた際の変位量を示す、引張試験で測定したヤング率が90〜120GPaであり、たわみ試験で測定したたわみ係数が80〜110GPaである、請求項1〜のいずれか1項に記載の銅合金板材。 Shows the displacement amount at the time of adding the constant stress to the plate material, rate Young measured by tensile test is 90~120GPa, bending coefficient was measured by bending test is 80~110GPa, any claim 1-4 The copper alloy sheet material according to claim 1. 請求項1〜のいずれか1項に記載の銅合金板材を製造する方法であって、前記銅合金板材を与える合金成分組成から成る銅合金素材に、0.1〜100℃/秒の冷却速度で鋳造[工程1]、800〜1020℃で3分から10時間の均質化熱処理[工程2]、1020〜700℃で熱間圧延[工程3]、水冷[工程4]、加工率80〜99.8%の冷間圧延[工程6]、昇温速度10〜30℃/秒で加熱し、600〜800℃まで到達後、200℃/秒以上にて急冷する中間焼鈍[工程7]、2〜50%の加工率の冷間圧延[工程8]、及び600〜1000℃で5秒〜1時間の中間溶体化熱処理[工程9]をこの順に施すことを特徴とする銅合金板材の製造方法。 It is a method of manufacturing the copper alloy sheet | seat of any one of Claims 1-5 , Comprising: It is 0.1-100 degree-C / sec cooling to the copper alloy raw material which consists of an alloy component composition which gives the said copper alloy sheet | seat material. Casting at a speed [Step 1], homogenizing heat treatment at 800 to 1020 ° C. for 3 minutes to 10 hours [Step 2], hot rolling at 1020 to 700 ° C. [Step 3], water cooling [Step 4], processing rate 80 to 99 .8% cold rolling [step 6], intermediate annealing that heats at a heating rate of 10 to 30 ° C./second, reaches 600 to 800 ° C., and then rapidly cools at 200 ° C./second or more [step 7], 2 A method for producing a copper alloy sheet comprising: cold rolling with a processing rate of ˜50% [Step 8] and intermediate solution heat treatment [Step 9] at 600 to 1000 ° C. for 5 seconds to 1 hour in this order. . 前記中間溶体化熱処理[工程9]の後で、400〜700℃で5分〜10時間の時効析出熱処理[工程10]、加工率が3〜25%の仕上げ冷間圧延[工程11]、及び200〜600℃で5秒〜10時間の調質焼鈍[工程12]をこの順に施し、ここで、前記時効析出熱処理[工程10]の処理温度は、前記中間溶体化熱処理[工程9]の処理温度よりも低く、前記調質焼鈍[工程12]の処理温度は、前記中間溶体化熱処理[工程9]の処理温度よりも低いことを特徴とする請求項に記載の銅合金板材の製造方法。 After the intermediate solution heat treatment [Step 9], aging precipitation heat treatment [Step 10] at 400 to 700 ° C. for 5 minutes to 10 hours, finish cold rolling with a processing rate of 3 to 25% [Step 11], and Refining annealing [Step 12] is performed in this order at 200 to 600 ° C. for 5 seconds to 10 hours. Here, the treatment temperature of the aging precipitation heat treatment [Step 10] is the treatment of the intermediate solution heat treatment [Step 9]. The method for producing a copper alloy sheet according to claim 6 , wherein the temperature of the temper annealing [Step 12] is lower than the temperature of the intermediate solution heat treatment [Step 9]. . 請求項1〜のいずれか1項に記載の銅合金板材からなる銅合金部品。 The copper alloy component which consists of a copper alloy board | plate material of any one of Claims 1-5 . 請求項1〜のいずれか1項に記載の銅合金板材からなるコネクタ。
The connector which consists of a copper alloy board | plate material of any one of Claims 1-5 .
JP2011553222A 2010-08-31 2011-08-29 Copper alloy sheet and manufacturing method thereof Active JP5261582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011553222A JP5261582B2 (en) 2010-08-31 2011-08-29 Copper alloy sheet and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010195120 2010-08-31
JP2010195120 2010-08-31
PCT/JP2011/069467 WO2012029717A1 (en) 2010-08-31 2011-08-29 Copper alloy sheet material and process for producing same
JP2011553222A JP5261582B2 (en) 2010-08-31 2011-08-29 Copper alloy sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP5261582B2 true JP5261582B2 (en) 2013-08-14
JPWO2012029717A1 JPWO2012029717A1 (en) 2013-10-28

Family

ID=45772803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011553222A Active JP5261582B2 (en) 2010-08-31 2011-08-29 Copper alloy sheet and manufacturing method thereof

Country Status (6)

Country Link
EP (1) EP2612934A1 (en)
JP (1) JP5261582B2 (en)
KR (2) KR20150143893A (en)
CN (2) CN105671358B (en)
TW (1) TWI447239B (en)
WO (1) WO2012029717A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9002499B2 (en) * 2012-03-20 2015-04-07 GM Global Technology Operations LLC Methods for determining a recovery state of a metal alloy
JP6246456B2 (en) * 2012-03-29 2017-12-13 Jx金属株式会社 Titanium copper
JP5826160B2 (en) * 2012-04-10 2015-12-02 Jx日鉱日石金属株式会社 Rolled copper foil, copper-clad laminate, flexible printed wiring board and manufacturing method thereof
JP6219070B2 (en) * 2012-06-15 2017-10-25 古河電気工業株式会社 Method for producing copper alloy sheet
JP6039868B2 (en) * 2012-12-27 2016-12-07 株式会社Uacj製箔 Method for producing negative electrode current collector for secondary battery
JP5578592B1 (en) * 2013-02-23 2014-08-27 古河電気工業株式会社 Terminal, wire connection structure, and method of manufacturing terminal
JP6639908B2 (en) * 2013-09-06 2020-02-05 古河電気工業株式会社 Copper alloy wire and method of manufacturing the same
JP6170386B2 (en) * 2013-09-10 2017-07-26 株式会社アマダホールディングス Method of bending metal plate material and laser processing apparatus used in the bending method
JP5916964B2 (en) * 2014-03-25 2016-05-11 古河電気工業株式会社 Copper alloy sheet, connector, and method for producing copper alloy sheet
WO2015152261A1 (en) * 2014-03-31 2015-10-08 古河電気工業株式会社 Rolled copper foil, method for producing rolled copper foil, flexible flat cable, and method for producing flexible flat cable
JP2016211077A (en) * 2016-07-26 2016-12-15 Jx金属株式会社 Titanium copper
JP6345290B1 (en) * 2017-03-22 2018-06-20 Jx金属株式会社 Copper alloy strip with improved dimensional accuracy after press working
JP6310130B1 (en) 2017-09-22 2018-04-11 Jx金属株式会社 Titanium copper for electronic parts
JP6310131B1 (en) 2017-09-22 2018-04-11 Jx金属株式会社 Titanium copper for electronic parts
CN107768474A (en) * 2017-10-31 2018-03-06 苏州为能新型材料有限公司 A kind of manufacture craft of tin-coated copper strip
CN112481518A (en) * 2019-12-26 2021-03-12 浙江杭机新型合金材料有限公司 High-strength high-conductivity copper-titanium alloy material and preparation method thereof
CN111413212A (en) * 2020-04-29 2020-07-14 北京汇磁粉体材料有限公司 Device and method for testing bending strength of injection molding material
JP7038879B1 (en) * 2021-07-20 2022-03-18 Dowaメタルテック株式会社 Cu-Ti copper alloy plate material, its manufacturing method, and current-carrying parts
CN113802027B (en) * 2021-09-18 2022-07-15 宁波博威合金板带有限公司 Titanium bronze and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026635A (en) * 2009-07-22 2011-02-10 Dowa Metaltech Kk Copper alloy sheet and method for manufacturing the same, and electric and electronic component

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012422B2 (en) * 1976-07-29 1985-04-01 株式会社東芝 Manufacturing method of lead wire material
US20020157741A1 (en) * 2001-02-20 2002-10-31 Nippon Mining & Metals Co., Ltd. High strength titanium copper alloy, manufacturing method therefor, and terminal connector using the same
JP3798260B2 (en) * 2001-05-17 2006-07-19 株式会社神戸製鋼所 Copper alloy for electric and electronic parts and electric and electronic parts
JP3908987B2 (en) 2002-06-21 2007-04-25 日鉱金属株式会社 Copper alloy excellent in bendability and manufacturing method thereof
JP3729454B2 (en) * 2002-11-29 2005-12-21 日鉱金属加工株式会社 Copper alloy and manufacturing method thereof
JP2005314779A (en) 2004-04-30 2005-11-10 Nikko Metal Manufacturing Co Ltd Copper alloy material having excellent bending workability and spring property
JP4809602B2 (en) 2004-05-27 2011-11-09 古河電気工業株式会社 Copper alloy
JP4191159B2 (en) 2005-03-14 2008-12-03 日鉱金属株式会社 Titanium copper with excellent press workability
JP4566048B2 (en) 2005-03-31 2010-10-20 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP4634955B2 (en) 2006-03-31 2011-02-16 Jx日鉱日石金属株式会社 High strength copper alloy with excellent bending workability and dimensional stability
JP5028657B2 (en) 2006-07-10 2012-09-19 Dowaメタルテック株式会社 High-strength copper alloy sheet with little anisotropy and method for producing the same
CN101050492A (en) * 2007-05-16 2007-10-10 赵景财 Material of titanium copper alloy, and production method
WO2009148101A1 (en) * 2008-06-03 2009-12-10 古河電気工業株式会社 Copper alloy sheet material and manufacturing method thereof
JP4563480B2 (en) * 2008-11-28 2010-10-13 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
CN101748308B (en) * 2008-11-28 2013-09-04 同和金属技术有限公司 CU-Ti system copper alloy plate and manufacture method thereof
JP2010195120A (en) 2009-02-24 2010-09-09 Yanmar Co Ltd Working vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026635A (en) * 2009-07-22 2011-02-10 Dowa Metaltech Kk Copper alloy sheet and method for manufacturing the same, and electric and electronic component

Also Published As

Publication number Publication date
CN103069026A (en) 2013-04-24
WO2012029717A1 (en) 2012-03-08
TW201211281A (en) 2012-03-16
CN105671358A (en) 2016-06-15
CN103069026B (en) 2016-03-23
KR20150143893A (en) 2015-12-23
CN105671358B (en) 2018-01-02
TWI447239B (en) 2014-08-01
KR20130099009A (en) 2013-09-05
JPWO2012029717A1 (en) 2013-10-28
EP2612934A1 (en) 2013-07-10
KR101577877B1 (en) 2015-12-15

Similar Documents

Publication Publication Date Title
JP5261582B2 (en) Copper alloy sheet and manufacturing method thereof
JP5158909B2 (en) Copper alloy sheet and manufacturing method thereof
KR101419147B1 (en) Copper alloy sheet and process for producing same
JP4875768B2 (en) Copper alloy sheet and manufacturing method thereof
JP4948678B2 (en) Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same
JP5400877B2 (en) Copper alloy sheet and manufacturing method thereof
JP5261619B2 (en) Copper alloy sheet and manufacturing method thereof
JP5916418B2 (en) Copper alloy sheet and manufacturing method thereof
JP6219070B2 (en) Method for producing copper alloy sheet
TW201428113A (en) Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method of producing copper alloy for electronic/electric device, conductive component for electronic/electric device, and terminal
JP6581755B2 (en) Copper alloy sheet and manufacturing method thereof
JP5117602B1 (en) Copper alloy sheet with low deflection coefficient and excellent bending workability
JP6339361B2 (en) Copper alloy sheet and manufacturing method thereof
JP5776831B1 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5261582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350